
HAL Id: hal-03197423
https://hal.science/hal-03197423v1

Preprint submitted on 14 Apr 2021 (v1), last revised 21 Mar 2022 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Zaionc paradox revisited
Pierre Lescanne

To cite this version:

Pierre Lescanne. Zaionc paradox revisited. 2021. �hal-03197423v1�

https://hal.science/hal-03197423v1
https://hal.archives-ouvertes.fr

D
R
A
FT

Zaionc paradox revisited

Pierre Lescanne

University of Lyon, École Normale Supérieure de Lyon,
LIP (UMR 5668 CNRS ENS Lyon UCBL),

46 allée d’Italie, 69364 Lyon, France
pierre.lescanne@ens-lyon.fr

Abstract

Canonical expressions are representative of implicative propositions up-
to renaming of variables. In this paper we explore, using a Monte-Carlo
approach, the model of canonical expressions in order to confirm the paradox
that says that asymptotically almost all classical theorems are intuitionistic.

Keywords: intuitionistic logic, classical logic, combinatorics, asymptotic,
random generation, Bell number, Catalan number, Monte-Carlo method

1 Introduction

In 2007, Marek Zaionc coauthored two papers [6, 5], corresponding to two models
of the calculus of implicative propositions and presenting the following paradox,
namely that asymptotically almost all classical theorems are intuitionistic, which is
called here Zaionc paradox. In the current paper, we focus on the model of [6], which
we call canonical expressions. They have been introduced by Genitrini, Kozik and
Zaionc [6] and more recently by Tarau and de Paiva [12, 13]. A canonical expres-
sion is a representative of a class of implicative expressions that differ only by the
name assigned to the variables. Whereas Genitrini, Kozik and Zaionc addressed the
mathematical aspect of this model, Tarau and de Paiva tried to explicitly generate
all the canonical expressions of a given size and faced up to combinatorial explo-
sion, because canonical expressions grow super exponentially in size. In this paper,
I check experimentally Zaionc paradox, adopting a Monte-Carlo approach to ob-
serve how this paradox emerges. Indeed I designed a linear algorithm to randomly
generate canonical expressions. Therefore I can consider large samples of random
canonical expressions and count how many canonical expressions in that samples
are intuitionistic theorems or classical theorems. The experiments, centred around
canonical expressions of size 100, show that the numbers we get for both sets are
very close confirming experimentally the paradox. As a by product we obtain pro-
grams generating large random canonical expressions, large random intuitionistic
theorems or large random classical theorems.

The programs used in this paper can be found on GitHub.

2 Intuitionistic vs classical theorems

In this paper we deal only with implicative propositions. An implicative proposition
is a binary expression with propositional variables, which has only one binary oper-
ator namely the implication written →. This can be seen as the type of a function
in functional programming or in λ-calculus. Among the implicative propositions,
some can be proven, using a proof system. Let us consider natural deduction. There
are three rules used to prove intuitionistic theorems.

Axiom
α ⊢ α

Γ ⊢ α → β Γ ⊢ α
→-Elim

Γ ⊢ β

α,Γ ⊢ β
→-Intro

Γ ⊢ α → β

Classical theorems are proved by adding the axiom:

https://github.com/PierreLescanne/CanonicalExpression

D
R
A
FT

2 3 THE MODEL OF CANONICAL EXPRESSIONS

Pierce
⊢ ((α → β) → α) → α

which is called Peirce law. Usually one uses valuations, which assign booleans to
variables. Let ρ be an assignment of booleans to variables. Valuations of expressions
are defined by:

JxKρ = ρ(x)

Je → e′Kρ = Je′Kρ ∨ JeKρ

where b 7→ b is the negation. An expression e is a classical theorem or a tautology,
if for all valuation ρ, JeKρ = True.

3 The model of canonical expressions

We call canonical expression the representative of an equivalence class of binary
expressions up-to renaming of variables. In other words, a canonical expression is
a binary expression, in which variables are named canonically, from right to left.
That means that the rightmost variable is x0, then if processing to the left, the
next new variable is x1, then the next new variable, which is neither x0 nor x1 is
x2 etc. Recall that in an expression, a variable corresponds to a position into the
expression. In other words a variable in an equivalence class of positions. Therefore
naming canonically a variable corresponds to naming canonically an equivalence
class in the set of position. Therefore if a variable belongs to the ith class it will be
named αi and vice-versa, if a class is the class of αi, it is the ith class. In canonical
expressions, the classes are numbered from right to left. For instance, assume an
expression of size 10, i.e., with 10 occurrences of variables. This is an expression
with 10 positions of variables, like :

x y y x y x z x x x

or
β α α β α β γ β β β

In the first expression we see 3 variables namely {x, y, z}, hence 3 congruence classes.
As said above, for technical reasons, not hard to guess, variables are numbered from
right to left, starting at 0. Hence x which corresponds to positions {1, 4, 6, 8, 9, 10}
is class 0, z which corresponds to positions {7} is class 1 and y which corresponds
to positions {2, 3, 5} is class 2. Therefore the list of variables canonically named
associated with the above list of variables is.

α0 α2 α2 α0 α2 α0 α1 α0 α0 α0

The above congruence class is canonically represented by the string 0220201000.
Notations for canonically representing congruence classes over a set of n elements
by strings of natural numbers of size n are known . They are called restricted growth

strings by Knuth ([7], fascicle 3, §7.2.1.5, p. 62) and irregular staircases by Flajolet
and Sedgewick [4] (p. 62-63). In this paper, we consider them from right to left
wherever the cited authors consider them from left to right, but this is a detail.
Intuitively, a restricted growth string is a string whose last item is 0 and when one
progresses to the left, one meets items that have been met already or if not the new
item is just the successor of the largest item met until this point. Here [0..i]∗ is the
set of strings made of integers k such that 0 ≤ k ≤ i.

Definition 1 (Restricted growth string). The set Wn of n-restricted right to left
growth strings is defined as follows

D
R
A
FT

3

• W0 = [0..0]∗,

• Wn+1 = [0..(n+ 1)]∗ (n+ 1)Wn

For instance W2 = [0..2]∗ 2W1 = [0..2]∗ 2 [0..1]∗ 1W0 = [0..2]∗ 2 [0..1]∗ 1 [0..0]∗

One sees that 0220201000 ∈ W2 where items larger that those on the right are put
in red.

Once the variables are chosen, how operators → are associated has to be done.
Here we are interested in parenthesised expressions with the only binary operator →.
For instance, for an expression of size 10, we look for a binary tree with 10 external
leaves, we get

((✷→✷)→((((✷→✷)→✷)→✷)→(((✷→✷)→✷)→✷)))

which can be drawn as the tree :

→
❥❥❥

❥❥❥ ❙❙❙
❙❙❙

→
✇✇ ❍❍

→

①①
①①
①①
① ❍❍

✷ ✷ →
❘❘❘

❘❘❘

→
✇✇

❋❋
→

✇✇
❋❋

✷

→
✇✇ ●●

✷ →
①① ●●

✷

→
①① ●●

✷ ✷ ✷

✷ ✷

To get a canonical expression one matches a restricted growth string and a binary
tree. In our case, we get by matching the above restricted tree and the above
parenthesised expression, the following canonical expression

((α0 → α2) → ((((α2 → α0) → α2) → α0) → (((α1 → α0) → α0) → α0)))

which corresponds to the tree:

→
❥❥❥

❥❥❥ ❚❚❚
❚❚❚

→
✇✇ ❍❍

→

✇✇
✇✇
✇✇
✇✇ ❍❍❍

α0 α2 →
❙❙❙

❙❙❙

→
①①
① ❋❋❋

→
①①
① ❋❋❋

α0

→
①①
① ❋❋❋

α0 →
①①① ❋❋❋

α0

→
①①① ❋❋❋

α2 α1 α0

α2 α0

Canonical expressions are therefore pairs of binary tree and restricted left to right
growth strings, counted by Kn = Cn−1̟n where Cn are Catalan numbers (count-
ing binary trees) and ̟n are Bell numbers (counting restricted growth strings).
This corresponds to sequence A289679 in the Online encyclopedia of integer se-

quences [10]. Asymptotically,

Cn−1 ∼
4n−1

√

π(n− 1)3

̟n ∼ n!
ee

r

−1

rn
√

2πr(r + 1)er

where r ≡ r(n) is the positive root of the equation rer = n+ 1. Therefore

Kn ∼ n!
4n−1ee

r

−1

π
√

2(n− 1)3r(r + 1)er

The first values ofKn are 1, 2, 10, 75, 728, 8526, 115764, 1776060, 30240210, ...and
K100 ∼ 9, 62.10168.

https://oeis.org/A289679

D
R
A
FT

4 4 RANDOM CANONICAL EXPRESSIONS

4 Random canonical expressions

Since canonical expressions are pairs of well-known combinatorial objects, namely
binary trees and congruence classes, we can use well-known algorithm to generate
each constituents of the pairs.

4.1 Random binary trees

For generating random binary trees, I use Rémy algorithm [9] which is linear. This
algorithm is described by Knuth in [7] § 7.2.1.6 (pp. 18-19). I have taken his
implementation. The idea of the algorithm is that a random binary tree can be
built by iteratively and randomly picking an internal node or a leaf in a random
binary tree and inserting an new internal node and a new leaf either on the left or
on the right. A binary tree of size n has n−1 internal nodes and n leaves. Inserting
a node in a binary tree of size n requires throwing randomly a number between 1
and 4n − 2. This process can be optimised by representing a binary tree as a list,
an idea sketched by Rémy and described by Knuth. In this list, even values are for
internal nodes and odd values are for leaves. Here is a list representing a binary
tree with 10 leaves and its drawing.

indices 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
values 1 13 0 2 5 9 7 8 4 11 17 12 10 15 3 16 14 18 6

?>=<89:;1

④④
④④ ❈❈

❈

?>=<89:;13

④④
④④

◗◗◗
◗◗◗

◗◗ 0

?>=<89:;15

④④
④ ❈❈

❈
?>=<89:;3

④④
④

❈❈
❈❈

16 14 2 ?>=<89:;5

④④
④④

❖❖
❖❖

❖❖
❖

?>=<89:;9

♠♠♠
♠♠♠

♠♠
❈❈

❈❈
?>=<89:;7

��
� ❃❃

❃

?>=<89:;11

④④
④ ❈❈

❈
?>=<89:;17

④④
④ ❆❆

❆
8 4

12 10 18 6

This tree was built by inserting the node 17 together with the leaf 18 in the
following tree.

indices 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
values 1 13 0 2 5 9 7 8 4 11 6 12 10 15 3 16 14

coding the tree

?>=<89:;1

④④
④④ ❆❆

❆

?>=<89:;13

④④
④④

◗◗◗
◗◗◗

◗◗ 0

?>=<89:;15

④④
④ ❈❈

❈
?>=<89:;3

⑥⑥
⑥ ❃❃

❃

16 14 2 ?>=<89:;5

��
�

❖❖
❖❖

❖❖
❖

?>=<89:;9

♠♠♠
♠♠♠

♠♠ ❃❃
❃

?>=<89:;7

��
� ❃❃

❃

?>=<89:;11

④④
④ ❈❈

❈ 6 8 4

12 10

D
R
A
FT

4.2 Random restricted growth string 5

This was done by picking a node (internal node or leaf) and by inserting above this
node a new internal node (labelled 17) and a new leaf (labelled 18). The new leaf
is attached to the new node. This double action (inserting the internal node and
attaching the leaf) is done by choosing a number in the interval [0..33] (in general, in
the interval [0..(4n−3)]). Assume that in this case the random generator returns 21.
21 contains two informations : its parity (a boolean) and its half. Half of 21 is 10,
which tells that the new node 17 must be inserted above the 10th (in the array)
node namely 6. Since 21 is odd, the rest of the tree (here reduced to the leaf 6) is
inserted on the right (otherwise it would be inserted on the left). A new leaf 18 is
inserted on the left (otherwise it would be inserted on the right).

The algorithm works as follows. If n = 0, Rémy’s algorithm returns the list [0].
In general, say that, for n−1, Rémy’s algorithm returns a list ℓ. One picks a random
integer x between 0 and 4n − 3. Let k be half of x. In the list ℓ one replaces the
kth position by 2n − 1 and one appends two elements, namely the kth value of ℓ
followed by 2n if x is even and 2n followed by the kth value of ℓ if x is odd.

If we admit that given a seed and a positive integer n, randForRemy seed n

returns a random integer between 0 and 4n− 3 inclusive, the program in Haskell of
the function rbtL which yields a random binary tree of size n coded as an array of
length 2n is

rbtL :: Int -> Int -> [Int]

rbtL seed 0 = [0]

rbtL seed n =

let x = randForRemy seed n

l = rbtL seed (n-1)

b = even x

k = x ‘div‘ 2

l2n1 = if b then l !! k else 2*n

l2n = if b then 2*n else l !! k

in take k l ++ [2*n-1] ++ drop (k+1) l ++ [l2n1,l2n]

4.2 Random restricted growth string

For generating random partitions or random restricted growth strings an algorithm
due to A. J. Stam [11] and described by Knuth in [8] § 7.2.1.3 (p. 74) was imple-
mented. The implementation requires, for each value of n (the size of the underlying
set – for us, this is number of variables or the size of the expression–), a preliminary
construction of a table of reals in which indices are looked up (the number M of
classes). Those reals are probabilities

mn

em!̟n

that an n-partition has m classes. Thus in my program, I implemented the algo-
rithm for size n = 10, 25, 50 100, 500 and 1000. From this table and a randomly
chosen number between 0 and 1, one gets a random number M of equivalence
classes. Thereafter, for each element in [0..n] one picks up randomly uniformly and
independently individuals in [0..(M − 1)]. This method yields class descriptions

(classes are a priori numbered from 0 to M − 1 and the elements 0,..., n − 1 are
distributed in those classes), but one wants restricted growth strings as described in
Section 3. So a function that transforms a class description into a restricted growth
string was implemented.

Putting together those two algorithms, namely binary tree random generation
and restricted growth string random generation, produces an algorithm for canonical
expression random generation.

D
R
A
FT

6 5 SELECTING INTUITIONISTIC THEOREMS

5 Selecting intuitionistic theorems

Once a canonical expression is randomly generated, one has to check whether it is
an intuitionistic theorem, a classical theorem, or not a theorem of those sorts

The program selects two kinds of trivial intuitionistic expressions. At first glance
this selection looks coarse, but from experience, the first one (simple theorems) col-
lects a large majority of the expressions and the second selects (Elim theorems)
most of the others, because it is associated with a trick which consists in cleaning
expressions by removing recursively trivial subexpressions that are theorems. In-
deed a “cleaned” sub-expression can become trivial and be removed in turn. This
might allow cleaning an expression where a trivial premise appears, which might be
removed in turn.

5.1 Simple intuitionistic theorems

Let us call simple intuitionistic theorem (see [6] Definition 1), a theorem, in which
the goal is among the premises. In other words, this is a theorem of the form:

... → αi → ... → αi

5.2 Elim intuitionistic theorems

Let us call Elim intuitionistic theorem (for →-eliminating theorem), a theorem
which is a direct application of the modus ponens aka →-elimination. This is a
theorem with goal αi and two premises αj and αj → αi. Therefore it has the form:

... → (αj → αi) → ... → αj → ... → αi

or

... → αj → ... → (αj → αi) → ... → αi

During the experiments I met, for instance, the term, which is not a canonical
expression, but obtained by cleaning:

(x28 → ((x22 → ((x26 → ((x14 → x2) → (x11 → x8))) → x28)) → ((x28 → (x9 → x13)) → (x14 → ((x28 → x0) → x0)))))

which can be drawn as the labelled binary tree:

→
✉✉ ●●●

x28 →
✇✇✇ ❩❩❩❩❩

❩❩❩❩❩
❩❩❩❩❩

❩

→
✉✉ ●●●

→
✇✇✇

■■
■■

■■
■■

■■
■■

■■

x22 →
②②
② ❍❍❍

→
✈✈✈ ❋❋

❋

→
✈✈✈ ❋❋

❋ x28 x28 →
②②② ❍❍❍

x26 →
②②
② ❚❚❚

❚❚❚
❚ x9 x13 →

✈✈✈ ❋❋
❋

→
✈✈✈ ❋❋❋

→
tt
t ❍❍❍

x14 →
②②
② ❋❋❋

x14 x2 x11 x8 →
✈✈✈ ❋❋❋

x0

x28 x0

D
R
A
FT

5.3 Easy intuitionistic theorems 7

which can be written

→
✉✉ ●●●

x28 →
②②② ●●

●

p1 →
✇✇
✇ ●●

●

p2 →
✇✇
✇ ❊❊

❊

p3 →
②②
② ❊❊❊

→
✈✈✈ ❋❋❋

x0

x28 x0

It is clearly an intuitionistic theorem and isElim checks it.

5.3 Easy intuitionistic theorems

Let us call Easy intuitionistic theorems, expressions that are simple or Elim.

5.4 Removing trivial premises

In intuitionistic logic if a premise is a theorem, it can be removed. Consider the
predicate ⊢ p that says that p is a theorem. Clearly under the assumption ⊢ p, the
two statements ⊢ p → q and ⊢ q are equivalent. Note that p is not necessarily the
first premise of the implication. Hence if an expression becomes easy after removing

trivial premises, it is an intuitionistic theorem.
In the process of “cleaning” expressions, expressions that are easy are removed

inside-out. This way easy expressions that can be removed recursively are detected.

5.5 Silly intuitionistic theorems

A silly theorem is a theorem of the form ... → p → ... → p. Detecting such
expressions has a cost, I decided to no detect silly intuitionistic theorem recursively,
but only after easy subexpressions have been removed recursively.

5.6 Cheap intuitionistic theorems

Let us call cheap intuitionistic theorems, expressions that are silly or easy after
removing (recursively) easy premises. Actually, my experiments lead naturally to
the statement that classical theorems are 96% cheap intuitionistic (see Section 7).

6 Classical tautologies

The selection of classical tautologies is as usual, by valuations. Indeed if all the
valuations of a given expression yield True this expression is a classical tautology.
But this method is obviously intractable [3]. It should be applied only to expressions
on which other more efficient methods do not work and with a limitation of the
number of variables in expressions1.

1In my experience with canonical expressions of size 100 the variables should not exceed 30

which is rare enough to affect no classical theorem.

D
R
A
FT

8 7 RESULTS

6.1 Trivial non classical propositions

Before applying valuations, some trivial non classical propositions must be elimi-
nated. The function trivNonClass checks in quadratic time that a given expression
is not a tautology. Only if an expression is not trivNonClass, boolean valuations
check whether it is classical. For more efficiency, trivNonClass is applied on expres-
sions in which trivial premises have been recursively removed, like for intuitionistic
expressions.

An expression e is trivially non classical if it is of the form

... → ei → ... → x0

where the premises ei’ are of the form

→ ... → xi xi 6= x0

i.e., have a goal which is not x0 or are of the form

... → x0 → ... → x0

i.e., are simple with goal x0. One sees easily that applying the valuation ρ such
that ρ(x0) = False and ρ(xi) = True for i 6= 0 to JeKρ = False. Therefore e is not
classical.

In [6], Genitrini, Kozik and Zaionc consider only the first case, namely the case
where the premises have a goal which is note x0. They call such expressions, simple

non tautologies.

6.2 Expressions with too many variables

Despite of trivNonClass check, there are still expressions intractable by the valuation
method, because they have too many variables, i.e., they have an index which is
too large. In the forthcoming experiment with expressions of size 100, an index is
too large if it is larger than 31. Fortunately those expressions are rare and one may
expect that there is a valuation that rejects them. The trick is to rename all the too
large indices with the chosen bound. The valuations are checked on this renamed
expression. If the renamed expression is not a tautology, then the given expression
is not a tautology. In the experiment of Section 7 this trick works and eliminates
expressions with too large indices which need not to be checked further.

7 Results

7.1 Ratio cheap vs classical

I run my Haskell program on a sample of 30 000 randomly generated canonical
expressions of size 100 and I found 1135 classical tautologies, among which 1090
were cheap expressions, hence guaranteed to be intuitionistic theorems. Therefore
the ratio of cheap theorems over classical theorems is 96%. Are the 45 classical
non cheap theorems still intuitionistic ? The experience cannot tell. I presume that
there are likely more than 1090 intuitionistic theorems and therefore more than 96%
of classical theorems that are intuitionistic.

7.2 Simple intuitionistic theorems vs non simple non tau-

tologies

In [6], Genitrini, Kozik and Zaionc take the ratio of the number of simple intuition-
istic theorems over the number of non simple non tautologies as the quantity that

https://github.com/PierreLescanne/CanonicalExpression

D
R
A
FT

7.3 Simple intuitionistic theorems 9

goes to 1 and bounds the ratio of the number of intuitionistic theorems over the
number of classical theorems. For 4 000 random canonical expressions, I computed
those two numbers and I found 140 and 249, for a ratio of about 36% a ratio largely
smaller than the above one.

7.3 Simple intuitionistic theorems

Besides, another number of interest is the ratio Rn of simple intuitionistic theorems
over all canonical expressions of size n. In the next array, this is compared with the

formula e log(n)
n

given by Genitrini, Kozik and Zaionc [6] in Lemma 2, for the same
quantity.

n
e log(n)

n
Rn

25 0.349992467 0.2214
50 0.212679621 0.1248

100 0.125181504 0.0506
500 0.033786113 0.0105
1000 0.018777226 0.006

There should be an explanation to this discrepancy.

Acknowledgements

I thank Valeria De Paiva for an interesting interaction and the incentive to address
this problem and Jean-Luc Rémy for very old discussions on binary tree generation.

8 Conclusion

Algorithms for random generation presented in The Art of Computer Program-

ming [7, 8] allow implementing Monte-Carlo methods that confirm experimentally
Zaionc paradox and show that the convergence2 of the set of intuitionistic theo-
rems toward this of classical theorems is faster than expected from the asymptotic
approximations proposed by the theory [6]. Indeed, whereas I compare the set of
cheap intuitionistic theorems (Section 5.6) with this of classical theorems, Genitrini,
Kozik and Zaionc compare the set of simple intuitionistic theorems (see Section 5.1)
with the set of non simple non tautologies (Section 6.1). This is a too rough approx-
imation. This suggests to complete the analytic development to justify this faster
convergence.

Notice that Tarau and de Paiva [13] looked at a phenomenon similar to Zaionc
paradox for linear logic. Therefore, it should be interesting to extend my approach
to this case, as it would be interesting to investigate experimentally other models
of expressions, for both traditional logic and linear logic.

It seems that this result on the distribution of propositions has to do with
the amazing efficiency of SAT-solvers [2, 1]. The fact that most of the classical
propositions can be solved as intuitionistic propositions may explain why SAT-
solvers are so efficient and the connection should be further investigated.

References

[1] Armin Biere, Marijn J.H. Heule, Hans van Maaren, and Toby Walsh, editors. Hand-
book of satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applica-
tions. IOS press, 2009.

2As the size of the expressions grows.

D
R
A
FT

10 REFERENCES

[2] Curtis Bright, Jürgen Gerhard, Ilias S. Kotsireas, and Vijay Ganesh. Effec-
tive problem solving using SAT solvers. In Jürgen Gerhard and Ilias S. Kot-
sireas, editors, Maple in Mathematics Education and Research - Third Maple Con-
ference, MC 2019, Waterloo, Ontario, Canada, October 15-17, 2019, Proceed-
ings, volume 1125 of Communications in Computer and Information Science, pages
205–219. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-41258-6_15 ,
doi:10.1007/978-3-030-41258-6_15.

[3] Stephen A. Cook. The complexity of theorem-proving procedures. In Michael A. Har-
rison, Ranan B. Banerji, and Jeffrey D. Ullman, editors, Proceedings of the 3rd Annual
ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio,
USA, pages 151–158. ACM, 1971. URL: https://doi.org/10.1145/800157.805047 ,
doi:10.1145/800157.805047.

[4] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge Uni-
versity Press, 2008.

[5] Hervé Fournier, Danièle Gardy, Antoine Genitrini, and Marek Zaionc. Classical and
intuitionistic logic are asymptotically identical. In Jacques Duparc and Thomas A.
Henzinger, editors, CSL, volume 4646 of Lecture Notes in Computer Science, pages
177–193. Springer, 2007.

[6] Antoine Genitrini, Jakub Kozik, and Marek Zaionc. Intuitionistic vs. classi-
cal tautologies, quantitative comparison. In Marino Miculan, Ivan Scagnetto,
and Furio Honsell, editors, Types for Proofs and Programs, International Con-
ference, TYPES 2007, Cividale del Friuli, Italy, May 2-5, 2007, Revised Se-
lected Papers, volume 4941 of Lecture Notes in Computer Science, pages 100–
109. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-68103-8_7 ,
doi:10.1007/978-3-540-68103-8_7.

[7] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 3: Gener-
ating All Combinations and Partitions. Addison-Wesley Publishing Company, 2005.

[8] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 4: Gen-
erating All Trees, History of Combinatorial Generation. Addison-Wesley Publishing
Company, 2006.

[9] Jean-Luc Rémy. Un procédé itératif de dénombrement d’arbres binaires
et son application à leur génération aléatoire. RAIRO Theor. Informatics
Appl., 19(2):179–195, 1985. URL: https://doi.org/10.1051/ita/1985190201791 ,
doi:10.1051/ita/1985190201791 .

[10] N. J. A. Sloane. The on-line encyclopedia of integer sequences. Published electroni-
cally at https://oeis.org/, 2021.

[11] A. J. Stam. Generation of a random partition of a finite
set by an urn model. J. Comb. Theory, Ser. A, 35(2):231–
240, 1983. URL: https://doi.org/10.1016/0097-3165(83)90009-2 ,
doi:10.1016/0097-3165(83)90009-2 .

[12] Paul Tarau. A hiking trip through the orders of magnitude: Deriv-
ing efficient generators for closed simply-typed lambda terms and normal
forms. In Manuel V. Hermenegildo and Pedro López-Garćıa, editors, Logic-
Based Program Synthesis and Transformation - 26th International Sympo-
sium, LOPSTR 2016, Edinburgh, UK, September 6-8, 2016, Revised Selected
Papers, volume 10184 of Lecture Notes in Computer Science, pages 240–
255. Springer, 2016. URL: https://doi.org/10.1007/978-3-319-63139-4_14 ,
doi:10.1007/978-3-319-63139-4_14.

[13] Paul Tarau and Valeria de Paiva. Deriving theorems in implicational linear logic,
declaratively. In Francesco Ricca, Alessandra Russo, Sergio Greco, Nicola Leone,
Alexander Artikis, Gerhard Friedrich, Paul Fodor, Angelika Kimmig, Francesca A.
Lisi, Marco Maratea, Alessandra Mileo, and Fabrizio Riguzzi, editors, Proceedings
36th International Conference on Logic Programming (Technical Communications),
ICLP Technical Communications 2020, (Technical Communications) UNICAL,
Rende (CS), Italy, 18-24th September 2020, volume 325 of EPTCS, pages 110–123,
2020. URL: https://doi.org/10.4204/EPTCS.325.18, doi:10.4204/EPTCS.325.18.

https://doi.org/10.1007/978-3-030-41258-6_15
http://dx.doi.org/10.1007/978-3-030-41258-6_15
https://doi.org/10.1145/800157.805047
http://dx.doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-540-68103-8_7
http://dx.doi.org/10.1007/978-3-540-68103-8_7
https://doi.org/10.1051/ita/1985190201791
http://dx.doi.org/10.1051/ita/1985190201791
https://oeis.org/
https://doi.org/10.1016/0097-3165(83)90009-2
http://dx.doi.org/10.1016/0097-3165(83)90009-2
https://doi.org/10.1007/978-3-319-63139-4_14
http://dx.doi.org/10.1007/978-3-319-63139-4_14
https://doi.org/10.4204/EPTCS.325.18
http://dx.doi.org/10.4204/EPTCS.325.18

	Introduction
	Intuitionistic vs classical theorems
	The model of canonical expressions
	Random canonical expressions
	Random binary trees
	Random restricted growth string

	Selecting intuitionistic theorems
	Simple intuitionistic theorems
	Elim intuitionistic theorems
	Easy intuitionistic theorems
	Removing trivial premises
	Silly intuitionistic theorems
	Cheap intuitionistic theorems

	Classical tautologies
	Trivial non classical propositions
	Expressions with too many variables

	Results
	Ratio cheap vs classical
	Simple intuitionistic theorems vs non simple non tautologies
	Simple intuitionistic theorems

	Conclusion

