
HAL Id: hal-03197434
https://hal.science/hal-03197434

Submitted on 14 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SINr: Fast Computing of Sparse Interpretable Node
Representations is not a Sin!

Thibault Prouteau, Victor Connes, Nicolas Dugué, Anthony Perez,
Jean-Charles Lamirel, Nathalie Camelin, Sylvain Meignier

To cite this version:
Thibault Prouteau, Victor Connes, Nicolas Dugué, Anthony Perez, Jean-Charles Lamirel, et al.. SINr:
Fast Computing of Sparse Interpretable Node Representations is not a Sin!. Advances in Intelligent
Data Analysis XIX, 19th International Symposium on Intelligent Data Analysis, IDA 2021, Apr 2021,
Porto, Portugal. pp.325-337, �10.1007/978-3-030-74251-5_26�. �hal-03197434�

https://hal.science/hal-03197434
https://hal.archives-ouvertes.fr

SINr: fast computing of Sparse Interpretable
Node Representations is not a sin!

Thibault Prouteau1, Victor Connes2, Nicolas Dugué1, Anthony Perez3,
Jean-Charles Lamirel4, Nathalie Camelin1, and Sylvain Meignier1

1 Le Mans Université, LIUM, EA 4023, Laboratoire d’Informatique de l’Université
du Mans, France nicolas.dugue@univ-lemans.fr

2 Laboratoire des Sciences du Numérique de Nantes, Université de Nantes, France
victor.connes@univ-nantes.fr

3 Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, FR-45067 Orléans,
France anthony.perez@univ-orleans.fr

4 Université de Strasbourg, LORIA, Equipe Synalp, France lamirel@loria.fr

Abstract. While graph embedding aims at learning low-dimensional
representations of nodes encompassing the graph topology, word embed-
ding focus on learning word vectors that encode semantic properties of
the vocabulary. The first finds applications on tasks such as link predic-
tion and node classification while the latter is systematically considered
in natural language processing. Most of the time, graph and word em-
beddings are considered on their own as distinct tasks. However, word
co-occurrence matrices, widely used to extract word embeddings, can be
seen as graphs. Furthermore, most network embedding techniques rely
either on a word embedding methodology (Word2vec) or on matrix factor-
ization, also widely used for word embedding. These methods are usually
computationally expensive, parameter dependant and the dimensions of
the embedding space are not interpretable. To circumvent these issues,
we introduce the Lower Dimension Bipartite Graphs Framework (LDBGF)
which takes advantage of the fact that all graphs can be described as
bipartite graphs, even in the case of textual data. This underlying bi-
partite structure may be explicit, like in coauthor networks. However,
with LDBGF, we focus on uncovering latent bipartite structures, lying for
instance in social or word co-occurrence networks, and especially such
structures providing conciser and interpretable representations of the
graph at hand. We further propose SINr, an efficient implementation of
the LDBGF approach that extracts Sparse Interpretable Node Representa-
tions using community structure to approximate the underlying bipartite
structure. In the case of graph embedding, our near-linear time method
is the fastest of our benchmark, parameter-free and provides state-of-
the-art results on the classical link prediction task. We also show that
low-dimensional vectors can be derived from SINr using singular value
decomposition. In the case of word embedding, our approach proves to
be very efficient considering the classical similarity evaluation.

2 T. Prouteau et al.

Introduction

The aim of graph embedding is to learn representations of nodes encompassing
the structural properties of the network. Such representations (or embedding vec-
tors) can then be processed in reduced time and space and proved to be useful to
deal with problems such as link prediction [14] and node classification [2]. Among
the state-of-the art embedding methods, techniques adapting the Word2vec (for
semantic representations of words) framework [15] with random walks have been
extensively studied [19, 20]. Matrix factorization approaches [1, 6, 17] were also
widely considered, some of them also inspired by the GloVe word embedding
technique [5]. As one can see, natural language processing (NLP) literature influ-
enced a lot the field of graph embedding, providing a solid base on which to build.
Indeed, word embedding also aims to provide dense continuous representations,
those being used as inputs of NLP systems for opinion mining, translation or text
categorization for instance.

0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

(a)

1 0 0
1 0 0
1 1 0
0 1 1
0 0 1
0 0 1

(b)

Fig. 1. Illustrating the LDBGF: (a) a toy graph and its adjacency matrix (b) a low-
dimensional bipartite graph representation. The adjacency matrix of the ⊥ nodes (rows)
from the toy graphs are represented with their links to the > nodes (columns). The
resulting adjacency matrix is smaller and is actually an interpretable embedding: di-
mensions represent the connectivity to > nodes which are tangible entities.

Our approach. To the best of our knowledge, despite the connections between
these tasks, graph and word embedding are usually considered as distinct tasks.
In this paper, we tackle both of these tasks, considering that word co-occurrence
matrices extracted from substantial text corpora can also be seen as graphs.
We thus reduce the task of learning word embedding to a graph embedding
problem and provide a unified approach for both tasks. Furthermore, in all
aforementioned graph embedding works, authors mainly focus on getting ef-
ficient and low-dimensional dense vectors, somehow neglecting the time com-
plexity and the interpretability of the results. Meanwhile, interpretability and
green computing are major issues for the machine learning field. Taking into ac-
count these considerations, we introduce the Lower Dimension Bipartite Graphs
Framework (LDBGF), a framework based on low-dimensional bipartite represen-
tations of graphs to compute sparse interpretable vectors for words and nodes.

SINr: Sparse Interpretable Node Representations 3

Guillaume and Latapy [8] showed that all complex networks can be repre-
sented by a bipartite structure. Coauthoring networks are by nature represented
as a bipartite graph G = (>,⊥, E) where > corresponds to the set of papers
and ⊥ to the set of authors, each author being connected to papers they co-
signed. The unipartite coauthoring network can thus be retrieved by projecting
the bipartite graph, i.e. by adding an edge between any two authors linked to
the same paper. When considering social networks, one can reasonably assume
that there is a latent bipartite structure [8]: people are connected through their
school, family, firm, etc. In the case of word co-occurrence networks extracted
from large corpora, words are connected by syntactic rules, but also thematic
or semantic fields. With LDBGF, we assume that we can uncover low-dimensional
latent bipartite structures for real networks, representing them in a concise way
(Fig. 1). In such a case, the graph embedding space is interpretable: nodes are
represented by their connectivity to the >-nodes uncovered that are tangible
graph objects (Fig. 1(b)). Guillaume and Latapy [8] use cliques in the >-part of
the bipartite graph to encode relations between nodes. The problem considered
can thus be seen as a clique covering problem [8]: given a network, compute a
set of cliques such that each edge belongs to at least one clique (ensuring that the
⊥-projection yields the original network). However, LDBGF enforces the number
of cliques to be as small as possible in order to represent the original graph with
as few >-nodes as possible, and thus get a lower-dimensional embedding space.
For instance, considering each edge as a clique would yield too many cliques.
Thus, LDBGF is related to minimum clique covering number, a classical NP-
Hard problem [16]. Hence, one needs heuristics to obtain a satisfying covering
in a reasonable time.

Our contribution. In line with the LDBGF philosophy, we introduce the SINr5

(Sparse Interpretable Node Representations) method that derives sparse
and interpretable word and graph embedding vectors in near-linear time, thus
making a parsimonious usage of CPU resources. The main idea of SINr is to use
the community structure to provide an approximate solution to the minimum
clique covering problem. Indeed, communities can be seen as clique relax-
ations that can be uncovered very efficiently [3], allowing SINr to run faster than
the other graph embedding approaches. Basing our work on the hypothesis that
nodes with similar connectivity to the communities are similar, we compute our
bipartite approximation directly from community structure. This is why SINr

vectors are sparse and interpretable: each dimension of the embedding vector
represents the node connectivity to a community, and the number of dimensions
is thus linear in the number of communities. Furthermore, if low-dimensional
vectors are required, our SINr vectors can be projected in a lower-dimensional
space using standard dimension reduction techniques whilst preserving their ef-
ficiency.

Outline. We first describe our SINr embedding technique (Section 1), and how
it can be applied to deal with word and graph embeddings. We then detail the

5 https://www.github.com/anthonimes/SINr

https://www.github.com/anthonimes/SINr

4 T. Prouteau et al.

experimental setup (Section 2), considering graph and textual datasets, and de-
tailing graph and word embedding approaches we compare to. We finally present
the very encouraging experimental results on the classical link prediction task
for graph embedding, and on the similarity task for word embedding (Section 3).
We also demonstrate the lower computational cost of SINr when compared to
the other graph embedding methods we consider.

1 SINr: Algorithmic framework

SINr is a near-linear time implementation of LDBGF. Since communities can be
seen as cliques relaxations [3], instead of relying on cliques to compute a latent
bipartite structure (Fig 2(b)), SINr relies on communities which are faster to
compute. However, unlike in cliques, nodes connected to a community may not
be connected to the whole community. To cope with this problem, we use a
recent work by a subset of the same authors, allowing to account for the nodes
connectivity to the community structure, the Node F-Measure framework [7].
The aim of our method is to produce embedding vectors where nodes with a
similar behaviour towards the community structure of the network lie close in
the embedding space. Thus, the approach of SINr actually consists in two steps:
the first one is detecting the p communities of the network at hand (Section 1.1).
The second, described Section 1.2, is computing the Node Predominance and
Node Recall of each node for every community (Fig 2(c)). This allows to obtain
a 2p embedding vector for each node (Fig 2(d)). This explains why SINr leads
to sparse and interpretable vectors: dimensions of the embedding space are not
abstract but community-related. In the remaining of this section, we describe
further the two steps of SINr.

1.1 First step: community detection algorithms

We consider (un)directed and (un)weighted graphs G = (V,E,W) with V the
set of vertices, E the set of edges and W the weights attached to the edges.
The neighbourhood of a vertex v ∈ V is denoted by N(v), and we let d(v) =∑

u∈N(v)Wu,v. The community structure of G is a partition C = {C1, . . . , Cp} of

V such that each subgraph G[Ci] is densely connected, while the density between
Ci and Cj is low, 1 6 i < j 6 p. To measure the quality of such a partition,
Girvan and Newman [3] introduced the modularity QC :

QC =
1

2m
·
∑
i,j

[
Aij −

di · dj
2m

]
· δ(Ci, Cj) (1)

where Aij denotes the existence (or weight) of edge ij, and the δ-function δ(u, v)
is 1 if u = v and 0 otherwise. Computing a partition which maximizes modularity
is NP-Hard [4] but there exist community detection algorithms which implement
heuristics to maximize modularity, such as the extensively used Louvain algo-
rithm [3].

SINr: Sparse Interpretable Node Representations 5

Community structure was already successfully considered to extract graph
embedding vectors: Bhowmick et al. [2] used a projection of the hierarchical
community tree to obtain the network embeddings. However, our SINr approach
relies directly on the community structure, defining the embedding space using
the connectivity to the communities. We considered using various algorithms to
detect the communities and thus ran several tests using Label Propagation [21]
(LP), Infomap, and Louvain algorithms. Both LP and Louvain run fast (near-
linear time), while Infomap is slower but known to perform better. Our experi-
ments have shown that the graph embeddings extracted using Louvain with the
SINr methodology perform better for link prediction while the word embeddings
extracted with LP perform better on words similarity (Section 3).

(a) (b)

(c) (d)

Fig. 2. SINr : (a) Toy example with oval shapes representing communities (b) Latent
bipartite structure using maximum cliques (c) Approximation of such a structure using
detected communities and Node predominance (d) SINr vectors with Node predomi-
nance and Node recall for both communities.

1.2 Second step: Node Predominance and Node Recall

The Node F-measure framework introduced in [7] encompasses interesting topo-
logical properties such as centrality and community roles. It is based on Node
Predominance (NP) and Node Recall (NR). Node Predominance (Eq. 2) is
used to characterize the node’s connectivity towards its community: the higher
it is, the more a node is connected to its community. Node Recall (Eq. 3) is
used to evaluate the connectivity of a node with nodes outside its community:
the weaker it is, the more the node is connected to the outside. Considering
C = {C1, . . . , Cp}, and 1 6 i 6 p, we define NP and NR for each node u as:

NPi(u) =
dCi

(u)

dCi

(2) NRi(u) =
dCi

(u)

d(u)
(3)

where dCi
(u) is the degree of node u in Ci, i.e. dCi

(u) = | {uv ∈ E | v ∈ Ci} |,
and dCi

is the number of edges incident to vertices in community Ci.

6 T. Prouteau et al.

In this work, we consider NP and NR for a given node to any community
of a partition. We thus compute 2p-dimensional embeddings (Fig 2(d)) that
encompass connectivity of the nodes towards the network’s communities.

2 Experimental setup

2.1 Datasets

Networks considered for graph embedding. To conduct our experiments we use
several well-known datasets from different fields described by their size (n = |V |
and m = |E|). For the sake of our experiments, we extract the largest connected
component of each graph and consider them undirected.

(a) Citeseer [13] (Cts, n = 3, 312 and m = 4, 660) and Cora [13] (n = 2, 708
and m = 5, 278) are networks of citations of scientific publications.

(b) Email-eu [11] (Eu, n = 1, 005 and m = 16, 706) is a network represent-
ing a sender-receiver relationship w.r.t. e-mails within European research
institution.

(c) arXiv [9] (n = 18, 771 and m = 198, 050) covers scientific collaborations
between authors of papers submitted in the Astrophysics category.

(d) Facebook (Fb, n = 63, 731 and m = 817, 035) represents friendship data of
Facebook users.

Corpora considered for word embedding. Our experiments on word embedding
span two corpora. For each corpus6, words with fewer than four occurrences and
stop words (words without semantic interest, e.g. the, at, which) are removed.
Furthermore, both corpora are lemmatized using SpaCy.

(a) text8 is made of the first 100MB of Wikipedia’s March 2006 dump. After
preprocessing, the corpus contains 6, 039, 538 tokens for a vocabulary of
73, 860 words.

(b) OANC, the Open American National Corpus is a 15-million-word corpus of
written and spoken American English. After preprocessing, the number of
tokens of this corpus is 6, 016, 207 for a vocabulary of 53, 282 words.

2.2 Extracting word co-occurrence networks for textual corpora

When dealing with textual data, the first step is to extract a word co-occurrence
network from the corpora at hand. To build this graph, in a similar way to
other textual word embedding methods [12, 18], we first compute the word co-
occurrence matrix by applying a sliding context window to each sentence in the
corpora. At the second step, in order to filter out the insignificant co-occurrences
from this matrix, we compute the Pointwise Mutual Information (PMI [12],
Eq. 4) for each entry of the matrix, and set entries to 0 when the PMI value is
negative. When PMI value is positive, the entry remains unchanged.

6 http://mattmahoney.net/dc/textdata.html and http://www.anc.org/data/oanc/

SINr: Sparse Interpretable Node Representations 7

Let w1, w2 be two words, p(w1) the frequency of w1 in the corpora and p(w1, w2)
the co-occurrence frequency of both w1, w2. The PMI is defined as follows:

PMI(w1, w2) = log2

(
p(w1, w2)

p(w1)p(w2)

)
(4)

The third step consists in building a weighted graph G = (V,E,W) from
the filtered matrix. The vertex set V represents words. The edge set E and the
weights W attached to the edges represent the co-occurrences in the corpora:
there is an edge between two vertices if these words co-occur significantly in
the corpus, and the weight attached to the edge is the number of these co-
occurrences.

Fig. 3. Heatmap of the weighted degrees of the graph extracted on OANC after IPMI
according to the weighted degrees before applying IPMI, abscissa in logarithmic scale.

The final step consists in applying a re-weighting scheme to the graph. Ac-
cording to our extensive experiments, such a process is necessary to extract rel-
evant communities and thus word embeddings. We thus introduce our original
IPMI (Iterative Pointwise Mutual Information) re-weighting scheme. Let Eord be
the edges (u, v) of E ordered from the highest to the lowest sum of its weighted
degrees d(u)+d(v). For each edge (u, v) ordered as in Eord, we iteratively update
Wu,v with the IPMI value:

IPMI(u,v) =
Wu,v

d(u)d(v)
(5)

To illustrate the effect of the IPMI, we consider the graph extracted from the
text8 corpus described Section 2. We plot the weighted degrees of the vertices of
this graph after IPMI against the ones before IPMI. As one can see Figure 3, the
plot actually looks like an inverse function. Our experiments thus seem to show
that it is important to considerably lower the weights of the hubs (nodes that are
widely connected). Our hypothesis is that hubs represent very frequent words,
which are more susceptible to be polysemous. It may thus be more relevant to
detect communities based on more specific words by lowering the hubs influence
before the community detection.

8 T. Prouteau et al.

2.3 State-of-the-art algorithms

Graph embedding. We use several state-of-the-art graph embedding techniques
provided by the karateclub library [23] to compare with the results obtained
by our method. We use the default implementation parameters and embedding
vectors dimension number is always set to 128.

(a) HOPE [17] stands for High-order proximity preserved embedding. This ap-
proach uses generalized SVD to approximate proximity matrices such as the
ones that can be obtained by using Katz or Adamic-Adar indexes. In our
experiments, the proximity matrix used is the Common neighbours one.

(b) Deepwalk (DW) [19] is similar in spirit to the Word2vec Skip-gram approach [15].
Instead of computing Skip-gram on sentences, the authors compute it on
paths given by random walks on the graph. The number of walks is fixed to
10, the walk length to 80 and the window size to 5.

(c) Walklets (WL) [20] is also based on random walks, but the authors introduce
a sampling method improving the results. The parameters are the same as
for Deepwalk except that the window size is 4.

We also ran experiments with Diff2vec [23], GraRep [6] and LaplacianEigenMaps

[1] but for the sake of concision, we do not report their results. Indeed, GraRep
is similar to Walklets in spirit, and obtain similar results but it runs slower and
requires much more memory. LaplacianEigenmaps and Diff2vec obtain poorer
results than the other approaches.

Word embedding. We compare to classical state-of-the-art methods but do not
consider contextual word embeddings, since our work focuses on interpretability
and parsimonious usage of computing resources. The implementations are de-
tailed below. In all of them, the sliding context window is set to 5 words and the
number of dimensions to 300.

(a) Word2vec (W2V) is one of the most popular methods to learn word embed-
dings [15]. We compute embeddings for each corpus using the CBOW archi-
tecture provided by Gensim [22] .

(b) GloVe [18] stands for Global Vectors for Word Representation and aims at
providing corpus-derived semantic models based on global word co-occurrence
statistics. We use the GloVe implementation provided by the authors.

(c) SVD2vec is an implementation 7 of the approach described by Levy et al. [12]
using SVD on a PPMI co-occurrence matrix to compute embeddings.

3 Experiments and results

3.1 SINr is fast: Complexity and runtime

Given the community structure of a network, computing embeddings can be done
in linear time since one only needs to parse the edges of the graphs to compute

7 https://git-lium.univ-lemans.fr/vpelloin/svd2vec

SINr: Sparse Interpretable Node Representations 9

Node Predominance and Node Recall. As stated previously, we use Louvain’s
algorithm to compute graph embeddings, which is known to run in O(m) time [2,
24]. For word embedding, we use Label propagation which is known to run in
near-linear time, each propagation step running in O(m) time and the algorithm
converging in few steps. Altogether, the running time of our method is thus in
O(m). To conclude this section, we present the average time8 (50 runs) needed to
compute embeddings for SINr and graph embedding algorithms HOPE, Deepwalk
and Walklets we compare to (see Section 2.3 for more details). As detailed
Section 2.1, the Facebook graph contains 63, 731 vertices and 817, 035 edges. As
one can see, our method is significantly faster than the other approaches.

Table 1. Average runtime in seconds (left) and CPU time taking into account paral-
lelism (right)

Cora Eu Cts arXiv Fb

SINr 0.3/1.3 0.3/2 0.1/0.9 0.9/4 3/8
HOPE 0.2/3 0.6/8 0.7/2 10/120 26/195
DW 24/36 13/18 20/30 264/378 336/422
WL 26/38 12/18 24/36 261/365 475/652

3.2 Graph embedding: Link Prediction

Problem description. Let G = (V,E) be a simple undirected network. Let U de-

note the universal set containing n(̇n−1)
2 possible pairs of V and E = U \E the set

of non-edges of G. We consider link prediction as a binary classification problem
where we assume that there are some missing links (or links that will appear
later on) and we train a classifier to detect such links with high probability.

As in [17], we randomly separate the graph into a training set (containing
80% edges) and a test set containing the remaining edges. We train the embed-
ding vectors on the training set, and then evaluate link prediction on the test
set. Training is done using Xgboost and Logistic regression and the best
results are kept in each case. For the sake of comparison, we consider the node
representation algorithms detailed Section 2.3 with Hadamard product, as well
as the following set of heuristic features which is proved to be efficient on the link
prediction task (see [14]): Common Neighbours, Adamic Adar, Preferential At-
tachment, Jaccard index, Resource Allocation Index. The vector obtained from
such features is referred to as the heuristics vector.

Evaluation. We consider two evaluation procedures. In the first one, the test
set is made of the 20% of existing edges augmented with the same number of
negative examples sampled from E. We run each test 50 times and present the

8 With two Intel Xeon CPU E5-2660 2.20GHz : 16 cores, 96Go Ram.

10 T. Prouteau et al.

averaged accuracy. SINr achieves the highest accuracy for most of the small
datasets as one can see Table 2. On sizeable graphs, results are comparable to
those of the other state-of-the-art approaches. On such graphs, the communities
may be harder to detect, explaining the results. Furthermore, we can observe that
results are still close to the best ones, even when applying SVD on SINr in order
to get 20 dimensions. Our approach can thus provide both sparse interpretable
and dense low-dimensional vectors.

SINr SINr-SVD Heuristics DW WL HOPE

Cora 0.83 0.83 0.76 0.73 0.82 0.75
Eu 0.88 0.88 0.87 0.81 0.87 0.87
Cts 0.88 0.86 0.78 0.76 0.87 0.83
arXiv 0.92 0.90 0.97 0.92 0.96 0.92
Fb 0.91 0.89 0.93 0.86 0.92 0.90

Table 2. Accuracy on the link prediction task.
SINr-SVD is 20-d SINr vectors obtained using
SV D.

p QC σ

Cora 23 0.80 0.94
Eu 6 0.41 0.44
Cts 33 0.85 0.96
arXiv 28 0.62 0.87
Fb 73 0.62 0.96

Table 3. Number of communities
p, modularity QC, and sparsity co-
efficient σ of the SINr vectors.

In our second evaluation procedure, we consider a test set with many more
negative examples. Due to the high cardinality of the set E, we randomly sample
about 1% of such pairs for evaluation on most graphs, except for Facebook

where we sample 0.1%. We run each test 50 times and present the averaged
precision@k. The latter measures the fraction of node pairs in the top-k most
probable pairs (according to our classifier) corresponding to an actual edge in the
network. Figure 4 presents representative results. For most datasets introduced
Section 2.1, experiments highlight the relevance of our method that competes
with the state-of-the art approaches. On Email-eu, the lower modularity of the
partitions returned (Table 3) degrades the performances of our approach. Our
method obtains these encouraging results being by far the fastest (Table 1).

Fig. 4. precision@k, the proportion among the k most probable pairs that are edges
according to the classifier trained on link prediction on Cts (at left) and Fb (at right).

SINr: Sparse Interpretable Node Representations 11

3.3 Word embedding: Similarity

To evaluate the performances of SINr word embeddings, we consider a word
similarity task with datasets presented in Lastra-Diaz et al. [10]. Each dataset is
composed of pairs of words associated with a similarity value assessed by humans.
The evaluation consists in computing the Spearman correlation between the
cosine similarity for all the pairs in the embedding space and the human value.

text8 W2V GloVe SVD2vec SINr

MC28 0.58 0.42 0.67 0.69
RG65 0.52 0.48 0.57 0.64
MTurk771 0.52 0.48 0.45 0.48
WS353Rel 0.47 0.44 0.46 0.50
WS353Full 0.55 0.47 0.55 0.53
MEN 0.53 0.48 0.61 0.52

OANC W2V GloVe SVD2vec SINr

MC28 0.45 0.54 0.33 0.62
RG65 0.33 0.32 0.32 0.39
MTurk771 0.44 0.39 0.36 0.37
WS353Rel 0.40 0.34 0.47 0.41
WS353Full 0.49 0.40 0.51 0.44
MEN 0.44 0.46 0.59 0.40

Table 4. Word similarity evaluation in Spearman correlation between human judge-
ment and cosine similarity for each model. At left, on text8 corpus, at right on OANC.

The first four datasets (MC28, RG65, MTurk771and WS353Rel) are composed
of pairs of names, the last two datasets (WS353Full, MEN) contain names, ad-
jectives and verbs. On both text8 and OANC, SINr word embeddings perform
best on MC28 and RG65 whose words in pairs have a similar meaning. W2V and
SVD2vec achieve better results than SINr on datasets with related pairs of
words (MTurk771 and WS353Rel) and datasets with names adjectives and verbs
(WS353Full, MEN). Overall, the performances of SINr on this task remain encour-
aging and show that word embeddings extracted from co-occurrence networks
can achieve good results on the similarity task.

4 Conclusion

We introduced LDBGF, a novel approach based on the underlying bipartite struc-
ture of networks to compute sparse interpretable embeddings. Moreover, we de-
veloped SINr, a near linear-time implementation of this newly introduced frame-
work that is faster than all the other graph embedding approaches we compare
to. Although embedding techniques explicitly aim to get dense low-dimensional
vectors, we demonstrate that the SINr vectors achieve state-of-the-art results on
classic graph and word embedding evaluation tasks whilst maintaining a sparse
and interpretable representation. We also show that projecting our embedding
vectors into a low-dimensional space using SVD does not significantly lower the
results. These results demonstrate the relevance of the LDBGF philosophy. We
thus hope for new efficient implementations of this framework. For instance, it
would be interesting to extend our approach to deal with temporal networks by
considering incremental clustering algorithms.

12 T. Prouteau et al.

References

1. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. In: NIPS. pp. 585–591 (2002)

2. Bhowmick, A.K., Meneni, K., Danisch, M., Guillaume, J., Mitra, B.: Louvainne:
Hierarchical louvain method for high quality and scalable network embedding. In:
WSDM. pp. 43–51 (2020)

3. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech.: Theory Exp. 2008(10), P10008

4. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wag-
ner, D.: Maximizing modularity is hard. arXiv preprint physics/0608255 (2006)

5. Brochier, R., Guille, A., Velcin, J.: Global vectors for node representations. In:
WWW. pp. 2587–2593 (2019)

6. Cao, S., Lu, W., Xu, Q.: Grarep: Learning graph representations with global struc-
tural information. In: CIKM. pp. 891–900 (2015)

7. Dugué, N., Lamirel, J.C., Perez, A.: Bringing a feature selection metric from ma-
chine learning to complex networks. In: Complex networks (2). pp. 107–118 (2018)

8. Guillaume, J.L., Latapy, M.: Bipartite graphs as models of complex networks.
Physica A 371(2), 795–813 (2006)

9. Kunegis, J.: The koblenz network collection. In: WWW. pp. 1343–1350 (2013)
10. Lastra-Dı́az, J.J., Goikoetxea, J., Hadj Taieb, M.A., Garćıa-Serrano, A., Aouicha,

M.B., Agirre, E.: Reproducibility dataset for a large experimental survey on word
embeddings and ontology-based methods for word similarity. Data in Brief 26,
104432 (2019)

11. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and
shrinking diameters. ACM Trans. Kno. Discov. from Data 1(1), 2–es (2007)

12. Levy, O., Goldberg, Y., Dagan, I.: Improving distributional similarity with lessons
learned from word embeddings. ACL 3, 211–225 (2015)

13. Lu, Q., Getoor, L.: Link-based classification. In: ICML. pp. 496–503 (2003)
14. Mart́ınez, V., Berzal, F., Talavera, J.C.C.: A survey of link prediction in complex

networks. ACM Comput. Surv 49(4), 69:1–69:33 (2017)
15. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-

tations of words and phrases and their compositionality. In: NIPS. pp. 3111–3119
(2013)

16. Monson, S.D., Pullman, N.J., Rees, R.: A survey of clique and biclique coverings
and factorizations of (0, 1)-matrices. Bull. Inst. Combin. Appl 14, 17–86 (1995)

17. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving
graph embedding. In: SIGKDD. pp. 1105–1114 (2016)

18. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: EMNLP. pp. 1532–1543 (2014)

19. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: SIGKDD. pp. 701–710 (2014)

20. Perozzi, B., Kulkarni, V., Chen, H., Skiena, S.: Don’t walk, skip! online learning
of multi-scale network embeddings. In: ASONAM. pp. 258–265 (2017)

21. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks. Phys review E 76(3), 036106 (2007)

22. Řeh̊uřek, R., Sojka, P.: Software Framework for Topic Modelling with Large Cor-
pora. In: LREC. pp. 45–50 (2010)

23. Rozemberczki, B., Kiss, O., Sarkar, R.: An api oriented open-source python frame-
work for unsupervised learning on graphs (2020)

24. Traag, V.A.: Faster unfolding of communities: Speeding up the louvain algorithm.
Physical Review E 92(3), 032801 (2015)

	SINr: fast computing of Sparse Interpretable Node Representations is not a sin!

