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Continuous Previsions⋆

Jean Goubault-Larrecq

LSV, ENS Cachan, CNRS, INRIA Futurs
61, avenue du président-Wilson, 94235 Cachan, France

goubault@lsv.ens-cachan.fr

Abstract. We define strong monads ofcontinuous (lower, upper) previsions, and
of forks, modeling both probabilistic and non-deterministic choice. This is an el-
egant alternative to recent proposals by Mislove, Tix, Keimel, and Plotkin. We
show that our monads are sound and complete, in the sense thatthey model ex-
actly the interaction between probabilistic and (demonic,angelic, chaotic) choice.

1 Introduction

Moggi’s computationalλ-calculus [17] has proved useful to define various notions of
computations on top of the lambda-calculus: side-effects,input-output, continuations,
non-determinism [26], probabilistic computation [20] in particular. But mixing monads
is hard, and finding the “right” monad that would combine bothnon-determinism and
probabilistic choice has taken quite some effort. (We review recent progress below.)

The purpose of this paper is to introduce simple monads that do the job well. These
are monads ofcontinuous previsions, which can be seen as continuation-style monads.
The idea of considering previsions comes from economics andstatistics [5, 12].

Outline. After stating some required preliminaries in Section 2, we recall the no-
tion of gameintroduced in [6], arguing why these are natural extensionsof notions
of continuous valuations (∼ measures) that also accommodate demonic and angelic
non-deterministic choice. These notions induce functors on TopTopTop, CpoCpoCpo, PcpoPcpoPcpo, but fail
to yield monads. We analyze this failure in Section 4 by moving, through a Riesz-like
representation theorem, to the new notions of collinear previsions, and previsions. We
then show that indeed previsions yield strong monads, suitable to give semantics to a
rich λ-calculus [17] with both probabilistic and non-deterministic choice. Finally, we
show in Section 5 that our monad model is not only sound but complete.

This work is a summary of most of Chapters 10-12 of [7]. We however give the
proofs of the main results in the Appendix.

Related Work. Finding a monad combining both probabilistic and non-deterministic
choice can be done by using general monad combination principles. The right way to
combine monads in general is open to discussion. Lüth [11] proposes to combine mon-
ads by taking their coproduct in the category of monads. Thiscoproduct exists under
relatively mild assumptions [10]. However, in general the coproduct of two monads is
an inscrutable object. A simpler, explicit description canbe found in specific cases. For
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example, when taking coproducts of twoideal monads [3]. In particular, combining
non-blockingnon-determinism and probabilistic choice falls into this case. The result-
ing monad is relatively unenlightening, though: it is the monad of all sequences of
choices, both probabilistic and non-deterministic [3, exemple 4.3].

Varacca [25] also proposed a monad combining non-determinism with probabilistic
choice. Ghani and Uustalu [3] note that the above coproduct monad is close to Varacca’s
synchronization trees. The works closer to ours in computerscience are those of Mis-
love [16] and Tix [23, 24]. While this won’t be entirely obvious from our definitions, we
will establish a formal connection between their models andours (Section 5). Outside
computer science, previsions have their roots in economicsand statistics [27]. However,
we consider previsions on topological spaces, not just on sets.

This paper can be seen also be seen as a followup to [6], inasmuch as previsions are
strongly tied to notions of convex and concave games.

2 Preliminaries

We assume the reader to be familiar with (point-set) topology, in particular topology of
T0 but not necessarily Hausdorff spaces, as encountered in domain theory. See [4, 1, 15]
for background. Letint(A) denote the interior ofA, cl(A) its closure.

TheScott topologyon a posetX, with ordering≤, has as opens the upward-closed
subsetsU (i.e., x ∈ U andx ≤ y imply y ∈ U ) such that for every directed family
(xi)i∈I having a least upper boundsupi∈I xi insideU , somexi is already inU . The
way-belowrelation≪ is defined byx ≪ y iff for any directed family(zi)i∈I with a
least upper boundz such thaty ≤ z, thenx ≤ zi for somei ∈ I. A poset iscontinuous
iff ↓↓y = {x ∈ X|x ≪ y} is directed, and hasx as least upper bound. Then every open
U can be written

⋃

x∈U ↑↑x, where↑↑x = {y ∈ X|x ≪ y}.
Every topological spaceX has a specialization quasi-ordering≤, defined by:x ≤ y

iff every open that containsx containsy. X is T0 iff ≤ is a (partial) ordering. That
of the Scott topology of a quasi-ordering≤ is ≤ itself. A subsetA ⊆ X is saturated
if and only if A is the intersection of all opens that contain it; alternatively, iff A is
upward-closed in≤. Every open is upward-closed. Let↑ A denote the upward-closure
of A under a quasi-ordering≤, ↓ A its downward-closure. AT0 space issober iff
every irreducible closed subset is the closurecl{x} =↓ x of a (unique) pointx. The
Hofmann-Mislove Theorem implies that every sober space iswell-filtered [9]: given
any filtered family of saturated compacts(Qi)i∈I in X, and any openU ,

⋂

i∈I Qi ⊆ U
iff Qi ⊆ U for somei ∈ I. In particular,

⋂

i∈I Qi is saturated compact.X is locally
compactiff wheneverx ∈ U (U open) there is a saturated compactQ such thatx ∈
int(Q) ⊆ Q ⊆ U . Every continuous cpo is sober and locally compact in its Scott
topology.X is coherentiff the intersection of any two compacts is compact. A coherent,
well-filtered locally compact space is calledstably locally compact. Stably compact
spaces are those that are additionally compact, and have a wonderful theory (see, e.g.,
[9]). We shall consider the spaceR of all reals with the Scott topology of its natural
ordering≤. Its opens are∅, R, and the intervals(t, +∞), t ∈ R. R is a stably locally
compact, continuous cpo. Because we equipR with the Scott topology, ourcontinuous
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functionsf : X → R are those which are usually calledlower semi-continuousin the
mathematical literature.

We call capacityon X any functionν from O(X), the set of all opens ofX, to
R+, such thatν(∅) = 0 (a.k.a., aset function). A gameν is amonotonic capacity, i.e.,
U ⊆ V impliesν(U) ≤ ν(V )1. A valuation is amodulargameν, i.e., one such that
ν(U ∪ V ) + ν(U ∩ V ) = ν(U)∩ ν(V ) for every opensU, V . A game iscontinuousiff
ν(
⋃

i∈I Ui) = supi∈I ν(Ui) for every directed family(Ui)i∈I of opens, andnormalized
iff ν(X) = 1. Continuous valuations have a nice theory that fits topologywell [8, 9].

TheDirac valuationδx atx ∈ X is the continuous valuation mapping each openU
to 1 if x ∈ U , to 0 otherwise. Continuous valuations are canonically orderedby ν ≤ ν′

iff ν(U) ≤ ν′(U) for every openU of X.
A monadon a categoryC may be presented in several different ways. One is based

on triples(TTT ,ηηη,µµµ) of an endofunctor onC, a unit, and a multiplication natural trans-
formation. A presentation that is easier to grasp is in termsof Kleisli triples [14]. A
Kleisli triple is a triple(TTT ,ηηη, _†), whereTTT maps objectsX of C to objectsTTTX of C,
ηηηX is a morphism fromX toTTTX for eachX, andf† (theextensionof f ) is a morphism
fromTTTX toTTTY for each morphismf : X → TTTY , satisfying: (1)ηηηX

† = idTTTX ; (2) for
everyf : X → TTTY , f† ◦ ηηηX = f ; (3) for everyg : X → TTTY , f : Y → TTTZ, then

f† ◦ g† = (f† ◦ g)
†
. Kleisli triples and monads are equivalent.

3 Continuous Games, Convexity, Concavity

We follow [6]. A gameν onX onX is convexiff ν(U∪V )+ν(U∩V ) ≥ ν(U)+ν(V )
for every opensU, V . It is concaveif the opposite inequality holds. Convex games are
a cornerstone of economic theory [5, 18].

One fundamental example of a game that is not a valuation is the unanimity game
uA (A 6= ∅), defined byuA(U) = 1 if A ⊆ U , uA(U) = 0 otherwise. As we argue in
[6], uA is a natural “probability-like” description of demonic non-deterministic choice,
in the sense that drawing “at random” according touA means that some malicious
adversaryC will choose an element ofA for you. This is perhaps best conveyed by
a thought experiment. You, the honest playerP, would like to draw some elementx
from X with distributionν (a game). Imagine you would like to know your chances
of getting one from some (open) subsetU of X. If ν is a probability distribution, then
your chances will be equal toν(U). This is standard. For generalν, continue to define
your chances asν(U). If ν = uA, andU does not containA, thenν(U) = 0, and your
chances are zero: intuitively,C will pick an element inA, but outsideU—on purpose.
The only case whereC is forced to pick an element inA which will suit P (i.e., be in
U , too), is whenA ⊆ U—and thenP will be pleased with probability one.

It is clear thatuA is convex. It is in fact more. Call a gameν totally convexiff:

ν

(

n
⋃

i=1

Ui

)

≥
∑

I⊆{1,...,n},I 6=∅

(−1)|I|+1ν

(

⋂

i∈I

Ui

)

(1)

1 The name “game” is unfortunate, as there is no obvious relationship between this and games as
they are usually handled in computer science, in particularwith stochastic games. The notion
stems from (cooperative) games in economics, whereX is the set of players, not of states.
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for every finite family(Ui)
n
i=1 of opens (n ≥ 1), where|I| denotes the cardinality ofI.

A belief functionis a totally convex game. The dual notion oftotal concavityis obtained
by replacing

⋃

by
⋂

and conversely in (1), and turning≥ into ≤. A plausibility is
a totally concave game. If≥ is replaced by= in (1), then we retrieve the familiar
inclusion-exclusion principle from statistics. In particular any (continuous) valuation
is a (continuous) belief function. Clearly, any belief function is a convex game. The
converses of both statements fail: OnX = {1, 2, 3} with the discrete topology,u{1,2}

is a belief function but not a valuation, and12 (u{1,2} + u{1,3} + u{2,3} − u{1,2,3}) is a
convex game but not a belief function.

Every game of the form
∑n

i=1 aiuQi
, with ai ∈ R+, andQi compact saturated and

non-empty, is a continuous belief function, which we callsimplebelief function in [6].
When

∑n
i=1 ai = 1, drawing an element fromX “at random” (in the sense illustrated

above) according to the simple belief functionν =
∑n

i=1 aiuQi
intuitively corresponds

to drawing one compactQi at random with probabilityai, then to let the malicious
adversaryC draw some element, demonically, fromQi [6].

Let us turn to integration. Letν be a game onX, andf be continuous fromX to R+

(i.e., lower semi-continuous:R+ comes with the Scott topology). Assumef bounded,
too, i.e.,supx∈X f(x) < +∞. TheChoquet integralof f alongν is:

C

∫

x∈X

f(x)dν =

∫ +∞

0

ν(f−1(t, +∞))dt (2)

where the right hand side is an improper Riemann integral. This is well-defined, since
f−1(t, +∞) is open for everyt ∈ R

+ by assumption, andν measures opens. Also,
sincef is bounded, the improper integrals above really are ordinary Riemann integrals
over some closed intervals. The functiont 7→ ν(f−1(t, +∞)) is decreasing, and every
decreasing (even non-continuous, in the usual sense) function is Riemann-integrable,
therefore the definition makes sense.

Alternatively, anystep function
∑n

i=0 aiχUi
, wherea0 ∈ R+, a1, . . . , an ∈ R+,

X = U0 ⊇ U1 ⊇ . . . ⊇ Un is a decreasing sequence of opens, andχU denotes the
indicator function ofU (χU (x) = 1 if x ∈ X, χU (x) = 0 otherwise) is continuous: its
integral alongν then equals

∑n
i=0 aiν(Ui)—for anygameν. It is well-known that every

bounded continuous functionf can be written as the least upper bound of a sequence

of step functionsfK = a + 1
2K

∑⌊(b−a)2K⌋
k=1 χf−1(a+ k

2K ,+∞)(x), K ∈ N, wherea =

infx∈X f(x), b = supx∈X f(x). Then the integral off alongν is the least upper bound
of the increasing sequence of the integrals offK alongν.

The main properties of Choquet integration are as follows. First, the integral is in-
creasing in its function argument: iff ≤ g then the integral off alongν is less than or
equal to that ofg alongν. If ν is continuous, then integration is also Scott-continuous in
its function argument. The integral is also monotonic and Scott-continuous in the game
ν. Integration is linear in the game, too, so integrating along

∑n
i=1 aiνi is the same

as taking the integrals along eachνi, and computing the obvious linear combination.
However, Choquet integration isnot linear in the function integrated, unless the game
ν is a valuation. Still, it ispositively homogeneous: integratingαf for α ∈ R

+ yieldsα
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times the integral off . And it is additive oncomonotonicfunctionsf, g : X → R (i.e.,
there is no pairx, x′ ∈ X such thatf(x) < f(x′) andg(x) > g(x′)).

Returning to the example of a simple belief functionν =
∑n

i=1 aiuQi
, the proper-

ties above imply that the integral off alongν is
∑n

i=1 ai minx∈Qi
f(x) [6, Proposi-

tion 1]. (Note thatf(x) indeed attains its minimum overQi, which is compact.) Another
way to read this is as follows. ImagineP publishes how much money,f(x), she would
earn if you pickedx. When

∑n
i=1 ai = 1, it is legitimate to say that the integral off

alongν should be some form of expected income. The formula above states that, when
ν is a simple belief function, your expected income is exactlywhat you would obtain
on average by drawingQi at random with probabilityai, then letting the malicious ad-
versaryC pick some element ofQi for you—minimizing your earningsf(x). In other
words, integrating along a simple belief function computesaverage min-payoffs.

This can be generalized to all continuous, not just simple, belief functions [6, The-
orem 4]. More precisely, the spaceCd≤1(X) of all continuous belief functionsν onX
such thatν(X) ≤ 1 is isomorphic to the spaceV≤1(Q(X)) of continuous valuationsν∗

(of total mass at most1) over theSmyth powerdomainQ(X) of X, providedX is well-
filtered and locally compact.Q(X) is the cpo of non-empty compact saturated subsets
of X, ordered by reverse inclusion⊇, and is a model of demonic non-determinism. (A
similar result holds fornormalizedgames and valuationsν, i.e., such thatν(X) = 1:
ν 7→ ν∗ is again an isomorphism fromCd1(X) to V1(Q(X)).) The construction ofν∗

from ν is relatively difficult, however it is noteworthy that whenν =
∑n

i=1 aiuQi
is

simple, thenν∗ is exactly the simple valuation
∑n

i=1 aiδQi
, which describes the choice

of an elementQi at random with probabilityai, as intuition would have it.
Similarly, the spacePb≤1(X) of all continuous plausibilities(which are all con-

cave)ν with ν(X) ≤ 1 is isomorphic toV≤1(Hu(X)) whenX is stably locally com-
pact, and whereHu(X) is the topological Hoare powerdomain. The latter is used to
model angelic non-determinism. The correspondingsimpleplausibilities are of the form
∑n

i=1 aieFi
, whereFi is a non-empty closed subset ofX (an element ofHu(X)), and

theexample gameeF is defined so thateF (U) = 1 if F meetsU , eF (U) = 0 otherwise:
in this caseC tries to help you, by finding some element inU that would also be inF ,
if possible.

Recall that every belief function is convex. One may show that Choquet integration
alongν is super-additive(the integral off + g is at least that off plus that ofg) when
ν is convex, andsub-additive(the integral off + g is at most that off plus that ofg)
whenν is concave. See [5] for the finite case, [7, chapitre 4] for thetopological case.

In the sequel, letJ(X),
`

J(X),
a

J(X) be the spaces of plain, convex and con-
cave continuous games respectively (“plain” meaning with no added property).

4 Continuous Previsions

For any spaceX, let 〈X → R+〉 be the space of all bounded continuous functions
from X to R

+, with the Scott topology. Each continuous gameν on X gives rise to a
functionalαC(ν) from 〈X → R+〉 to R+, mappingf to its Choquet integral alongν.

Think of f(x) again as defining how much money ifx is chosen fromX by some
computation process. We intentionally leave the notion of computation process unde-
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fined. This may be the process of drawing “at random” along a gameν, as in Section 3.
In the sequel, we shall explore the view thatx is the output of an arbitrary program, de-
fined in some non-deterministic and probabilitic functional language. I.e., any program
returns a valuex (⊥ on non-termination, say), and if soP earnsf(x). For purely prob-
abilistic programs (no non-deterministic choice), a previsionF is essentially a function
mapping earning functionsf to their average valueF (f), over all possible executions.
Slightly more generally, for any belief functionν, there is a previsionαC(ν) that maps
eachf ∈ 〈X → R+〉 to the average min-payoff we get when our final earnings are
given byf .

Milking out the properties ofαC(ν), we arrive at:

Definition 1 (Prevision). A previsionis a functionalF from 〈X → R+〉 to R+ such
thatF is positively homogeneous(for everyα ≥ 0, F (αf) = αF (f)), andmonotonic
(if f ≤ g [pointwise], thenF (f) ≤ F (g)).

F is a lower previsionif moreoverF issuper-additive, i.e.,F (f+g) ≥ F (f)+F (g).
F is anupper previsioniff F is sub-additive: F (f + g) ≤ F (f) + F (g). F is collinear
iff F is additive on comonotonic pairs, i.e., if wheneverf andg are comonotonic, then
F (f + g) = F (f) + F (g). A previsionF is linear iff F (f + g) = F (f) + F (g) for
everyf, g ∈ 〈X → R+〉.

Finally, F is continuousiff it is Scott-continuous: for every directed family(fi)i∈I of
bounded continuous functions with least upper boundf , F (supi∈I fi) = supi∈I F (fi).

We writeP(X),
`

P(X),
a

P(X) respectively the spaces of all continuous previsions,
of continuous lower previsions, of continuous upper previsions equipped with the Scott
topology of the pointwise ordering≤. The spacesP∗△(X),

`
P∗△(X),

a
P∗△(X) will

be the subspaces of those that are collinear.
We do not quite follow standard naming conventions. Standardly [27], a lower pre-

vision is just a real-valued functional.Coherentlower previsions (taking a more read-
able definition from [13]) are thoseF such thatF (f) ≥

∑n
i=1 λiF (fi) + λ0 whenever

f ≥
∑n

i=1 λifi + λ0, λi > 0, λ0 ∈ R. In our case, we reserve the “lower” adjective, so
as to have a dual notion ofupperprevision.

It is clear that any continuous gameν defines a continuous collinear prevision
αC(ν). Moreover, ifν is convex, thenαC(ν) is lower, and ifν is concave, thenαC(ν)
is upper. The following isomorphism result, akin to Riesz’ Representation Theorem, is
known as Schmeidler’s Theorem for convex games on discrete topologies. LetγC(F ),
for any previsionF , be the capacityν such thatν(U) = F (χU ) for every openU of
X. Order previsions pointwise, then:

Theorem 1. αC ⊣ γC is a Galois injection from (plain, convex, concave) games into
(plain, lower, upper) collinear previsions. That is,αC andγC are monotonic,αC(γC(F )) ≤
F for every collinear previsionF , andγC(αC(ν)) = ν for every gameν.

Moreover, when restricted to continuous previsions and games,αC and γC define
an isomorphism betweenJ(X) andP∗△(X), betweeǹ J(X) and

`
P∗△(X), betweena

J(X) and
a

P∗△(X).

Proof. That γC(F ) is a game for any prevision is easy. WhenF is lower, note that
χU∪V andχU∩V are comonotonic, andχU∪V + χU∩V = χU + χV . SoγC(F )(U ∪
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V ) + γC(F )(U ∩ V ) = F (χU∪V + χU∩V ) (sinceF is collinear)= F (χU + χV ) ≥
F (χU ) + F (χV ) (sinceF is super-additive)= γC(F )(U) + γC(F )(V ). Similarly,
γC(F ) is concave ifF is upper.

For the converse, we first show that: (A) for any collinear previsionF onX, for any
step functionf , writtena +

∑m
i=1 aiχUi

with U1 ⊇ . . . ⊇ Um, a ∈ R, a1, . . . , am ∈
R

+, then the Choquet integral off alongγC(F ) equalsF (f). This is an easy exercise as
soon as one realizes that

∑k−1
i=0 aiχUi

andakχUk
are comonotonic for everyk, 1 ≤ k ≤

m. The equalityγC(αC(ν))(U) = ν(U) is obvious,αC andγC are clearly monotonic.
To show thatαC(γC(F )) ≤ F , we must show that the Choquet integral off along
γC(F ) is less than or equal toF (f). Using the step functionsfK , K ∈ N, by (A) the
Choquet integral offK is less than or equal toF (fK). The least upper bound of the
Choquet integrals offK , K ∈ N is that off , and the least upper bound ofF (fK) is at
mostF (f). SoαC(γC(F ))(f) ≤ F (f). WhenF is continuous, the least upper bound
of F (fK) is exactlyF (f), whenceαC(γC(F )) = F . ⊓⊔

One easy, well-known consequence of this is thatαC andγC define an order iso-
morphism between the spaceV(X) of continuous valuations and thatP

△(X) of con-
tinuous linear previsions ([8, Theorem 6.2], [22, Satz 4.16]). Intuitively, any continuous
gameν gives rise to a continuous collinear previsionαC(ν) that computes a generalized
form of expectation alongν, and every continuous collinear prevision arises this way.

It is easy to check thatJ,
`

J,
a

J, V, P∗△,
`

P∗△,
a

P∗△, P△ define functorsTTT
from TopTopTop toTopTopTop, whereTopTopTop is the category of topological spaces.
To define a monad structure onTTT , we need aunit
ηηηX : X → TTTX, natural inX. This is defined by
ηηηX(x) = δx. However, there is general no extension
f† of f : X → TTTY . The natural candidate is:

f†(ν)(V ) = C

∫

x∈X

f(x)(V )dν

whenTTT is a game functor (J,
`

J,
a

J, V), or f†(F )(h) = F (λx ∈ X · f(x)(h))
whenTTT is a prevision functor (P∗△,

`
P∗△,

a
P∗△, P△). While this indeed works when

TTT = V [8, Section 4.2], or whenTTT = P
△ using the isomorphism betweenV and

the latter, it fails for the other functors. To understand why, takeTTT =
`

P∗△, and
considerX = {1, 2}, Y = {∗11, ∗12, ∗21, ∗22} (with their discrete topologies),F =
αCu{1,2}, i.e., F (h) = min(h(1), h(2)) for every h : Y → R

+, f : X → TTTY
defined byf(1) = αC(3/4δ∗11

+ 1/4δ∗12
) andf(2) = αC(1/3δ∗21

+ 2/3δ∗22
), so that

f(1)(h) = 3/4h(∗11) + 1/4h(∗12) andf(2)(h) = 1/3h(∗21) + 2/3h(∗22) for every
h : Y → R+. Let h andh′ be defined by:h(∗11) = 0.3, h(∗12) = h(∗22) = 0.1,
h(∗21) = 0.7, h′(∗11) = 0.5, h′(∗12) = h′(∗22) = 0, h′(∗21) = 0.7, thenf†(F )(h) =
0.25, f†(F )(h′) = 0.233 . . ., f†(F )(h+h′) = 0.533 . . ., butf†(F )(h)+f†(F )(h′) =
0.4833 . . . 6= f†(F )(h + h′), althoughh andh′ are comonotonic. In other words, _†

does not preserve collinearity.
In everyday terms, collinear previsions, or more specifically belief functions repre-

sent a process whereP draws at random first, thenC chooses non-deterministically [6].
The example above is a non-deterministic choice (among{1, 2}) followed by proba-
bilistic choices. In other words, the non-deterministic playerC plays first, then only the
probabilistic playerP. But it is well-known that you cannot permute non-deterministic
and probabilistic choices, and the example above only serves to restate this.
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Our cure is simple: drop the collinearity condition. We shall therefore consider mon-
ads of continuous (plain, lower, upper) previsions. LetPoscPoscPosc be the category of posets
with Scott-continuous maps,CpoCpoCpo its full subcategory of cpos. We consider posets
equipped with their Scott topology, whence these two categories are full subcategories
of TopTopTop. Note thatP(X),

`
P(X),

a
P(X) are only posets, not cpos.

Theorem 2. DefineTTTX asP(X), resp.
`

P(X), resp.
a

P(X). LetηηηX(x) = λh ∈
〈X → R

+〉 · h(x), andf†(F )(h) = F (λx ∈ X · f(x)(h)) for everyf : X → TTTY .
ThenTTT is a monad onTopTopTop, i.e., (TTT ,ηηη, _†) is a Kleisli triple. OnPoscPoscPosc, TTT is a strong
monad:tttX,Y : X×TTTY → TTT (X×Y ) defined astttX,Y (x, F )(h) = F (λy ∈ Y ·h(x, y))
is a tensorial strength.

Proof. We must first show that, for everyf : X → TTTY , f† is indeed a continuous map
fromTTTX toTTTY . Foremost, we must make sure that for every continuous (plain, lower,
upper) previsionF on X, f†(F ) is a continuous (plain, lower, upper) prevision onY .
This is easy, but relatively tedious verification. Now note that the formulae definingηηη,
_†, ttt are exactly the formulae defining thecontinuation monad[17]. It follows that the
Kleisli triple axioms also hold in our case.

Contrarily to what might be expected,tttX,Y is not defined on all ofTopTopTop—it may fail
to be continuous. OnPoscPoscPosc, this is repaired by the fact that a function of two arguments
is continuous iff it is continuous in each argument separately (a fact that fails inTopTopTop).
The tensorial strength equations [17] are checked as for thecontinuation monad. ⊓⊔

That the formulae for unit, extension, and tensorial strength are the same as for the
continuation monad is no accident. ImagineF ∈ TTTX is the semantics of a (probabilis-
tic and non-deterministic) program expected to return a result x of typeX. As we have
already argued, whenF = αC(P ), with P a continuous valuation, thenF (h) is the
averagepayoff, defined as the (Choquet) integral ofh(x) alongP . WhenF = αC(ν)
with ν a continuous belief function, thenF (h) is the average min-payoff, where minima
are taken over (demonically) non-deterministic choices. WhenF is not collinear, then
more complicated “averaging” processes are involved. In particular, we allow taking
means of mins of means of mins. . . representing plays whereP, C, P, C, . . . take turns.
The fact that arbitrarily many turns can be chained in a (not necessarily collinear) pre-
vision will be a consequence of the fact that prevision functors define monads, and in
particular have a well-defined multiplication. This is standard in the monadic approach
to side-effects [17]: multiplication is the key to defining sequential composition—here,
of plays.

More explicitly, taken continuous functionsf1 : X0 → TTTX1, f2 : X1 → TTTX2,
. . . , fn : Xn−1 → TTTXn. Then, whenTTT is a monad,f†

n ◦ f†
n−1 ◦ . . . ◦ f†

2 ◦ f1 :
X0 → TTTXn is the sequential composition off1, f2, . . . ,fn−1, fn in this order: given
x0 ∈ X0, the processf1(x0) computes some elementx1 ∈ X1 (in our case, by drawing
it “at random”, say; deterministic computations are of course allowed, too), thenf2(x1)
computes somex2 ∈ X2, etc. The monad laws then typically say that composing with
the idle processηηηX : X → TTTX does nothing, and that sequential composition is
associative.

While Theorem 2 then establishes a form of soundness (which we shall make more
precise below), the goal of the next sections will be to show that the prevision axioms are

8



complete, in the sense that there is no junk: every continuous (lower, upper) prevision
is a mix of (demonic, angelic) non-deterministic and probabilistic choices.

One may wonder what the equivalent ofnormalizedgames (ν(X) = 1) andsub-
normalizedgames (ν(X) ≤ 1) would be through the correspondence of Theorem 1.
RequiringF (χX) to equal (resp. less than or equal to)1 is the obvious choice. However,
this is not preserved by _† whenF is not collinear. So we define:

Definition 2. A previsionF on X is normalized, resp.sub-normalized, iff for every
f ∈ 〈X → R

+〉, for everya ∈ R
+, F (a+f) = a+F (f) (resp.F (a+f) ≤ a+F (f)).

We letJ1(X),
`

P∗△1 (X),
`

P1(X), . . . , be the subspaces of normalized games/previsions,
andJ≤1(X),

`
P∗△≤1(X),

`
P≤1(X), . . . , those of sub-normalized games/previsions.

Proposition 1. Theorem 1 again holds for normalized (continuous) games andprevi-
sions, and for sub-normalized (continuous) games and previsions.

Now the spaces of sub-normalized and normalized continuousprevisions are cpos. The
spaces of sub-normalized continuous previsions arepointed, i.e., they have a least el-
ement⊥, the constant0 function. If X is itself pointed, then the spaces of normalized
continuous previsions are pointed, too, with least elementαC(δ⊥) (a continuous linear
prevision). The latter mapsh ∈ 〈X → R+〉 to h(⊥). Let CpoCpoCpo the category of cpos,
PcpoPcpoPcpo that of pointed cpos. It follows:

Proposition 2. LetTTTX be defined asP≤1(X),
`

P≤1(X),
a

P≤1(X) P1(X),
`

P1(X),
or

a
P1(X). (TTT ,ηηη,µµµ, ttt) is a strong monad onCpoCpoCpo and onPcpoPcpoPcpo.

Theorem 2 allows us to give a semantics to aλ-calculus with both probabilistic and
non-deterministic choices. Consider the syntax of terms and types:

M, N, P ::= x variable
| c constant
| MN application
| λx · M abstraction
| () empty tuple
| (M, N) pair
| fst M first projection
| snd M second projection
| valM trivial computation
| let val x = M in N let-expression

τ ::= α base types
| u type of()
| τ × τ product
| τ → τ function types
| Tτ computation types

The typing rules, as well as the categorical semantics in a let-CCC, are standard [17].
Note thatCpoCpoCpo andPcpoPcpoPcpo are Cartesian-closed. Together with the strong monads of
Proposition 2, they form let-CCCs. The typing rules for computation types are: ifΓ ⊢
M : τ thenΓ ⊢ valM : Tτ ; and if Γ ⊢ M : Tτ1 andΓ, x : τ1 ⊢ N : Tτ2 then
Γ ⊢ let valx = M in N : Tτ2.

As should be expected, the semantics has a strong continuation flavor. For each
term M of type τ in contextΓ = x1 : τ1, . . . , xn : τn, JMK is a morphism (a con-
tinuous map) fromJΓ K = Jτ1K × . . . × JτnK to JτK. The cases forval andlet are
given by: JvalMK (v1, . . . , vn) = λh ∈ 〈JτK → R+〉 · h(JMK (v1, . . . , vn)), and
Jlet valx = M in NK (v1, . . . , vn) = λh ∈ 〈Jτ2K → R

+〉 · JMK (v1, . . . , vn)(λv ∈
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Jτ1K · JNK (v1, . . . , vn, v)(h)). Let bool be a base type, withJboolK = S, where
S = {0, 1} is Sierpínski space (0 < 1). Constantsc may include a least fixpoint operator
in PcpoPcpoPcpo, the Boolean constantsfalse, true, a case constructcase : bool×τ×τ → τ
with JcaseK (0, v0, v1) = v0 andJcaseK (1, v0, v1) = v1. The interpretation ofT as a
monad of previsions allows us, additionally, to give meaning to a coin-flipping op-
eratorflip : Tbool, with JflipK = αC(1/2δ0 + 1/2δ1) = λh ∈ 〈S → R+〉 ·
1/2(h(0) + h(1)), and a non-deterministic choice operatoramb : Tbool. WhenTTT
is

`
P1, amb is the demonic choice (of a Boolean):JambK = αC(u{0,1}) = λh ∈

〈S → R
+〉 · min(h(0), h(1)) (the chosen Booleanx is the one that minimizes payoff

h(x)). WhenTTT is
a

P1, we get angelic choice:JambK = αC(u{0,1}) = λh ∈ 〈S →
R+〉 · max(h(0), h(1)) (maximize payoff).

One might think that lettingTTT beP1 would lead to chaotic choice. This certainly
accommodates both demonic (min) and angelic choice (max). However,P1 is a very
large space, and seems to contain objects that do not correspond to any mixture of prob-
abilistic and non-deterministic choice. The right notion is suggested by [7, section 7.5].

Definition 3 (Fork). A fork on X is any pairF = (F−, F+) whereF− is a lower
prevision,F+ is an upper prevision, and for anyh, h′ ∈ 〈X → R+〉,

F−(h + h′) ≤ F−(h) + F+(h′) ≤ F+(h + h′) (3)

F is continuous, resp.normalized, sub-normalized, collinear, whenever bothF− and
F+ are.

While the above definition was found from purely mathematical arguments, Walley [27,
Section 2] defines essentially the same notion in finance. However, we allow any pair
(F−, F+) satisfying these conditions to be a fork. Walley only observes that whenever
F− is a coherent prevision (in his sense), on a discrete space, then lettingF+(h) =
−F−(−h) yields a fork(F−, F+).

One may think ofF− as the pessimistic part ofF , which will give us the least ex-
pected payoff, whileF+ is the optimistic part, yielding the greatest expected payoff.
Takingh′ = 0 in (3) shows indeed thatF−(h) ≤ F+(h) for eachh. Let F(X) be the
space of continuous forks onX, ordered by≤ × ≤. The subspacesF1(X) andF≤1(X)
of normalized and sub-normalized forks are cpos. The latteris pointed (with least ele-
ment(0, 0)) and the former is as soon asX is (with least element(αC(δ⊥), αC(δ⊥))).
The semantics is essentially the pairing of two continuation semantics, e.g.,JvalMK (v1, . . . ,
vn) = (F−, F+), whereF− = F+ = λh ∈ 〈JτK → R

+〉 · h(JMK (v1, . . . , vn))
(a linear prevision);Jlet valx = M in NK (v1, . . . , vn) = (λh ∈ 〈Jτ2K → R+〉 ·
F−(λv ∈ Jτ1K · F−

v (h)), λh ∈ 〈Jτ2K → R+〉 · F+(λv ∈ Jτ1K · F+
v (h))), where

(F−, F+) = JMK (v1, . . . , vn) and(F−
v , F+

v ) = JNK (v1, . . . , vn, v). The constants
with the most interesting semantics areamb, whereJambK = (λh ∈ 〈S → R

+〉 ·
min(h(0), h(1)), λh ∈ 〈S → R+〉·max(h(0), h(1))) (i.e., it computes both pessimistic
and optimistic outcomes), andflip, whereJflipK = (F−, F+) with F− = F+ =
λh ∈ 〈S → R+〉 · 1/2(h(0) + h(1)). For the rest of the language, we rely on [17] and:

Proposition 3. LetTTTX be defined asF(X),F≤1(X), orF1(X). LetηηηX(x) = (F−, F+)
with F− = F+ = λh ∈ 〈X → R+〉 · h(x), and for everyf : X → TTTY , let
f†(F−, F+) = (λh ∈ 〈Y → R

+〉 · F−(λx ∈ X · f−(x)(h)), λh ∈ 〈Y → R
+〉 ·
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F+(λx ∈ X·f+(x)(h))), where by conventionf(x) = (f−(x), f+(x)). Then(TTT ,ηηη,µµµ)
is a monad onTopTopTop. Together withtttX,Y : X×TTTY → TTT (X×Y ) defined bytttX,Y (x, (F−,
F+)) = (λh ∈ 〈Y → R+〉 · F−(λy ∈ Y · h(x, y)), λh ∈ 〈Y → R+〉 · F+(λy ∈
Y · h(x, y))), it forms a strong monad onCpoCpoCpo andPcpoPcpoPcpo.

Proof. That the strong monad laws are satisfied is obvious. The core of the proof is
in showing that unit, extension, and tensorial strength arewell-defined. We deal with
extension. Recall thatf†(F−, F+) = (F ′−, F ′+), whereF ′− = λh ∈ 〈Y → R+〉 ·
F−(λx ∈ X · f−(x)(h)) andF ′+ = λh ∈ 〈Y → R+〉 · F+(λx ∈ X · f+(x)(h))).
ThenF ′−(h + h′) = λh ∈ 〈Y → R+〉 · F−(λx ∈ X · f−(x)(h + h′)) ≤ λh ∈ 〈Y →
R

+〉 · F−(λx ∈ X · f−(x)(h) + f+(x)(h′)) (sincef(x) = (f−(x), f+(x)) ∈ TTTY
andF− is monotonic)≤ λh ∈ 〈Y → R+〉 · F−(λx ∈ X · f−(x)(h)) + F+(λx ∈
X · f+(x)(h′)) (since(F−, F+) ∈ TTTX) = F ′−(h) + F ′+(h′). Similarly, F ′−(h) +
F ′+(h′) ≤ F ′+(h + h′). ⊓⊔

5 Hearts and Skins

One of the fundamental theorems of the theory of cooperativegames is Shapley’s The-
orem, which states that every convex gameν has a non-empty core (on finite discrete
X)—the coreCore(ν) being the set of measuresp such thatν ≤ p andν(X) = p(X).
A refinement of this is Rosenmuller’s Theorem, which states that a gameν is convex
iff its core is non-empty and for every functionf : X → R+, the integral off along
ν is the minimum of all integrals off alongp, p ∈ Core(ν). In particular, there is a
measurep such thatν ≤ p, ν(X) = p(X), and integratingf alongp gives the same
result as integrating it alongν [5]2.

We show that the same results hold in the continuous case in [7, chapitre 10]. Re-
member that games correspond to collinear previsions. Our purpose here is to show that
similar theorems hold on previsions that need not be collinear (see [7, chapitre 11] for a
more complete development). The analogue of measures will be linear previsions. We
drop the analogue of theν(X) = p(X) condition, however we concentrate on normal-
ized games and previsions, because the technical treatmentis slightly easier. We call
the analogue of cores hearts, and the dual notion skin.

Definition 4 (Heart, Skin). For any functionF from 〈X → R+〉 to R+, its heart
Coeur(F ) is the set of linear functionalsG such thatF ≤ G. Its continuous heart
CCoeur(F ) is the subset of thoseGs that are continuous. Itsskin Peau(F ) is the set
of linear functionalsG such thatG ≤ F . Its continuous skinCPeau(F ) is the subset
of those functionalsG that are continuous.

2 An anonymous referee for a previous version of this paper asked whether this had anything to
do with a theorem due to Shannon, stating that for any distributionp and functionf , there is
another distributionp′ such thatf has the same mean relative top andp′, and which maximizes
entropy. While there is a similar flavor to it, I must confess that I don’t see any relationship.
Moreover, Shannon’s Theorem, contrarily to Rosenmuller’s, does not extend to the continu-
ous case, if only because entropy is only defined on finite spaces (relative entropy is another
matter). I won’t include this footnote in the final version ofthis paper.
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Again, we letCoeur1(F ), CCoeur1(F ), . . . , be the subsets of the corresponding
spaces consisting of normalized previsions only, and similarly Coeur≤1(F ), . . . , for
those consisting of sub-normalized previsions.

Most of the developments below rest on Roth’s Sandwich Theorem ([21], [24, Theo-
rem 3.1]), which states that on every ordered coneC, for every positively homogeneous
super-additive functionq : C → R

+
and every positively homogeneous sub-additive

function p : C → R
+

such thata ≤ b implies q(a) ≤ p(b) (e.g., whenq ≤ p and

eitherq or p is monotonic), then there is a monotonic linear functionf : C → R
+

such thatq ≤ f ≤ p. R
+

is R
+ plus an extra point at infinity+∞. A coneis a setC,

together with a binary operation+ turning it into a commutative monoid and a scalar
multiplication · from R+ × C to C, such that1 · a = a, 0 · a = 0, (rs) · a = r · (s · a),
r · (a + b) = r · a + r · b, and(r + s) · a = r · a + s · a. An ordered coneis equipped
in addition with a partial ordering≤ making+ and · monotonic. We only use Roth’s
Theorem on ordered cones of the form〈X → R+〉. Our key result is:

Theorem 3. LetX be a stably locally compact space,F a continuous lower prevision,
andf a bounded continuous function fromX to R+. Then there is a continuous linear

functionalG from 〈X → R+〉 to R
+

such thatF ≤ G andF (f) = G(f).

Proof. Let F be a lower prevision onX, andf ∈ 〈X → R+〉. Define
⌣
Ff by

⌣
Ff (g) =

infλ∈R
+

λf≥g

[

F (λf) − suph∈〈X→R
+〉

g+h≤λf

F (h)

]

, taking this to be+∞ is there is noλ ∈ R+

such thatλf ≥ g. One checks that
⌣
Ff is monotonic, positively homogeneous, sub-

additive, aboveF (
⌣
Ff (g) ≥ F (g) for all g), touchesF at f (

⌣
Ff (f) = F (f)). Apply

Roth’s Sandwich Theorem gives us a monotonic linear functionalG0 such thatF ≤ G0

andF (f) = G0(f). However,G0 may fail to be continuous. One now observes that
〈X → R+〉 is a continuous poset, with a basisB consisting of step functions. By Scott’s
Formula, the functionalG defined byG(f) = supg∈B,g≪f G0(g) is continuous; in fact,
the largest continuous functional belowG0. It follows thatF ≤ G andF (f) = G(f).
The most difficult part of the proof is showing thatG is linear. This rests on the fact
that≪ is multiplicative i.e., for anya > 0, f ≪ g iff a · f ≪ a · g, and additive, i.e., if
h, f, g ∈ 〈X → R+〉 are such thath ≪ f + g, thenh ≤ f ′ + g′ for somef ′, g′ ∈ B
with f ′ ≪ f , g′ ≪ g; and conversely,f ′ ≪ f andg′ ≪ g imply f ′ + g′ ≪ f + g. ⊓⊔

Note thatG may take the value+∞. We can refine this in the case of normalized
previsions (for sub-normalized previsions, see [7, section 11.4]):

Theorem 4. Let X be a stably locally compact space,F a normalized continuous
lower prevision onX, andf a bounded continuous function fromX to R+. Then there
is a normalized continuous linear previsionG such thatF ≤ G andF (f) = G(f).

Proof. Similar to Theorem 3. However, it may be that
⌣
Ff reaches+∞. Refine this by

letting
⌣̀
F f (g) = infǫ∈R+

⌣
Ff+ǫ(g), and using

⌣̀
F f instead of

⌣
Ff . One checks that, since

F is normalized,
⌣
Ff+ǫ is antitone inǫ. Then

⌣̀
F f is again monotonic, positively homo-

geneous, sub-additive (using antitony inǫ), aboveF , and touchesF at f . Moreover,
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it is easy to see that
⌣̀
F f (χX) = 1. We buildG0, thenG from

⌣̀
F f , as in Theorem 3.

Additionally, we needX to be compact so as to establish thatG(χX) = 1. SinceG is
linear, it follows thatG is normalized. ⊓⊔

One can deal with upper previsions instead, see [7, section 11.5], using a notion we
call convex-concave duality to reduce to the above. We then obtain [7, théorème 11.5.22]
that, whenX is stably compact,F is a normalized continuous upper prevision onX,
there is a normalized continuous linear previsionG onX such thatG ≤ F . Moreover,
for everyf ∈ 〈X → R+〉, F (f) = supG∈CPeau1(F ) G(f).

Theorem 4 allows us to state a form of Rosenmuller’s Theorem:

Theorem 5. Let X be stably locally compact,F a continuous normalized prevision
on X. ThenF is lower iff CCoeur1(F ) 6= ∅ and for everyf ∈ 〈X → R+〉, F (f) =
infG∈CCoeur1(F ) G(f). In this case, the inf is attained:F (f) = minG∈CCoeur1(F ) G(f).

There is, of course, a dual theorem on upper previsions and their skins [7, théorème 11.7.4];
infs are replaced by sups, which need not be attained.

To go further, we need to consider another topology on spacesof previsions: the
weak topologyis the coarsest that makes the functionF 7→ F (f) continuous, for each
f ∈ 〈X → R+〉. The Scott topology is in general finer. WritèP1 wk(X) the space`

P1(X) with the weak topology, and similarly for other spaces. Then:

Proposition 4. Let X be stably compact,F a normalized continuous lower prevision,
thenCCoeur1(F ) is a non-empty saturated compact convex subset ofP

△
1 wk(X).

Compactness can be deduced from Plotkin’s version of the Banach-Alaoglu Theorem
[19], while convexity (i.e.,αF + (1 − α)F ′ is in CCoeur1(F ) as soon asF andF ′

are,α ∈ [0, 1]) is clear. It is much easier to show that the continuous skinCPeau1(F )
of a normalized continuous upper previsionF is closed:

Proposition 5. LetX be a topological space,F a normalized continuous upper previ-
sion, thenCPeau1(F ) is a closed convex subset ofP

△
1 wk(X). It is non-empty as soon

asX is stably compact.

Finally, call alensof a spaceX any non-empty intersectionL = Q ∩ F of a saturated
compactQ and a closed subsetF . Then:

Proposition 6. Let X be a stably compact space. The continuous normalizedbody
CCorps1(F ) = CCoeur1(F

−) ∩ CPeau1(F
+) of a continuous normalized fork

F = (F−, F+) on X is a lens. Moreover,CCoeur1(F
−) = ↑ CCorps1(F ) and

CPeau1(F
+) = ↓ CCorps1(F ).

Proof. We show that:(∗) wheneverG ∈ CCoeur1(F
−), there is someG′ ∈ CCoeur1(F

−)∩
CPeau1(F

+) such thatG′ ≤ G. Let F ′(h) = inff,g∈〈X→R
+〉

f+g≥h

(F+(f) + G(g)). One

checks thatF− ≤ F ′ ≤ G, that F ′ is an upper prevision, so by Roth’s Sandwich
Theorem, there is a linear monotonic functionalG0 such thatF− ≤ G0 ≤ F ′. Since
G0 ≤ F ′, G0 does not take the value+∞. Build G from G0 using Scott’s Formula,
as before. It is easy to see thatG is a continuous, normalized, linear prevision. Since
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F− ≤ G′, G′ ∈ CCoeur1(F
−). SinceG′ ≤ F ′ ≤ F+, G′ ∈ CPeau1(F

+). Since
F ′ ≤ F ′ ≤ G, G′ ≤ G.

By (∗), CCoeur1(F
−) ∩ CPeau1(F

+) is non-empty. ThatCCoeur1(F
−) =

↑ (CCoeur1(F
−) ∩ CPeau1(F

+)) is another easy consequence of(∗). ThatCPeau1(F
+) =

↓ (CCoeur1(F
−) ∩ CPeau1(F

+)) can be shown in a similar way, by definingF ′′(h) =
supf,g∈〈X→R

+〉
f+g≤h

(F−(f)+G(g)), whereG ∈ CPeau1(F
−), and usingF ′′ to show that

there is someG′ ∈ CCoeur1(F
−) ∩ CPeau1(F

+) such thatG ≤ G′. ⊓⊔

The last three propositions state that any normalized continuous lower prevision, resp.
upper prevision, resp. forkF gives rise to an elementCCoeur1(F ), resp.CPeau1(F ),
resp.CCorps1(F ) of the Smyth powerdomainQ(P△

1 wk(X)) (demonic non-determin-
istic choice of a probability distribution—remember thatP

△
1 (X) ∼= V1(X)), resp. the

Hoare powerdomainH(P△
1 wk(X)) over P△

1 wk(X) (angelic), resp. the Plotkin pow-
erdomain overP△

1 wk(X) (chaotic). This is a form ofcompleteness: our spaces of
previsions and of forks contain no junk, and really are no more than mixes of non-
deterministic and probabilistic choice.

In the converse direction, still assumingX stably compact, there is a map
d

:

Q(P△
1 wk(X)) →

`
P1(X) defined by

d
K(f) = minG∈K G(f), andCCoeur1 ⊣d

is a Galois injection consisting of continuous maps [7, théorème 11.7.10], while
there is a continuous map

⊔

: H(P△
1 wk(X)) →

`
P1(X) defined by

⊔

C(f) =
supG∈C G(f), so that

⊔

⊣ CPeau1 is a Galois surjection.
We conclude by noticing that, whenX is a continuous cpo with a least element,

P
△
1 wk(X) is homeomorphic toV1(X) with the weak topology, and the latter coincides

then with the Scott topology [9]. Apart from spurious details (e.g., we bound our valu-
ations by1 instead of+∞), there is therefore a strong connection with the models of
Mislove [16] and Tix [23, 24]. The question whether the Galois connections above can
be turned into isomorphisms remains open.
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A Proofs of Theorems

Theorem 1.αC ⊣ γC is a Galois injection from (plain, convex, concave) games into
(plain, lower, upper) collinear previsions. That is,αC andγC are monotonic,αC(γC(F )) ≤
F for every collinear previsionF , andγC(αC(ν)) = ν for every gameν.

Moreover, when restricted to continuous previsions and games,αC and γC define
an isomorphism betweenJ(X) andP∗△(X), between

`
J(X) and

`
P∗△(X), betweena

J(X) and
a

P∗△(X).

Proof. Let F be a prevision. ThenγC(F )(∅) = 0 becauseF is positively homogeneous
(takeα = 0); γC(F ) is monotonic becauseF is. SoγC(F ) is a game.

If F is a lower prevision, then notice thatχU∪V andχU∩V are comonotonic: assume
χU∪V (x) < χU∪V (x′) and χU∩V (x) > χU∩V (x′), then necessarilyx 6∈ U ∪ V
andx ∈ U ∩ V , which is impossible. Next, note thatχU∪V + χU∩V = χU + χV .
So γC(F )(U ∪ V ) + γC(F )(U ∩ V ) = F (χU∪V + χU∩V ) (sinceF is collinear)=
F (χU +χV ) ≥ F (χU )+F (χV ) (sinceF is super-additive)= γC(F )(U)+γC(F )(V ).
Similarly, γC(F ) is concave ifF is upper.

In the sequel, we shall need the following claim.

Claim A. Let F be a collinear prevision onX, andf = a +
∑m

i=1 aiχUi
a step

function, withU1 ⊇ . . . ⊇ Um, a ∈ R, a1, . . . , am ∈ R
+. Then:

C

∫

x∈X

f(x)dγC(F ) = F (f)

Proof. Let U0 = X anda0 = a, to make notation uniform. Then:

C

∫

x∈X

f(x)dγC(F ) = aγC(F )(X) +

m
∑

i=1

aiγC(F )(Ui)

= aF (χX) +

m
∑

i=1

aiF (χUi
) = F (aχX) +

m
∑

i=1

F (aiχUi
)

=

m
∑

i=0

F (aiχUi
)

Note thatU0 ⊇ U1 ⊇ . . . ⊇ Um. Wlog., assume thata1, . . . , am > 0. For each
k, 1 ≤ k ≤ m, the functions

∑k−1
i=0 aiχUi

andakχUk
are comonotonic. Indeed,

assume(
∑k−1

i=0 aiχUi
)(x) > (

∑k−1
i=0 aiχUi

)(x′) andakχUk
(x) < akχUk

(x′). The
latter implies thatx 6∈ Uk, andx′ ∈ Uk. SinceU0 ⊇ U1 ⊇ . . . ⊇ Um, x′ is in
everyUi, 0 ≤ i ≤ k − 1, so(

∑k−1
i=0 aiχUi

)(x′) =
∑k−1

i=0 ai ≥ (
∑k−1

i=0 aiχUi
)(x),

a contradiction.
SinceF is collinear, it follows:

m
∑

i=0

F (aiχUi
) = F (

k−1
∑

i=0

aiχUi
) +

m
∑

i=k

F (aiχUi
)
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for everyk, 1 ≤ k ≤ m + 1, by induction onk. So, fork = m + 1,

C

∫

x∈X

f(x)dγC(F ) = F (

m
∑

i=0

aiχUi
) = F (f)

⊓⊔

We now show thatγC(αC(ν)) = ν for every gameν:

γC(αC(ν))(U) = αC(ν)(χU) = C

∫

x∈X

χU (x)dν = ν(U)

Once we knowαC ⊣ γC is a Galois connection, this will imply it is a Galoisinjection.
To show thatαC ⊣ γC is a Galois connection, it remains to show thatαC is monotonic
(which is clear), thatγC is monotonic (clear since previsions are monotonic), and that
αC(γC(F )) ≤ F for every collinear previsionF . First,

αC(γC(F ))(f) = C

∫

x∈X

f(x)dγC(F )

Using the step functionsfK , K ∈ N, by Claim A:

C

∫

x∈X

fK(x)dγC(F ) = F (fK) (4)

The least upper bound of the left-hand side is the Choquet integral off alongγC(F ),
i.e.,αC(γC(F ))(f). SinceF is monotonic, the right-hand side is less than or equal to
F (f), soαC(γC(F ))(f) ≤ F (f).

Let us turn to continuous games and continuous previsions. If ν is a continuous
game, thenαC(ν) is continuous, since Choquet integration is Scott-continuous in its
function argument. Conversely, ifF is continuous, then for every directed family(Ui)i∈I

of opens,γC(F )(
⋃

i∈I Ui) = F (χS

i∈I
Ui

) = F (supi∈I χUi
) = supi∈I F (χUi

) =

supi∈I γC(F )(Ui), soγC(F ) is continuous. Now ifF is continuous, then the least upper
bound of the right-hand side of (4) isF (f), sincef = supK∈N fK andF is continuous;
while the left-hand side is the Choquet integral off alongγC(F ), i.e.,αC(γC(F ))(f).
SoαC(γC(F ))(f) = F (f), whence the isomorphism. ⊓⊔

Theorem 2. DefineTTTX as P(X), resp.
`

P(X), resp.
a

P(X). Let ηηηX(x) =
λh ∈ 〈X → R+〉·h(x), andf†(F )(h) = F (λx ∈ X ·f(x)(h)) for everyf : X → TTTY .
ThenTTT is a monad onTopTopTop, i.e., (TTT ,ηηη, _†) is a Kleisli triple. OnPoscPoscPosc, TTT is a strong
monad:tttX,Y : X×TTTY → TTT (X×Y ) defined astttX,Y (x, F )(h) = F (λy ∈ Y ·h(x, y))
is a tensorial strength.

Proof. We must first show that, for everyf : X → TTTY , f† is indeed a continuous map
fromTTTX toTTTY . Foremost, we must make sure that for every continuous (plain, lower,
upper) previsionF on X, f†(F ) is a continuous (plain, lower, upper) prevision onY .
Positive homogeneity:f†(F )(αh) = F (λx ∈ X ·f(x)(αh)) = F (λx ∈ X ·αf(x)(h))
(sincef(x) ∈ TTTY is positively homogeneous)= F (αλx ∈ X · f(x)(h)) = αF (λx ∈
X · f(x)(h)) (sinceF ∈ TTTX is positively homogeneous)= αf†F (h). Monotonicity:
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assumeh ≤ h′, then for eachx ∈ X, f(x)(h) ≤ f(x)(h′) sincef(x) ∈ TTTY is
monotonic, sof†(F )(h) = F (λx ∈ X · f(x)(h)) ≤ F (λx ∈ X · f(x)(h′)) =
f†(F )(h′), sinceF ∈ TTTX is monotonic. In the caseTTT =

`
P, F and everyf(x)

is super-additive, sof†(F )(h + h′) = F (λx ∈ X · f(x)(h + h′)) ≥ F (λx ∈ X ·
f(x)(h)+ f(x)(h′)) ≥ F (λx ∈ X · f(x)(h))+F (λx ∈ X · f(x)(h′)) = f†(F )(h)+
f†(F )(h′), so f†F is super-additive, too. Similarly whenTTT =

a
P. Continuity: let

(hi)i∈I be a directed family of bounded continuous functions fromY to R+ with h

as least upper bound. Thenf†(F )(supi∈I hi) = F (λx · f(x)(supi∈I hi)) = F (λx ·
supi∈I f(x)(hi)) (sincef(x) ∈ TTTY is continuous)= supi∈I F (λx · f(x)(hi)) (since
F ∈ TTTX is continuous).

Then we must show thatf† is continuous. SinceTTTX andTTTY are posets with
the Scott topology, it is enough to show that for any directedfamily (Fi)i∈I in TTTX,
f†(supi∈I Fi) = supi∈I f†(Fi). But this is obvious from the definition.

We now check the Kleisli triple axioms. This is in fact automatic, sinceTTT is defined
as a continuation-style monad. (1)ηηηX

†(F )(h) = F (λx ∈ X · ηηηX(x)(h)) = F (λx ∈
X · h(x)) = F (h), soηηηX

† = idX . (2) Let f : X → TTTY , then(f† ◦ ηηηX)(x)(h) =
f†(ηηηX(x))(h) = ηηηX(x)(λx′ ∈ X · f(x′)(h)) = f(x)(h), sof† ◦ ηηηX = f . (3) Let
g : X → TTTY , f : Y → TTTZ. On the one hand,(f† ◦ g†)(F )(h) = f†(g†(F ))(h) =
g†(F )(λy ∈ Y · f(y)(h)) = F (λx ∈ X · g(x)(λy ∈ Y · f(y)(h))). On the other

hand,(f† ◦ g)
†
(F )(h) = F (λx ∈ X · (f† ◦ g)(x)(h)) = F (λx ∈ X · f†(g(x))(h)) =

F (λx ∈ X · g(x)(λy ∈ Y · f(y)(h))), whencef† ◦ g† = (f† ◦ g)
†
.

Contrarily to what might be expected,tttX,Y is not defined on all ofTopTopTop. The reason
is that it may fail to be continuous. OnPoscPoscPosc, this is repaired by the fact that a function of
two arguments is continuous iff it is continuous in each argument separately (a fact that
fails in TopTopTop). Let us be more precise. Leth be any bounded continuous function from
X×Y to R

+. For any fixedx, the functionλy ∈ Y ·h(x, y) is bounded and continuous,
soF (λy ∈ Y · h(x, y)) makes sense. It is clear that the functiontttX,Y (x, F ) mapping
h ∈ 〈X × Y → R+〉 to F (λy ∈ Y · h(x, y)) is a continuous (plain, lower, upper)
prevision, sinceF is. Now tttX,Y (x, F ) is obviously Scott-continuous inF (x fixed),
and also inx ∈ X (F fixed), sinceh is continuous, andF is continuous. SotttX,Y is a
morphism inPoscPoscPosc.

We need to check the tensorial strength equations [17]. These are in fact obvious,
as againtttX,Y is defined exactly as for the continuation monad. ⊓⊔

Proposition 1.Theorem 1 again holds for normalized (continuous) games andpre-
visions, and for sub-normalized (continuous) games and previsions.

Proof. It is enough to show thatαC maps normalized (resp. sub-normalized) games to
normalized (resp. sub-normalized) previsions, and thatγC goes the other way around.
The essential point is that:(∗) Choquet integration is linear on comonotonic functions,
and any constanta is comonotonic with any functionf . Now if ν is normalized, i.e.,
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ν(X) = 1, then:

αC(ν)(a + f) = C

∫

x∈X

a + f(x)dν

= C

∫

x∈X

adν + C

∫

x∈X

f(x)dν by (∗)

= a + αC(ν)

Whenν is sub-normalized, the last line is an inequality≤ instead.
Conversely, ifF is a normalized prevision, thenγC(F )(X) = F (χX) = F (1 + f)

wheref is the zero function. SinceF is normalized, this equals1 + F (f) = 1, since
F (f) = 0 by positive homogeneity withα = 0. Similarly, if F is sub-normalized, then
γC(F )(X) = F (1 + f) ≤ 1 + F (f) = 1. ⊓⊔

Proposition 3. Let TTTX be defined asF(X), F≤1(X), or F1(X). Let ηηηX(x) =
(F−, F+) with F− = F+ = λh ∈ 〈X → R+〉 · h(x), and for everyf : X → TTTY ,
let f†(F−, F+) = (λh ∈ 〈Y → R+〉 · F−(λx ∈ X · f−(x)(h)), λh ∈ 〈Y →
R

+〉 · F+(λx ∈ X · f+(x)(h))), where by conventionf(x) = (f−(x), f+(x)). Then
(TTT ,ηηη,µµµ) is a monad onTopTopTop. Together withtttX,Y : X × TTTY → TTT (X × Y ) defined
by tttX,Y (x, (F−, F+)) = (λh ∈ 〈Y → R+〉 · F−(λy ∈ Y · h(x, y)), λh ∈ 〈Y →
R+〉 · F+(λy ∈ Y · h(x, y))), it forms a strong monad onCpoCpoCpo andPcpoPcpoPcpo.

Proof. That the strong monad laws are satisfied is obvious: this is just the product of
two strong monads as described in Theorem 2. The only thing tocheck is that unit,
extension, and tensorial strength are well defined, i.e., (3) holds for objects meant to be
in some spaceTTTZ.

Unit. LetF− = F+ = λh ∈ 〈X → R
+〉·h(x) = αC(δx). This is a linear prevision,

hence (3) is trivial.
Extension. Recall thatf†(F−, F+) = (F ′−, F ′+), whereF ′− = λh ∈ 〈Y →

R+〉·F−(λx ∈ X ·f−(x)(h)) andF ′+ = λh ∈ 〈Y → R+〉·F+(λx ∈ X ·f+(x)(h))).
Then:

F ′−(h + h′) = λh ∈ 〈Y → R
+〉 · F−(λx ∈ X · f−(x)(h + h′))

≤ λh ∈ 〈Y → R
+〉 · F−(λx ∈ X · f−(x)(h) + f+(x)(h′))

sincef(x) = (f−(x), f+(x)) ∈ TTTY andF− is monotonic

≤ λh ∈ 〈Y → R
+〉 · F−(λx ∈ X · f−(x)(h)) + F+(λx ∈ X · f+(x)(h′))

since(F−, F+) ∈ TTTX

= F ′−(h) + F ′+(h′)

We show similarly thatF ′−(h) + F ′+(h′) ≤ F ′+(h + h′).
Tensorial strength. Recall thattttX,Y (x, (F−, F+)) = (F ′−, F ′+) whereF ′∗ =

λh ∈ 〈Y → R+〉 · F ∗(λy ∈ Y · h(x, y)) (∗ being− or +). So:

F ′−(h + h′) = F−(λy ∈ Y · h(x, y) + h′(x, y))

≤ F−(λy ∈ Y · h(x, y)) + F+(λy ∈ Y · h′(x, y)) = F ′−(h) + F ′+(h′)

since(F−, F+) ∈ TTT (X × Y ); and similarlyF ′−(h) + F ′+(h′) ≤ F ′+(h + h′). ⊓⊔
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Theorem 3.LetX be a stably locally compact space,F a continuous lower previ-
sion, andf a bounded continuous function fromX to R+. Then there is a continuous

linear functionalG from 〈X → R+〉 to R
+

such thatF ≤ G andF (f) = G(f).

Proof. Recall that aconeis a setC with two binary operations+ : C × C → C and
· : R+ × C → C, and a constant0 ∈ C such that(C, +, 0) is a commutative monoid,
and · defines an action of(R+,×) of R+ on C such that additionally(r + s) · a =
r · a + s · a. An ordered coneif a cone with a partial ordering≤ such that+ and· are
monotonic in all their arguments.R

+, andR
+

= R
+ ∪ {+∞} are ordered cones. It is

clear that〈X → R+〉 is an ordered cone, too. A functionp : C → R
+

is sub-lineariff
p(r · a) = rp(a) for everyr ∈ R+ andp(a + b) ≤ p(a) + p(b), for all a, b ∈ C. It is
super-lineariff p(a + b) ≥ p(a) + p(b) instead, and that is islinear if equality holds.

Let F be a lower prevision onX, andf ∈ 〈X → R+〉. Let, for everyg ∈ 〈X →
R+〉:

⌣
Ff (g) = inf

λ∈R
+

λf≥g






F (λf) − sup

h∈〈X→R
+〉

g+h≤λf

F (h)







where we take the convention that this is equal to+∞ if there is noλ ∈ R+ such that
λf ≥ g.

We shall abbreviate this as
⌣
Ff (g) = infλ/λf≥g

[

F (λf) − suph≤λf−g F (h)
]

. Note
that we cannot in general writeF (λf − g) instead ofsuph≤λf−g F (h), sinceλf − g is
not in general continuous fromX to R+ (with its Scott topology).

Claim B.
⌣
Ff (0) = 0.

Proof.

⌣
Ff (0) = inf

λ∈R+

[

F (λf) − sup
h≤λf

F (h)

]

= inf
λ∈R+

[F (λf) − F (λf)] = 0

⊓⊔

Claim C.
⌣
Ff is monotonic.

Proof. Let g, g′ ∈ 〈X → R
+〉, with g ≤ g′. Fix λ ∈ R

+ such thatλf ≥ g′. For
everyh′ ≤ λf − g′ in 〈X → R+〉, there is anh ≤ λf − g in 〈X → R+〉 such
thatF (h) ≥ F (h′), namelyh′ itself. Sosuph≤λf−g F (h) ≥ suph′≤λf−g′ F (h′).
SoF (λf)− suph≤λf−g F (h) ≤ F (λf)− suph′≤λf−g′ F (h′). By makingλ vary,

inf
λ/λf≥g′

[

F (λf) − sup
h≤λf−g

F (h)

]

≤ inf
λ/λf≥g′

[

F (λf) − sup
h′≤λf−g′

F (h′)

]

Sinceλf ≥ g′ impliesλf ≥ g, the left-hand side of the above inequality is at least:

inf
λ/λf≥g

[

F (λf) − sup
h≤λf−g

F (h)

]

that is,
⌣
Ff (g). The right-hand side is by definition

⌣
Ff (g′), so

⌣
Ff (g) ≤

⌣
Ff (g′). ⊓⊔
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Claim D.LetF be a lower prevision onX.
⌣
Ff is convex: for every realα, 0 ≤ α ≤

1, for everyg ∈ 〈X → R+〉,

⌣
Ff (αg + (1 − α)g′) ≤ α

⌣
Ff (g) + (1 − α)

⌣
Ff (g′) (5)

Proof. The inequality is clear ifα = 0 or α = 1. So assume0 < α < 1.
If there is noλ ∈ R+ such thatλf ≥ g, or if there is noλ′ ∈ R+ such that
λ′f ≥ g′, the right-hand side of (5) is+∞, so the inequality is vacuously true. So
let us assume that for someλ ∈ R+, λf ≥ g and for someλ′ ∈ R+, λ′f ≥ g′.
Let us fix λ andλ′ for now. To ease reading, define the following abbreviations:
g′′ = αg + (1 − α)g′, and letλ′′ = αλ + (1 − α)λ′.
For everyh ≤ λf − g in 〈X → R+〉, for everyh′ ≤ λ′f − g′ in 〈X → R+〉,
let h′′ = αh + (1 − α)h′. The maph′′ is continuous, sinceα and1 − α are non-
negative, multiplication by non-negative reals is Scott-continuous, and addition is
also Scott-continuous. Also,h′′ ≤ λ′′f − g′′. Finally, sinceF is a lower prevision,
F is concave, i.e.,αF (h) + (1 − α)F (h′) ≤ F (h′′). We have just shown that
for everyh ≤ λf − g et h′ ≤ λ′f − g′, there is anh′′ ≤ λ′′f − g′′ such that
αF (h) + (1 − α)F (h′) ≤ F (h′′). It follows:

sup
h′′≤λ′′f−g′′

F (h′′) ≥ α sup
h≤λf−g

F (h) + (1 − α) sup
h′≤λ′f−g′

F (h′)

Sinceλ′′ = αλ + (1 − α)λ′,

F (λ′′f) − sup
h′′≤λ′′f−g′′

F (h′′) ≤ α

[

F (λf) − sup
h≤λf−g

F (h)

]

+(1 − α)

[

F (λ′f) − sup
h′≤λ′f−g′

F (h′)

]

By makingλ andλ′, we obtain:

inf
λ,λ′∈R

+

λf≥g,λ′f≥g′

λ′′=αλ+(1−α)λ′

[

F (λ′′f) − sup
h′′≤λ′′f−g′′

F (h′′)

]

(6)

≤ inf
λ,λ′∈R

+

λf≥g,λ′f≥g′

[

α

[

F (λf) − sup
h≤λf−g

F (h)

]

+ (1 − α)

[

F (λ′f) − sup
h′≤λ′f−g′

F (h′)

]]

Clearlyλ′′ ∈ R+ andλ′′f ≥ g′′. Recall that there existλ ∈ R+ such thatλf ≥ g
and λ′ ∈ R+ such thatλ′f ≥ g′. The right hand side of (6) therefore equals
α
⌣
Ff (g) + (1− α)

⌣
Ff (g′). For the left hand side, observe that for everyλ, λ′ ∈ R

+

such thatλf ≥ g, λ′f ≥ g′, the quantityλ′′ = αλ + (1 − α)λ′ is such that
λ′′ ∈ R+ andλ′′f ≥ g′′: the left hand side of (6) is in particular greater than
or equal to the greatest lower bound, over allλ′′ ∈ R+ such thatλ′′f ≥ g′′, of
F (λ′′f)− suph′′≤λ′′f−g′′ F (h′′). But this greatest lower bound is exactly

⌣
Ff (g′′).

So
⌣
Ff (g′′) ≤ α

⌣
Ff (g) + (1 − α)

⌣
Ff (g′). ⊓⊔
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Claim E.LetF be a lower prevision onX.
⌣
Ff is positively homogeneous: for every

α ≥ 0,
⌣
Ff (αg) = α

⌣
Ff (g).

Proof. Whenα = 0, this is by Claim B. For allα > 0,

⌣
Ff (αg) = inf

λ∈R+,λf≥αg

[

F (λf) − sup
h≤λf−αg

F (h)

]

= inf
λ′∈R+,λ′f≥g

[

F (αλ′f) − sup
h≤αλ′f−αg

F (h)

]

(whereλ′ = λ/α)

= inf
λ′∈R+,λ′f≥g

[

F (αλ′f) − sup
h′≤λ′f−g

F (αh′)

]

(whereh′ = h/α)

= inf
λ′∈R+,λ′f≥g

[

αF (λ′f) − sup
h′≤λ′f−g

αF (h′)

]

sinceF is positively homogeneous. But this is exactlyα
⌣
Ff (g). ⊓⊔

Claim F.Let F be a lower prevision onX. For everyg ∈ 〈X → R+〉,
⌣
Ff (g) ≥

F (g).
Proof. For everyλ ∈ R+ such thatλf ≥ g, for everyh ≤ λf − g, F (λf) ≥
F (h) + F (g). Indeed,F (h) + F (g) ≤ F (h + g) sinceF is super-additive, and
F (h + g) ≤ F (λf) by assumption.
SoF (λf) ≥ suph≤λf−g F (h)+F (g), i.e.,F (λf)−suph≤λf−g F (h) ≥ F (g). We
conclude by taking greatest lower bounds over all theλ ∈ R+ such thatλf ≥ g.

⊓⊔

Claim G.LetF be a lower prevision onX. Then
⌣
Ff (f) = F (f).

Proof. If f is the0 function, then
⌣
Ff (f) = F (f) = 0. Otherwise, the smallestλ ∈

R+ such thatλf ≥ f is 1, so
⌣
Ff (f) = infλ/λf≥f

[

F (λf) − suph≤λf−f F (h)
]

=
F (1.f) − F (0) = F (f). ⊓⊔

Although
⌣
Ff may take have+∞ as value, it is not the case iff is bounded away

from 0 from below:
Claim H. Let F be a lower prevision onX.

⌣
Ff (χX) ≥ F (χX). Moreover, if

infx∈X f(x) > 0, then
⌣
Ff (χX) ≤ 1

infx∈X f(x)F (f).
Proof.

⌣
Ff (χX) = inf

λ/λf≥χX

[

F (λf) − sup
h≤λf−χX

F (h)

]

= inf
λ/λf≥χX

[F (λf) − F (λf − χX)]

We observe indeed thath = λf −χX = λf − 1 is continuous. SinceF is concave,
F (λf) ≥ F (λf − χX) + F (χX), so

⌣
Ff (χX) ≥ F (χX).
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As far as the second inequality is concerned, sinceF (λf − χX) ≥ 0, we obtain
⌣
Ff (χX) ≤ infλ/λf≥χX

F (λf). Let a0 = infx∈X f(x), and note thatλf ≥ χX iff

λ ≥ 1/a0. So
⌣
Ff (χX) ≤ 1/a0F (f). ⊓⊔

We can then use Roth’s Sandwich Theorem to conclude that there is a linearG such that
F ≤ G and satisfying some added conditions. For now,G may take the value+∞, and
is not necessarily continuous. In a picturesque way, such aG will be called anupper
tangent.

Claim I. Let F be a lower prevision onX, andf a bounded continuous function

from X to R+. There is a functionalG from 〈X → R+〉 to R
+

, which is lin-
ear and monotonic, and such thatF ≤ G and F (f) = G(f). Furthermore, if
infx∈X f(x) 6= 0, thenG is a linear prevision.
Proof. By Claim E and Claim D,

⌣
Ff is sub-linear. By assumption,F is super-linear.

Moreover,F and
⌣
Ff are monotonic andF ≤

⌣
Ff by Claim F. By Roth’s Sandwich

Theorem, there is a functionalG from 〈X → R
+〉 to R

+
, which is monotonic and

linear, and such thatF ≤ G ≤
⌣
Ff . By Claim G,F (f) ≤ G(f) ≤

⌣
Ff (f) = F (f),

soG(f) = F (f).
If moreoverinfx∈X f(x) 6= 0, by Claim H,G(χX) ≤

⌣
Ff (χX) ≤ 1/ infx∈X f(x)F (f) <

+∞. So for everyg ∈ 〈X → R
+〉, G(g) ≤ G(supx∈X g(x)χX) < +∞. SinceG

takes its values inR+, no longer inR
+

, G is a linear prevision. ⊓⊔

To attackcontinuousprevisions, we first need to explore the structure of the space
〈X → R+〉. This is probably well-known. In doubt, I preferred to produce proofs. Let
⋐ be the way-below relation on the setO(X) of opens ofX, ordered by inclusion.X
is acore compactspace iffO(X) is a continuous cpo [2]. This is in particular the case
whenX is locally compact, whereU ⋐ V iff U ⊆ Q ⊆ V for some saturated compact
subsetQ of X.

Claim J.Let≪ be the way-below relation of〈X → R+〉, and≪1 that of 〈X →
[0, 1]〉 of all continuous functionsf bounded from above by1.
Let f =

∑n
i=1 aiχUi

a step function fromX to R
+ (resp.[0, 1]), U1 ⊇ . . . ⊇ Un,

a1, . . . , an ∈ R+ \ {0}. Let g a continuous function fromX to R+ (resp.[0, 1]).
Thenf ≪ g (resp.f ≪1 g) iff for everyi, 1 ≤ i ≤ n, Ui ⋐ g−1(

∑i
j=1 ai, +∞).

Proof. Step 1.The condition is necessary. Let us indeed fixi, 1 ≤ i ≤ n, let ti be
∑i

j=1 aj , and consider any directed family(Vk)k∈I of opens such thatg−1(ti, +∞) ⊆
⋃

k∈I Vk. LetWk = Vk ∩g−1(ti, +∞). For eachk ∈ I and each realr, 0 < r < 1,
let fr,k be the functionr.(max(min(ti, g), χWk

.g)). This is continuous, as a com-
position of continuous functions. Note in particular thatmax, min and multipli-
cation by a non-negative scalar are Scott-continuous. The only thing to check re-
ally is that χWk

.g is continuous: the inverse image of(t, +∞) is X if t < 0,
Wk ∩ g−1(t, +∞) otherwise, which is indeed open. Note also that, in case we
consider functions in〈X → [0, 1]〉, andf ≪1 g, thenfr,k is again in〈X → [0, 1]〉.
If x ∈ Wk ⊆ g−1(ti, +∞), fr,k(x) = r.g(x); if x ∈ g−1(ti, +∞)\Wk, fr,k(x) =
r.ti; if x 6∈ g−1(ti, +∞) (in particularx 6∈ Wk), fr,k(x) = r.g(x).
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Note that ifr ≤ r′ andVk ⊆ Vk′ (soWk ⊆ Wk′), thenfr,k ≤ fr′,k′ : if x ∈ Wk

thenfr,k(x) = r.g(x) ≤ r′.g(x) = fr′,k′(x), sincex ∈ Wk′ ; if x ∈ Wk′ \ Wk,
then x ∈ g−1]ti, +∞[\Wk, so fr,k(x) = r.ti < r′.g(x) = fr′,k′(x); if x ∈
g−1(ti, +∞) \ Wk′ , fr,k(x) = r.ti ≤ r′.ti = fr′,k′(x); and isx 6∈ g−1(ti, +∞),
thenfr,k(x) = r.g(x) ≤ r′.g(x) = fr′,k′(x). It follows that the family(fr,k)0<r<1

k∈I
is directed, sincefr,k andfr′,k′ are both less than or equal tofmax(r,r′),k′′ , where
k′′ is such thatVk, Vk′ ⊆ Vk′′ .
Moreover, the least upper bound of this family is exactlyg: for every x ∈ X,
eitherx ∈ g−1(ti, +∞) =

⋃

k∈I Wk, so there isk ∈ I with x ∈ Wk, and then
fr,k(x) = r.g(x); or x 6∈ g−1(ti, +∞) and thenfr,k(x) = r.g(x) again; but then
sup0<r<1 r.g(x) = g(x).
If f ≪ g, necessarilyf ≤ fr,k for somer, 0 < r < 1, and somek ∈ I. Then,
for everyx ∈ Ui, f(x) ≥ ti, sofr,k(x) ≥ ti. By definition offr,k, this entails
max(min(ti, g(x)), χWk

(x).g(x)) ≥ ti/r. Sincemin(ti, g(x)) ≤ ti < ti/r, nec-
essarilyχWk

(x).g(x) ≥ ti/r, sox ∈ Wk andg(x) ≥ ti/r.
In particular,Ui ⊆ Wk ⊆ Vk. Since the family(Vk)k∈I is arbitrary,Ui ⋐ g−1(ti, +∞).
Step 2.Conversely, the condition is sufficient. Indeed, assume that for everyi, 1 ≤

i ≤ n, Ui ⋐ g−1(ti, +∞), where, as above,ti =
∑i−1

j=1 ai.
Let us show thatf ≪ g (resp.f ≪1 g). Let(fk)k∈I a directed family of continuous
functions fromX to R+ (resp.[0, 1]) such thatg ≤ supk∈I fk.
For everyt ∈ R+, g−1(t, +∞) = {x ∈ X|g(x) > t} ⊆ {x ∈ X| supk∈I fk(x) >
t} = {x ∈ X|∃k ∈ I·fk(x) > t} =

⋃

k∈I f−1
k (t, +∞). The family(f−1

k (t, +∞))k∈I

is directed, since(fk)k∈I is directed andfk ≤ fk′ impliesf−1
k (t, +∞) ⊆ f−1

k′ (t, +∞).
SinceUi ⋐ g−1(ti, +∞) ⊆

⋃

k∈I f−1
k (ti, +∞), there is aki ∈ I such that

Ui ⊆ f−1
ki

(ti, +∞). Since(fk)k∈I is directed, there is ak ∈ I such thatfki
≤ fk

for everyi, 1 ≤ i ≤ n. SoUi ⊆ f−1
ki

(ti, +∞) ⊆ f−1
k (ti, +∞).

Let U0 = X, Un+1 = ∅. For everyx ∈ X, let i be the unique natural number
between0 andn such thatx ∈ Ui\Ui+1. If i = 0, thenf(x) = 0, sof(x) ≤ fk(x).
If i 6= 0, thenf(x) =

∑i
j=1 ai = ti, and sincex ∈ Ui, x ∈ f−1

k (ti, +∞), i.e.,
fk(x) > ti. In other words,fk(x) > f(x). Sincex is arbitrary,fk ≥ f . Sof ≪ g.

⊓⊔

Recall that a basisB of a continuous posetY is any subset ofY such that every
element ofx can be written as a directed least upper bound of elements inB.
Claim K.LetX be a core compact space. LetB the set of step functions of the form

1/2K
∑N

k=1 χUk
, K, N ∈ N, where(Uk)2

K

k=1 is a decreasing sequence of opens of
X.
Then〈X → R+〉 is a continuous poset, with basisB. The space〈X → [0, 1]〉 is a
continuous cpo, with basisB1 = B ∩ 〈X → [0, 1]〉.
Proof. Let f ∈ 〈X → R+〉, resp.f ∈ 〈X → [0, 1]〉. Consider the setD of all
functions of the form1/2K

∑N
k=1 χUk

, K, N ∈ N, whereUk ⋐ f−1(k/2K , +∞)
for everyk, 1 ≤ k ≤ N . ClearlyD ⊆ B, resp.D ⊆ B1.
We first show thatD is directed.D is non-empty: takeN = 0. Then, if1/2K

∑N
k=1 χUk

and1/2K′ ∑N ′

k=1 χVk
are inD, we may assume wlog. thatK = K ′ andN = N ′.
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Let us show that we may requireK = K ′: if, say,K ′ < K, one can rewrite the

second function as1/2K
∑2K−K′

N ′

k=1 χWk
, whereWk = V⌊(k+2K−K′−1)/2K−K′⌋

for everyk, 1 ≤ k ≤ 2K−K′

N ′. It follows from K = K ′ that we may also require

N = N ′: if N ′ < N , for example, then1/2K′ ∑N ′

k=1 χVk
= 1/2K′ ∑N

k=1 χVk
,

where we letVk = ∅ for eachk, N ′ < k ≤ N .
Given any two functions of the form1/2K

∑N
k=1 χUk

and1/2K
∑N

k=1 χVk
in D,

then1/2K
∑N

k=1 χUk∪Vk
is again inD, sinceUk∪Vk ⋐ f−1(k/2K , +∞). (In any

core compact space,U ∪ V ⋐ W as soon asU ⋐ W andV ⋐ W [2].) So D is
directed.
Now f is the least upper bound of the sequencefK = 1/2K

∑N
k=1 χf−1]k/2K ,+∞[,

K ∈ N, N = ⌊a2K⌋, wherea = supx∈X f(x). SinceO(X) is a continuous
cpo,f−1(k/2K , +∞) is the directed union of all opensU ⋐ f−1(k/2K , +∞),
so χf−1(k/2K ,+∞) = supU⋐f−1(k/2K ,+∞) χU . So fK is a least upper bound of
elements inD. Sincef = supK∈N fK , f is also a directed least upper bound of
elements inD. By Claim J, every element inD is way-belowf . ⊓⊔
In particular, wheneverf ≪ g then there is a step functionf ′ ∈ B such that
f ≪ f ′ ≪ g. This is theinterpolation property, valid in any continuous poset [15].

The following states that≪ is multiplicative:
Claim L. Let f be any step function fromX to R+, g a continuous function from
X to R+, anda > 0 a real such thata ≥ supx∈X f(x), a ≥ supx∈X g(x). Then
f ≪ g iff f/a ≪1 g/a.
Proof. Let f =

∑n
i=1 aiχUi

. Thenf ≪ g iff for every i, 1 ≤ i ≤ n, Ui ⋐

g−1(
∑i

j=1 ai, +∞) by Claim J. Again by Claim J,f/a ≪1 g/a iff for every i, 1 ≤

i ≤ n, Ui ⋐ (g/a)
−1

(
∑i

j=1 ai/a, +∞). Now note that(g/a)
−1

(
∑i

j=1 ai/a, +∞) =

g−1(
∑i

j=1 ai, +∞). Sof ≪ g is equivalent tof/a ≪1 g/a. ⊓⊔

Let us say thatX is core coherentiff for all opensU, V1, V2 of X, if U ⋐ V1 and
U ⋐ V2 thenU ⋐ V1 ∩ V2. We callX stably core compactiff it is both core compact
and core coherent. Every stably locally compact spaceX is stably core compact, and
the converse holds ifX is sober.

The following states that≪ is additive, providedX is stably core compact.

Claim M. LetX be core compact, andf , g two bounded continuous functions from
X to R+. If h ≪ f + g, then for somef ′, g′ ∈ B we haveh ≤ f ′ + g′, f ′ ≪ f
andg′ ≪ g.
Proof. Let Bf the set of all functionsf ′ ∈ B such thatf ′ ≤ f , Bg that of all func-
tionsg′ ∈ B such thatg′ ≤ g. By Claim K, f = supf ′∈Bf

f ′, g = supg′∈Bg
g′.

Since addition is Scott-continuous,f + g = supf ′∈Bf ,g′∈Bg
f ′ + g′. Moreover,Bf

andBg are directed, soBf × Bg as well. Sinceh ≪ f + g, there aref ′ ∈ Bf et
g′ ∈ Bg such thath ≤ f ′ + g′. ⊓⊔

We now need an explicit formula for sums of functions inB.
Claim N. Let f ′ = 1/2K

∑N
i=1 χAi

, g′ = 1/2K
∑N ′

j=1 χBj
two functions fromX

to R, with X ⊇ A1 ⊇ A2 ⊇ . . . ⊇ AN andX ⊇ B1 ⊇ B2 ⊇ . . . ⊇ BN ′ . By
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extension, letA0 = B0 = X, andAi = ∅ for everyi > N , Bj = ∅ for every

j > N ′. Thenf ′ + g′ = 1/2K
∑N+N ′

k=1 χWk
, whereWk =

⋃

i∈N,j∈N

i+j=k
(Ai ∩ Bj).

Proof. As a side remark, note that choosing the sameK for f ′ andg′ incurs no loss
in generality. For everyk ≥ 1, f ′(x) + g′(x) ≥ k/2K iff there are two indicesi, j
such thati + j = k, f ′(x) ≥ i/2K , andg′(x) ≥ j/2K , i.e., such thati + j = k,
andx ∈ Ai ∩Bj . Sof ′ + g′ = 1/2K

∑

k≥1 χWk
. But, fork > N + N ′, whatever

i andj such thati + j = k, eitheri > N or j > N ′, so eitherUi = ∅ or Vj = ∅,
i.e.Wk = ∅. The sum therefore indeed stop atk = N + N ′ at the latest. ⊓⊔

Claim O.LetX be a core coherent space. For every bounded continuous functions
f , g from X to R+, and every functionsf ′, g′ in B, if f ′ ≪ f andg′ ≪ g, then
f ′ + g′ ≪ f + g.
Proof. Writef ′ = 1/2K

∑N
i=1 χUi

, g′ = 1/2K
∑N

j=1 χVj
. As in Claim K, we may

assume thatf ′ andg′ are written with the sameK and the sameN . By extension,
let U0 = V0 = X, andUi = Vi = ∅ for everyi > N . By Claim N, f ′ + g′ =
1/2K

∑2N
k=1 χWk

, whereWk =
⋃

i+j=k(Ui ∩ Vj).
By assumption,f ′ ≪ f , so by Claim J,Ui ⋐ f−1(i/2K , +∞) for everyi, 1 ≤ i ≤
2K . This again holds wheni > 2K , since thenUi is empty, therefore way-below
any open. Similarly, sinceg′ ≪ g, Vj ⋐ g−1(j/2K , +∞) pour toutj ≥ 1.
It follows that Ui ∩ Vj ⋐ (f + g)−1(k/2K , +∞) for every i, j ≥ 1 such that
i + j = k. Indeed,Ui ∩ Vj ⊆ Ui ⋐ f−1(i/2K , +∞) and Ui ∩ Vj ⊆ Vj ⋐

g−1(j/2K , +∞), soUi∩Vj ⋐ f−1(i/2K , +∞)∩g−1(j/2K , +∞), sinceX is core
coherent. But, for everyx ∈ f−1(i/2K , +∞) ∩ g−1(j/2K , +∞), f(x) > i/2K

andg(x) > j/2K , sof(x) + g(x) > k/2K , i.e.,x ∈ (f + g)
−1

(k/2K , +∞). So
Ui ∩ Vj ⋐ f−1(i/2K , +∞) ∩ g−1(j/2K , +∞) ⊆ (f + g)−1(k/2K , +∞).
We also haveUi ∩ Vj ⋐ (f + g)−1(k/2K , +∞) when i + j = k ≥ 1 but i
or j is zero. If for examplei = 0, thenj = k, Ui ∩ Vj = X ∩ Vk = Vk ⋐

g−1(k/2K , +∞) ⊆ (f + g)−1(k/2K , +∞).
SoUi ∩ Vj ⋐ (f + g)

−1
(k/2K , +∞) for everyi, j such thati + j = k, k ≥ 1.

It follows easily thatWk =
⋃

i+j=k Ui ∩ Vj ⋐ (f + g)−1(k/2K , +∞) for every
k ≥ 1. By Claim J,f ′ + g′ ≪ f + g. ⊓⊔

Claim P.LetX be compact. For everyh′ ∈ B, for everya > 0, h′ ≪ aχX iff h′ is
of the form

∑n
i=1 aiχUi

, U1 ⊇ . . . ⊇ Un, a1, . . . , an ∈ R
+, with

∑n
i=1 ai < a.

In particular, h′ ≪ aχX iff there isa′ < a with h′ ≤ a′χX .
Proof. For everyh′ ∈ B, write h′ =

∑n
i=1 aiχUi

, U1 ⊇ . . . ⊇ Un, a1, . . . , an ∈

R
+\{0}. By Claim J„h′ ≪ aχX iff Ui ⋐ ∅ for everyi such that

∑i
j=1 ai ≥ a, and

Ui ⋐ X for everyi such that
∑i

j=1 ai < a. This amounts to requiring thatUi = ∅

for everyi such that
∑i

j=1 ai ≥ a; sinceX is compact,Ui ⋐ X. The functions
h′ such thath′ ≪ aχX are therefore exactly those of the form

∑n
i=1 aiχUi

, U1 ⊇
. . . ⊇ Un with

∑n
i=1 ai < a.

If h′ ≪ aχX , we haveh′ ≤ a′χX , wherea′ is any real strictly between
∑n

i=1 ai

anda. Conversely, ifh′ ≤ a′χX with a′ < a, thenh′ ≪ aχX sincea′χX ≪ aχX

by Claim J. ⊓⊔
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We now have enough material to apply Scott’s formula on the continuous poset〈X →

R+〉, with basisB. For any functionalF from 〈X → R+〉 to R
+

, let r(F ) be the
function defined by:

r(F )(f) = sup
g∈B,g≪f

F (g)

Then r(F ) is a continuous functional from〈X → R
+〉 to R

+
. In fact, r(F ) is the

greatest continuous functional belowF . We observe:

Claim Q.LetX be stably core compact. IfF is a (plain, lower, upper, linear) pre-
vision thenr(F ), too. If moreoverX is compact andF is normalized, thenr(F ) is
normalized.
Proof. The functionr(F ) takes its values inR+, since ifa = supx∈X f(x), then
r(F )(f) = supg∈B,g≪f F (g) ≤ F (aχX) < +∞. It is continuous, and is posi-
tively homogeneous by Claim L. It is lower as soon asF is, since:

r(F )(f + g) = sup
h∈B,h≪f+g

F (h)

= sup
h′,h′′∈B,h′≪f,h′′≪g

F (h′ + h′′) by Claim M and Claim O

≥ sup
h′,h′′∈B,h′≪f,h′′≪g

(F (h′) + F (h′′))

= sup
h′∈B,h′≪f

F (h′) + sup
h′′∈B,h′′≪g

F (h′′) = r(F )(f) + r(F )(g)

Similarly, if F is upper thenr(F ) is upper too, and ifF is linear then so isr(F ).
Finally, if F is normalized andX is compact, then for everya > 0,

r(F )(aχX + f) = sup
h∈B,h≪aχX+f

F (h)

= sup
h′,h′′∈B,h′≪aχX ,h′′≪f

F (h′ + h′′)

= sup
a′<a,h′′∈B,h′′≪f

F (a′χX + h′′) (by Claim P)

= sup
a′<a,h′′∈B,h′′≪f

(a′ + F (h′′)) (sinceF is normalized)

= a + r(F )(f)

⊓⊔

By Claim I, there is a monotonic linear functionalG0 such thatF ≤ G0 andF (f) =
G0(f). Let G = r(G0). By Claim Q,G is a continuous linear functional. Since it is
the greatest one belowG0 F ≤ G. Finally, G ≤ G0, soG(f) ≤ F (f); sinceF ≤ G,
F (f) ≤ G(f), soF (f) = G(f). ⊓⊔

Theorem 4.Let X be a stably locally compact space,F a normalized continuous
lower prevision onX, andf a bounded continuous function fromX to R+. Then there
is a normalized continuous linear previsionG such thatF ≤ G andF (f) = G(f).
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Proof. Recall the function
⌣
Ff from the proof of Theorem 3, and define:

⌣̀
F f (g) = inf

ǫ∈R+

⌣
Ff+ǫ(g)

This is well defined, and is always a non-negative real, never+∞. Indeed, by Claim H
and Claim E, wheneverǫ > 0,

⌣
Ff+ǫ(g) ≤ supx∈X g(x). 1

ǫ+infx∈X f(x)F (f +ǫ) < +∞.

Claim R.
⌣̀
F f (0) = 0.

⌣̀
F f is monotonic.

⌣̀
F f is positively homogeneous. For every

g ∈ 〈X → R+〉,
⌣̀
F f (g) ≥ F (g).

Proof. By Claim B, Claim C, Claim E, Claim F. ⊓⊔

Claim S.LetF be a lower prevision onX. If F is normalized, then
⌣
Ff+ǫ is antitone

in ǫ.
Proof. Assumeǫ < ǫ′. If

⌣
Ff+ǫ(g) = +∞ (which entailsǫ = 0), clearly

⌣
Ff+ǫ′(g) ≤

⌣
Ff+ǫ(g). So let us assume that

⌣
Ff+ǫ(g) < +∞. Recall that:

⌣
Ff+ǫ(g) = inf

λ/λ(f+ǫ)≥g

[

F (λ(f + ǫ)) − sup
h≤λ(f+ǫ)−g

F (h)

]

Now F (λ(f + ǫ′)) = λ(ǫ′ − ǫ) + F (λ(f + ǫ)) sinceF is normalized. Moreover, if
g ≤ λ(f + ǫ), then:

λ(ǫ′ − ǫ) + sup
h≤λ(f+ǫ)−g

F (h) = sup
h≤λ(f+ǫ)−g

F (h + λ(ǫ′ − ǫ))

sinceF is normalized

≤ sup
h′≤λ(f+ǫ′)−g

F (h′)

since for everyh ≤ λ(f + ǫ) − g, h′ = h + λ(ǫ′ − ǫ) is less than or equal to
λ(f + ǫ′) − g. Therefore:

⌣
Ff+ǫ(g) = inf

λ/λ(f+ǫ)≥g

[

F (λ(f + ǫ′)) − [λ(ǫ′ − ǫ) + sup
h≤λ(f+ǫ)−g

F (h)]

]

≥ inf
λ/λ(f+ǫ)≥g

[

F (λ(f + ǫ′)) − sup
h′≤λ(f+ǫ′)−g

F (h′)

]

≥ inf
λ/λ(f+ǫ′)≥g

[

F (λ(f + ǫ′)) − sup
h′≤λ(f+ǫ′)−g

F (h′)

]

since ifg ≤ λ(f + ǫ) theng ≤ λ(f + ǫ′)

=
⌣
Ff+ǫ′(g)

⊓⊔
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Claim T.LetF be a lower prevision onX. If F is normalized, then
⌣̀
F f is convex.

Proof. For everyǫ′, ǫ′′ ≥ 0, there isǫ ≥ 0 such that
⌣
Ff+ǫ(g) +

⌣
Ff+ǫ(g

′) ≤
⌣
Ff+ǫ′(g)+

⌣
Ff+ǫ′′(g

′). Indeed, by Claim S, it is enough to takeǫ = max(ǫ′, ǫ′′). So
infǫ≥0[

⌣
Ff+ǫ(g) +

⌣
Ff+ǫ(g

′)] ≤ infǫ′≥0
⌣
Ff+ǫ′(g) + infǫ′′≥0

⌣
Ff+ǫ′′(g

′). It follows:

⌣̀
F f (g + g′) = inf

ǫ≥0

⌣
Ff+ǫ(g + g′)

≤ inf
ǫ≥0

[
⌣
Ff+ǫ(g) +

⌣
Ff+ǫ(g

′)] by Claim D and Claim E

≤ inf
ǫ′≥0

⌣
Ff+ǫ′(g) + inf

ǫ′′≥0

⌣
Ff+ǫ′′(g

′)

=
⌣̀
F f (g) +

⌣̀
F f (g′)

⌣̀
F f is therefore sub-linear, hence convex since it is positively homogeneous by
Claim R. ⊓⊔

Claim U.LetF be a lower prevision onX. If F is normalized, then
⌣̀
F f (f) = F (f).

Proof. Clearly
⌣̀
F f (g) ≤

⌣
Ff (g) (takeǫ = 0). Wheng = f , by Claim G

⌣
Ff (f) =

F (f). So
⌣̀
F f (f) ≤ F (f). The converse inequality follows by Claim U. ⊓⊔

Claim V. LetF be a lower prevision onX. If F is normalized, then
⌣̀
F f (χX) = 1.

Proof. If there is noλ such that1 ≤ λ(f + ǫ),

⌣
Ff+ǫ(χX) = inf

λ/1≤λ(f+ǫ)

[

F (λ(f + ǫ)) − sup
h≤λ(f+ǫ)−1

F (h)

]

= inf
λ/1≤λ(f+ǫ)

[

F (λ(f + ǫ) − 1) + 1 − sup
h≤λ(f+ǫ)−1

F (h)

]

sinceF is normalized. Sincesuph≤λ(f+ǫ)−1 F (h) = F (λ(f+ǫ)−1),
⌣
Ff+ǫ(χX) =

1. On the other hand, if there is noλ such that1 ≤ λ(f+ǫ), then
⌣
Ff+ǫ(χX) = +∞.

This can only happen whenǫ = 0, and providedinfx∈X f(x) = 0. In this case,
⌣̀
F (χX) is the greatest lower bound of1 and+∞; otherwise,

⌣̀
F (χX) already equals

1, directly. ⊓⊔

Let us prove the Theorem. SinceF is super-linear,
⌣̀
F f is sub-linear by Claim T,F is

monotonic and
⌣̀
F f also by Claim R, we can apply Roth’s Sandwich Theorem: there

is a functionalG0 from 〈X → R+〉 to R
+

, which is monotonic and linear, and such

that F ≤ G0 ≤
⌣̀
F f . By Claim U, F (f) ≤ G0(f) ≤

⌣̀
F f (f) = F (f), soG0(f) =

F (f). Next,
⌣̀
F f takes its values inR+, so G0 too. In particular,G0 is a prevision.

G0 is normalized, since for every bounded continuous functiong, for everya ∈ R
+,
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G0(a+g) = aG0(χX)+G0(g) (sinceG0 is linear)= a+G0(g). Indeed,1 = F (χX) ≤

G0(χX) ≤
⌣̀
F f (χX) = 1 by Claim V.

SoG0 is a normalized linear prevision such thatF ≤ G0 et F (f) = G0(f). (And
this holds on any topological spaceX.) Now X is stably locally compact, hence stably
core compact, so letG = r(G0). By Claim Q, G is a continuous linear prevision.
SinceG is the greatest continuous functional belowG0 andF ≤ G0, it follows that
F ≤ G. SinceG ≤ G0, G(f) ≤ G0(f) = F (f) ≤ G(f), soG(f) = F (f). Finally,
we show thatG is normalized—and we do not needX to be compact, as Claim Q
would suggest. We claim indeed thatG(a + g) = a + G(g): by linearity,G(a + g) =
aG(χX) + G(g), andG(χX) = 1 sinceG(χX) ≤ G0(χX) = 1 on the one hand, and
G(χX) ≥ F (χX) = 1 on the other hand. ⊓⊔

Theorem 5.LetX be stably locally compact,F a continuous normalized prevision
on X. ThenF is lower iff CCoeur1(F ) 6= ∅ and for everyf ∈ 〈X → R

+〉, F (f) =
infG∈CCoeur1(F ) G(f). In this case, the inf is attained:F (f) = minG∈CCoeur1(F ) G(f).

Proof. If F is lower thenCCoeur1(F ) is non-empty by Theorem 4. Moreover, for
everyf ∈ 〈X → R+〉, there is aG ∈ CCoeur1(X) such thatF (f) = G(f), so
clearlyF (f) = infG∈Coeur1(F ) G(f) and the inf is attained.

Conversely, ifCCoeur1(F ) is non-empty andF (f) = infG∈CCoeur1(F ) G(f) for
everyf ∈ 〈X → R

+〉, thenF is super-additive, hence lower. Indeed:

F (f + f ′) = inf
G∈Coeur1(F )

G(f + f ′) = inf
G∈Coeur1(F )

(G(f) + G(f ′))

sinceG is additive

≥ inf
G∈Coeur1(F )

G(f) + inf
G∈Coeur1(F )

G(f ′) = F (f) + F (f ′)

⊓⊔

Proposition 4. Let X be stably compact,F a normalized continuous lower previ-
sion, thenCCoeur1(F ) is a non-empty saturated compact convex subset ofP

△
1 wk(X).

Proof. Convexity is obvious, non-emptiness is by Theorem 5, and saturation is clear.
Compactness is almost a consequence of [19, Corollary 2]. Wewould need to check that
C = 〈X → R+〉 is a so-called continuous d-cone, with an additive way-below relation.
(Note that what Plotkin calls weak∗-Scott what we simply call the weak topology.)
Claim M indeed shows that≪ is additive, however every (continuous) d-cone is a
(continuous) cpo, which〈X → R+〉 fails to be. (One might argue we could have defined

previsions as taking maps from〈X → R
+
〉 to R

+
instead. However, we wanted to

provide a nice link with the theory of games and belief functions, and the latter works
more smoothly provided we exclude+∞. Moreover, in applications we only really
need sub-normalized or normalized games/previsions.)

However, here is a direct argument, inspired by [9]. We need to recall that theco-
compact topologyof a stably compact spaceX is the collection of all complements of
saturated compacts ofX. The spaceX with its co-compact topology is itsde Groot
dual Xd. ThenXd is also stably compact, its specialization ordering is the converse
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≥ of that of X, Xdd = X. The coarsest topology containing both the original and
the co-compact topology is thepatch topology. X equipped with the patch topology
is a compact pospace, which we writeX ′ [9]. Note that the productY =

∏

i∈I Yi of
stably compact spaces is stably compact, thatY ′ =

∏

i∈I Y ′
i , and that the specialization

ordering ofY is the component-wise ordering.

The space[0, 1] is stably compact, and[0, 1]′ is equipped with the usual, metric
topology. LetX be stably compact, and considerZ =

∏

f∈〈X→R
+〉

supx∈X f(x)=1

[0, 1], which is

also stably compact. LetP (X) be any of the spaces of sub-normalized previsions we
consider. There is an obvious mape : P (X) → Z that sendsF to the family of allF (f),
f ∈ 〈X → R

+〉, supx∈X f(x) = 1. Conversely, for any familyz = (zf ) f∈〈X→R
+〉

supx∈X f(x)=1

of elements of[0, 1], one may define a positively homogeneous functionalm(z) from
〈X → R+〉 to R+ by: m(z)(0) = 0, m(z)(f) = azf/a whena = supx∈X f(x) > 0.

We then check that the subspace ofZ of thosez such thatm(z) is a (plain, lower,
upper, sub-normalized, normalized) prevision is patch-closed inZ, hence stably com-
pact. (See [7, lemme 11.6.1].) The idea is that this subspaceis defined as the set of
objectsz satisfying a collection ofpatch-continuousequations, i.e., equations of the
form f(zf1

, . . . , zfn
) = g(zf1

, . . . , zfn
), wheref1, . . . , fn are fixed, andf andg are

continuous functions from[0, 1]′n to [0, 1]′. E.g., thatm(z) is monotonic is equivalent
to the fact thata×zf/a ≤ b×zg/b for all f, g ∈ 〈X → R

+〉 that are not identically zero
and such thatf ≤ g, wherea = supx∈X f(x), b = supx∈X g(x); in turn, an inequality
u ≤ v is an abbreviation for the equationmax(u, v) = v. Since every intersection of
patch-closed subsets is patch-closed, the given subspace is patch-closed.

We then check that, ifZ≤1 is the subspace ofZ consisting of allz such thatm(z) is
a sub-normalized prevision, thene defines a homeomorphism of the spaceP≤1 wk(X)
of all sub-normalized previsions ontoZ≤1, with inversem. In particular,P≤1 wk(X) is
stably compact.

The technique of patch-continuous equations implies that given any conjunction of
properties among “lower”, “upper”, “linear” and “normalized”, the subspace of those
previsions inP≤1 wk(X) satisfying these properties is also patch-closed in it, hence
stably compact.

Next, we observe thatr : P≤1 wk(X) → P≤1 wk(X) (see Claim Q and later) and
the obvious inclusions : P≤1 wk(X) → P≤1 wk(X) forms a retraction-section pair.
I.e., that they are continuous andr(s(F )) = F for all F . This allows us to conclude
that P≤1 wk(X) is stably compact: by Lawson’s Lemma (see again [9]), any retract
of a stably compact space is stably compact. We needX to be compact additionally,
in the case of normalized previsions, to be able to apply Claim Q and show thatr :
P1 wk(X) → P1 wk(X).

Finally, we note thatCCoeur1(X) is the intersection of↑ F (the set of all normal-
ized continuous previsionsF ′ such thatF ≤ F ′) andP

△
1 wk(X). The former is trivially

compact (every set↑ x is compact in any topological space), hence patch-closed in
P1 wk(X). The technique of patch-continuous equations shows thatP

△
1 wk(X) is again

patch-closed inP1 wk(X), soCCoeur1(X) is patch-closed inP△
1 wk(X). It is easy to

see that a patch-closed subset of a stably compact space is compact. ⊓⊔
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Proposition 5. Let X be a topological space,F a normalized continuous upper
prevision, thenCPeau1(F ) is a closed convex subset ofP

△
1 wk(X). It is non-empty as

soon asX is stably compact.

Proof. Convexity is again obvious. We have already mentioned thatCPeau1(F ) would
be non-empty ifX is stably compact (details in [7, théorème 11.7.4]). Then wenotice
that:

CPeau1(X) = {G ∈ P
△
1 wk(X)|G ≤ F} =

⋂

f∈〈X→R+〉

{G ∈ P
△
1 wk(X)|G(f) ≤ F (f)}

=
⋂

f∈〈X→R+〉

(

P
△
1 wk(X) \ [f > F (f)]

)

which is therefore closed in the weak topology. ⊓⊔

Proposition 6.Let X be a stably compact space. The continuous normalizedbody
CCorps1(F ) = CCoeur1(F

−) ∩ CPeau1(F
+) of a continuous normalized fork

F = (F−, F+) on X is a lens. Moreover,CCoeur1(F
−) = ↑ CCorps1(F ) and

CPeau1(F
+) = ↓ CCorps1(F ).

Proof. We show that:(∗) wheneverG ∈ CCoeur1(F
−), there is someG′ ∈ CCoeur1(F

−)∩
CPeau1(F

+) such thatG′ ≤ G.
Let F ′(h) = inff,g∈〈X→R

+〉
f+g≥h

(F+(f) + G(g)). This is well-defined since e.g., we

may takef = 0 andg = h. This also implies thatF ′(h) ≤ G(h). Clearly,F− ≤ F ′ ≤
G: we have just shownF ′ ≤ G, and for the other inequality, we note that for everyf ,
g with f + g ≥ h, F+(f) + G(g) ≥ F+(f) + F−(g) (by assumption)≥ F−(f + g)
(by (3))≥ F−(h).

Now we observe thatF ′ is an upper prevision. Indeed,F ′(0) = 0 (takingf = g =
0), and whenα > 0, F ′(αh) = inff+g≥αh(F+(f)+G(g)) = inff ′+g′≥h(F+(αf ′)+
G(αg)) = αF ′(h); soF ′ is positively homogeneous.F ′ is clearly monotonic, while:

F ′(h) + F ′(h′) = inf
f+g≥h,f ′+g′≥h′

(F+(f) + G(g) + F+(f ′) + G(g′))

≥ inf
f+g≥h,f ′+g′≥h′

(F+(f + f ′) + G(g + g′))

(becauseF+ is upper andG is linear)

≥ inf
f ′′+g′′≥h+h′

(F+(f ′′) + G(g′′)) = F ′(h + h′)

SoF ′ is upper.
Using Roth’s Sandwich Theorem again, there is a linear monotonic functionalG0

such thatF− ≤ G0 ≤ F ′. BecauseG0 ≤ F ′, G0 does not take the value+∞, soG0

is a linear prevision. LetG′ = r(G0). By Claim Q,G is a continuous linear prevision,
andF− ≤ G′ ≤ F ′, as above. In particular,1 = F−(χX) ≤ G′(χX) ≤ F ′(χX) = 1,
soG′(χX) = 1; using the fact thatG′ is linear,G′ is then normalized. SinceF− ≤ G′,
G′ ∈ CCoeur1(F

−). SinceG′ ≤ F ′ and clearlyF ′ ≤ F+, G′ ∈ CPeau1(F
+).

Finally, sinceG′ ≤ F ′ andF ′ ≤ G, G′ ≤ G. So(∗) obtains.

32



It follows in particular thatCCoeur1(F
−) ∩ CPeau1(F

+) is non-empty. That
CCoeur1(F

−) = ↑ (CCoeur1(F
−) ∩ CPeau1(F

+)) is an easy consequence of(∗).
ThatCPeau1(F

+) = ↓ (CCoeur1(F
−) ∩ CPeau1(F

+)) can be shown in a similar
way, by definingF ′′(h) = supf,g∈〈X→R

+〉
f+g≤h

(F−(f)+G(g)), whereG ∈ CPeau1(F
−),

and usingF ′′ to show that there is someG′ ∈ CCoeur1(F
−) ∩ CPeau1(F

+) such
thatG ≤ G′. ⊓⊔
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