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Continuous Previsiong

Jean Goubault-Larrecq

LSV, ENS Cachan, CNRS, INRIA Futurs
61, avenue du président-Wilson, 94235 Cachan, France
goubaul t @ sv. ens- cachan. fr

Abstract. We define strong monads obntinuous (lower, upper) previsiorend

of forks modeling both probabilistic and non-deterministic cleoi€this is an el-
egant alternative to recent proposals by Mislove, Tix, Kadinand Plotkin. We
show that our monads are sound and complete, in the senghdlyanodel ex-
actly the interaction between probabilistic and (demaamgelic, chaotic) choice.

1 Introduction

Moggi’s computationah-calculus [17] has proved useful to define various notions of
computations on top of the lambda-calculus: side-effésfsjt-output, continuations,
non-determinism [26], probabilistic computation [20] iarpcular. But mixing monads

is hard, and finding the “right” monad that would combine bitin-determinism and
probabilistic choice has taken quite some effort. (We reviecent progress below.)

The purpose of this paper is to introduce simple monads thttialjob well. These
are monads ofontinuous previsionsvhich can be seen as continuation-style monads.
The idea of considering previsions comes from economicsstatibtics [5, 12].

Outline. After stating some required preliminaries in Section 2, eeail the no-
tion of gameintroduced in [6], arguing why these are natural extensmnsotions
of continuous valuations~ measures) that also accommodate demonic and angelic
non-deterministic choice. These notions induce functorf'ep, Cpo, Pcpo, but fall
to yield monads. We analyze this failure in Section 4 by mgythrough a Riesz-like
representation theorem, to the new notions of collinearipiens, and previsions. We
then show that indeed previsions yield strong monads, deita give semantics to a
rich A-calculus [17] with both probabilistic and non-determiiischoice. Finally, we
show in Section 5 that our monad model is not only sound butpdete.

This work is a summary of most of Chapters 10-12 of [7]. We h@mvegive the
proofs of the main results in the Appendix.

Related Work. Finding a monad combining both probabilistic and non-deieistic
choice can be done by using general monad combination plasciThe right way to
combine monads in general is open to discussion. Lith [Idjgses to combine mon-
ads by taking their coproduct in the category of monads. Thmoduct exists under
relatively mild assumptions [10]. However, in general tioproduct of two monads is
an inscrutable object. A simpler, explicit description tefound in specific cases. For

* Partially supported by the INRIA ARC ProNoBis. Part of Sent#t was done while the author
was invited at U. Laval, Québec City, Québec, July 2004. Wmewledge their support.



example, when taking coproducts of tigeal monads [3]. In particular, combining
non-blockingnon-determinism and probabilistic choice falls into thése. The result-
ing monad is relatively unenlightening, though: it is thermad of all sequences of
choices, both probabilistic and non-deterministic [3,regée 4.3].

Varacca [25] also proposed a monad combining non-detesmimiith probabilistic
choice. Ghani and Uustalu [3] note that the above coprodocttiis close to Varacca’s
synchronization trees. The works closer to ours in commgiEnce are those of Mis-
love [16] and Tix [23, 24]. While this won't be entirely obwie from our definitions, we
will establish a formal connection between their models amd (Section 5). Outside
computer science, previsions have their roots in econoanidstatistics [27]. However,
we consider previsions on topological spaces, not just ts se

This paper can be seen also be seen as a followup to [6], irdsasprevisions are
strongly tied to notions of convex and concave games.

2 Preliminaries

We assume the reader to be familiar with (point-set) topgligparticular topology of
T, but not necessarily Hausdorff spaces, as encountered iniddheory. See [4, 1, 15]
for background. Letnt(A) denote the interior ofi, cl(A) its closure.

The Scott topologyn a posetX, with ordering<, has as opens the upward-closed
subsetdJ (i.e.,z € U andx < y imply y € U) such that for every directed family
(74);c; having a least upper boundp, ; z; insideU, somex; is already inU. The
way-belowrelation < is defined byx < y iff for any directed family(z;);., with a
least upper bound such thaty < z, thenz < z; for somei € I. A poset iscontinuous
iff ly = {z € X|z < y} is directed, and has as least upper bound. Then every open
U can be writterl J,_,; Tz, wherefz = {y € X|z < y}.

Every topological spac& has a specialization quasi-orderingdefined byx < y
iff every open that contains containsy. X is Tj iff < is a (partial) ordering. That
of the Scott topology of a quasi-orderirgis < itself. A subsetd C X is saturated
if and only if A is the intersection of all opens that contain it; alterreltiyiff A is
upward-closed ir<. Every open is upward-closed. LgtA denote the upward-closure
of A under a quasi-orderingf, | A its downward-closure. Al space issoberiff
every irreducible closed subset is the closulder} =| z of a (unique) pointc. The
Hofmann-Mislove Theorem implies that every sober spaceelt-filtered [9]: given
any filtered family of saturated compagty;), ., in X, and any oped/, (,.; Q; C U
iff Q; C U for somei € I. In particular,M;.; Q; is saturated compack  is locally
compactiff wheneverxz € U (U open) there is a saturated comp@csuch thatr €
int(Q) € @ C U. Every continuous cpo is sober and locally compact in itsttSco
topology.X is cohereniff the intersection of any two compacts is compact. A cohgere
well-filtered locally compact space is callstably locally compactStably compact
spaces are those that are additionally compact, and havederfal theory (see, e.g.,
[9]). We shall consider the spad® of all reals with the Scott topology of its natural
ordering<. Its opens ard, R, and the interval$t, +c0), t € R. R is a stably locally
compact, continuous cpo. Because we edRiipith the Scott topology, ourontinuous



functionsf : X — R are those which are usually callemver semi-continuoui the
mathematical literature.

We call capacityon X any functionv from O(X), the set of all opens ok, to
RT, such that/(0) = 0 (a.k.a., aset functio. A gamev is amonotonic capacityi.e.,

U C V impliesv(U) < v(V)L A valuationis amodulargamev, i.e., one such that
v(UUV)+v(UNnV)=vU)Nnv(V) forevery opend/, V. A game iscontinuousff
V(U,er Ui) = sup;r v(U;) for every directed familyU; ), ., of opens, andormalized
iff #(X) = 1. Continuous valuations have a nice theory that fits topolegy[8, 9].

TheDirac valuationd,, atz € X is the continuous valuation mapping each open
to1if x € U, to0 otherwise. Continuous valuations are canonically ordesed < v/
iff v(U) < v/ (U) for every operiJ of X.

A monadon a categoriC may be presented in several different ways. One is based
on triples(T,n, u) of an endofunctor o, a unit, and a multiplication natural trans-
formation. A presentation that is easier to grasp is in teofKleisli triples [14]. A
Kleisli triple is a triple (T, n, _T), whereT maps objects\ of C to objectsT X of C,
nx is a morphism fromX to TX for eachX, andf' (theextensiorof f) is a morphism
fromT X toTY for each morphisnf : X — TY, satisfying: (L x = idzx; (2) for
everyf : X - TY, ffonx = f;(3) foreveryg : X — TY, f:Y — TZ, then
ffogh=(fto g)T. Kleisli triples and monads are equivalent.

3 Continuous Games, Convexity, Concavity

We follow [6]. A gamer on X on X is convexff v(UUV)+v(UNV) > v(U)+v(V)
for every opend/, V. It is concavef the opposite inequality holds. Convex games are
a cornerstone of economic theory [5, 18].

One fundamental example of a game that is not a valuatioreigritanimity game
ug (A # 0), defined byus (U) = 1if A C U, uxs(U) = 0 otherwise. As we argue in
[6], u4 is a natural “probability-like” description of demonic naleterministic choice,
in the sense that drawing “at random” accordingutp means that some malicious
adversaryC will choose an element ofl for you. This is perhaps best conveyed by
a thought experiment. You, the honest plaiemwould like to draw some element
from X with distribution» (a game). Imagine you would like to know your chances
of getting one from some (open) subgebf X . If v is a probability distribution, then
your chances will be equal t(U). This is standard. For genenal continue to define
your chances ag(U). If v = uy4, andU does not contaid, thenv(U) = 0, and your
chances are zero: intuitivelg, will pick an element inA, but outside/—on purpose.
The only case wher€ is forced to pick an element id which will suit P (i.e., be in
U, too), is whenAd C U—and therP will be pleased with probability one.

Itis clear thatu 4 is convex. It is in fact more. Call a gameotally convexft:

v (O Ui) > Z (*1)‘I‘+1V <m Ui) 1)
i=1 IC{1,...n}, 10 iel

! The name “game” is unfortunate, as there is no obvious oeisliip between this and games as
they are usually handled in computer science, in particuitir stochastic games. The notion
stems from (cooperative) games in economics, whéis the set of players, not of states.



for every finite family(U;);-_, of opens ¢ > 1), where|I| denotes the cardinality df
A belief functionis a totally convex game. The dual notiontofal concavityis obtained
by replacinglJ by () and conversely in (1), and turning into <. A plausibility is
a totally concave game. [ is replaced by= in (1), then we retrieve the familiar
inclusion-exclusion principle from statistics. In paciar any (continuous) valuation
is a (continuous) belief function. Clearly, any belief ftina is a convex game. The
converses of both statements fail: Gh= {1,2, 3} with the discrete topologys; o}

is a belief function but not a valuation, ar%c@u{lvg} +ugr3) + 23y —Ugr23))isa
convex game but not a belief function.

Every game of the forn}_;"_; a,uq,, with a; € R™, and@,; compact saturated and
non-empty, is a continuous belief function, which we cathplebelief function in [6].
When}"" | a; = 1, drawing an element fronX “at random” (in the sense illustrated
above) according to the simple belief functier= >"""_, a;ug, intuitively corresponds
to drawing one compaa®; at random with probability:;, then to let the malicious
adversarnyC draw some element, demonically, fragy [6].

Let us turn to integration. Let be a game oiX, andf be continuous fronk to R™
(i.e., lower semi-continuou® ™ comes with the Scott topology). Assunfioounded,
t0o, i.e.,sup,c x f(z) < +oo. TheChoquet integrabf f alongw is:

“+oo
j fl@)dv = / V(¢ +oo))dt @
zeX 0

where the right hand side is an improper Riemann integras iBhwell-defined, since
f71(t,+00) is open for everyt € R* by assumption, and measures opens. Also,
sincef is bounded, the improper integrals above really are orgiRé@mann integrals
over some closed intervals. The functior> v(f~1(t, +o0)) is decreasing, and every
decreasing (even non-continuous, in the usual sense)idanist Riemann-integrable,
therefore the definition makes sense.

Alternatively, anystep functiony ., a;xv,, whereag € R, a1,...,a, € RT,
X =Uy, 22U, DO... 22U, isadecreasing sequence of opens, gnddenotes the
indicator function ofU (xy(z) = 1if z € X, xy(z) = 0 otherwise) is continuous: its
integral along’ then equal$ "' a,v(U;)—for anygamev. Itis well-known that every
bounded continuous functiofican be written as the least upper bound of a sequence

of step functionsfx = a + 5% ,E(:b;“)zKJ X1 (at 2 +o0)(®), K € N, wherea =

infzex f(x), b =sup,cx f(z). Then the integral of alongv is the least upper bound
of the increasing sequence of the integralgefalongv.

The main properties of Choquet integration are as follovirst,Rhe integral is in-
creasing in its function argument: ff < ¢ then the integral of alongv is less than or
equal to that of; alongv. If v is continuous, then integration is also Scott-continuaus i
its function argument. The integral is also monotonic angktSoontinuous in the game
v. Integration is linear in the game, too, so integrating gIdn;"_, a;v; is the same
as taking the integrals along eaef) and computing the obvious linear combination.
However, Choquet integration it linear in the function integrated, unless the game
v is a valuation. Still, it igpositively homogeneouisitegratinga f for o € R yieldsa



times the integral of . And it is additive oncomonotonidunctionsf,g : X — R (i.e.,
there is no pair, 2’ € X such thatf(z) < f(z') andg(z) > g(z')).

Returning to the example of a simple belief functior= Y., a;uq,, the proper-
ties above imply that the integral gfalongv is 3", a; min,cq, f(z) [6, Proposi-
tion 1]. (Note thatf (z) indeed attains its minimum ové};, which is compact.) Another
way to read this is as follows. Imagifepublishes how much money(z), she would
earn if you pickedz. When_" | a; = 1, it is legitimate to say that the integral ¢f
alongr should be some form of expected income. The formula abotesstiaat, when
v is a simple belief function, your expected income is exaathat you would obtain
on average by drawin@; at random with probability:;, then letting the malicious ad-
versaryC pick some element af); for you—minimizing your earningg(z). In other
words, integrating along a simple belief function compuesrage min-payoffs

This can be generalized to all continuous, not just simpéebfunctions [6, The-
orem 4]. More precisely, the spa€al<; (X) of all continuous belief functions on X
such thav(X) < 1is isomorphic to the spacé<; (2(X)) of continuous valuations*

(of total mass at modif) over theSmyth powerdomaifd(X) of X, providedX is well-
filtered and locally compacf(X) is the cpo of non-empty compact saturated subsets
of X, ordered by reverse inclusian, and is a model of demonic non-determinism. (A
similar result holds fonormalizedgames and valuations i.e., such that(X) = 1:

v — v*is again an isomorphism fro@d, (X) to V;(Q(X)).) The construction of*

from v is relatively difficult, however it is noteworthy that when= """ | a,uq, is
simple, then/* is exactly the simple valuation .-, a;d¢,, which describes the choice

of an element); at random with probability:;, as intuition would have it.

Similarly, the spac@®b<;(X) of all continuous plausibilitiegwhich are all con-
cave)r with v(X) < 1is isomorphic toV <1 (H,, (X)) whenX is stably locally com-
pact, and wheré(,(X) is the topological Hoare powerdomain. The latter is used to
model angelic non-determinism. The correspondiingpleplausibilities are of the form
>oi, a;ep,, whereF; is a non-empty closed subset&f(an element of{, (X)), and
theexample gamey is defined so thaty (U) = 1if F meetd, er(U) = 0 otherwise:
in this caseC tries to help you, by finding some elementlinthat would also be i,
if possible.

Recall that every belief function is convex. One may show @tzoquet integration
alongv is super-additivgthe integral off + g is at least that of plus that ofg) when
v is convex, andub-additive(the integral off + ¢ is at most that off plus that ofg)
whenv is concave. See [5] for the finite case, [7, chapitre 4] forttmological case.

In the sequel, le§(X), V J(X), A J(X) be the spaces of plain, convex and con-
cave continuous games respectively (“plain” meaning wittadded property).

4 Continuous Previsions

For any spaceX, let (X — R™) be the space of all bounded continuous functions
from X to R*, with the Scott topology. Each continuous gamen X gives rise to a
functionalae (v) from (X — R*) to R™, mappingf to its Choquet integral along
Think of f(z) again as defining how much moneyifis chosen fromX by some
computation process. We intentionally leave the notionashputation process unde-



fined. This may be the process of drawing “at random” alongnagga as in Section 3.
In the sequel, we shall explore the view thés the output of an arbitrary program, de-
fined in some non-deterministic and probabilitic functidaaguage. 1.e., any program
returns a value: (L on non-termination, say), and if $bearnsf (). For purely prob-
abilistic programs (no non-deterministic choice), a pg®n F' is essentially a function
mapping earning functiong to their average valug'( f), over all possible executions.
Slightly more generally, for any belief function there is a previsione (v) that maps
eachf € (X — R™) to the average min-payoff we get when our final earnings are
given by f.

Milking out the properties ofve (), we arrive at:

Definition 1 (Prevision). A previsionis a functional ' from (X — R*) to R* such
that F' is positively homogeneougor everya > 0, F(af) = aF(f)), andmonotonic
(if f < g [pointwise], thenF'(f) < F(g)).

F is alower previsionif moreoverF is super-additivei.e., F(f+g) > F(f)+F(g).
F is anupper previsionff F' is sub-additive F(f + ¢g) < F(f) + F(g). F is collinear
iff F'is additive on comonotonic pairs, i.e., if wheneyeand g are comonotonic, then
F(f +g) = F(f) + F(g). A previsionF is lineariff F(f + g) = F(f) + F(g) for
everyf,g € (X — R™T).

Finally, I is continuousff it is Scott-continuous: for every directed familf;), . ; of
bounded continuous functions with least upper bofinBl (sup;¢; fi) = sup;c; F(fi)-

We writeP (X)), V P(X), A P(X) respectively the spaces of all continuous previsions,
of continuous lower previsions, of continuous upper ptievis equipped with the Scott
topology of the pointwise ordering. The space®* (X), V P*(X), AP*(X) will

be the subspaces of those that are collinear.

We do not quite follow standard naming conventions. Statigg27], a lower pre-
vision is just a real-valued functionaloherentiower previsions (taking a more read-
able definition from [13]) are thosE such thatF(f) > >, A\, F(fi) + Ao whenever
f> Z?:l Aifi + X0, A > 0, Ao € R. In our case, we reserve the “lower” adjective, so
as to have a dual notion apperprevision.

It is clear that any continuous gamedefines a continuous collinear prevision
ae(v). Moreover, ifv is convex, thenve (v) is lower, and ifv is concave, thene (v)
is upper. The following isomorphism result, akin to RiesedResentation Theorem, is
known as Schmeidler’s Theorem for convex games on disaptddgies. Letye (F),
for any previsionF', be the capacity such that/(U) = F(xy) for every operlJ of
X. Order previsions pointwise, then:

Theorem 1. ae 1 7 is a Galois injection from (plain, convex, concave) gamés in
(plain, lower, upper) collinear previsions. That isg and-~e are monotonicee (ve (F)) <
F for every collinear previsiol”, and~e(ae(v)) = v for every game.

Moreover, when restricted to continuous previsions and g@me and v define
an isomorphism betweef{ X ) andP* (X), betweerl/ J(X) and{/ P*(X), between
AJ(X)and A\ P*(X).

Proof. That~e(F) is a game for any prevision is easy. Whenis lower, note that
xvuv andxyny are comonotonic, anfluuy + xunv = xu + xv. Sove(F)(U U



V) +7e(I)UNV) = F(xvuv + xunv) (sinceF is collinear)= F(xu + xv) =
F(xv) + F(xv) (sinceF is super-additive)= e (F)(U) + ve(F)(V). Similarly,
~ve(F) is concave ifF is upper.

For the converse, we first show that: (A) for any collineawvjzien F' on X, for any
step functionf, writtena + Z:":’l aixu, WithUy 2 ... D Up,a € R, ag,...,ay €
R*, then the Choquet integral gfalongye (F') equalsF( f). This is an easy exercise as
soon as one realizes th@f;ol a;xu, anday xp, are comonotonic forevery, 1 < k <
m. The equalityye(ae(v))(U) = v(U) is obvious,ae andve are clearly monotonic.
To show thatae(ve(F)) < F, we must show that the Choquet integral follong
~ve(F) is less than or equal t6'(f). Using the step functiongx, K € N, by (A) the
Choquet integral offx is less than or equal t6'(fx ). The least upper bound of the
Choquet integrals of , K € N is that of f, and the least upper bound Bf fx ) is at
mostF(f). Soae(ve(F))(f) < F(f). WhenF is continuous, the least upper bound
of F(fx) is exactlyF'(f), whencene(ye(F)) = F. O

One easy, well-known consequence of this is thatand~e define an order iso-
morphism between the spad& X ) of continuous valuations and thBt* (X) of con-
tinuous linear previsions ([8, Theorem 6.2], [22, Satz {.16tuitively, any continuous
gamev gives rise to a continuous collinear previsiog(r) that computes a generalized
form of expectation along, and every continuous collinear prevision arises this way.

It is easy to check that, V J, A J, V, P¥,\V P*, A P*, P* define functord
from Top to Top, whereT op is the category of topological spaces.

To define a monad structure @i we need aunit

nx : X — TX, natural inX. This is defined by

nx(z) = 6,. However, there is general no extensigfl (v)(V) = §f J(z)(V)dv
ftof f: X — TY. The natural candidate is: weX

whenT is a game functorX, VJ, AJ, V), or f1(F)(h) = F(A\z € X - f(z)(h))
whenT is a prevision functorP*®,  P*, A P*, P~). While this indeed works when
T = V [8, Section 4.2], or whefl” = P% using the isomorphism betwedi and
the latter, it fails for the other functors. To understandywiakeT = {/ P*, and
considerX = {1,2}, Y = {xq1, *12, %21, *22} (With their discrete topologiesy =
aelq 2, i.e., F(h) = min(h(1),h(2)) for everyh : ¥ — RT, f : X — TY
defined byf(1) = ae(3/40.,, + 1/4d.,,) andf(2) = ae(1/304,, + 2/3d.,,), SO that
f()(h) = 3/4h(*11) + 1/4h(*12) and f(2)(h) = 1/3h(*21) + 2/3h(xa2) for every
h 1Y — R*. Leth andh’ be defined byh(x;1) = 0.3, h(x12) = h(*22) = 0.1,
h(*gl) = 0.7, h/(*ll) = 0.5, h/(*lg) = h/(*gg) =0, h/(*gl) = 0.7, thenfT(F)(h) =
0.25, f1(F) (W) =0.233..., fI(F)(h+h') = 0.533 ..., but fT(F)(h)+ fT(F)(h') =
0.4833... # f1(F)(h + h'), althoughh andh’ are comonotonic. In other words,’
does not preserve collinearity.

In everyday terms, collinear previsions, or more specliidaglief functions repre-
sent a process wheRedraws at random first, thechooses non-deterministically [6].
The example above is a non-deterministic choice (amdng}) followed by proba-
bilistic choices. In other words, the non-deterministiay@rC plays first, then only the
probabilistic playeP. But it is well-known that you cannot permute non-deterstigi
and probabilistic choices, and the example above only s¢o/eestate this.



Our cure is simple: drop the collinearity condition. We $Harefore consider mon-
ads of continuous (plain, lower, upper) previsions. Pebc be the category of posets
with Scott-continuous map<€;po its full subcategory of cpos. We consider posets
equipped with their Scott topology, whence these two categare full subcategories
of Top. Note thatP(X), V P(X), A P(X) are only posets, not cpos.

Theorem 2. DefineT X asP(X), resp.\V P(X), resp. AP(X). Letpx(z) = A\h €
(X — R*Y) - h(z), and fT(F)(h) = F(A\x € X - f(x)(h)) for everyf : X — TY.
ThenT is a monad orop, i.e., (T,n,_") is a Kleisli triple. OnPosc, T is a strong
monadtx y : X xTY — T(X xY) definedasx y(x, F)(h) = F(A\y € Y-h(z,y))
is a tensorial strength.

Proof. We must first show that, for everfy: X — TV, f1 is indeed a continuous map
fromT X toTY . Foremost, we must make sure that for every continuousn(dtaiver,
upper) prevision®’ on X, fT(F) is a continuous (plain, lower, upper) prevision Bn
This is easy, but relatively tedious verification. Now ndtattthe formulae defining,
_T, t are exactly the formulae defining teentinuation monad17]. It follows that the
Kleisli triple axioms also hold in our case.

Contrarily to what might be expecteld; y is not defined on all aI'op—it may fail
to be continuous. ORosc, this is repaired by the fact that a function of two arguments
is continuous iff it is continuous in each argument sepérdgefact that fails inTop).
The tensorial strength equations [17] are checked as fardhgnuation monad. 0O

That the formulae for unit, extension, and tensorial stiieage the same as for the
continuation monad is no accident. Imagifie= T X is the semantics of a (probabilis-
tic and non-deterministic) program expected to return altasof type X . As we have
already argued, whefR' = «ae(P), with P a continuous valuation, thefi(h) is the
averagepayoff, defined as the (Choquet) integraligf:) along P. WhenF = «ae(v)
with » a continuous belief function, thei(%) is the average min-payoff, where minima
are taken over (demonically) non-deterministic choicebeWF' is not collinear, then
more complicated “averaging” processes are involved. hiqudar, we allow taking
means of mins of means of mins. .. representing plays wihefe P, C, .. .take turns.
The fact that arbitrarily many turns can be chained in a (eaessarily collinear) pre-
vision will be a consequence of the fact that prevision faretefine monads, and in
particular have a well-defined multiplication. This is stard in the monadic approach
to side-effects [17]: multiplication is the key to definingggiential composition—here,
of plays.

More explicitly, taken continuous functiong; : Xg — T X, fo : X1 — TX,,

erfn : Xn_1 — TX,. Then, whenT is a monad,f} o fi ,o...0flofi :
X9 — TX, is the sequential composition ¢f, fo, ..., fn_1, fn in this order: given
xg € X, the procesg; (o) computes some element € X, (in our case, by drawing
it “at random”, say; deterministic computations are of ceuallowed, too), theifi, (x1)
computes some, € X, etc. The monad laws then typically say that composing with
the idle procesg)x : X — TX does nothing, and that sequential composition is
associative.

While Theorem 2 then establishes a form of soundness (whéckhall make more
precise below), the goal of the next sections will be to sh@tthe prevision axioms are



complete, in the sense that there is no junk: every contislower, upper) prevision
is a mix of (demonic, angelic) non-deterministic and pralstic choices.

One may wonder what the equivalentrafrmalizedgames ¢(X) = 1) andsub-
normalizedgames ¢(X) < 1) would be through the correspondence of Theorem 1.
RequiringF'(x x) to equal (resp. less than or equal 1a$ the obvious choice. However,
this is not preserved by’ whenF is not collinear. So we define:

Definition 2. A previsionF on X is normalized resp.sub-normalizediff for every
[ € (X — R*), foreverya € RT, F(a+f) = a+F(f) (resp.F(a+ f) < a+F(f)).

WeletJ,(X),V P?(X), VP, (X),...,bethe subspaces of normalized games/previsions,
andJ<1(X),V P?l (X), VP<1(X), ..., those of sub-normalized games/previsions.

Proposition 1. Theorem 1 again holds for normalized (continuous) gamespaed-
sions, and for sub-normalized (continuous) games and §itns.

Now the spaces of sub-normalized and normalized continpayssions are cpos. The
spaces of sub-normalized continuous previsiongaieted i.e., they have a least el-
ementL, the constand function. If X is itself pointed, then the spaces of normalized
continuous previsions are pointed, too, with least elemet(t, ) (a continuous linear
prevision). The latter maps € (X — R™) to h(.L). Let Cpo the category of cpos,
Pcpo that of pointed cpos. It follows:

Proposition 2. LetT X be definedaP <1 (X), V P<1(X), AP<1(X) P1(X), V P1(X),
or AP1(X). (T,n,u,t) is a strong monad o@'po and onPcpo.

Theorem 2 allows us to give a semantics to-@alculus with both probabilistic and
non-deterministic choices. Consider the syntax of ternastgpes:

M,N,P =z variable
| ¢ constant
| MN application L
| Az - M abstraction T ‘_ o :)aseegges
| 0O empty tuple " P
| (M, N) pair | =x7 prodgct
| fst M first projection } ;_) T L%r;itlﬂ?a?i/gff s
| snd M second projection T P yp
| val M trivial computation
|

letvalz = M in N let-expression

The typing rules, as well as the categorical semantics itr@QLC, are standard [17].
Note thatCpo and Pcpo are Cartesian-closed. Together with the strong monads of
Proposition 2, they form let-CCCs. The typing rules for canapion types are: if" -

M :7thenl' - valM : Tr;andifI"' - M : Try andl,x : m; - N : T then
I'Fletvalex =M in N : T'7.

As should be expected, the semantics has a strong continugivor. For each
term M of type 7 in contextI” = z1 : 71,...,Z, : Ty, [M] is @ morphism (a con-
tinuous map) from[I'] = ] x ... x [r,] to [7]. The cases foral andlet are
given by: [val M] (v1,...,v,) = A € ([7] — R*) - h([M] (v1,...,v,)), and
[letvalz = M in N| (v1,...,v,) = A € ([r2] — RT) - [M] (v1,...,v,)(Av €



[m1] - [V] (v1,-..,v,,v)(h)). Let bool be a base type, witlfibool] = S, where
S = {0, 1} is Sierphski space({ < 1). Constantg may include a least fixpoint operator
in Pcpo, the Boolean constantalse, true, a case construckse : bool X 7 X7 — T
with [case] (0,vg, v1) = vo and[case] (1,vg,v1) = v1. The interpretation of” as a
monad of previsions allows us, additionally, to give megnia a coin-flipping op-
eratorflip : Tbool, with [f1ip] = ae(1/200 + 1/261) = Ah € (S — RT) -
1/2(h(0) + h(1)), and a non-deterministic choice operatat : Tbool. WhenT
is V Py, amb is the demonic choice (of a Booleafimb] = ae(ug,13) = A €
(S — R*) - min(h(0), k(1)) (the chosen Boolean is the one that minimizes payoff
h(z)). WhenT is \ Py, we get angelic choiclamb] = ae(ugo,13) = A € (S —
R™) - max(h(0), k(1)) (maximize payoff).

One might think that lettin@” be P, would lead to chaotic choice. This certainly
accommodates both demoniaifi) and angelic choicenfax). However,P; is a very
large space, and seems to contain objects that do not cong$spany mixture of prob-
abilistic and non-deterministic choice. The right notiersuggested by [7, section 7.5].

Definition 3 (Fork). A fork on X is any pairF = (F~, F*) where F~ is a lower
prevision,F'* is an upper prevision, and for amy, i’ € (X — R™T),

F~(h+h)<F(h)+ Ft() < Ft(h+ 1) 3)

F' is continuous resp.normalized sub-normalizedcollinear, whenever bott#"~ and
FT are.

While the above definition was found from purely mathemateguments, Walley [27,
Section 2] defines essentially the same notion in finance.ddewwe allow any pair
(F~, F) satisfying these conditions to be a fork. Walley only obserthat whenever
F~ is a coherent prevision (in his sense), on a discrete spaee lettingF+(h) =
—F~(—h) yields a fork(F~, F).

One may think ofF'~ as the pessimistic part df, which will give us the least ex-
pected payoff, whileF"* is the optimistic part, yielding the greatest expected ffayo
Taking ' = 0 in (3) shows indeed that— (h) < F'*(h) for eachh. Let F(X) be the
space of continuous forks d¥, ordered by< x <. The subspacds,; (X) andF <, (X)
of normalized and sub-normalized forks are cpos. The l@tpointed (with least ele-
ment(0,0)) and the former is as soon a5is (with least elemenfae (5, ), aec(d1))).
The semantics is essentially the pairing of two continuegiemantics, e.gfyval M] (vy, ...,
v,) = (F~,FT), whereF~ = FT = A\ € ([r] — R") - h([M] (v1,...,v,))
(alinear prevision); [let valz = M in N| (v1,...,v,) = (A € {[r2] — RT) -
F~(\v € [nn] - F;(h),Ah € ([r2] — RY) - Ft(Xv € [n] - Ff(h))), where
(F~,F*) = [M] (v1,...,v,) and(F, , F,}) = [N] (v1,...,v,,v). The constants
with the most interesting semantics ateb, where[amb] = (Ah € (S — RT) -
min(h(0), h(1)), \h € (S — RT)-max(h(0), h(1))) (i-e., it computes both pessimistic
and optimistic outcomes), artlip, where[flip] = (F~, FT) with F~ = FT =
Ah € (S — R*)-1/2(h(0) 4+ h(1)). For the rest of the language, we rely on [17] and:

Proposition 3. LetT' X be defined a¥'(X), F<;(X), orF,(X). Letnx(z) = (F~,F™T)
with F~ = F+ = M € (X — RT). h(z), and for everyf : X — TY, let
fIEFY) =M ey =R -F~(Mxz € X-f(2)(h),\h € (Y — RY) .
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Ft(\x € X-f*(z)(h))), where by conventiofi(z) = (f~ (z), fT(z)). Then(T',n, )
isamonad ofop. Together witht x y : X xTY — T(X xY') defined by x y (z, (F~,
F)) =M ey =R -F~-(A\y € Y-h(z,y),\h € Y - RT)-Ft(\y €
Y - h(z,y))), it forms a strong monad o@'po and Pcpo.

Proof. That the strong monad laws are satisfied is obvious. The dotfeegoroof is
in showing that unit, extension, and tensorial strengthveet-defined. We deal with
extension. Recall thaff (F~, F+) = (F'~,F'"), whereF’~ = Ah € (Y — R*) .
F-(Az e X-f~(z)(h)andF'" = v e (Y = R") - Ft(\z € X - f+(z)(h))).
ThenF' " (h+h)=Xh e (Y - RT)-F-Axe X - f (x)(h+1)) <Ihe(y —
RT) - F~(Az € X - f=(x)(h) + f*(2)(h)) (sincef(x) = (f~(x), f"(2)) € TY
and F~ is monotonic)< \h € (Y — RT) - F~(Az € X - f~(z)(h)) + FT(\z €
X - fH(z)(1)) (since(F~,Ft) € TX) = F'" (k) + F'"(h/). Similarly, F'~ (k) +
F'H () < F'™(h+ 1). 0

5 Hearts and Skins

One of the fundamental theorems of the theory of coopergtiwees is Shapley’s The-
orem, which states that every convex gamieas a hon-empty core (on finite discrete
X)—the coreCore(v) being the set of measurgsuch that < p andv(X) = p(X).

A refinement of this is Rosenmuller’s Theorem, which stalted & game is convex

iff its core is non-empty and for every functigh: X — RT, the integral off along

v is the minimum of all integrals of alongp, p € Core(v). In particular, there is a
measurep such thatr < p, v(X) = p(X), and integratingf alongp gives the same
result as integrating it along [5]2.

We show that the same results hold in the continuous case chfpitre 10]. Re-
member that games correspond to collinear previsions. @poge here is to show that
similar theorems hold on previsions that need not be cdallifgee [7, chapitre 11] for a
more complete development). The analogue of measureseaniihbar previsions. We
drop the analogue of the( X) = p(X) condition, however we concentrate on normal-
ized games and previsions, because the technical treatsnslightly easier. We call
the analogue of cores hearts, and the dual notion skin.

Definition 4 (Heart, Skin). For any functionF from (X — R™) to RT, its heart

Coeur(F) is the set of linear functional&’ such thatF' < G. Its continuous heart
CCoeur(F) is the subset of thos@s that are continuous. ltskin Peau(F') is the set
of linear functionals such thatG < F. Its continuous skirC' Peau(F) is the subset
of those functional&: that are continuous.

2 An anonymous referee for a previous version of this papezdisthether this had anything to
do with a theorem due to Shannon, stating that for any digich p and functionf, there is
another distributiop’ such thatf has the same mean relativestandp’, and which maximizes
entropy. While there is a similar flavor to it, | must confelsattl don’t see any relationship.
Moreover, Shannon’s Theorem, contrarily to Rosenmulleit®es not extend to the continu-
ous case, if only because entropy is only defined on finiteesp@elative entropy is another
matter). | won't include this footnote in the final versiontbfs paper.
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Again, we letCoeury (F), CCoeury(F), ..., be the subsets of the corresponding
spaces consisting of normalized previsions only, and ainfyilC'oeur<y (F), ..., for
those consisting of sub-normalized previsions.

Most of the developments below rest on Roth’s Sandwich Téragf21], [24, Theo-
rem 3.1]), which states that on every ordered cOnéor every positively homogeneous
super-additive functiog : C — R and every positively homogeneous sub-additive
functionp : C — R such that < b impliesg(a) < p(b) (e.g., wherny < p and
eitherg or p is monotonic), then there is a monotonic linear functjpn C — R"
such thay < f < p. R isR* plus an extra point at infinity-co. A coneis a setC,
together with a binary operation turning it into a commutative monoid and a scalar
multiplication- from R+ x C'to C, suchthatl -a =a,0-a =0, (rs)-a=1r-(s-a),
r-(a+b)=r-a+r-band(r+s)-a=r-a+s-a. Anordered cones equipped
in addition with a partial orderingc making+ and- monotonic. We only use Roth's
Theorem on ordered cones of the fof& — R*). Our key result is:

Theorem 3. Let X be a stably locally compact spacg,a continuous lower prevision,
and f a bounded continuous function frofito R*. Then there is a continuous linear

functional G from (X — R™) toR " such thatF < G andF(f) = G(f).
Proof. Let F' be a lower prevision oX, andf € (X — R™). DefineF} by F/f(g) =

infycp+ [F(Af) = supye x_rt+y F'(R)|, taking this to bet-occ is there is no\ € R*
Af>g g+h<Af
such that\f > g. One checks thaﬁf is monotonic, positively homogeneous, sub-
additive, aboveF (Ff(g) > F(g) for all g), touchesF' at f (F}(f) = F(f)). Apply
Roth’s Sandwich Theorem gives us a monotonic linear funeli&y such that” < G
and F(f) = Go(f). However,G, may fail to be continuous. One now observes that
(X — R™T) is a continuous poset, with a bagiconsisting of step functions. By Scott's
Formula, the functional defined byG/(f) = sup,c 4« 5 Go(g) is continuous; in fact,
the largest continuous functional bel@vy. It follows thatF' < G andF(f) = G(f).
The most difficult part of the proof is showing th@tis linear. This rests on the fact
that< is multiplicative i.e., forany. > 0, f < giff - f < a - g, and additive, i.e., if
h,f,g € (X — RT) are such that < f + ¢, thenh < f' + ¢’ for somef’,¢’ € B
with /' < f, ¢’ < g; and converselyf’ < fandg < gimply f'+¢ < f+g. O

Note thatG may take the value-co. We can refine this in the case of nhormalized
previsions (for sub-normalized previsions, see [7, sectib.4]):

Theorem 4. Let X be a stably locally compact spacé, a normalized continuous
lower prevision onX, and f a bounded continuous function frakto R*. Then there
is a normalized continuous linear previsiéhsuch thatF < G and F(f) = G(f).
Proof. Similar to Theorem 3. However, it may be th\ﬁ; reachestoo. Refine this by
letting Fyf(g) = inf cp+ E+€(g), and using?«“yf instead ofFf. One checks that, since

Fis normalizedeJrE is antitone ine. ThenFyf is again monotonic, positively homo-
geneous, sub-additive (using antitonyelp aboveF', and touched” at f. Moreover,
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it is easy to see tha?ff(xx) = 1. We build Gy, thenG from ff, as in Theorem 3.
Additionally, we needX to be compact so as to establish tB4lyx) = 1. SinceG is
linear, it follows thatG is normalized. O

One can deal with upper previsions instead, see [7, seclidi}, Lising a notion we
call convex-concave duality to reduce to the above. We thémio[7, théoréme 11.5.22]
that, whenX is stably compactF’ is a normalized continuous upper prevision &n
there is a normalized continuous linear previsi@on X such thatz < F'. Moreover,

foreveryf € (X — RY), F(f) = supgecpeau, (r) G(f)-
Theorem 4 allows us to state a form of Rosenmuller’s Theorem:

Theorem 5. Let X be stably locally compactt” a continuous normalized prevision
on X. ThenF is lower iff CCoeur, (F) # () and for everyf € (X — RT), F(f) =
infceccoeur, () G(f). INthis case, the infis attained?(f) = mingeccoeur, (r) G(f)-

There is, of course, a dual theorem on upper previsions aircstkins [7, théoréme 11.7.4];
infs are replaced by sups, which need not be attained.

To go further, we need to consider another topology on spatpgevisions: the
weak topologys the coarsest that makes the functién— F'(f) continuous, for each
f € (X — RT). The Scott topology is in general finer. Wri{gP; ., (X) the space
V P (X) with the weak topology, and similarly for other spaces. Then

Proposition 4. Let X be stably compact;’ a normalized continuous lower prevision,
thenCCoeur (F) is a non-empty saturated compact convex subsetof, (X).

Compactness can be deduced from Plotkin’s version of tha&aAlaoglu Theorem
[19], while convexity (i.e.«F + (1 — «)F" is in CCoeur,(F) as soon ag' and F’
are,« € [0,1]) is clear. It is much easier to show that the continuous §kiteau, (F')
of a normalized continuous upper previsibris closed:

Proposition 5. Let X be a topological spacd; a normalized continuous upper previ-
sion, thenC' Peau, (F) is a closed convex subsetBf* , (X). It is non-empty as soon
as X is stably compact.

Finally, call alensof a spaceX any non-empty intersectioh = Q N F of a saturated
compact? and a closed subsét. Then:

Proposition 6. Let X be a stably compact space. The continuous normalioat
CCorpsi(F) = CCoeury(F~) N CPeaui(F*) of a continuous normalized fork
F = (F~,F*) on X is a lens. Moreover”Coeur,(F~) = 1 CCorps;(F) and
CPeauy (FT) = | CCorpsy(F).

Proof. We show that(x) whenevelG € CCoeur,(F ), thereis somé&’ € CCoeury(F~)N
CPeau (F*) such thaG’ < G. Let F'(h) = inf; o x p+)(F*(f) + G(g)). One

f+g=h
checks thatF'~ < F’ < @, that F’ is an upper prevision, so by Roth’s Sandwich

Theorem, there is a linear monotonic functiog) such thatt'~ < Gy < F’. Since
Go < F', Gy does not take the valueco. Build G from G, using Scott's Formula,
as before. It is easy to see th@tis a continuous, normalized, linear prevision. Since
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F~ <G, G" € CCoeur (F). SinceG' < F' < FT, G’ € CPeau;(FT). Since
FF <F <G G <G.
By (x), CCoeuri(F~) N CPeaus(F*) is non-empty. ThaCCoeur,(F~) =
1 (CCoeuri(F~) N CPeauy (FT))is another easy consequencéof ThatC Peau; (F1) =
1 (CCoeuri(F~) N CPeauy(FT)) can be shown in a similar way, by definifi (h) =
SUp; g (x ity (£~ (f)+G(g)), whereG € C'Peau, (F~), and usingt"” to show that

f+g<h
there is som&’ € CCocur(F~) N CPeau; (F7T) such thaG < G'. O

The last three propositions state that any normalized oatis lower prevision, resp.
upper prevision, resp. fork gives rise to an elemetCoeur; (F'), resp.C Peau; (F),
resp.CCorps, (F') of the Smyth powerdomaiﬁ(PlAwk(X)) (demonic non-determin-
istic choice of a probability distribution—remember ti{ (X) = V, (X)), resp. the
Hoare powerdomaitH (P, (X)) overP%  (X) (angelic), resp. the Plotkin pow-
erdomain overP?",, (X) (chaotic). This is a form otompletenessour spaces of
previsions and of forks contain no junk, and really are noerthian mixes of non-
deterministic and probabilistic choice.

In the converse direction, still assumidg stably compact, there is a map :
Q(PlAwk(X)) — VP1(X) defined by[ | K(f) = mingex G(f), andCCoeur; -

[] is a Galois injection consisting of continuous maps [7, teée 11.7.10], while
there is a continuous mdp| : %(wak(X)) — VPy1(X) defined by| |C(f) =
supgec G(f), so that | 4 C'Peau; is a Galois surjection.

We conclude by noticing that, wheK is a continuous cpo with a least element,
P2, (X)is homeomorphic t&; (X)) with the weak topology, and the latter coincides
then with the Scott topology [9]. Apart from spurious detdi.g., we bound our valu-
ations byl instead of+-c0), there is therefore a strong connection with the models of
Mislove [16] and Tix [23, 24]. The question whether the Galobnnections above can
be turned into isomorphisms remains open.
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A Proofs of Theorems

Theorem 1.ae 4 ve is a Galois injection from (plain, convex, concave) gamés in
(plain, lower, upper) collinear previsions. That isg and~e are monotonicee (ve (F)) <
F for every collinear previsio”, and~e(ae(v)) = v for every game.

Moreover, when restricted to continuous previsions and g@mme and e define
an isomorphism betweel{ X ) andP* (X), betweerl/ J(X) and{/ P*(X), between

AJ(X)and A P*(X).

Proof. Let F' be a prevision. Thene (F)(0)) = 0 becausé” is positively homogeneous
(takea = 0); ve (F') is monotonic becausE is. Sovye (F') is a game.

If F'is alower prevision, then notice thag,yy andyyny are comonotonic: assume
xvuv (z) < xvuv(z’) and xunv (z) > xunv(z’), then necessarily ¢ U UV
andx € U NV, which is impossible. Next, note thatyuy + xuvnv = xv + xv-
Sove(F) (U UV)+ve(F)(UNV) = F(xuvuv + xunv) (SinceF is collinear)=
F(xu+xv) > F(xv)+F(xv) (sinceF is super-additive}= e (F)(U) +~e(F) (V).
Similarly, ve (F') is concave ifF is upper.

In the sequel, we shall need the following claim.

Claim A. Let F' be a collinear prevision o, and f = a + > -, a;xu, & Step
function, withU; O ... D U,,,a € R, a1, ...,a,, € RT. Then:

j f(@)dre(F) = F(f)
rxeX

Proof. Let Uy = X andag = a, to make notation uniform. Then:

q H@)ie(F) = aneF)X) + 3 ane(F)(U

= aF(xx)+ Y a:F(xv,) = Flaxx) + > Flaixu,)

i=1 i=1

m

Z a’lXUL

=0
Note thatUy 2 U; O ... O U,,. Wlog., assume thaty, ..., a,, > 0. For each
k1 <k< m the functions;Zi.“:_o1 a;xu, andagxy, are comonotonic. Indeed,

assume{zl o aixu,)(x) > (Zf;ol a;xu,)(z') andaxxu, () < apxu, (¢'). The
latter implies thatr ¢ Uy, andz’ e U,. SinceUy D U; D ... D U, 2" isin

everyU;, 0 <i < k —1,50(35 " aixo,) (@) = SV 0 ai > (X5 aixw, ) (),
a contradiction.
SinceF is collinear, it follows:

Z azXU ZGZXU Z (iXUi)

=0 =k
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for everyk, 1 < k < m + 1, by induction ork. So, fork = m + 1,

{ f@dre(F) = F(Yaix) = F(1)
z€ i=0

We now show thate(ae(rv)) = v for every gamev:

relae())() = ae@)w) = §_ xuladdy = v(t)
zeX
Once we knowxe - ve is a Galois connection, this will imply it is a Galdisjection
To show thatve - ¢ is a Galois connection, it remains to show thatis monotonic
(which is clear), thatye is monotonic (clear since previsions are monotonic), aatl th
ae(ve(F)) < F for every collinear previsiod'. First,

ae(re(F))(f) = §f @)

Using the step functiongx, K € N, by Claim A:
e = Fifi) @)
reX

The least upper bound of the left-hand side is the Choquegiat of f along~e (F),
i.e.,ac(ve(F))(f). SinceF is monotonic, the right-hand side is less than or equal to
F(f), soae(ve(F))(f) < F(f).

Let us turn to continuous games and continuous previsidns.id a continuous
game, therue(v) is continuous, since Choquet integration is Scott-comtirsuin its
function argument. Conversely,ffis continuous, then for every directed famly; ), .,
of opensyye(F) (U Ui) = Fxy,.,v:) = F(supier xv,) = supier Fxu,) =
sup;c; ve(F)(U;), sove(F) is continuous. Now i is continuous, then the least upper
bound of the right-hand side of (4) 15( ), sincef = sup <y fx andF is continuous;
while the left-hand side is the Choquet integralfadlongye (F), i.e.,ae(ve (F))(f)-
Soae(ve(F))(f) = F(f), whence the isomorphism. O

Theorem 2. DefineTX as P(X), resp.\V P(X), resp. AP(X). Letnx(z) =
M€ (X — RY)-h(z),andfT(F)(h) = F(\x € X-f(z)(h))foreveryf : X —TY.
ThenT is a monad orop, i.e., (T,n,_") is a Kleisli triple. OnPosc, T is a strong
monaditx y : X xTY — T(X xY) definedasx y (x, F)(h) = F(Ay € Y-h(z,y))
is a tensorial strength.

Proof. We must first show that, for everfy: X — TV, f1 is indeed a continuous map
fromTX toTY . Foremost, we must make sure that for every continuousn(giaver,
upper) previsionF on X, fT(F) is a continuous (plain, lower, upper) prevision Bn
Positive homogeneityfT (F)(ah) = F(\r € X-f(x)(ah)) = F(Ax € X-af(x)(h))
(sincef(x) € TY is positively homogeneous) F(aAx € X - f(z)(h)) = aF(\x €
X - f(x)(h)) (sinceF € TX is positively homogeneous) af F'(h). Monotonicity:
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assumeh < I/, then for eache € X, f(z)(h) < f(x)(h') sincef(z) € TY is
monotonic, soff(F)(h) = F(Ax € X - f(z)(h)) < F(Ax € X - f(z)(W)) =
fTI(F)(h), sinceF € TX is monotonic. In the cas€ = /P, I and everyf(x
is super-additive, sgt(F)(h + 1) = FAr € X - f(x)(h + 1)) > F(Az € X -
f@)(h)+ f(z)(h') = F(hz € X f(z)(h)) + F(Ax € X - f(z)(h')) = f1(F)(h) +
fT(F)(R"), so fTF is super-additive, too. Similarly whefi = A P. Continuity: let
(hi);c; be a directed family of bounded continuous functions frisnto R* with h
as least upper bound. Thei(F)(sup;c; hi) = F(\x - f(z)(sup;e; hi)) = F(\x -
sup;er f(2)(hi)) (sincef(z) € TY is continuous)= sup;c; F'(Az - f(x)(hs)) (Since
F € TX is continuous).

Then we must show thaf' is continuous. Sincd'X andTY are posets with
the Scott topology, it is enough to show that for any diredtedily (F;),.; in TX,
fi(sup;e; F) = sup;e; f1(F;). But this is obvious from the definition.

We now check the Kleisli triple axioms. This is in fact autdiogsinceT is defined
as a continuation-style monad. @ (F)(h) = F(Az € X -nx(z)(h)) = F(\zx €
X - h(z)) = F(h), sopx! = idx. (2) Letf : X — TY, then(ff onx)(z)(h) =
Finx (2)(h) = nx (@)’ € X - f(a)(h)) = f(x)(h), sofTonx = [. (3) Let
g: X = TY,f:Y — TZ.Onthe one hand,fT o ¢g")(F)(h) = fT(g"(F))(h) =
9" (F)Ay € Y- f(y)(h)) = F(Az € X - g(z)(\y € Y - f(y)(h))). On the other
hand,(fT o g)' (F)(h) = F(Az € X - (fT 0 g)(2)(h) = F(\x € X - f1(g(2))(h)) =
F(x € X - g(x)(\y €Y - f(y)(h))), whencefT o g7 = (f10g)".

Contrarily to what might be expectedy y is not defined on all dT'op. The reason
is that it may fail to be continuous. Posc, this is repaired by the fact that a function of
two arguments is continuous iff it is continuous in each argat separately (a fact that
fails in Top). Let us be more precise. Létbe any bounded continuous function from
X xY toR™. For any fixedr, the function\y € Y -h(z, y) is bounded and continuous,
SOF(Ay € Y - h(z,y)) makes sense. It is clear that the functiany (z, F') mapping
he (X xY — Rt toF(\y € Y- h(z,y)) is a continuous (plain, lower, upper)
prevision, sincel is. Nowtx y (x, F) is obviously Scott-continuous i’ (z fixed),
and also int € X (F fixed), sinceh is continuous, and” is continuous. Séx y is a
morphism inPosc.

We need to check the tensorial strength equations [17].€Thesin fact obvious,
as agairtx,y is defined exactly as for the continuation monad. ad

Proposition 1. Theorem 1 again holds for normalized (continuous) gamesaad
visions, and for sub-normalized (continuous) games andigions.

Proof. It is enough to show thate maps normalized (resp. sub-normalized) games to
normalized (resp. sub-normalized) previsions, and fhagoes the other way around.
The essential point is thatx) Choquet integration is linear on comonotonic functions,
and any constant is comonotonic with any functiorf. Now if v is normalized, i.e.,
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v(X) =1, then:

aeW)(a+ f) = §f o+ f(x)dv

zeX

B iex e iex f@ydv by (x)

=a+ ae(v)

Whenv is sub-normalized, the last line is an inequalitynstead.

Conversely, ifF" is a normalized prevision, thepe (F)(X) = F(xx) = F(1 + f)
wheref is the zero function. Sincé&' is normalized, this equals+ F(f) = 1, since
F(f) = 0 by positive homogeneity withk = 0. Similarly, if F' is sub-normalized, then
Te(F)(X) = F(1+f) <1+ F(f) = 1. O

Proposition 3. Let TX be defined a¥(X), F<1(X), or F1(X). Letnx(z) =
(F~,Ft)with F~ = F* = A\h € (X — RT) - h(z), and for everyf : X — TY,
let fi{(F-,F*) = M\ € (Y - RY)-F~(\z € X f~(2)(h),\h € (Y —
RT) - FT(A\z € X - f*(x)(h))), where by conventioffi(z) = (f~ (z), f*(z)). Then
(T',n,p) is a monad oril'op. Together withtx y : X x TY — T(X x Y) defined
bytxy(z,(F7,Ft)) = (A € (Y - R"Y)-F-(A\y € Y h(x,9)),\h € (Y —
RT) . FT(\y € Y - h(z,y))), it forms a strong monad ofi'po and Pcpo.

Proof. That the strong monad laws are satisfied is obvious: thissisthe product of
two strong monads as described in Theorem 2. The only thirghéck is that unit,
extension, and tensorial strength are well defined, i.ghdRIs for objects meant to be
in some spac#Z.

Unit. LetF~ = F* = Ah € (X — RT)-h(z) = ae(d,). Thisis alinear prevision,
hence (3) is trivial.

Extension. Recall thaff(F~, F*) = (F'~,F'"), whereF’~ = \h € (Y —
RT)-F~(A\z € X-f~(z)(h))andF'" = X\h e (Y — RT)-Ft(\z € X-fT(z)(h))).
Then:

FT(h+h)= ey =R -F- Az e X -f (z)(h+1))
<AME(Y =R .-F-(\x e X - f(x)(h)+ fT(z)(h))
sincef(z) = (f~(z), f*(z)) € TY andF~ is monotonic
<AMe(Y =R -F- (A e X f(z)(h)+F Az e X fr(x)n))
since(F~,F") eTX
= F'"(h)+ F'" (1)
We show similarly that” ~ (h) + F'T (k') < F'" (b + I).

Tensorial strength. Recall thék y (z, (F~, Ft)) = (F'~,F'") where F’* =

A e (Y = RYY-F*(\y €Y -h(z,y)) (x being— or +). So:
F(h+h)=F (\yeY - h(z,y)+h(z,y))
<SF (\WeY hz,y)+Fr(\yeY b (z,y) =F(h)+F (1)

since(F~, Ft) e T(X x Y); and similarlyF’~ (k) + F'T (W) < F'T(h+1/). O
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Theorem 3.Let X be a stably locally compact spac,a continuous lower previ-
sion, andf a bounded continuous function fraii to R*. Then there is a continuous

linear functionalG from (X — R™) to R" such thatF” < GandF(f)=G(f).

Proof. Recall that aconeis a setC' with two binary operations- : C x C — C and
-: Rt x C' — C, and a constarnt € C such tha{C, +,0) is a commutative monoid,
and- defines an action ofR™, x) of R* on C such that additionallyr + s) - a =
r-a + s - a. An ordered conef a cone with a partial ordering such that- and- are

monotonic in all their argument®&+, andR ™ = R+ U {+oo} are ordered cones. It is

clear that{X — R*) is an ordered cone, too. A functign: C' — R" is sub-lineariff
p(r - a) = rp(a) for everyr € Rt andp(a + b) < p(a) + p(b), forall a,b € C. Itis
super-lineariff p(a + b) > p(a) + p(b) instead, and that is imear if equality holds.

Let F be a lower prevision oiX, andf € (X — RT). Let, for everyg € (X —
R*):

Fy(g)= inf |F(\f)= sup F(h)

AER Rt

372 Ve
where we take the convention that this is equakte if there is no\ € RT such that
Af>g. _

We shall abbreviate this & (g) = inf) /554 [F(Af) — sup,<y;_, F(h)]. Note

that we cannot in general writ€(\ f — g) instead obup,, <, ;_, F'(h), sinceAf — g is
not in general continuous frodi to R™ (with its Scott topology).

Claim B. F;(0) = 0.
Proof.

Claim C.F/f iS monotonic.

Proof. Letg,¢’ € (X — R*), with g < ¢’. Fix A\ € R such that\f > ¢'. For
everyh' < A\f — g in (X — R*), thereisam < A\f — gin (X — R*) such
that F'(h) > F(h'), namelyh' itself. Sosup, < ;_, F'(h) > supy<ys—g F(R).
SOF(Af) = supp<pf_g F'(h) < F(Af) —supp <ys_y F'(R'). By making vary,

< inf

— 3 !
<t \FOH - s F(H)

h'<Af—g'

inf

St [FO = s F(h)

h<Af-g

Since\f > ¢’ implies\f > g, the left-hand side of the above inequality is at least:

F(Af) - hg;l}pﬁgF(h)

inf
A Af>g

that is, F(¢). The right-hand side is by definitiafi; (¢'), soF;(g) < Ff(¢'). O
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Claim D.Let F' be a lower prevision oiX . F/f is convex: for everyreal, 0 < o <
1, foreveryg € (X — R*),

Fi(ag+ (1 - a)g) < aFy(g) + (1 — a)F(g") (5)

Proof. The inequality is clear it = 0 or o = 1. So assum8 < a < 1.

If there is noA € RT such that\f > g, or if there is no\’ ¢ R* such that
N f > ¢, the right-hand side of (5) i$-co, so the inequality is vacuously true. So
let us assume that for somec R+, A\f > g and for some\’ € R+, M f > ¢'.

Let us fix A and )’ for now. To ease reading, define the following abbreviations
9" =ag+ (1—a)d,andletN’ =o)X+ (1 — a)\.

For everyh < Af — gin (X — R*), for everyh/ < Nf —g'in (X — R*),
leth” = ah + (1 — a)h'. The maph” is continuous, since and1 — « are non-
negative, multiplication by non-negative reals is Scaoittnuous, and addition is
also Scott-continuous. Alsa,” < )’ f — ¢”. Finally, sinceF is a lower prevision,
F is concave, i.e.qoF'(h) + (1 — a)F (') < F(h"”). We have just shown that
for everyh < A\f —geth’ < Nf — ¢, thereis amh” < \'f — ¢” such that
aF(h)+ (1 —a)F(h) < F(h"). It follows:

sup F(h')>a sup F(h)+(1—a) sup F(h)
WX g h<Af—g N g

SinceN' = ai + (1 — a)N,

FOV'f)— swp F(h")<a
h///S)\//f_g//

F(Af) - W Sp F(h)
LSAT—9g

+(l—a) |[F(Nf)— sup F(h)

h' <N f—g'

By making\ and )\, we obtain:

inf FO\'f)— sup F(h") (6)
>\7>\/€R+ RSN f—g!!
Af>gNf>g"  ©

A =ar+(1—a))

< inf a|F(\f)— sup F(h)|+(1—a)|F\Nf)— sup F(R)
AN ERT h<Af—g h <N f—g'
Af2g,N f>g -

Clearly\” ¢ RT and)\”f > ¢”. Recall that there exist € Rt such that\f > g
and )\ ¢ R* such that\'f > ¢’. The right hand side of (6) therefore equals
QE‘(Q) +(1- a)F}(g’). For the left hand side, observe that for evar)’ € R
such that\f > g, N f > ¢/, the quantity)” = aX + (1 — «)) is such that
N e RT and\'f > ¢”: the left hand side of (6) is in particular greater than
or equal to the greatest lower bound, over)dll € R* such that\” f > ¢”, of
F(N'f) —supp<yn g F'(R"). But this greatest lower bound is exacﬁ/y(g”).

SoFy(g") < aFy(g) + (1 — @) Fy(g). O
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Claim E.Let F' be a lower prevision ot . E is positively homogeneous: for every
a >0, Frlag) = aF(g).
Proof. Whena = 0, this is by Claim B. For alby > 0,

Frlag) = inf F(Af)— su F(h
7(ag) AERT A\ f>ag ) h,SAfI—)ozg ()

= inf F(a)Xf)— su F(h
MNERF N f>g (aX'f) hgax?—ag ()

(where\ = \/a)

= inf FlaNf)— sup F(ah
N N et h’gA’I;—g( )

(whereh' = h/«)

= inf aF(\Nf)— sup oF(R
MNERT, N f>g ( f) hfg,\'If)—g ( )

sinceF is positively homogeneous. But this is exaoﬂF}(g). O

Claim F.Let F' be a lower prevision orX. For everyg € (X — R™), F}(g) >
F(g).
Proof. For everyA € R* such that\f > g, for everyh < A\f — g, F(\f) >
F(h) + F(g). Indeed,F(h) + F(g) < F(h + g) sinceF is super-additive, and
F(h+ g) < F(\f) by assumption.
SOF(Af) = supp<yp_g F'(h)+F(g),i.e, F(\f)—supy<y;—, F'(h) > F(g). We
conclude by taking greatest lower bounds over allXhe R* such that\f > g.

O

Claim G.Let F' be a lower prevision oiX . Thenﬁf(f) =F(f).

Proof. If fisthe0 function, then\lf“/f(f) = F(f) = 0. Otherwise, the smalleste
R* such thab\f > fis 1, SOF}(f) = infy /x> [F(Af) — supp<rs_ F(h)] =
F(1.f) — F(0) = F(f). O

AIthoughF} may take haveroco as value, it is not the case ffis bounded away
from 0 from below: _
Claim H. Let F' be a lower prevision onX. Fy(xx) > F(xx). Moreover, if

inf,ex f(2) > 0, thenFy (xx) < gy F(f)-
Proof.

Fi(xx)= _inf |F(\f)— sup F(h)

A Af>xx h<Af—xx
= inf FOf)—=F(\f —
A/Al?zm[ (Af) = F(Af = xx)]

We observe indeed that= M\ f — xx =Af-1 is continuous. Sincé’ is concave,
FAf) = F(Mf —xx) + F(xx), s0Ff(xx) = F(xx).
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As far as the second inequality is concerned, sifi¢gf — xx) > 0, we obtain
Fi(xx) < infy/arsyx FOM). Letag = inf,ex f(x), and note thad f > xx iff
A > 1/ag. SOF;(xx) < 1/agF(f). O

We can then use Roth’s Sandwich Theorem to conclude tha harineaiz such that
F < G and satisfying some added conditions. For nGvmay take the value-co, and
is not necessarily continuous. In a picturesque way, suGtwall be called anupper
tangent

Claim I. Let F' be a lower prevision orX, and f a bounded continuous function
from X to R*. There is a functional from (X — R*) to K+, which is lin-
ear and monotonic, and such th&t < G and F(f) = G(f). Furthermore, if
inf.ex f(x) # 0, thenG is a linear prevision.

Proof. By Claim E and Claim DFf is sub-linear. By assumptiof;, is super-linear.
Moreover,F andTT;« are monotonic and’ < \FJf by Claim F. By Roth’s Sandwich

Theorem, there is a function&l from (X — R™) to R", which is monotonic and
linear, and such thaf < G < Fy. By Claim G,F(f) < G(f) < F¢(f) = F(f),
S0G(f) = F(f). g

If moreoveninf,c x f(x) # 0, by ClaimH,G(xx) < Fr(xx) < 1/infzex f(x)F(f) <
+00. So for everyg € (X — R*), G(g9) < G(sup,cx 9(x)xx) < +oo. SinceG

i . . —+ . . ..
takes its values ifR*, no longer inR ", G is a linear prevision. O

To attackcontinuousprevisions, we first need to explore the structure of theepac
(X — RT). This is probably well-known. In doubt, | preferred to proéiproofs. Let
€ be the way-below relation on the 98¢X) of opens ofX, ordered by inclusionX
is acore compacspace iff0(X) is a continuous cpo [2]. This is in particular the case
when X is locally compact, wher& € V' iff U C @@ C V for some saturated compact
subset) of X.

Claim J.Let < be the way-below relation gfX — R*), and<; that of (X —
[0, 1]) of all continuous functiong bounded from above hly

Letf = >"" | a;xv, a step function fronX to R* (resp.[0,1]), U1 2 ... D U,,
ai,...,a, € R\ {0}. Letg a continuous function fronX to R* (resp.|0, 1]).
Thenf <« g (resp.f < g) iff foreveryi, 1 <i<n, U, € g*l(Zj:1 a;, +00).
Proof. Step 1.The condition is necessary. Let us indeedifix < i < n, lett; be
23:1 a;, and consider any directed famly,) ., of opens such that™ (¢;, +o0) C
Uker Ve LetWy, = V4, Ng~1(t;, +0). Foreachk € I and eachreal, 0 <r < 1,
let f, , be the function.(max(min(¢;, g), xw,.g))- This is continuous, as a com-
position of continuous functions. Note in particular thaix, min and multipli-
cation by a non-negative scalar are Scott-continuous. fihething to check re-
ally is that x, .¢ is continuous: the inverse image 0f +o00) is X if ¢t < 0,
Wi N g~ 1(¢,+00) otherwise, which is indeed open. Note also that, in case we
consider functions ifX — [0,1]), andf <; g, thenf, ; is again in(X — [0, 1]).
If € Wy C g7 (t;, +00), fri(z) =r.g(2);if 2 € g7 (t;, +00) \ Wy, fri(z) =
riti; if @ & g7 (¢, +o0) (in particularz & Wy), fr.x(z) = r.g(z).

23



Note that ifr < r andV;, C Vi (SOWk - Wk/), thenfnk < fr/,k/: if x € W,
thenf, x(x) = rg(z) < r'.g(x) = fr (), sincex € Wy if & € Wy \ W,
thenz € g7 't;, +oo[\Wy, SO frr(z) = rt; < 7'.9(x) = frop(x);if x €
g (ti, +00) \ Wi, fri(z) = rti <7v't; = fo g (2); and isz & g~ (;, +00),
thenf, x(z) = r.g(x) <r'.g(x) = fir 1 (). It follows that the family(fr,k)Oirfl
is directed, sinc¢,., and f,. ;, are both less than or equal fQ.x(r,r),k» wﬁere
k" is such thal/,, Vs C V.
Moreover, the least upper bound of this family is exagtiyfor everyxz ¢ X,
eitherz € g~ (t;,+00) = Upes Wi, SO there isk € I with z € W, and then
frk(x) = rg(z); orx & g~ (t;, +o0) and thenf, x(z) = r.g(z) again; but then
SUPg<r<1 7-9(2) = g(2).
If f < g, necessarilyf < f,; for somer, 0 < r < 1, and somé € I. Then,
for everyz € U;, f(x) > t;, SO f,k(x) > t;. By definition of f, s, this entails
max(min(t;, g(x)), xw, (z).g(x)) > t;/r. Sincemin(t;, g(z)) < t; < t;/r, nec-
essarilyxw, (¢).g(z) > t;/r, sox € Wy, andg(x) > t;/r.
In particularU; € Wy, C V4. Since the familyV;,), . ; is arbitraryU; € g (¢, +00).
Step 2.Conversely, the condition is sufficient. Indeed, assumgftinaeveryi, 1 <
i <n,U; € g~1(t;, +00), where, as above; = Zj;ll a;.
Letus show thaf < g (resp.f <1 g). Let(f),, adirected family of continuous
functions fromX to R* (resp.[0, 1]) such thay < supc; fx-
For everyt € R, g7 1(t,+00) = {z € X|g(x) >t} C {z € X|supyes fu(x) >
t}={x € X|3k € I fi(x) > t} = Upes fi (£, +00). The family(f,7' (£, +00)) .,
is directed, sincéfy),.; is directed and, < fiv impliesf; ' (t,+00) C fi.' (¢, +00).
SinceU; € g '(ti,+00) C Uyes fi '(ti, +00), there is ak; € I such that
U; C f,;l(ti, +00). Since(fy),; is directed, there is & € I such thatf,, < fi
for everyi, 1 <i < n.SoU; C f, ' (ti, +00) C fi ' (ti, +00).
Let Uy = X, U,y1 = 0. For everyz € X, let: be the unigque natural number
betweer®) andn such thate € U;\U,11.If i = 0, thenf(z) = 0,s0f(x) < fi(z).
If i # 0, thenf(z) = i_  a; = t;, and sincer € Uy, z € f; ' (ti, +00), i.e.,
fr(z) > t;. In other words fi(x) > f(z). Sincez is arbitrary,f;, > f. Sof < g.

O

Recall that a basi® of a continuous posét” is any subset of” such that every
element ofr can be written as a directed least upper bound of elemetis in
Claim K. Let X be a core compact space. LBtthe set of step functions of the form
1/2K Zszl Xxv,, K, N € N, Where(Uk)ii1 is a decreasing sequence of opens of
X.

Then(X — R™) is a continuous poset, with basis The spacéX — [0,1]) is a
continuous cpo, with basiB; = BN (X — [0, 1]).

Proof. Let f € (X — R*), resp.f € (X — [0,1]). Consider the seb of all
functions of the formi /25 SN \p., K, N € N, whereU;, € f~!(k/2K, +o0)
foreveryk,1 < k < N.ClearlyD C B, resp.D C B;.

We first show thaD is directed D is non-empty: takeV = 0. Then, if1/25 1 | yp,

and1/2%’ fo;l Xv, are inD, we may assume wlog. thaf = K’ andN = N'.
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Let us show that we may requil€ = K': if, say, K’ < K, one can rewrite the
second function a$/2% ZiilK N\, whereW, = V{(hpak-K'_1) 2K/ |
for everyk, 1 < k < 2K-K'N’_ It follows from K = K’ that we may also require
N = N':if N’ < N, for example, therl /2K’ ij,vz'l xv, = 1/2K Z,ivzl XVier
where we lefl, = () for eachk, N’ < k < N.

Given any two functions of the form/25 S | xp, and1/25 S | xy, in D,
then1/25 SV yu, v, isagaininD, sincell, UV, € £~ (k/25, +00). (In any
core compact spacé, UV € W as soona¥/ € W andV € W [2].) SoD is
directed.

Now f is the least upper bound of the sequelige= 1/2% Zszl XF-1]k /25 400>
K € N, N = [a2¥ ], wherea = sup,.x f(z). SinceO(X) is a continuous
cpo, f~1(k/2%, +0) is the directed union of all opers € f~!(k/2%, +0),
SO X f-1(k/2K 4o00) = SUPyef-1(k/2K,+00) XU+ SO fi is a least upper bound of
elements inD. Sincef = supgey fx, f IS also a directed least upper bound of
elements inD. By Claim J, every element iPv is way-belowf. O

In particular, whenevelf < g then there is a step functioi € B such that
f < f' < g. This is theinterpolation propertyvalid in any continuous poset [15].

The following states thak is multiplicative

Claim L. Let f be any step function fronX to R+, g a continuous function from
X toR*, anda > 0 a real such thatr > sup,x f(z), a > sup,cyx g(x). Then
f<giff f/la <4 g/a.

Proof. Let f = " a;xu,. Thenf < g iff foreveryi,1 < i < n,U; €

971 (X"}—; as, +00) by Claim J. Again by Claim Jf /a < g/a ff for everyi, 1 <
i <n,U; € (g/a)” (X}_; ai/a, +00). Now note thafg/a) ™ (Y2}_, a;/a, +00) =

971 (X%, ai, +00). Sof < g is equivalent tof /a < g/a. O

Let us say thatX is core cohereniff for all opensU, V;,V; of X, if U € V; and
U € Vo thenU € Vi N V,. We call X stably core compadtf it is both core compact
and core coherent. Every stably locally compact sp¥de stably core compact, and
the converse holds KX is sober.

The following states thak is additive providedX is stably core compact.

Claim M. Let X be core compact, anfl, g two bounded continuous functions from
XtoRT.If h <« f+ g, then for somef’,g’ € Bwehaveh < f' +¢, f < f
andg’ < g.

Proof. Let By the set of all functiong” € B such thatf’ < f, B, that of all func-
tionsg’ € B such thaty’ < g. By Claim K, f = sup;.cp, f', g = supgcp, ¢'-
Since addition is Scott-continuouss+- g = supyc g, g e, f' +9'- Moreover,Bs
and B, are directed, s®; x B, as well. Sincéh < f + g, there aref’ € By et

g’ € By suchthat < f' +¢'. O

We now need an explicit formula for sums of functionsin

Claim N. Let f’ = 12558 a9 =1/25 Z;V:/IXB], two functions fromX
to R, with X D Al D A2 D...2D AN and X D By DBy D... D Bpnr. By
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extension, led, = By = X, and A; = 0 for everyi > N, B; = () for every
j> N.Thenf' + ¢ =1/2K VY . whereW,, = Usen,jen(4; N B;).
itj=k

Proof. As a side remark, note that choosing the sdmir f’ andg’ incurs no loss
in generality. For every > 1, f'(z) + ¢'(z) > k/2X iff there are two indices, j
such that + j = k, f'(z) > i/2%, andg’(z) > j/2%, i.e., suchthat + j = k,
andz € A;NB;. Sof' + ¢ =1/25 3, xw,. But, fork > N + N’, whatever
i andj such that + j = k, eitheri > N orj > N’, so eithetU; = () or V; = 0,
i.e. W}, = (0. The sum therefore indeed stopkat N + N’ at the latest. a

Claim O.Let X be a core coherent space. For every bounded continuousidmsct
f, g from X to R™, and every functiong’, ¢’ in B, if f/ < f andg’ < g, then
f"+9d <f+g.

Proof. Write f' = 1/25 SNy, ¢/ = 1/2K Z;.V:l xv;- Asin Claim K, we may
assume that’ andg’ are written with the sam& and the saméV. By extension,
letUy = Vo = X, andU; = V; = () for everyi > N.By Clam N, f' + ¢’ =
1/2K iil Xwy, whereWy, = U, , ;. (Ui N V).

By assumptionf’” < £, so by Claim JU; € f~1(i/2K, +oc) foreveryi, 1 <i <
2K This again holds whein > 2%, since therl; is empty, therefore way-below
any open. Similarly, sincg’ < g, V; € g~ 1(j /2%, +00) pour toutj > 1.

It follows that U; N V; € (f + ) ' (k/2%,+00) for everyi,j > 1 such that
i+j =k IndeedU;NV; C U € f1(i/25,+c0) andU; N V; C V; €
g7 (/25 +00),s0U;NV; € (i /25, +00)Ng1(j/25, +0), sinceX is core
coherent. But, for every € f~1(i/25, +00) N g~ 1(j/2K, +00), f(z) > i/2K
andg(z) > /25K, sof(z) + g(z) > k/25 ie .z € (f +9) " (k/2K, +00). S0
U; NV € f1(i/25, +00) N g1 (j/2K, 400) C (f +9) " (k/2K, +00).

We also havd/; N'V; € (f+g) ' (k/2K,+00) wheni 4+ j = k > 1 buti
or j is zero. If for example = 0, thenj =k, U;NV; = XNV, =V, €
g~ (k/25,+00) C (f +g) " (k/25, +00).

SoU;nV; € (f +g) "' (k)25 +00) for everyi, j such that + j = k, k > 1.
It follows easily thatiV, = J,,,_, Ui NV, € (f +9) " (k/2X, +o0) for every
k>1.ByClamJ,f'+¢ < f+g. 0

Claim P.Let X be compact. For every € B, for everya > 0, h' < axx iff ' is

of the formzyzl aixv, U1 2 ... 2 Un, ay,...,an € R, with}" ! | a; < a.

In particular, i’ < ayy iff thereisa’ < awithh’ < a'yx.

Proof. For everyh' € B, writeh/ = .7 a;xv,, U1 2 ... 2 Uy, a1,...,a, €

R*\{0}. By Claim J,h" < axx iff U; € () for everyi suchthab’_, a; > a, and
U; € X for everyi such thatzz.:1 a; < a. This amounts to requiring that, = ()

for everyi such thatzj.:1 a; > a; sinceX is compactlU; € X. The functions
h' such that’ < ax x are therefore exactly those of the fodm"_, a;xv,, U1 2
. 2U,with Y a; < a.

If i < axx,we haveh’ < a’xx, whered' is any real strictly betweel" ; a;
anda. Conversely, it/ < a’xx with a’ < a, thenh/ < axx sinced’xx < axx
by Claim J. O
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We now have enough material to apply Scott's formula on thticoous posetX —

RT), with basisB. For any functionalF" from (X — R*) to R', let t(F') be the
function defined by:

() (f)= sup F(g)
9€EB, gL f

Thent(F) is a continuous functional fromiX — RT) to R". In fact, t(F') is the
greatest continuous functional beldw We observe:

Claim Q.Let X be stably core compact. K is a (plain, lower, upper, linear) pre-
vision there(F'), too. If moreoverX is compact and is normalized, then(F') is
normalized.

Proof. The functiont(F') takes its values iR, since ifa = sup,.x f(z), then
t(F)(f) = supyep g« F(9) < F(axx) < +oc. Itis continuous, and is posi-
tively homogeneous by Claim L. It is lower as soon/as, since:

W(F)(f+g9)= suwp  F(h)
he€B,hL f+g
= sup F(r' + k") by Claim M and Claim O
h',h”EB,h’<<f,h”<<g
> sup (F(h) + F(h"))

h',h""€B,h L f,h"'<Lg

= sup  F(W)+ sup  F(h") =x(F)(f)+(F)(g)
h'eB,h LS h'"EB,h"KLg

Similarly, if F' is upper then(F) is upper too, and if” is linear then so is(F).
Finally, if F'is normalized and( is compact, then for every > 0,

t(F)laxx +f)=  sup  F(h)

heB,h<kaxx+f

= sup F(h' +n")
h' b €Bh Laxx ' < f

= sup F(a'xx +1") (by Claim P)
o' <a,h €B,W' & f

= sup (a' + F(R")) (sinceF is normalized)
a/<a7h//€B’h//<<f

a+e(F)(f)

O

By Claim I, there is a monotonic linear function@l, such thatF’ < G, andF(f) =
Go(f). Let G = t(Gy). By Claim Q,G is a continuous linear functional. Since it is
the greatest one belo@, F' < G. Finally, G < Gy, soG(f) < F(f); sinceF < G,
F(f) < G(f), soF(f) = G(¥). 0

Theorem 4.Let X be a stably locally compact spack,a normalized continuous
lower prevision onX, and f a bounded continuous function frakto R*. Then there
is a normalized continuous linear previsiéhsuch thatF < G and F(f) = G(f).
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Proof. Recall the functiorF} from the proof of Theorem 3, and define:

Fi(g) = inf Fry.

7(g) = nf Fric(g)

This is well defined, and is always a non-negative real, never. Indeed, by Claim H
and Claim E, whenever> 0, Fyc(g) < sup,ex 9(2). crmrx gy £ (f +e) < +oo.

Claim R. F';(0) = 0. F'; is monotonic.F'; is positively homogeneous. For every

g € (X —R¥), Fy(g) > Flg).
Proof. By Claim B, Claim C, Claim E, Claim F. O

Claim S.Let F' be a lower prevision oX . If F'is normalized, theFere is antitone
in e.

Proof. Assumes < €. If F/fﬂ(g) = 400 (which entails = 0), cIearIyF}ﬂ/ (9) <
E+E(g). So let us assume th§y+€(g) < +o0. Recall that:

~—

Fric(g) = inf FA(f+e¢)— su F(h
r+el9) MA(F+6)>g A +9) hgwfe)w "

Now F(A(f +€')) = A€ —€) + F(A(f +¢€)) sinceF is normalized. Moreover, if
g < A(f +¢),then:

M =€)+ sup  F(h)= sup F(h+ A —¢))
h<X(f+e)—g h<A(f+e)—g

sinceF' is normalized

< sup  F(Rh)
R <X(f+e)—g

since for everyh < A(f +¢€) — g, B’ = h+ A(¢ — €) is less than or equal to
A(f +€) — g. Therefore:

Fridg)= inf FONf+€) =[N —e)+ sup F(h
F+e(9) A, (A(f+€)) = [A(€ —¢) e (h)]
>  inf F\f+¢€)) - sup Fn
A, (A(f+€) o (W)
> inf F\f+¢€)) - sup Fn
A A(f+e)>g QY ) R <A(f4e)—g ()

since ifg < A(f + ¢) theng < A\(f + ¢)
= F(]”-i-e'(g)
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Claim T.Let I be a lower prevision oX. If £ is normalized, theﬁ?yf is convex.
Proof. For everye’,¢” > 0, there ise > 0 such thatp}+€(g) + F}+e(g/) <
Frio(9)+Fie(¢). Indeed, by Claim S, it is enough to take- max(¢’, €’). So
inerO[F/}+e(g) + F’}_,.E(g’)] < inf€/20 F}‘FE’ (g) 4+ infs”ZO \F}+e”(gl)- It follows:

(%

Fi(g+9) = inf Frieg+9)
< igg[F}Jrg(g) + E+€(g’)] by Claim D and Claim E

< i 7 ’ i jot " /
< inf Fraolg) + inf Frron(9)

=F(g) + F1(g)

Fyf is therefore sub-linear, hence convex since it is positivelmogeneous by
Claim R. 0

Claim U.Let F' be alower prevision oX. If F' is normalized, theﬁ?”f(f) = F(f).
Proof. Clearly F';(g) < F;(g) (takee = 0). Wheng = £, by Claim GF(f) =
F(f). SoFyf(f) < F(f). The converse inequality follows by Claim U. O

Claim V. Let F' be a lower prevision oX . If F'is normalized, theﬁ?ﬂf(xx) =1
Proof. If there is noA such thatl < A(f +¢€),

Fro. =  inf F(\ - F(h

Fre(xx) ot (A(f +¢)) e (h)
= inf FMf+e —1)+1— sup F(h
A/1<A(f+€) (A(f ) ) h<A(f4e)—1 ()

sinceF is normalized. Sinceup, < (40 _1 F(h) = FO\(f+¢)—1), Fyc(xx) =

1. Onthe other hand, if there is nosuch that. < A(f+e), then1\5f+€(XX) = +o00.
This can only happen when= 0, and providednf,cx f(z) = 0. In this case,

N (%

F(xx) is the greatest lower bound bfind+oo; otherwise F'(x x ) already equals
1, directly. O

Let us prove the Theorem. Sinéeis super-linearff is sub-linear by Claim TF is

monotonic and??//f also by Claim R, we can apply Roth’s Sandwich Theorem: there
is a functionalG, from (X — R*) to R", which is monotonic and linear, and such
thatF < Go < Fy. By Claim U, F(f) < Go(f) < F¢(f) = F(f), s0Go(f) =

F(f). Next, F//f takes its values iiR™, so Gy too. In particular,GGy is a prevision.
Gy is normalized, since for every bounded continuous functiofor everya € R,
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Go(a+g) = aGo(xx)+Go(g) (sinceGy is linear)= a+Gy(g). Indeedl = F(xx) <

Gol(xx) < F¢(xx) = 1 by Claim V.

S0 Gy is a normalized linear prevision such tHat< Gy et F(f) = Go(f). (And
this holds on any topological spaég) Now X is stably locally compact, hence stably
core compact, so leff = t(Gyp). By Claim Q, G is a continuous linear prevision.
Since(G is the greatest continuous functional belGy and F' < Gy, it follows that
F < G.SinceG < Gy, G(f) < Go(f) = F(f) < G(f), sOG(f) = F(f). Finally,
we show thatG is normalized—and we do not neéd to be compact, as Claim Q
would suggest. We claim indeed th@fa + g) = a + G(g): by linearity, G(a + g) =
aG(xx) + G(g), andG(xx) = 1 sinceG(xx) < Go(xx) = 1 on the one hand, and
G(xx) > F(xx) = 1 on the other hand. O

Theorem 5.Let X be stably locally compack’ a continuous normalized prevision
on X. ThenF is lower iff CCoeur, (F) # 0 and for everyf € (X — RT), F(f) =
infgeccoeur, (7) G(f)- Inthis case, the infis attained:(f) = mingeccoeur, (7) G(f)-

Proof. If F is lower thenCCoeuri(F) is non-empty by Theorem 4. Moreover, for
every f € (X — RT), there is aG € CCoeury(X) such thatF'(f) = G(f), so
clearly F(f) = infgecoeur, (r) G(f) @and the inf is attained.

Conversely, ifCCoeur, (F) is non-empty and”(f) = infgeccoeur, (r) G(f) for
everyf € (X — R*), thenF is super-additive, hence lower. Indeed:

F(f+f)= ___if G(f+f)=__ f (G(f)+G(f))

GGC;eurl(F) GeCoeury (F)
sinced is additive
> inf G(f) + inf G(fY=F(f)+ F(f)

~ GeCoeuri(F) GeCoeury (F)
O

Proposition 4. Let X be stably compactt’ a normalized continuous lower previ-
sion, thenC'Coeur, (F') is a non-empty saturated compact convex subsﬁﬁgfk(X).

Proof. Convexity is obvious, non-emptiness is by Theorem 5, anaratidn is clear.
Compactness is almost a consequence of [19, Corollary 2vd\d need to check that
C = (X — R™) is a so-called continuous d-cone, with an additive waybekdation.
(Note that what Plotkin calls we&kScott what we simply call the weak topology.)
Claim M indeed shows thak is additive, however every (continuous) d-cone is a
(continuous) cpo, whichX — R™) fails to be. (One might argue we could have defined
previsions as taking maps frof¥ — R') to R instead. However, we wanted to
provide a nice link with the theory of games and belief fumieti, and the latter works
more smoothly provided we excludeco. Moreover, in applications we only really
need sub-normalized or normalized games/previsions.)

However, here is a direct argument, inspired by [9]. We neew¢all that theco-
compact topologpf a stably compact spack is the collection of all complements of
saturated compacts df. The spaceX with its co-compact topology is itde Groot
dual X<. ThenX? is also stably compact, its specialization ordering is theverse
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> of that of X, X9 = X. The coarsest topology containing both the original and
the co-compact topology is theatch topology X equipped with the patch topology
is a compact pospace, which we writ€ [9]. Note that the product” = [[,., Y; of
stably compact spaces is stably compact, ¥iat [],_, Y/, and that the specialization
ordering ofY" is the component-wise ordering.

The spac€0, 1] is stably compact, anfD, 1]’ is equipped with the usual, metric
topology. LetX be stably compact, and considér= [] FE(XRY) [0, 1], which is

sup, e x f(x)=1
also stably compact. Ld?(X) be any of the spaces of sub-normalized previsions we

consider. There is an obvious map P(X) — Z that send¢" to the family of allF'(f),
f € (X = RY),sup,ex f(x) = 1. Conversely, for any familg = (2f) ;e y_g+)
sup,ex f(2)=1
of elements of0, 1], one may define a positively homogeneous functicmeei) from
(X = RT) toRT by: m(z2)(0) = 0, m(2)(f) = azs/, Wwhena = sup,c x f(x) > 0.

We then check that the subspaceZobf thosez such thatn(z) is a (plain, lower,
upper, sub-normalized, normalized) prevision is patdsetl inZ, hence stably com-
pact. (See [7, lemme 11.6.1].) The idea is that this subsizadefined as the set of
objectsz satisfying a collection opatch-continuougquations, i.e., equations of the
form f(zf,...,25,) = 9(24,,...,25,), Wherefy, ..., f, are fixed, andf andg are
continuous functions fronfo, 1]’ to [0, 1)’. E.g., thatm(z) is monotonic is equivalent
to the fact thati x z;,, < bx z,, forall f, g € (X — R™) thatare not identically zero
and such that < g, wherea = sup,c yx f(z), b = sup,¢ x g(z); in turn, an inequality
u < v is an abbreviation for the equationax(u,v) = v. Since every intersection of
patch-closed subsets is patch-closed, the given subsppatch-closed.

We then check that, if<; is the subspace &f consisting of alk such thatn(z) is
a sub-normalized prevision, therdefines a homeomorphism of the spdtg ., (X)
of all sub-normalized previsions on#x , with inversem. In particular,P<; ,;(X) is
stably compact.

The technique of patch-continuous equations implies tlvahgany conjunction of
properties among “lower”, “upper”, “linear” and “normadid”, the subspace of those
previsions inP<1 ., (X) satisfying these properties is also patch-closed in itchen
stably compact.

Next, we observe that: P<q ,x(X) — P<1 w(X) (see Claim Q and later) and
the obvious inclusios : P<q ,x(X) — P<1 4,k (X) forms a retraction-section pair.
l.e., that they are continuous ar@(F')) = F for all F. This allows us to conclude
that P< ,+(X) is stably compact: by Lawson’'s Lemma (see again [9]), amacet
of a stably compact space is stably compact. We n€ed be compact additionally,
in the case of normalized previsions, to be able to applyn€iQi and show that :
P wk(X) — Py wk:(X)-

Finally, we note thaC Coeur; (X) is the intersection of F' (the set of all normal-
ized continuous prevision8’ such thatF” < F’) andPlAwk(X). The former is trivially
compact (every set = is compact in any topological space), hence patch-closed in
P, 1 (X). The technique of patch-continuous equations showsftﬁgjtk(X) is again
patch-closed iy .1 (X), soCCoeur; (X) is patch-closed irPlAwk(X). Itis easy to
see that a patch-closed subset of a stably compact spacajisco O
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Proposition 5. Let X be a topological spacef’ a normalized continuous upper
prevision, therC Peau; (F) is a closed convex subsetBf", , (X). It is non-empty as
soon asX is stably compact.

Proof. Convexity is again obvious. We have already mentionedttiataw; (F') would
be non-empty ifX is stably compact (details in [7, théoréme 11.7.4]). Thematice
that:

CPeau(X) ={G € PL(X)[G<Fy= (] {GePy, (XIG() < F(f)}
FE(XDRY)
= N (PELENF > FO)
fe(X—Rt)
which is therefore closed in the weak topology. O

Proposition 6.Let X be a stably compact space. The continuous normabnety
CCorpsi(F) = CCoeury(F~) N CPeau;(F*) of a continuous normalized fork
F = (F~,F*) on X is a lens. Moreover”Coeur,(F~) = 1 CCorps,(F) and
CPeauy (FT) = | CCorpsy(F).

Proof. We show that(+) wheneveG € CCoeuri(F~), thereis som&’ € CCoeur,(F~)N
CPeauy (FT) such thalz’ < G.

Let F'(h) = inff,gé(XﬂR*}(F+(f) + G(g)). This is well-defined since e.g., we

+9>h

may takef = 0 andg :f h?irhis also implies that” (k) < G(h). Clearly,F~ < F' <
G: we have just showt” < @, and for the other inequality, we note that for evgry
gwith f+g > h, F*(f) + G(9) > F*(f) + F~(g) (by assumption)> F~(f + g)
(by (3))> F~(h).

Now we observe thak” is an upper prevision. Indeed; (0) = 0 (takingf = g =
0), and wheny > 0, F'(ah) = inf r4 g>on(FT(f) + G(g)) = inf pry grspn (FF (af') +
G(ag)) = aF'(h); soF' is positively homogeneoug!’ is clearly monotonic, while:

F'(h) + F'(h') = f+g2h{1;f+g,2h,(F+(f) +G(9)+ F(f)+G9))
> inf (FT(f+f)+Glg+9"))

T fHg>h fl+g >R
(because " is upper and; is linear)
. N/ AN N ) /
>, b (FR() 4 Glg") = F'(h+ 1)
So F’ is upper.

Using Roth’s Sandwich Theorem again, there is a linear nwnotfunctionalGg
such thatF'~ < Gy < F’. Because&yy < I/, Gy does not take the valueoco, s0Gy
is a linear prevision. Le&@’ = t(Gy). By Claim Q,G is a continuous linear prevision,
andF~ < G' < F’, as above. In particulat,= FF~(yx) < G'(xx) < F'(xx) =1,
soG’(xx) = 1; using the fact thaf’ is linear,G’ is then normalized. SincE~ < G/,
G’ € CCoeur (F™). SinceG’ < F’ and clearlyF’ < F+, G’ € CPeauy(F7).
Finally, sinceG’ < F' andF’ < G, G’ < G. So(x) obtains.
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It follows in particular thatCCoeur,(F~) N C'Peauy (F) is non-empty. That
CCoeur(F~) =1 (CCoeuri(F~) N CPeauy (F1)) is an easy consequence(ef.
ThatC Peauy (FT) = | (CCoeur(F~) N CPeau;(FT)) can be shown in a similar
way, by definingt™’ (h) = sup; e (x g+, ('~ (f)+G(g)), whereG € C'Peau, (F~),

f+g<h
and usingF"” to show that there is som&' € CCoeury(F~) N CPeauy(FT) such

thatG < G'. a
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