
HAL Id: hal-03197423
https://hal.science/hal-03197423v5

Preprint submitted on 8 Nov 2021 (v5), last revised 21 Mar 2022 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Zaionc paradox revisited
Pierre Lescanne

To cite this version:

Pierre Lescanne. Zaionc paradox revisited. 2021. �hal-03197423v5�

https://hal.science/hal-03197423v5
https://hal.archives-ouvertes.fr


Almost all classical propositions are intuitionistic

Zaionc paradox revisited

Pierre Lescanne

École Normale Supérieure de Lyon,
LIP (UMR 5668 CNRS ENS Lyon UCBL),

46 allée d’Italie, 69364 Lyon, France
pierre.lescanne@ens-lyon.fr

Abstract

Canonical expressions are representative of implicative propositions up-to renaming of
variables. Using A Monte-Carlo Approach, we explore the model of canonical expressions
in order to confirm the paradox that says that asymptotically almost all classical theorems
are intuitionistic. Actually we found that more than 96, 6% of classical theorems are
intuitionistic among propositions of size 100.

Keywords: intuitionistic logic, classical logic, combinatorics, asymptotic, random gen-
eration, Bell number, Catalan number, Monte-Carlo method

1 Introduction

In 2007, Marek Zaionc coauthored two papers [7, 5], corresponding to two models of the calculus
of implicative propositions and presenting the following paradox, namely that asymptotically

almost all classical theorems are intuitionistic, which we call, in short, Zaionc paradox. In
the current paper, we focus on the model of [7], which we call canonical expressions. They
have been introduced by Genitrini, Kozik and Zaionc [7] and more recently by Tarau and de
Paiva [14, 15]. A canonical expression is a representative of a class of implicative propositions
that differ only by the name assigned to the variables. Whereas Genitrini, Kozik and Zaionc ad-
dressed the mathematical aspect of this model, Tarau and de Paiva tried to explicitly generate
all the canonical expressions of a given size and faced up to combinatorial explosion, because
canonical expressions grow super exponentially in size. In this paper, I check experimentally
Zaionc paradox, adopting a Monte-Carlo approach to observe how this paradox emerges. In-
deed I designed a linear algorithm to randomly generate canonical expressions. Therefore I
can consider large samples of random (for a uniform distribution) canonical expressions and
count how many canonical expressions in that samples are intuitionistic theorems or classical
theorems. The experiments, centered around canonical expressions of size 100, show that the
numbers we get for both sets are very close confirming experimentally the paradox, with a ratio
96.6% much better than this obtained on the model of Genitrini et al. which yields 36% for
canonical expressions of size 100. As a by product we obtain programs generating large random
canonical expressions, large random intuitionistic theorems or large random classical theorems.

The programs used in this paper can be found on GitHub.

2 Intuitionistic vs classical theorems

In this paper we deal only with implicative propositions. An implicative proposition is a binary
expression with propositional variables, which has only one binary operator namely the impli-
cation written →. This can be seen as the type of a function in functional programming or in

https://github.com/PierreLescanne/CanonicalExpression


Zaionc paradox P. Lescanne

λ-calculus. Among the implicative propositions, some can be proven, using a proof system. Let
us consider natural deduction. There are three rules used to prove intuitionistic theorems.

Axiom
α ⊢ α

Γ ⊢ α → β Γ ⊢ α
→-Elim

Γ ⊢ β

α,Γ ⊢ β
→-Intro

Γ ⊢ α → β

Classical theorems are proved by adding the axiom:

Pierce
⊢ ((α → β) → α) → α

which is called Peirce law. Usually one uses valuations, which assign booleans to variables. Let
ρ be an assignment of booleans to variables. Valuations of expressions are defined by:

JxKρ = ρ(x)

Je → e′Kρ = Je′Kρ ∨ JeKρ

where b 7→ b is the negation and b1 ∨ b2 = 1 except when b1 = b2 = 0 is or. An expression e is
a classical theorem or a tautology, if for all valuation ρ, JeKρ = True.

Notice that, with the Curry Howard isomorphism [10], the results of this paper apply also
to types.

3 The model of canonical expressions

We call canonical expression the representative of an equivalence class of binary expressions up-
to renaming of variables. In other words, a canonical expression is a binary expression, in which
variables are named canonically, from right to left. That means that the rightmost variable is
x0, then if processing to the left, the next new variable is x1, then the next new variable, which
is neither x0 nor x1 is x2 etc. Recall that in an expression, a variable corresponds to a position
into the expression. In other words a variable in an equivalence class of positions. Therefore
naming canonically a variable corresponds to naming canonically an equivalence class in the set
of position. Therefore if a variable belongs to the ith class it will be named αi and vice-versa,
if a class is the class of αi, it is the ith class. In canonical expressions, the classes are numbered
from right to left. For instance, assume an expression of size 10, i.e., with 10 occurrences of
variables. This is an expression with 10 positions of variables, like :

x y y x y x z x x x

or
β α α β α β γ β β β

In the first expression we see 3 variables namely {x, y, z}, hence 3 congruence classes. As said
above, for technical reasons, not hard to guess, variables are numbered from right to left, starting
at 0. Hence x which corresponds to positions {1, 4, 6, 8, 9, 10} is class 0, z which corresponds to
positions {7} is class 1 and y which corresponds to positions {2, 3, 5} is class 2. Therefore the
list of canonically named variables, associated with the above list of variables is.

α0 α2 α2 α0 α2 α0 α1 α0 α0 α0

The above congruence class is canonically represented by the string 0220201000. Canonical
presentation of congruence classes over a set of n elements by a string of natural numbers of

2



Zaionc paradox P. Lescanne

size n is known. It is called restricted growth string by Knuth ([8], fascicle 3, §7.2.1.5, p. 62)
and irregular staircase by Flajolet and Sedgewick [4] (p. 62-63). In this paper, we consider
classes from right to left wherever the cited authors consider them from left to right, but this
is a detail. Intuitively, a restricted growth string is a string whose last item is 0 and when one
progresses to the left, one meets items that have been met already or if not the new item is just
the successor of the largest item met until this point. Here [0..i]∗ is the set of strings made of
integers k such that 0 ≤ k ≤ i.

Definition 1 (Restricted growth string). The set Wn of n-restricted right to left growth strings
is defined as follows

• W0 = [0..0]∗,

• Wn+1 = [0..(n+ 1)]∗ (n+ 1)Wn

For instance W2 = [0..2]∗ 2W1 = [0..2]∗ 2 [0..1]∗ 1W0 = [0..2]∗ 2 [0..1]∗ 1 [0..0]∗ One sees that
0220201000 ∈ W2 where items larger that those on the right are put in brown.

Once the variables are chosen, how operators → are associated has to be done. Here we are
interested in parenthesized expressions with the only binary operator →. For instance, for an
expression of size 10, we look for a binary tree with 10 external leaves like:

((✷→✷)→((((✷→✷)→✷)→✷)→(((✷→✷)→✷)→✷)))

which can be drawn as the tree :

→
❥❥❥

❥❥❥ ❙❙❙
❙❙❙

→
✇✇ ❍❍

→

①①
①①
①①
① ❍❍

✷ ✷ →
❘❘❘

❘❘❘

→
✇✇

❋❋
→

✇✇
❋❋

✷

→
✇✇

●●
✷ →

①① ●●
✷

→
①① ●●

✷ ✷ ✷

✷ ✷

To get a canonical expression one matches a restricted growth string and a binary tree. In our
case, we get by matching the above restricted tree and the above parenthesized expression, the
following canonical expression

((α0 → α2) → ((((α2 → α0) → α2) → α0) → (((α1 → α0) → α0) → α0)))

which corresponds to the tree:

→
❥❥❥

❥❥❥ ❚❚❚
❚❚❚

→
✇✇ ❍❍

→

✇✇
✇✇
✇✇
✇✇ ❍❍❍

α0 α2 →
❙❙❙

❙❙❙

→
①①
① ❋❋❋

→
①①
① ❋❋❋

α0

→
①①
① ❋❋❋

α0 →
①①① ❋❋❋

α0

→
①①① ❋❋❋

α2 α1 α0

α2 α0

3



Zaionc paradox P. Lescanne

Canonical expressions are therefore pairs of binary trees and restricted left to right growth
strings, counted by Kn = Cn−1̟n where Cn are Catalan numbers (counting binary trees)
and ̟n are Bell numbers (counting restricted growth strings). This corresponds to sequence
A289679 in the Online encyclopedia of integer sequences [12]. Asymptotically,

Cn−1 ∼
4n−1

√

π(n− 1)3

̟n ∼ n!
ee

r

−1

rn
√

2πr(r + 1)er

where r ≡ r(n) is the positive root of the equation rer = n+ 1. Therefore

Kn ∼ n!
4n−1ee

r

−1

π
√

2(n− 1)3r(r + 1)er

The first values of Kn are 1, 2, 10, 75, 728, 8526, 115764, 1776060, 30240210, ... and K100 ∼
9, 62.10168.

4 Random canonical expressions

Since canonical expressions are pairs of well-known combinatorial objects, namely binary trees
and congruence classes, we can use well-known algorithm to generate each constituents of the
pairs.

4.1 Random binary trees

For generating random binary trees, I use Rémy algorithm [11] which is linear. This algorithm
is described by Knuth in [8] § 7.2.1.6 (pp. 18-19). I have taken his implementation. The idea of
the algorithm is that a random binary tree can be built by iteratively and randomly picking an
internal node or a leaf in a random binary tree and inserting a new internal node and a new leaf
either on the left or on the right. A binary tree of size n has n− 1 internal nodes and n leaves.
Inserting a node in a binary tree of size n requires throwing randomly a number between 1 and
4n− 2 (a random number between 0 and 4n− 3 in my Haskell implementation). This process
can be optimized by representing a binary tree as a list (a vector in Haskell), an idea sketched
by Rémy and described by Knuth. In this vector, even locations are for internal nodes and
odd locations are for leaves. Here is a vector representing a binary tree with 10 leaves and its
drawing.

indices 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
values 1 13 0 2 5 9 7 8 4 11 17 12 10 15 3 16 14 18 6

4

https://oeis.org/A289679


Zaionc paradox P. Lescanne

?>=<89:;1

④④
④④ ❈❈

❈

?>=<89:;13

④④
④④

◗◗◗
◗◗◗

◗◗ 0

?>=<89:;15

④④
④ ❈❈

❈
?>=<89:;3

④④
④

❈❈
❈❈

16 14 2 ?>=<89:;5

④④
④④

❖❖
❖❖

❖❖
❖

?>=<89:;9

♠♠♠
♠♠♠

♠♠
❈❈

❈❈
?>=<89:;7

��
� ❃❃

❃

?>=<89:;11

④④
④ ❈❈

❈
?>=<89:;17

④④
④ ❆❆

❆
8 4

12 10 18 6

This tree was built by inserting the node 17 together with the leaf 18 in the following tree.

indices 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
values 1 13 0 2 5 9 7 8 4 11 6 12 10 15 3 16 14

coding the tree
?>=<89:;1

④④
④④ ❆❆

❆

?>=<89:;13

④④
④④

◗◗◗
◗◗◗

◗◗ 0

?>=<89:;15

④④
④ ❈❈

❈
?>=<89:;3

⑥⑥
⑥ ❄❄

❄

16 14 2 ?>=<89:;5

⑧⑧
⑧

❖❖
❖❖

❖❖
❖

?>=<89:;9

♥♥♥
♥♥♥

♥♥ ❂❂
❂

?>=<89:;7

✁✁
✁ ❂❂

❂

?>=<89:;11

⑤⑤
⑤ ❇❇

❇
6 8 4

12 10

This was done by picking a node (internal node or leaf, here the node with label 6) and a
direction (here right) and by inserting above this node a new internal node (labeled 17) and,
below the new inserted internal node, a new leaf of the left (labeled 18). This double action
(inserting the internal node and attaching the leaf) is done by choosing a number in the interval
[0..33] (in general, in the interval [0..(4n− 3)]). Assume that in this case the random generator
returns 21. 21 contains two informations : its parity (a boolean) and its half. Half of 21 is 10,
which tells that the new node 17 must be inserted above the 10th (in the array) node namely 6.
Since 21 is odd, the rest of the tree (here reduced to the leaf 6) is inserted on the right (otherwise
it would be inserted on the left). A new leaf 18 is inserted on the left (otherwise it would be
inserted on the right).

The algorithm works as follows. If n = 0, Rémy’s algorithm returns the vector starting at
0 and filled with anything, since the whole algorithm works on the same vector with the same
size. In general, say that, for n− 1, Rémy’s algorithm returns a vector v. One picks a random
integer x between 0 and 4n− 3. Let k be half of x. In the vector v one replaces the kth position
by 2n− 1 and one appends two elements, namely the kth item of v followed by 2n if x is even
and 2n followed by the kth item of v if x is odd.

If we admit that given a seed and a positive integer n, randForRemy seed n returns a
random integer between 0 and 4n − 3 inclusive, the program in Haskell of the function rbt

which yields a random binary tree of size n coded as a vector of length 2n is given in Fig. 1.

5



Zaionc paradox P. Lescanne

1 rbtV :: Int −> Int −> Vector Int
2 rbtV seed 0 = Data.Vector.replicate sizeOfVector (−1) // [(0,0)]
3 rbtV seed n =
4 let x = randForRemy seed n −− a random value between 0 and 4n−3 inclusive
5 v = rbtV seed (n−1)
6 k = x ‘div‘ 2
7 in case even x of

8 True −> v // [(k,2∗n−1),(2∗n−1,v!k),(2∗n,2∗n)]
9 False −> v // [(k,2∗n−1),(2∗n−1,2∗n),(2∗n,v!k)]

Figure 1: Haskell program for Rémy’s algorithm

4.2 Random restricted growth string

For generating random partitions or random restricted growth strings an algorithm due to
A. J. Stam [13] and described by Knuth in [9] § 7.2.1.3 (p. 74) was implemented. The im-
plementation requires, for each value of n (the size of the underlying set – for us, this is the
number of variables or the size of the expression–), a preliminary construction of a table of
reals in which indices are looked up (the number M of classes). Those reals are probabilities

pn =
mn

em!̟n

that an n-partition has m classes. Thus in my program, I implemented the algorithm for size
n = 10, 25, 50 100, 500 and 1000. In order to get accurate values, the pn’s for those integers
where computed elsewhere in a dedicated computer algebra software namely Sagemath [16].
From this table and a randomly chosen number between 0 and 1, one gets a random number M
of equivalence classes. Thereafter, for each element in [0..n] one picks up randomly uniformly
and independently individuals in [0..(M − 1)]. This method yields class descriptions (classes
are a priori numbered from 0 to M − 1 and the elements 0,..., n − 1 are distributed in those
classes), but one wants restricted growth strings as described in Section 3. So a function that
transforms a class description into a restricted growth string was implemented.

Putting together those two algorithms, namely binary tree random generation and restricted
growth string random generation, produces an algorithm for canonical expression random gen-
eration.

5 Selecting intuitionistic theorems

Once a canonical expression is randomly generated, one has to check whether it is an intuition-
istic theorem, a classical theorem, or not a proposition of those sorts

The program selects two kinds of trivial intuitionistic expressions. At first glance this selec-
tion looks coarse, but from experience, the first one (simple theorems) collects a large majority
of the expressions and the second selects (arrowElim theorems) most of the others, because it
is associated with a trick which consists in cleaning expressions by removing recursively trivial
subexpressions that are theorems. Indeed a “cleaned” sub-expression can become trivial and
be removed in turn. This might allow cleaning an expression where a trivial premise appears,
which might be removed in turn.

6



Zaionc paradox P. Lescanne

5.1 Simple intuitionistic theorems

Let us call simple intuitionistic theorem (see [7] Definition 1), a theorem, in which the goal is
among the premises. In other words, this is a theorem of the form:

... → αi → ... → αi

5.2 ArrowElim intuitionistic theorems

Let us call arrowElim intuitionistic theorem (for →-elim theorem), a theorem which is a direct
application of the modus ponens aka →-elim. This is a theorem with goal αi and two premises
αj and αj → αi. Therefore it has the form:

... → (αj → αi) → ... → αj → ... → αi

or

... → αj → ... → (αj → αi) → ... → αi

During the experiments I met, for instance, the term, which is not a canonical expression,
but obtained by cleaning:

(x28 → ((x22 → ((x26 → ((x14 → x2) → (x11 → x8))) → x28)) → ((x28 → (x9 → x13)) → (x14 → ((x28 → x0) → x0)))))

which can be drawn as the labeled binary tree:

→
✉✉ ●●●

x28 →
✇✇✇ ❩❩❩❩❩

❩❩❩❩❩
❩❩❩❩❩

❩

→
✉✉ ●●●

→
✇✇✇

■■
■■

■■
■■

■■
■■

■■

x22 →
②②
② ❍❍❍

→
✈✈✈ ❋❋

❋

→
✈✈✈ ❋❋

❋ x28 x28 →
②②② ❍❍❍

x26 →
②②
② ❚❚❚

❚❚❚
❚ x9 x13 →

✈✈✈ ❋❋
❋

→
✈✈✈ ❋❋❋

→
tt
t ❍❍❍

x14 →
②②
② ❋❋❋

x14 x2 x11 x8 →
✈✈✈ ❋❋❋

x0

x28 x0

which can be written

→
✉✉ ●●●

x28 →
②②② ●●

●

p1 →
✇✇
✇ ●●

●

p2 →
✇✇
✇ ❊❊

❊

p3 →
②②
② ❊❊❊

→
✈✈✈ ❋❋❋

x0

x28 x0

It is clearly an intuitionistic theorem and isArrowElim checks it.

7



Zaionc paradox P. Lescanne

5.3 Easy intuitionistic theorems

Let us call easy intuitionistic theorems, expressions that are simple or arrowElim.

5.4 Removing easy premises

In intuitionistic logic if a premise is a theorem, it can be removed. Consider the predicate ⊢ p

that says that p is a theorem. Clearly under the assumption ⊢ p, the two statements ⊢ p → q

and ⊢ q are equivalent. Note that p is not necessarily the first premise of the implication. Hence
if an expression becomes easy after removing easy premises, it is an intuitionistic theorem.

In the process of “cleaning” expressions, expressions that are easy are removed inside-out.
This way easy expressions that can be removed recursively are detected.

5.5 Minor intuitionistic theorems

A minor theorem is a theorem of the form ... → p → ... → p, whatever p is. Simple propositions
are minor, but minor propositions are not always simple. For instance, x → (y → z) → y → z

is minor, but is not simple. Detecting such expressions has a cost, I decided to not detect
minor intuitionistic theorem recursively, but only after easy subexpressions have been removed
recursively.

5.6 Cheap intuitionistic theorems

Let us call cheap intuitionistic theorems, expressions that are minor or easy after removing
(recursively) easy premises. Actually, my experiments lead naturally to the statement that
96.6% of classical theorems with 100 variables are cheap intuitionistic (see Section 7).

6 Classical tautologies

The selection of classical tautologies is by valuations. If all the valuations of an expression yield
True this expression is a classical tautology. But this method is obviously intractable [3]. It
should be applied only to expressions on which other more efficient methods do not work and
with a limitation on the number of variables in expressions

6.1 Simple antilogies

Trivial non classical propositional theorems are eliminated before applying valuations. The
predicate simpAntilogy finds in quadratic time a large set of propositions which are not tau-
tologies and which we call simple antilogies. Thereafter, boolean valuations are checked only
on the positions that are not simple antilogies. For more efficiency, the predicate simpAntil-

ogy is applied on expressions in which easy premises have been recursively removed, like for
intuitionistic expressions.

An expression is a simple antilogy if it is of the form ... → ei → ... → x0 where the premises
ei are of one of the following forms:

(i) → ... → xi with xi 6= x0 i.e., with a goal which is not x0

(ii) ... → x0 → ... → x0 i.e., are simple with goal x0.

8



Zaionc paradox P. Lescanne

One sees easily that applying the valuation ρ such that ρ(x0) = False and ρ(xi) = True for i 6= 0
to simple antilogies yields False. Therefore simple antilogies are not classical theorems.

In [7], Genitrini, Kozik and Zaionc consider only the first case, namely the case where the
premises have a goal which is note x0. They call such expressions, simple non tautologies.

6.2 Expressions with too many variables

Assume we recursively remove simple antilogies, there are still expressions intractable by the
valuation method, because they have too many variables, i.e., they have a too large index.
In my experiment with expressions of size 100, an index is too large if it is larger than 31.
Fortunately those expressions are rare and one may expect that there is a valuation that rejects
them. For this, I rename all the too large indices as they would be the same as the bound.
The valuations are checked on this renamed expression. If the renamed expression is not a
tautology, then the given expression is not a tautology. In the experiment of Section 7 this trick
works and eliminates expressions with too large indices which need not to be checked further.

7 Results

7.1 Ratio cheap vs classical

My Haskell program was run on a sample of 20 000 randomly generated canonical expressions of
size 100 and I found 759 classical tautologies, among which 733 were cheap expressions, hence
guaranteed to be intuitionistic theorems. Therefore the ratio of cheap theorems over classical
theorems is 96.6%. Are the 26 classical non cheap theorems still intuitionistic? The experience
cannot tell. I presume that there are likely more than 733 intuitionistic theorems and therefore
more than 96.6% of classical theorems that are intuitionistic.

7.2 Simple intuitionistic theorems vs not simple non tautologies

In [7], Genitrini, Kozik and Zaionc take the ratio of the number of simple intuitionistic theorems
over the number of non simple non tautologies as the quantity that goes to 1 and is a lower
bound of the ratio of the number of intuitionistic theorems over the number of classical theo-
rems. Among 10 000 random canonical expressions of size 100, I found 238 simple intuitionistic
theorems and 685 non simple non tautologies, for a ratio closed to 36%, a ratio largely smaller
than the above one.

7.3 Simple intuitionistic theorems

Besides, another number of interest is the ratio Rn of simple intuitionistic theorems over all

canonical expressions of size n. In the next array, this is compared with the formula log(n)
n

.

n
log(n)

n
Rn

25 0, 128755033 0.2214
50 0, 07824046 0.1248

100 0, 046051702 0.0506
500 0, 012429216 0.0119
1000 0, 006907755 0.006

9

https://github.com/PierreLescanne/CanonicalExpression


Zaionc paradox P. Lescanne

Genitrini, Kozik and Zaionc [7] gave e log(n)
n

in Lemma 2, for the same quantity, but after

viewing my results Genitrini [6] found a mistake and corrected the formula to log(n)
n

, which now
corresponds to what I found. Notice that this does not affect their other results.

Acknowledgments

I thank Valeria De Paiva for an interesting interaction and the incentive to address this problem,
Jean-Luc Rémy for discussions on binary tree generation and Antoine Genitrini for discussions
on Zaionc paradox.

8 Conclusion

Algorithms for random generation presented in The Art of Computer Programming [8, 9] allow
implementing Monte-Carlo methods that confirm experimentally Zaionc paradox and show that
the convergence1 of the set of intuitionistic theorems toward this of classical theorems is faster
than expected from the asymptotic approximations proposed by the analytic combinatorial
theory [7]. Indeed, whereas I compare the set of cheap intuitionistic theorems (Section 5.6) with
this of classical theorems, Genitrini, Kozik and Zaionc compare the set of simple intuitionistic
theorems (see Section 5.1) with the set of non simple non tautologies (Section 6.1). This is a
too rough approximation and this suggests to complete the analytic development to justify this
faster convergence.

Notice that Tarau and de Paiva [15] looked at a phenomenon similar to Zaionc paradox for
linear logic. Therefore, it should be interesting to extend my approach to this case. Likewise,
it would be interesting to investigate experimentally other models of expressions, for both tra-
ditional logic and linear logic. Currently I am exploring expressions made of a binary operator,
like ∧, ∨ or →.

It seems that this result on the distribution of propositions has to do with the amazing
efficiency of SAT-solvers [2, 1]. The fact that most of the classical propositions can be solved
as “cheap” intuitionistic propositions may explain why SAT-solvers are so efficient and the
connection should be further investigated. Likely, the remaining true classical propositions
contribute to the hardness of SAT for the worst case analysis.

References

[1] Armin Biere, Marijn J.H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of satis-
fiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS press, 2009.

[2] Curtis Bright, Jürgen Gerhard, Ilias S. Kotsireas, and Vijay Ganesh. Effective problem solving
using SAT solvers. In Jürgen Gerhard and Ilias S. Kotsireas, editors, Maple in Mathematics Ed-
ucation and Research - Third Maple Conference, MC 2019, Waterloo, Ontario, Canada, October
15-17, 2019, Proceedings, volume 1125 of Communications in Computer and Information Sci-
ence, pages 205–219. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-41258-6_15,
doi:10.1007/978-3-030-41258-6\_15.

[3] Stephen A. Cook. The complexity of theorem-proving procedures. In Michael A. Harrison,
Ranan B. Banerji, and Jeffrey D. Ullman, editors, Proceedings of the 3rd Annual ACM Sym-
posium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA, pages 151–158.
ACM, 1971. URL: https://doi.org/10.1145/800157.805047, doi:10.1145/800157.805047.

1As the size of the expressions grows.

10

https://doi.org/10.1007/978-3-030-41258-6_15
http://dx.doi.org/10.1007/978-3-030-41258-6_15
https://doi.org/10.1145/800157.805047
http://dx.doi.org/10.1145/800157.805047


Zaionc paradox P. Lescanne

[4] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
2008.

[5] Hervé Fournier, Danièle Gardy, Antoine Genitrini, and Marek Zaionc. Classical and intuitionistic
logic are asymptotically identical. In Jacques Duparc and Thomas A. Henzinger, editors, CSL,
volume 4646 of Lecture Notes in Computer Science, pages 177–193. Springer, 2007.

[6] Antoine Genitrini. Erratum for the paper Intuitionistic vs Classical Tautologies, Quantitative
Comparisons. Personal communication, April 2021.

[7] Antoine Genitrini, Jakub Kozik, and Marek Zaionc. Intuitionistic vs. classical tautologies,
quantitative comparison. In Marino Miculan, Ivan Scagnetto, and Furio Honsell, editors,
Types for Proofs and Programs, International Conference, TYPES 2007, Cividale del Friuli,
Italy, May 2-5, 2007, Revised Selected Papers, volume 4941 of Lecture Notes in Computer Sci-
ence, pages 100–109. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-68103-8_7,
doi:10.1007/978-3-540-68103-8\_7.

[8] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 3: Generating All
Combinations and Partitions. Addison-Wesley Publishing Company, 2005.

[9] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 4: Generating All
Trees, History of Combinatorial Generation. Addison-Wesley Publishing Company, 2006.

[10] Samuel Mimram. PROGRAM = PROOF. Independently published, 2020. URL:
https://www.amazon.fr/dp/B08C97TD9G/ .

[11] Jean-Luc Rémy. Un procédé itératif de dénombrement d’arbres binaires et son application
à leur génération aléatoire. RAIRO Theor. Informatics Appl., 19(2):179–195, 1985. URL:
https://doi.org/10.1051/ita/1985190201791 , doi:10.1051/ita/1985190201791.

[12] N. J. A. Sloane. The on-line encyclopedia of integer sequences. Published electronically at
https://oeis.org/, 2021.

[13] A. J. Stam. Generation of a random partition of a finite set by an urn model. J. Comb.
Theory, Ser. A, 35(2):231–240, 1983. URL: https://doi.org/10.1016/0097-3165(83)90009-2,
doi:10.1016/0097-3165(83)90009-2.

[14] Paul Tarau. A hiking trip through the orders of magnitude: Deriving efficient generators for
closed simply-typed lambda terms and normal forms. In Manuel V. Hermenegildo and Pe-
dro López-Garćıa, editors, Logic-Based Program Synthesis and Transformation - 26th Interna-
tional Symposium, LOPSTR 2016, Edinburgh, UK, September 6-8, 2016, Revised Selected Pa-
pers, volume 10184 of Lecture Notes in Computer Science, pages 240–255. Springer, 2016. URL:
https://doi.org/10.1007/978-3-319-63139-4_14, doi:10.1007/978-3-319-63139-4\_14.

[15] Paul Tarau and Valeria de Paiva. Deriving theorems in implicational linear logic, declaratively.
In Francesco Ricca, Alessandra Russo, Sergio Greco, Nicola Leone, Alexander Artikis, Gerhard
Friedrich, Paul Fodor, Angelika Kimmig, Francesca A. Lisi, Marco Maratea, Alessandra Mileo,
and Fabrizio Riguzzi, editors, Proceedings 36th International Conference on Logic Programming
(Technical Communications), ICLP Technical Communications 2020, (Technical Communica-
tions) UNICAL, Rende (CS), Italy, 18-24th September 2020, volume 325 of EPTCS, pages 110–123,
2020. URL: https://doi.org/10.4204/EPTCS.325.18 , doi:10.4204/EPTCS.325.18.

[16] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 7.4), 206.
https://www.sagemath.org.

11

https://doi.org/10.1007/978-3-540-68103-8_7
http://dx.doi.org/10.1007/978-3-540-68103-8_7
https://www.amazon.fr/dp/B08C97TD9G/
https://doi.org/10.1051/ita/1985190201791
http://dx.doi.org/10.1051/ita/1985190201791
https://oeis.org/
https://doi.org/10.1016/0097-3165(83)90009-2
http://dx.doi.org/10.1016/0097-3165(83)90009-2
https://doi.org/10.1007/978-3-319-63139-4_14
http://dx.doi.org/10.1007/978-3-319-63139-4_14
https://doi.org/10.4204/EPTCS.325.18
http://dx.doi.org/10.4204/EPTCS.325.18

	Introduction
	Intuitionistic vs classical theorems
	The model of canonical expressions
	Random canonical expressions
	Random binary trees
	Random restricted growth string

	Selecting intuitionistic theorems
	Simple intuitionistic theorems
	ArrowElim intuitionistic theorems
	Easy intuitionistic theorems
	Removing easy premises
	Minor intuitionistic theorems
	Cheap intuitionistic theorems

	Classical tautologies
	Simple antilogies
	Expressions with too many variables

	Results
	Ratio cheap vs classical
	Simple intuitionistic theorems vs not simple non tautologies
	Simple intuitionistic theorems

	Conclusion

