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Abstract

Classical finite volume schemes for the Euler system are not accurate at low Mach number
and some fixes have to be used and were developed in a vast literature over the last two decades.
The question we are interested in in this article is: What about if the porosity is no longer
uniform? We first show that this problem may be understood on the linear wave equation
taking into account porosity. We explain the influence of the cell geometry on the accuracy
property at low Mach number. In the triangular case, the stationary space of the Godunov
scheme approaches well enough the continuous space of constant pressure and divergence-free
velocity, while this is not the case in the Cartesian case. On Cartesian meshes, a fix is proposed
and accuracy at low Mach number is proved to be recovered. Based on the linear study, a
numerical scheme and a low Mach fix for the non-linear system, with a non-conservative source
term due to the porosity variations, is proposed and tested.

1 Introduction
In this paper, we are interested in low Mach compressible fluid flows in porous media. In industrial
processes, porous media are used to simulate the flow in a nuclear reactor core. The porosity
appears because there are section reductions in a nuclear reactor core. Moreover, if we want
to simulate an accidental scenario, we sometimes need to take into account the compressibility
effects. Another class of problems motivated by industrial consideration is the simulation of a gas
flow across a grid. Since the grid is in general too small to be meshed, a homogenization process
is used to model the interactions betwe en the grid and the flow [41]. Then, we consider the
barotropic Euler equation. Since the porosity is not constant, a non-conservative term appears in
the equations during the homogenization process [4] and the equations write

{
∂t(αρ) +∇x · (αρu) = 0,

∂t(αρu) +∇x · (αρu⊗ u) +∇x(αp) = p∇xα.
(1)

In (1), t ≥ 0 and x ∈ Ω are respectively time and space variables and α(x) is the porosity. We
suppose here that α(x) is known and does not depend on time. Unknowns ρ, u and p(ρ) are
respectively the density, the velocity and the pressure of the fluid. The pressure law satisfies
p′(ρ) > 0. System (1) is a non conservative hyperbolic system [27] with eigenvalues in direction n
given by u · n − c, u · n and u · n + c. Studies of flows in a variable cross section duct consider
the same model and variations of the cross section are modeled through (possibly discontinuous)
changes in porosity.

The non-conservative term in (1) introduces mathematical and numerical difficulties. In [11],
the authors give a mathematical sense to the non-conservative product and introduce some schemes,
named well-balanced schemes, that solve correctly the non-conservative term [20, 8]. The treatment
of the non-conservative term is essential to preserve steady states solutions. In this paper, we
propose a well-balanced scheme that exactly preserves steady solutions over time in one space
dimension [21, 26]. The proposed scheme is based on a VFRoe scheme, established in [17] for
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the shallow water equation with topography and derived for the Euler system with porosity in
[40, 39]. The VFRoe solver consists into a local linearization of a Riemann problem which is
simpler to handle since it only deals with linear problems and avoids the complex exact resolution
of the Riemann problem with porosity jump. This construction allows to easily build schemes that
exactly preserve one dimensional steady states. To our knowledge, no generalization for purely
multidimensional problems exists and the behavior of the numerical scheme with respect to multi-
dimensional steady solutions must be studied on a case-by-case basis. In this paper, we focus
on the behavior of the scheme in the low Mach limit and, as we will see, steady solutions of the
numerical scheme will play a determining role.

Finite volume Godunov type schemes applied to the compressible Euler system with uniform
porosity are known to be inaccurate at low Mach number [23, 13]. Indeed, they do not allow to
recover the incompressible limit as the Mach number tends to zero. Over the two last decades,
a large amount of work has been dedicated to deriving fixes for the uniform porosity case: [23,
28, 29, 13, 37, 12, 15, 33, 7, 24, 5]. Some recent works have been done on low Mach fix for
non-conservative systems, we refer to [3, 2, 45] for the Euler equation with gravity or to [35, 34]
for two-phases flows. In these last studies, flux preconditioning techniques, initially proposed by
Turkel [46], are applied and quadrangular meshes are considered. Here, we propose to also study
the behavior of the numerical scheme on triangular meshes. Indeed, it was shown that in the
uniform porosity case, if the mesh is composed of triangles in 2D or tetrahedra in 3D, the accuracy
at low Mach number with the Roe scheme is recovered [38, 16, 22]. To our knowledge, this is
the first study on the behavior of classical schemes at low Mach number on triangular meshes for
non-conservative systems.

In this article, we study the accuracy, at low Mach number, on triangular and Cartesian meshes,
of a numerical scheme for the non conservative system (1). Since the accuracy problem appears
also in the linear case, we base our study on the linear wave equation with porosity. The low Mach
accuracy problem is then understood and fixed in the linear case for Cartesian meshes, and the
reason for its correct behavior on triangular meshes is underlined. In particular, preliminary results
obtained in [14] based on a modified equation approach are extended to the discrete Cartesian
case. Based on the linear study, a well-balanced scheme accurate at low Mach number for the
non-linear system (1) is proposed and numerical tests are performed. They confirm that both the
non corrected and corrected schemes are able to recover the low Mach asymptotics on triangular
meshes, while this is the case only for the corrected scheme on Cartesian meshes.

2 Low Mach limit and wave equation with porosity

2.1 Low Mach limit
To study the behavior of system (1) at low Mach number, four characteristic scales are supposed
to be known : a time scale t0, a density scale ρ0, a velocity scale u0 and a porosity scale α0. Then,
the following dimensionless variables are defined

t̃ =
t

t0
, ρ̃ =

ρ

ρ0
, ũ =

u
u0
, α̃ =

α

α0
(2)

It is natural to scale the length by L0 = u0 × t0, the sound speed by c20 = p′(ρ0) and the pressure
by p0 = ρ0c

2
0. If the corresponding dimensionless variables are used, system (1) reads




∂t̃(α̃ρ̃) +∇x̃ · (α̃ρ̃ũ) = 0,

∂t̃(α̃ρ̃ũ) +∇x̃ · (α̃ρ̃ũ⊗ ũ) +
α̃

M2
∇x̃p̃ = 0

(3)

with x̃ = x/L0, p̃ = p/p0, and where M = u0/c0 is the so-called Mach number.

2.2 Formal asymptotic expansion when the Mach number goes to 0
We are interested in the solutions of (3) when M → 0. We recall formally the theoretical results
of [25] in order to take the porosity into account. All the variables of the system, ϕ ∈ {α̃, ρ̃, ũ},
are developed as power series of the Mach number M :

ϕ̃(x̃, t̃,M) =

N∑

n=0

Mnϕ̃(n)(x̃, t̃) +O
(
MN+1

)
. (4)
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Assumption 2.1. Concerning α, we assume that α(x) is a function that takes its values in
[αmin, 1], where αmin > 0 is a constant independent of the Mach number M . This implies that

α̃(0) 6= 0.

The case α̃(0) = 0 is out of the scope of this paper.

By injecting these quantities in (3), the momentum equation at order M−2 and M−1 gives

∇x̃p̃
(0) = ∇x̃p̃

(1) = 0 (5)

and then, since p is a regular function of ρ, this leads to

ρ̃(0)(x̃, t̃) = ρ̃(0)(t̃) and ρ̃(1)(x̃, t̃) = ρ̃(1)(t̃). (6)

At order M0, we get
{

∂t̃(α̃ρ̃)(0) +∇x̃ · (α̃ρ̃ũ)(0) = 0,

∂t̃(α̃ρ̃ũ)(0) +∇x̃ ·
(

(α̃ρ̃ũ)(0) ⊗ ũ(0)
)

+ α̃(0)∇x̃p̃
(2) = 0.

Then, if the initial and boundary conditions are well prepared in the sense that
{
ρ̃(t̃ = 0, x̃,M) = ρ̃0 +O

(
M2
)
, where ρ̃0(x̃) = ρ̃0 ∈ R+∗

(α̃ũ)(t̃ = 0, x̃,M) = (α̃ũ)
(0)
0 +O (M) , where ∇ · (α̃ũ)

(0)
0 = 0

and if on the domain boundary ρ̃(0) (resp. ρ̃(1)) is uniformly and constantly equals to ρ̃0 (resp. 0)
and if

∫
∂Ω

(α̃ũ)(0) · n = 0, the solution of (3) satisfies
{
ρ̃(t̃, x̃,M) = ρ̃0 +O

(
M2
)
,

(α̃ũ)(t̃, x̃,M) = (α̃ũ)(0)(t̃, x̃) +O (M)
(7)

where (ρ̃(2), ũ(0)) satisfies
{
∇ · (α̃ũ)(0) = 0,

∂t̃ũ
(0) +

(
ũ(0) · ∇x̃

)
ũ(0) +∇x̃ρ̃

(2) = 0.
(8)

Note that in order to obtain the second equation in (8), we have chosen ρ̃0 = 1, which is always
possible up to a change of density scale from ρ0 to ρ0ρ̃0. Equations (7) mean that at low Mach
number, if the initial and boundary conditions are well prepared, the solution of the compressible
Euler system with porosity (3) is close to the solution of the incompressible Euler equation with
porosity (8). Results (7) are formally proven here. For a rigorous proof in the uniform porosity
case, we refer to [42, 30].

For classical finite volume schemes, relations (7) are not always satisfied at the discrete level:
this is the so-called accuracy problem at low Mach number, which expresses that a spurious com-
ponent ρ̃(1) 6= 0 could be introduced at the discrete level [23] due to numerical approximations. In
the current contribution, we consider that a numerical scheme is accurate at low Mach number for
system (1) if relations (7) are satisfied at the discrete level.

2.3 Wave equation with porosity
To study the low Mach behavior, we change the variables to symmetrize the problem.

2.3.1 Model

For this purpose, we set the reference sound speed to 1/M and we define r(t̃, x̃) such that

ρ̃(t̃, x̃) = ρ̃0

(
1 +Mr(t̃, x̃)

)
(9)

where formally Mr � 1. By injecting (9) in (3), we obtain the system




∂t̃(α̃r) +∇x̃ · (α̃rũ) +
1

M
∇x̃ · (α̃ũ) = 0,

∂t̃(α̃ũ) + (ũ · ∇x̃)(α̃ũ) +
α̃

M

p̃′ (ρ̃0 (1 +Mr))

1 +Mr
∇x̃r = 0.
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Linearizing around (r, ũ) = (0, 0), taking into account that p̃′ (ρ̃0) = 1 when ρ̃0 = 1 as explained
above and simplifying the notation by removing all the ·̃, we obtain the linear wave equation with
porosity

∂t(αq) +
Lα
M

(q) = 0 (10)

where
q =

(
r
u

)
and Lα(q) = a?

(
∇ · (αu)
α∇r

)

and a? = 1.

2.3.2 Weighted incompressible space Eα and acoustic space E⊥α
We are interested in the properties of System (10) solved on a torus T ⊂ Rd∈{1,2,3} with periodic
boundary conditions. For this, we assume that α is a periodic function on T and we define the
weighted Hilbert space

L2
α(T)1+d :=

{
q := (r,u)T

∣∣∣
∫

T
r2αdx +

∫

T
| u |2 αdx < +∞

}

endowed with the scalar product

〈q1, q2〉α =

∫

T
r1r2αdx +

∫

T
u1 · u2αdx. (11)

Of course, the space L2
α should not be mistaken for the acoustic operator Lα. We also define the

spaces H1
α(T) and H2

α(T) that are generalizations of H1(T) and H2(T) to weighted spaces. We
note that since α(x) ∈ [αmin, 1] with αmin > 0, the functions α and 1

α are in L∞(T), and we have
L2
α(T) = L2(T), H1

α(T) = H1(T) and H2
α(T) = H2(T). Nevertheless, we keep the index α to define

these spaces to refer to the scalar product (11). At last, we define the space

Eα :=

{
q = (r,u)T ∈ L2

α (T)
1+d

∣∣∣ ∇r = 0 and ∇ · (αu) = 0

}
= Ker Lα. (12)

When α = 1, Eα is named the incompressible space (see [13]). We have the following result:

Lemma 2.2. We have

E⊥α =

{
q = (r,u)T ∈ L2

α (T)
1+d

∣∣∣
∫

T
rαdx = 0 and ∃φ ∈ H1

α (T) , u = ∇φ
}
, (13)

Eα ⊕ E⊥α = L2
α (T)

1+d
.

In other words, any q = (r,u)T ∈ L2
α (T)

1+d can be decomposed into

q = q̂ + q⊥ (14)

where q̂ = (r̂, û)T ∈ Eα and q⊥ = (r⊥,u⊥)T ∈ E⊥α and this decomposition is unique and orthogonal
with respect to the scalar product defined by (11).

We call E⊥α the acoustic space. This is a generalization of the Hodge decomposition. Decom-
position (14) defines an orthogonal projection

Pα : L2
α (T)

1+d −→ Eα (15)
q 7−→ Pαq := q̂.

2.3.3 Properties of the linear wave equation with porosity

We now detail some properties of the linear wave equation with porosity. These properties will not
be always satisfied in the discrete case.

Lemma 2.3. Let q(t,x) be the solution of (10) on T ⊂ Rd∈{1,2,3} with initial condition q0. Then:

1. q0 ∈ Eα =⇒ q(t ≥ 0) = q0 ∈ Eα;

2. q0 ∈ E⊥α =⇒ q(t ≥ 0) ∈ E⊥α .
For all q ∈ L2

α(T)1+d, we now define the energy Eα := 〈q, q〉α. The following lemma is an
extension of the energy conservation property of the classical linear wave equation:

Lemma 2.4. Let q(t,x) be the solution of (10) on T ⊂ Rd∈{1,2,3}. Then, for all t ≥ 0,

Eα(t ≥ 0) = Eα(t = 0).
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2.3.4 The low Mach asymptotics

With Lemma 2.3 and by linearity, we get that if q(t,x) is the solution of (10) on T ⊂ Rd∈{1,2,3}
with initial condition q0, then

‖q0 − Pαq0‖ = O (M) =⇒ ∀t ≥ 0, ‖q − Pαq‖(t) = O (M) . (16)

We note that since Pαq0 ∈ Eα is a stationary solution of (10), then Pαq = Pαq0; hence (16) can be
written as

‖q0 − Pαq0‖ = O (M) =⇒ ∀t ≥ 0, ‖q − Pαq0‖(t) = O (M) . (17)

In fact, (16) is a version of (7) for the linear case. Indeed, the left condition in (16) just means
that the initial condition is well-prepared. In the non-linear case, the projection Pαq in the incom-
pressible space Eα is replaced by the incompressible solution of (8).

In this article, we consider that a numerical scheme for the linear system (10) is accurate at
low Mach number if (17) is satisfied at the discrete level. We will study this property on Cartesian
and triangular meshes.

3 Godunov scheme for the linear wave equation with porosity
and its kernels

In [16, 15], we explained the satisfactory behavior of the Godunov scheme at low Mach number on
triangular meshes and its wrong behavior on Cartesian rectangular meshes on the Euler system
without porosity (α uniformly equal to 1) by studying the kernel of the discrete spatial operator
associated to the Godunov scheme. We also remarked that the accuracy of the Godunov scheme
at low Mach number on Cartesian meshes can be recovered by deleting the diffusion term on the
velocity field in the Godunov scheme. In [14] we discussed the case with porosity with the help of
the modified equation approach; the limitations of this approach is that it only gives hints (but
does not provide with a complete proof) on what happens on Cartesian meshes, and does not apply
to triangular meshes. Our aim here is to analyse the behavior of the schemes on triangular and
rectangular Cartesian meshes by directly studying them rather than their modified equations.

We now recall the Godunov scheme for the linear wave equation with porosity, recall why
the study of its kernel is so important to study its low Mach accuracy and compute explicitly its
kernels on triangular and Cartesian rectangular meshes. In particular, we underline that the kernel
is strongly linked to the numerical dissipation of the Godunov scheme.

3.1 Godunov scheme
Let us suppose that the domain T ⊂ R2 is discretized by N cells Ωi. Let Γij be the common edge
of the two neighboring cells Ωi and Ωj and nij the unit vector normal to Γij pointing from Ωi
to Ωj . We assume that the data α, and the unknowns r and u are defined on the cells Ωi in the
following way

αi =
1

|Ωi|

∫

Ωi

αdx, ri ≈
1

|Ωi|

∫

Ωi

rdx, ui ≈
1

|Ωi|

∫

Ωi

udx,

and then set (αr)i = αiri and (αu)i = αiui.
The semi-discrete Godunov scheme applied to the resolution of the linear wave equation is

obtained by integrating (10) over each cell Ωi and then solving a Riemann problem on each Γij
to express interface fluxes as functions of cell-centered values. Details are provided in [14]. This
results in





d

dt
(αr)i +

a?
2M

1

|Ωi|
∑

Γij⊂∂Ωi

|Γij |
[(

(αu)i + (αu)j
)
· nij + αij(ri − rj)

]
= 0,

d

dt
(αu)i +

a?
2M

αi
|Ωi|

∑

Γij⊂∂Ωi

|Γij |
[
ri + rj +

κ

αij

(
(αu)i − (αu)j

)
· nij

]
nij = 0

(18)

with κ = 1 and where αij is a mean-value of α on Γij which depends on (αi, αj) (e.g. arith-
metic or harmonic mean). The numerical flux in (19) is non-conservative because of the term αi
that multiplies the flux on the momentum equation. Moreover, it is easy to prove the following
properties:
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Remark 3.1. The numerical scheme (18) is well-balanced in the sense that it preserves exactly
the one-dimensional steady states (r = cte, αu = cte).

Remark 3.2. The numerical scheme (18) can also be viewed as the VFRoe scheme [18, 6] ob-
tained with the variables (α, r, αu) for system (10) where the linearized Riemann problem is solved
considering that α satisfies ∂tα = 0.

Scheme (18) can be written in compact form




d

dt
(αqh) +

Lhκ,α
M

(qh) = 0,

qh(t = 0) = q0
h,

with qh :=

(
ri
ui

)

1≤i≤N
(19)

where the subscript ·h recalls that (19) comes from a spatial discretization of (10).

3.2 The low Mach problem
We want to study whether the Godunov scheme is accurate at low Mach number in the sense
that it satisfies a version of (17) at the discrete level. Then, discrete incompressible spaces Ehα and(
Ehα
)⊥ and a discrete orthogonal projection Phα have to be define on triangular or Cartesian meshes.

Moreover, the key points to obtain (17) at the continuous level are that Eα = Ker Lα and that
(10) conserves energy (see Lemma 2.4). Then, the relationship between the discrete incompressible
space Ehα and the kernel of the Godunov scheme KerLhα have to be studied. The following theorem
explains why this study is so important:

Theorem 3.3. Suppose that system (19) is well-posed in such a way that ‖qh(t)‖ ≤ C‖q0
h‖ for any

t ≥ 0, where C is a positive constant independent of the Mach number M and suppose moreover
that Ehα ⊆ Ker Lhα. Then, we have

‖q0
h − Phαq0

h‖ = O (M) =⇒ ∀t ≥ 0, ‖qh − Phαq0
h‖ = O (M)

For a proof, we refer to [13, 15]. In Theorem 3.3, system (19) is assumed to be well-posed. In
particular, stability will be studied in more details in section 4. In the current section, we focus
on the kernel of the Godunov scheme on Cartesian and triangular meshes.

3.3 Kernels of the Godunov scheme
We first study the discrete kernel of the Godunov scheme (κ = 1 in (18)) on different types of
meshes and of its low-Mach modification (κ = 0) on Cartesian rectangular meshes. The kernel
Ker Lhκ,α of the discrete acoustic operator Lhκ,α is defined by

Ker Lhκ,α =



qh :=

(
ri
ui

)

i

∈ R3N

∣∣∣∣ ∀i,
∑

Γij⊂∂Ωi

|Γij |
[(

(αu)i + (αu)j
)
· nij + αij(ri − rj)

]
= 0

and ∀i,
∑

Γij⊂∂Ωi

|Γij |
[
ri + rj +

κ

αij

(
(αu)i − (αu)j

)
· nij

]
nij = 0



 . (20)

On any type of mesh we have the following result, whose proof is postponed to Appendix A:

Lemma 3.4.

Ker Lhκ>0,α =

{
qh :=

(
ri
ui

)

i

∈ R3N
∣∣∣∃c ∈ R,∀i, ri = c and (αu)i · nij = (αu)j · nij

}
(21)

and

Ker Lhκ=0,α =

{
qh :=

(
ri
ui

)

i

∈ R3N
∣∣∣∃c ∈ R,∀i, ri = c

and
∑

Γij⊂∂Ωi

|Γij |
(

(αu)i + (αu)j

)
· nij = 0

}
. (22)

Moreover, we have
Ker Lhκ>0,α ( Ker Lhκ=0,α.
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3.3.1 Kernel on a triangular mesh

We now study some particular properties of the behavior of the Godunov scheme on a triangular
mesh. Especially, we study the relation between the kernel of the Godunov scheme on a triangular
mesh and a discrete version of the space Eα defined by (12).

Construction of Eh,4α et
(
Eh,4α

)⊥ We construct an accurate discrete version of the well-prepared
subspace Eα defined by (12). Let us suppose that all Ωi are triangles arranged so that the compu-
tational domain is periodic. Moreover, let us denote by Vh the standard P 1 (first-order polynomial
functions) Lagrange finite element space associated with this triangular mesh

Vh :=
{
ψh ∈ C0(T), ψh periodic on T such that ∀Ωi : (ψh)|Ωi ∈ P 1(Ωi)

}
. (23)

Let us also denote by Wh the nonconforming Crouzeix-Raviart P 1 finite element space associated
with this triangular mesh

Wh := {φh ∈ L2(T), φh periodic on T such that ∀Ωi : (φh)|Ωi ∈ P 1(Ωi)

and φh is continuous at the edge midpoints}.
Note that since the functions in Vh (resp. Wh) are P 1 on each cell, their curls (resp. their gradients)
are constant vectors on each cell. Let us also define the discrete vector subspace

Eh,4α =

{
qh :=

(
ri
ui

)

i

∈ R3N
∣∣∣∃(a, b, c, ψh) ∈ R3 × Vh, ∀i ∈ J1, NK, ri = c

and (αu)i =

(
a
b

)
+ (∇× ψh)|Ωi

}
. (24)

Then, we define the space of constant piecewise functions

l2α(T)3 :=

{
qh :=

(
ri
ui

)

i

∈ R3N
∣∣∣
∑

i

|Ωi|(r2
i + |ui|2)αi < +∞

}

endowed with the scalar product (11) which may be written for (qh)1 and (qh)2 in l2α(T)3 as

〈(qh)1, (qh)2〉α,h =
∑

i

|Ωi|
[
(r1)i(r2)i + (u1)i · (u2)i

]
αi. (25)

Adapting the proof of Theorem 4.1 in [1] (see also [32]) to the case of periodic elements in Vh
and Wh and weighted spaces, we may prove the following lemma:

Lemma 3.5. Assume that (Ωi)i=1···N is a triangular periodic mesh of a rectangular domain with
no internal holes. For any (r,u)T ∈ R3N , there exist unique (a, b) ∈ R2, a unique ψh ∈ Vh and a
unique φh ∈Wh with

∫
T ψh(x)dx =

∫
T φh(x)dx = 0, such that on any Ωi, we have

(
ri
ui

)
=




r̄
1

αi

(
a
b

)
+

1

αi
(∇× ψh)|Ωi


+

(
ri − r̄

(∇φh)|Ωi

)
(26)

with r̄ =

∑
i

|Ωi|αiri
∑
i

|Ωi|αi
. Moreover this decomposition is orthogonal for the scalar product (25).

Proof. We firstly prove the orthogonality of decomposition (26). The orthogonality between r̄ and
r − r̄ is obvious because, by definition of r̄ we have:

〈r̄, r − r̄〉α,h =
∑

i

|Ωi|αir̄(r − r̄)i = r̄

(∑

i

|Ωi|αiri − r̄
∑

i

|Ωi|αi
)

= 0.

Now, we prove the orthogonality for the decomposition of u. For any (a, b)T ∈ R2 and φh ∈ Wh

(then ∇φh is a constant vector on each cell Ωi), we have:
〈

1

α

(
a
b

)
,∇φh

〉

α,h

=

(
a
b

)
·
∑

i

|Ωi|(∇φh)|Ωi =

(
a
b

)
·
∑

i

∫

Ωi

(∇φh)|Ωidx

=

(
a
b

)
·
∑

i

∫

∂Ωi

φhndσ =

(
a
b

)
·
∑

Γij

∫

Γij

[φh]ijnijdσ
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where [φh]ij denotes the jump of φh through the edge Γij . To obtain the last equality, we used the
fact that each interface Γij contributes twice in the sum over the cell boundaries. Since φh is a P 1

function, its integral on the edge Γij is equal to the length |Γij | multiplied by the value of φh at its
midpoint. Thus, since φh is continuous at the edge midpoints, we have

∫
Γij

[φh]ijnijdσ = 0 on any

edge, which proves the orthogonality between the field
1

α
(a, b)T and the gradient of any element

in Wh. Moreover, for any ψh ∈ Vh and φh ∈ Wh (then ∇ × ψh and ∇φh are constant vectors on
each cell Ωi), it holds that
〈

1

α
∇× ψh,∇φh

〉

α,h

=
∑

i

|Ωi|(∇× ψh)|Ωi · (∇φh)|Ωi =
∑

i

∫

Ωi

(∇× ψh)|Ωi · (∇φh)|Ωidx

=
∑

i

∫

∂Ωi

(φh)|Ωi(∇× ψh)|Ωi · ndσ −
∑

i

∫

Ωi

(φh)|Ωi∇ · (∇× ψh)|Ωidx.

Since ∇ · (∇×) = 0, the second sum vanishes. Moreover, denoting by t a unit vector such that
(n, t) is a direct orthonormal system, the equality (∇×ψh) ·n = (∇ψh) ·t and the fact that ∇ψh ·t
is continuous along any interface Γij (since ψh ∈ Vh is a P 1 nodal Lagrange function) imply that

〈
1

α
∇× ψh,∇φh

〉

α,h

=
∑

Γij

∫

Γij

∇ψh · tij [φh]ij dσ.

But on Γij , the product ∇ψh · tij [φh]ij is a P 1 function, and its integral over Γij is equal to the
length |Γij | multiplied by the value of this function at its midpoint. Thus, since φh is continuous
at the midpoint, then

∫
Γij
∇ψh · tij [φh]ij dσ = 0 on any edge, which proves orthogonality between

1

α
∇× ψh and ∇φh. Then, the orthogonality of the decomposition is proved.
We secondly prove the existence and the uniqueness of decomposition (26). For r there is no

difficulty. Thus, we only consider the decomposition for u. We have to prove that the function L
defined by

L : R2 × V 0
h ×W 0

h → R2N (27)((
a
b

)
, ψh, φh

)
7→ 1

α

(
a
b

)
+

1

α
∇× ψh +∇φh

is bijective, where V 0
h =

{
ψh ∈ Vh|

∫
T ψhdx = 0

}
and W 0

h =
{
φh ∈Wh|

∫
T φhdx = 0

}
. Firstly, we

prove injectivity. As L is a linear function, we just have to prove that

L

((
a
b

)
, ψh, φh

)
= 0 =⇒

((
a
b

)
, ψh, φh

)
= 0.

Assume that for all i ∈ J1, NK,
1

αi

(
a
b

)
+

1

αi
(∇× ψh)|Ωi + (∇φh)|Ωi = 0. By the orthogonality

that we proved above, this implies

∀i ∈ J1, NK :





1

αi

(
a

b

)
+

1

αi
(∇× ψh)|Ωi = 0,

(∇φh)|Ωi = 0,

which implies that

∀i ∈ J1, NK : ∃γi ∈ R, ∃βi ∈ R, ∀(x, y) ∈ Ωi,





(ψh)|Ωi(x, y) = bx− ay + βi,

(φh)|Ωi(x, y) = γi.

Since φh is continuous at the edge midpoints and since ψh is continuous on T, (γi)i=1···N and
(βi)i=1···N do not depend on i. Then, we have

∃(β, γ) ∈ R2, ∀i ∈ J1, NK, ∀(x, y) ∈ T :




ψh(x, y) = bx− ay + β,

φh(x, y) = γ.
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Since
∫
T φhdx = 0, we obtain φh = 0. Since ψh(x, y) = bx − ay + β is periodic on T, we have

a = b = 0 which implies that ψh = β. And since
∫
T ψhdx = 0, we obtain ψh = 0. The conclusion

is that
((

a
b

)
, ψh, φh

)
= 0 and the function L in injective.

To prove surjectivity, we prove that dim
(
R2 × V 0

h ×W 0
h

)
= dim

(
R2N

)
= 2N . Any function

ψh ∈ Vh is completely and uniquely determined by its values at the V independent nodes of
the mesh, which implies that dimVh = V . Moreover the vanishing mean-value of ψh implies a
constraint that links the values on the various nodes. Thus, we have dimV 0

h = V −1. On the other
hand, any φh ∈ Wh is completely and uniquely determined by its values at the E independent
edge midpoints of the mesh, then dimWh = E. Moreover, the vanishing mean-value of φh implies
a constraint that links the values on the various edges. Thus, we have dimW 0

h = E − 1. To
summarize, we have

dim
(
R2 × V 0

h ×W 0
h

)
= 2 + dim(V 0

h ) + dim(W 0
h ) = 2 + (V − 1) + (E − 1) = V + E.

Now, in a triangular periodic mesh of a rectangular domain with no internal holes, it is well known
that E + V = 2N (proof by recurrence on the number of cells using the Descartes-Euler formula
for a periodic domain), which proves the bijectivity of the function L.

Corollary 3.6. We have

(
Eh,4α

)⊥
=

{
qh :=

(
ri
ui

)

i

∈ R3N

∣∣∣∣
∑

i

|Ωi|αiri = 0 and ∃φh ∈Wh,∀i ∈ J1, NK,ui = (∇φh)|Ωi

}
.

Let us underline that Lemma 3.5 with Corollary 3.6 is the discrete version of Lemma 2.2 on a
triangular mesh.

A first explanation of the satisfying behavior of the Godunov scheme on triangular
meshes Here, we prove that, on triangular meshes, the kernel of the Godunov scheme corre-
sponds exactly to the discretized space E4α . This property shows that the discrete stationary space
discretizes well the continuous one. This gives a (partial) explanation of the satisfactory behavior
of the Godunov scheme on a triangular mesh.

Proposition 3.7. Assume that (Ωi)i=1···N is a triangular periodic mesh of a rectangular domain
with no internal holes. We have

Ker Lh,4κ=1,α = Eh,4α .

Proof. We firstly prove that Eh,4α ⊂ Ker Lhκ=1,α. Let qh ∈ Eh,4α . There exists (a, b, c) ∈ R3 and
ψh ∈ Vh such that (see (24))

∀i ∈ J1, NK :





ri = c,

(αu)i =

(
a

b

)
+ (∇× ψh)|Ωi

that is to say

∀i ∈ J1, NK : (αu)i · nij =

(
a
b

)
· nij + (∇× ψh)|Ωi · nij =

(
a
b

)
· nij + (∇ψh)|Ωi · tij

where tij is a unit vector such that (nij , tij) is a direct orthonormal system. As already explained
in the proof of Lemma 3.5, the fact that ψh is a P 1 Lagrange function implies that (∇ψh)|Ωi · tij =

(∇ψh)|Ωj · tij and as a consequence the continuity of (αu) · n through the cell edges. This means
that qh ∈ KerLh,4κ=1,α by using (21). Now, we prove that KerLh,4κ=1,α ⊂ Eh,4α . Let qh ∈ KerLh,4κ=1,α.
Since qh ∈ Ker Lh,4κ=1,α, there exists c ∈ R such that for all i, ri = c. With Lemma 3.5, we have

ui =

(
1

αi

(
a
b

)
+

1

αi
(∇× ψh)|Ωi

)
+ (∇φh)|Ωi

for some (a, b, ψh, φh) ∈ R2 × Vh ×Wh, this decomposition being orthogonal. Thus, we just have
to prove that ∇φh = 0. By orthogonality, we have

∑

i

|Ωi|αi
∥∥(∇φh)|Ωi

∥∥2
= 〈u, (∇φh)〉α,h

=
∑

i

|Ωi|(αu)i · (∇φh)|Ωi =
∑

i

(αu)i ·
∫

Ωi

(∇φh)|Ωidx
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because αu and ∇φh are constant on each triangle Ωi. Then, we can write

∑

i

|Ωi|αi
∥∥(∇φh)|Ωi

∥∥2
=

∑

i

(αu)i ·
∫

∂Ωi

(φh)|Ωinijdσ =
∑

i

∫

∂Ωi

(αu)i · (φh)|Ωinijdσ

=
∑

Γij

∫

Γij

[
(φh)|Ωi(αu)i · nij + (φh)|Ωj (αu)j · nji

]
dσ.

Since qh ∈ Ker Lh,4κ=1,α, we have (αu)i · nij = (αu)j · nij and we denote by (αun)ij this common
value. Thus ∑

i

|Ωi|αi
∥∥(∇φh)|Ωi

∥∥2
=
∑

Γij

(αun)ij ·
∫

Γij

[φh]ijdσ,

where [φh]ij denotes the jump of φh through the edge Γij . As already explained in the proof of
Lemma 3.5, the fact that φh is a P 1 function, which is continuous at the edge midpoints implies
that

∫
Γij

[φh]ijdσ = 0 on any edge, which proves

∑

i

|Ωi|αi
∥∥(∇φh)|Ωi

∥∥2
= 0

that is to say for all i ∈ J1, NK, (∇φh)|Ωi = 0. This proves that qh ∈ Eh,4α .

3.3.2 Kernel on a Cartesian mesh

We now study some particular properties of the behavior of the Godunov scheme on a rectangular
uniform Cartesian mesh. Especially, we study the relation between the kernels of the standard
Godunov scheme (κ = 1) and of its modification (κ = 0) on a uniform Cartesian mesh and a
discrete version of the space Eα defined by (12).

Construction of Eh,�α and
(
Eh,�α

)⊥
We construct an accurate discrete version of the well-

prepared subspace Eα defined by (12). Suppose that the computational domain is a rectangle and
that the mesh is made up of Nx ×Ny rectangles of constant size ∆x ×∆y where Nx and Ny are
the numbers of cells in the x and y directions. In what follows, we shall suppose that both Nx and
Ny are odd. Indeed, if this is not the case, the situation is a little more involved due to even/odd
decoupling which may produce checkerboard modes. We introduce the following operators, which
are accurate approximations of their continuous counterparts:

rot2h : RNxNy 7→
(
RNxNy

)2
with (rot2hψ)i,j :=




ψi,j+1 − ψi,j−1

2∆y

−ψi+1,j − ψi−1,j

2∆x


 ,

grad2h : RNxNy 7→
(
RNxNy

)2
with (grad2hψ)i,j :=




ψi+1,j − ψi−1,j

2∆x
ψi,j+1 − ψi,j−1

2∆y




In these definitions, it is implicitly meant that (ψi,j) ∈ RNxNy is periodic, that is to say
{
∀i ∈ J1, NxK, ψi,0 = ψi,Ny and ψi,Ny+1 = ψi,1,

∀j ∈ J1, NyK, ψ0,j = ψNx,j and ψNx+1,j = ψ1,j .
(28)

Let us now define the following subspace, which is an accurate discrete version of Eα defined by (12).

Eh,�α =

{
qh :=

(
ri,j
ui,j

)
∈ R3NxNy

∣∣∣∃ (a, b, c, (ψi,j)) ∈ R3 × RNxNy , ∀(i, j) ∈ J1, NxK× J1, NyK,

ri,j = c and (αu)i,j =

(
a
b

)
+ (rot2hψ)i,j

}
. (29)

We shall also need the following weighted discrete scalar product:

〈(qh)1, (qh)2〉α,h =
∑

i,j

|Ωi,j |αi,j
[
(r1)i,j(r2)i,j + (u1)i,j · (u2)i,j

]
. (30)
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We introduce in the following lemma a discrete Hodge decomposition for a collocated Cartesian
mesh with periodic boundary conditions. The orthogonality is to be understood with respect to
the discrete scalar product defined by (30). Nicolaides [31] also proved some kind of similar result
but did not consider periodic boundary conditions, weighted spaces and collocated meshes (he did
the proof for a staggered mesh). The proof presented here does not use the same techniques as
Nicolaides’.

Lemma 3.8. For any (r,u)T ∈ R3NxNy , there exists unique (a, b, (ψi,j), (φi,j))) ∈ R2 × RNxNy ×
RNxNy , with

∑
i,j

|Ωi,j |ψi,j =
∑
i,j

|Ωi,j |φi,j = 0, such that for all (i, j) ∈ J1, NxK× J1, NyK,

(
ri,j
ui,j

)
=




r̄
1

αi,j

(
a
b

)
+

1

αi,j
(rot2hψ)i,j


+

(
ri,j − r̄

(grad2hφ)i,j

)
(31)

with r̄ =

∑
i,j

|Ωi,j |αi,jri,j
∑
i,j

|Ωi,j |αi,j
. Moreover this decomposition is orthogonal for the scalar product (30).

Proof. Let us first prove orthogonality. The orthogonality between r̄ and r− r̄ is obvious. Now we
prove the orthogonality for the decomposition of u. We have, for any (a, b)T ∈ R2 and periodic
sequence (φi,j)i,j ∈ RNxNy in the sense of (28)
〈

1

α

(
a
b

)
, (grad2hφ)

〉

α,h

=
∑

i,j

|Ωi,j |αi,j
1

αi,j

(
a
b

)
· (grad2hφ)i,j

=
1

2

(
a
b

)
·




∆y
∑
i,j

(φi+1,j − φi−1,j)

∆x
∑
i,j

(φi,j+1 − φi,j−1)


 =

(
a
b

)
·
(

0
0

)
= 0

because of (28).
Moreover, for any ψi,j ∈ RNxNy and φi,j ∈ RNxNy periodic in the sense of (28),

〈
1

α
rot2hψ,grad2hφ

〉

α,h

=
1

4

∑

i,j

(ψi,j+1 − ψi,j−1) (φi+1,j − φi−1,j)− (ψi+1,j − ψi−1,j) (φi,j+1 − φi,j−1) = 0

because of the periodicity of (φi,j) and (ψij). Then, orthogonality of the decomposition is proved.
We shall now prove existence and uniqueness of decomposition (31). For r there is no problem,

so we only consider the equation in u. We have to prove that the function L defined by

L : R2 × RNxNy0 × RNxNy0 → (R2)NxNy (32)((
a
b

)
, (ψi,j), (φi,j)

)
7→

(
1

α

(
a
b

)
+

1

α
(rot2hψ) + (grad2hφ)

)

i,j

is bijective, where RNxNy0 =

{
(ψij) ∈ RNxNy

∣∣∣
∑
i,j

|Ωi,j |ψi,j = 0

}
. Firstly, we prove injectivity. As

L is a linear function, we just have to prove that

L

((
a
b

)
, (ψi,j), (φi,j)

)
= 0 =⇒





(
a

b

)
= 0,

∀(i, j) ∈ J1, NxK× J1, NyK, ψi,j = φi,j = 0.

Assume that for all (i, j) ∈ J1, NxK× J1, NyK,
(

1

α

(
a
b

)
+

1

α
(rot2hψ) + (grad2hφ)

)

i,j

= 0.
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By the orthogonality property proved above, this implies

∀(i, j) ∈ J1, NxK× J1, NyK,
(
a
b

)
+ (rot2hψ)i,j = 0 and (grad2hφ)i,j = 0

=⇒ ∀(i, j) ∈ J1, NxK× J1, NyK,





ψi,j+1 − ψi,j−1 = −2a∆y,

ψi+1,j − ψi−1,j = 2b∆x,

φi+1,j − φi−1,j = 0,

φi,j+1 − φi,j−1 = 0.

Then, for all i ∈ J1, NxK, (ψi,j)2j is an arithmetic sequence of step −2a∆y. By periodicity, we
deduce that a = 0. We obtain that ψi,j+1 = ψi,j−1 for all (i, j) ∈ J1, NxK× J1, NyK. Then, because
Ny is odd, this implies that

∀i ∈ J1, NxK, ∃βi ∈ R, ∀j ∈ J1, NyK, ψi,j = βi.

Note that if Ny were not odd, there would be an even/odd decoupling here (there would exist
constants βodd

i and βeven
i such that ψi,2j = βeven

i and ψi,2j+1 = βodd
i ).

In the same way, it holds that b = 0 and that

∀j ∈ J1, NyK, ∃γj ∈ R, ∀i ∈ J1, NxK, ψi,j = γj .

Both equalities on ψi,j can happen simultaneously only if the values do not depend on i and j,
and thus ψi,j is constant. Since

∑
i,j

∆x∆yψi,j = 0 we obtain

∀(i, j) ∈ J1, NxK× J1, NyK, ψi,j = 0.

Similarly, we obtain for all (i, j) ∈ J1, NxK × J1, NyK, φi,j = 0 and the function L is injective.
Moreover, injectivity and the following space dimension equality ensure bijectivity:

dim
(
R2 × RNxNy0 × RNxNy0

)
= 2 + 2 dim

(
RNxNy0

)
= 2 + 2(NxNy − 1) = 2NxNy.

A first explanation of the wrong behavior of the Godunov scheme on a Cartesian mesh
In this section, we show that the kernel of the standard (κ = 1) Godunov scheme is not an accurate
approximation of the kernel of the continuous wave equation. On the other hand, we show that
the kernel of the modified (κ = 0) Godunov scheme does approximate correctly the kernel of the
continuous wave equation.

Proposition 3.9. Assume that (Ωi,j)i=1···Nx, j=1···Ny is a Cartesian periodic mesh of a rectangular
domain with no internal holes. We have

Ker Lh,�κ>0,α ( Eh,�α

with

Ker Lh,�κ>0,α =

{
qh :=

(
ri
ui

)
∈ R3NxNy

∣∣∣∃ (c, (aj), (bi)) ∈ R× RNy × RNx ,

∀(i, j) ∈ J1, NxK× J1, NyK, ri,j = c and (αu)i,j =

(
aj
bi

)}
. (33)

On the other hand, we have
Ker Lh,�κ=0,α = Eh,�α .

Proof. Starting from (21), equality (33) is readily obtained. Indeed, considering vertical edges
of the Cartesian rectangular mesh, (21) implies that (αux)i,j is constant along the x-direction;
then this quantity depends only on j. In the same way, considering horizontal edges, it follows
that (αuy)i,j is constant along the y-direction, and thus depends only on i. We clearly see that
KerLh,�κ>0,α is a very poor approximation of its discrete counterpart, since it contains only velocity
fields whose horizontal (resp. vertical) component depends only (up to the factor α) on the vertical
(resp. horizontal) coordinate.
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Concerning the inclusion Ker Lh,�κ>0,α ( Eh,�α , it will be a consequence of the proof that
Ker Lh,�κ=0,α = Eh,�α since Lemma 3.4 implies that Ker Lh,�κ>0,α ( Ker Lh,�κ=0,α.

Let us now turn to the case κ = 0. We first prove that Eh,�α ⊂ Ker Lh,�κ=0,α. Let qh ∈ Eh,�α .
There exist (a, b, c) ∈ R3 and (ψi,j) ∈ RNxNy such that

∀(i, j) ∈ J1, NxK× J1, NyK, ri,j = c and (αu)i,j =

(
a
b

)
+ (rot2hψ)i,j .

Denoting by Ω(k,`) one of the four neighbors of Ωi,j and n(i,j)(k,`) the corresponding unit exterior
normal vector on their interface, we have for all (i, j) ∈ J1, NxK× J1, NyK,

∑

Γ(i,j)(k,`)⊂∂Ωi,j

|Γ(i,j)(k,`)|
(

(αu)i,j + (αu)k,`

)
· n(i,j)(k,`)

= ∆y ((αu)i,j + (αu)i+1,j) ·
(

1
0

)
+ ∆y ((αu)i,j + (αu)i−1,j) ·

(
−1
0

)

+∆x ((αu)i,j + (αu)i,j+1) ·
(

0
1

)
+ ∆x ((αu)i,j + (αu)i,j−1) ·

(
0
−1

)

= ∆y ((αu)i+1,j − (αu)i−1,j) ·
(

1
0

)
+ ∆x ((αu)i,j+1 − (αu)i,j−1) ·

(
0
1

)

= a∆y +
ψi+1,j+1 − ψi+1,j−1

2
−
(
a∆y +

ψi−1,j+1 − ψi−1,j−1

2

)

+

(
b∆x− ψi+1,j+1 − ψi−1,j+1

2

)
−
(
b∆x− ψi+1,j−1 − ψi−1,j−1

2

)

= 0

and then qh ∈ Ker Lh,�κ=0,α.
Now, we prove that Ker Lh,�κ=0,α ⊂ Eh,�α . Let qh ∈ Ker Lh,�κ=0,α. This first implies that there

exists c ∈ R such that for all (i, j) ∈ J1, NxK × J1, NyK, ri,j = c. Next, using Lemma 3.8, we can
write

∀(i, j) ∈ J1, NxK× J1, NyK , ui,j =
1

αi,j

(
a
b

)
+

1

αi,j
(rot2hψ)i,j + (grad2hφ)i,j (34)

for some (a, b, (ψi,j), (φi,j)) ∈ R2 ×
(
RNxNy

)2 and this decomposition is orthogonal. We need to
prove that (grad2hφ)i,j = 0 for all (i, j). By orthogonality in (34), we have

∑

i,j

∆x∆yαi,j |(grad2hφ)i,j |2 = 〈u,grad2hφ〉α,h =
∑

i,j

∆x∆yαi,jui,j ·




φi+1,j − φi−1,j

2∆x
φi,j+1 − φi,j−1

2∆y


 .

Expanding the dot product and rearranging the sum through changes of indexes in order to factorize
by φi,j , we obtain, using periodicity to handle the boundary terms and the fact that, for any given
cell Ωi,j we have

∑
Γ(i,j)(k,`)⊂∂Ωi,j

|Γ(i,j)(k,`)|n(i,j)(k,`) = 0:

‖(grad2hφ)‖2α,h =
1

2

∑

i,j

(
∆y [(αux)i−1,j − (αux)i+1,j ] + ∆x [(αuy)i,j−1 − (αuy)i,j+1]

)
φi,j

=
1

2

∑

i,j

φi,j
∑

Γ(i,j)(k,`)⊂∂Ωi,j

|Γ(i,j)(k,`)| (αu)k,` · n(i,j)(k,`)

=
1

2

∑

i,j

φi,j
∑

Γ(i,j)(k,`)⊂∂Ωi,j

|Γ(i,j)(k,`)|
(

(αu)i,j + (αu)k,`

)
· n(i,j)(k,`) = 0,

because qh ∈ Ker Lh,�κ=0,α. This means that for all (i, j) ∈ J1, NxK × J1, NyK, (grad2hφ)i,j = 0 and
then (34) gives us for all (i, j) ∈ J1, NxK× J1, NyK,

ui,j =
1

αi,j

(
a
b

)
+

1

αi,j
(rot2hψ)i,j .

Then, we have qh ∈ Eh,�α .

On Cartesian meshes, this proves that deleting the diffusion term on the velocity field (κ = 0)
allows to recover a kernel that is an accurate approximation of its continuous counterpart.
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4 Right or wrong behavior of the Godunov scheme in the
linear discrete case

We now study the low Mach accuracy of the Godunov scheme in the sense that the numerical
solution (19) satisfies a discrete version of (17). As explained in subsection 3.2, the two key points
to prove this kind of property is that the kernel of the scheme satisfies Ehα ⊂ Ker Lhα and that
system (19) is well-posed (see Theorem 3.3). The study of the kernel was performed in section 3,
κ > 0 and κ = 0 define discrete operators Lκ,α whose kernels are very different. We now prove the
well-posed property (l2α-stability) and then study the low Mach accuracy of the Godunov scheme
on Cartesian rectangular and on triangular meshes.

4.1 l2α-stability of the Godunov scheme
We now prove stability of the semi-discrete scheme both when κ = 0 and when κ > 0. This
property is essential in the sequel. Let us define the energy

Eh := ‖qh‖2l2α =
∑

i

|Ωi|αi
(
r2
i + |ui|2

)
. (35)

Theorem 4.1. Let (ri,ui) be the solution of the semi-discrete scheme (18). We have

d

dt
Eh =

d

dt
‖qh‖2l2α = − a?

M

∑

Γij

|Γij |
(
αij |ri − rj |2 +

κ

αij

∣∣∣
(

(αu)i − (αu)j

)
· nij

∣∣∣
2
)
. (36)

Then, for κ ≥ 0 the Godunov scheme is dissipative since

d

dt
Eh =

d

dt
‖qh‖2l2α ≤ 0.

Proof. We multiply the first equation of (18) with 2|Ωi|ri and sum with respect to i. Since αi does
not depend on time, we obtain

d

dt

∑

i

|Ωi|αir2
i = − a?

M

∑

i

∑

Γij⊂∂Ωi

|Γij |
((

(αu)i + (αu)j

)
· nijri + αij(ri − rj)ri

)
,

= − a?
M

∑

i

∑

Γij⊂∂Ωi

|Γij |
(

(αu)j · nijri + αij(ri − rj)ri
)
,

= − a?
M

∑

Γij

|Γij |
(

(αu)j · nijri + (αu)i · njirj + αij(ri − rj)ri + αji(rj − ri)rj
)
,

= − a?
M

∑

Γij

|Γij |
((
ri (αu)j − rj (αu)i

)
· nij + αij |ri − rj |2

)
.

Taking the scalar product of the second equation of (18) with 2|Ωi|ui and summing with respect
to i, we obtain

d

dt

∑

i

|Ωi|αi|ui|2 = − a?
M

∑

i

∑

Γij⊂∂Ωi

|Γij |αi
(
ri + rj +

κ

αij

(
(αu)i − (αu)j

)
· nij

)
ui · nij ,

= − a?
M

∑

i

∑

Γij⊂∂Ωi

|Γij |
(
rj +

κ

αij

(
(αu)i − (αu)j

)
· nij

)
(αu)i · nij ,

= − a?
M

∑

Γij

|Γij |
(
rj(αu)i · nij + ri(αu)j · nji

)

− a?
M

∑

Γij

|Γij |
κ

αij

((
(αu)i − (αu)j

)
· nij(αu)i · nij

+
(

(αu)j − (αu)i

)
· nji(αu)j · nji

)
,

= − a?
M

∑

Γij

|Γij |
(
rj(αu)i − ri(αu)j

)
· nij

− a?
M

∑

Γij

|Γij |
κ

αij

∣∣∣
(

(αu)i − (αu)j

)
· nij

∣∣∣
2

.
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By summing
d

dt

∑

i

|Ωi|αir2
i and

d

dt

∑

i

|Ωi|αi|ui|2, we obtain (36).

4.2 The triangular mesh case
In Section 2.3.4, we saw that in the continuous setting and for low values of the Mach number, the
solution of the continuous system remains close to an incompressible state for any t > 0, if this was
the case at the initial time t = 0. This section will show that this is also the case at the discrete
level for the numerical solution of the Godunov scheme applied to the linear wave equation with
porosity on triangular meshes. This explains the satisfactory behavior of this scheme on this type
of meshes.

We saw that the Godunov scheme (κ = 1) preserves an incompressible state q0
h ∈ Eh,4α . We

want to study the impact of a perturbation of order M in
(
Eh,4α

)⊥ on the initial condition. With
the orthogonal decomposition proved in Lemma 3.5 and with definition (24), we can define an
orthogonal projection

Ph,4α : l2α(T)3 → Eh,4α .

The theorem that follows expresses the fact that any perturbation of order M in the orthogonal
space at the initial time will not affect the solution over time more than its original size:

Theorem 4.2. Let qh(t) be an approximate solution of (10) given by the Godunov scheme (19)
with the initial condition q0

h. On triangular meshes with κ = 1, for all q0
h ∈ l2α(T)3, we have

∀C1 > 0,
(∥∥q0

h − Ph,4α q0
h

∥∥
l2α

= C1M
)

=⇒
(
∀t ≥ 0,

∥∥qh − Ph,4α q0
h

∥∥
l2α

(t) ≤ C1M
)
. (37)

Proof. By linearity of Lh,4κ=1,α, the solution qh of scheme (19) with initial condition q0
h can be written

as
qh = qh,1 + qh,2

where qh,1 is the solution of (19) with initial condition qh,1(t = 0,x) = (q0
h − Ph,4α q0

h)(x) and qh,2
is the solution of (19) with initial condition qh,2(t = 0,x) = Ph,4α q0

h(x). We have

∀t ≥ 0,
∥∥qh − Ph,4α q0

h

∥∥
l2α

(t) =
∥∥qh,1 + qh,2 − Ph,4α q0

h

∥∥
l2α

(t) ≤ ‖qh,1‖l2α (t) +
∥∥qh,2 − Ph,4α q0

h

∥∥
l2α

(t).

Because the Godunov scheme (19) is dissipative when κ ≥ 0 (see Theorem 4.1), we have ‖qh,1‖l2α (t) ≤
‖qh,1‖l2α (0). Moreover, since Ph,4α q0

h ∈ Eh,4α = Ker Lh,4κ=1,α, the initial condition for qh,2 is in the

kernel of Lh,4κ=1,α, and therefore qh,2 is stationary: for all t > 0 we have qh,2(t) = Ph,4α q0
h. We obtain

∀t ≥ 0,
∥∥qh,2 − Ph,4α q0

∥∥
l2α

(t) = 0

and (38) becomes
∀t ≥ 0,

∥∥qh − Ph,4α q0
h

∥∥
l2α

(t) ≤ ‖qh,1‖l2α (0) = C1M

if ‖q0
h − Ph,4α q0

h‖l2α = C1M .

4.3 The Cartesian mesh case
We saw that the Godunov scheme (κ = 1) on Cartesian meshes does not preserve an incompressible
state q0

h ∈ Eh,�α , but it preserves it if we delete the numerical diffusion on the velocity by setting
κ = 0. From Lemma 3.8, we can define an orthogonal projection

Ph,�α : l2α(T)3 → Eh,�α .

We want to study the evolution over time of the initial condition when it consists in the sum of an
element in the discrete incompressible space

(
Eh,�α

)
and of a perturbation of order M in

(
Eh,�α

)⊥
.

This will give an explanation of the wrong behavior of the standard (κ = 1) Godunov scheme
on a Cartesian mesh and of the satisfactory behavior of the modified (κ = 0) scheme. Moreover,
since completely deleting the numerical diffusion by setting κ = 0 was shown in [15] to present
stability issues in the non-linear case, we shall also study the intermediate case κ = M .
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4.3.1 Explanation of the wrong behavior of the Godunov scheme on a Cartesian
mesh

The next theorem shows that for the standard Godunov scheme (κ = 1) on Cartesian meshes, start-
ing from a perturbation of an incompressible field, the numerical solution will substantially deviate
from the initial condition after a short time that scales like O(M), when the space discretization
parameters (∆x,∆y) are larger than the Mach number.

Theorem 4.3. Let qh(t) be the solution of the Godunov scheme (19) with initial condition q0
h on a

Cartesian mesh with discretization parameters (∆x,∆y). Then, when κ = 1, there exists C2 > 0,
depending only on α, a? and on T such that for almost all q0

h ∈ l2α(T)3 and for all C1 > 0, there
exists C3 depending only on (C1, q

0
h) such that for any M ≤ C3

C1
min(∆x,∆y) we have

∥∥∥q0
h − Ph,�α q0

h

∥∥∥
l2α

= C1M =⇒ ∀t ≥ C2M,
∥∥∥qh − Ph,�α q0

h

∥∥∥
l2α

(t) ≥ C3 min(∆x,∆y). (38)

Proof. By linearity of Lh,�κ=1,α, the solution qh of the Godunov scheme (19) with initial condition q0
h

can be written as
qh = qh,1 + qh,2

where qh,1 is the solution of



∂t(αqh,1) +

Lh,�κ=1,α

M
(qh,1) = 0,

qh,1(t = 0) = q0
h − Ph,�α q0

h

(39)

and qh,2 is the solution of 


∂t(αqh,2) +

Lh,�κ=1,α

M
(qh,2) = 0,

qh,2(t = 0) = Ph,�α q0
h.

(40)

We have

∀t ≥ 0,
∥∥∥qh − Ph,�α q0

h

∥∥∥
l2α

(t) =
∥∥∥qh,1 + qh,2 − Ph,�α q0

h

∥∥∥
l2α

(t)

≥
∥∥∥qh,2 − Ph,�α q0

h

∥∥∥
l2α

(t)− ‖qh,1‖l2α (t)

≥
∥∥∥qh,2 − Ph,�α q0

h

∥∥∥
l2α

(t)− ‖qh,1‖l2α (0)

≥
∥∥∥qh,2 − Ph,�α q0

h

∥∥∥
l2α

(t)−
∥∥∥q0
h − Ph,�α q0

h

∥∥∥
l2α

(41)

because scheme (19) is dissipative when κ ≥ 0 (see Theorem 4.1). If
∥∥q0
h − Ph,�α q0

h

∥∥
l2α

= C1M,

then (41) shows that we need to find a lower bound for the function

t 7→
∥∥∥qh,2 − Ph,�α q0

∥∥∥
l2α

(t)

where qh,2 is the solution of (40). Before proceeding to the detailed proof of this proposition,
let us briefly mention the ideas behind it: the initial condition of (40) will be diffused by the

operator
Lh,�κ=1,α

M
onto its orthogonal projection in the kernel Ker(Lh,�κ=1,α) (this orthogonal pro-

jection is denoted by Ph,�κ=1,α in the sequel) and we shall prove that the solution of (40) will tend
to Ph,�κ=1,α(Ph,�α q0

h) exponentially fast with a convergence rate that depends on min(∆x,∆y)
M . As a

consequence, after a time that scales like O(M), the solution of (40) will be close enough to its
projection, and thus far enough from the initial condition. To prove this in detail, we shall follow
the lines below:

1. we write
qh,2 − Ph,�α q0

h = qh,2 − Ph,�κ=1,αP
h,�
α q0

h + Ph,�κ=1,αP
h,�
α q0

h − Ph,�α q0
h,

2. we verify that q̂h := qh,2 − Ph,�κ=1,αPh,�α q0
h is solution of (19) and that q̂h(t) ∈ Ker Ph,�κ=1,α, for

all t ≥ 0,
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3. we use an energy estimate for solutions of (19) and a discrete Poincaré-Wirtinger inequality
for q̂h that is satisfied on Ker Ph,�κ=1,α, to estimate how fast q̂h tends to 0,

4. we obtain (38) by considering times of order M .

In order to obtain these results, we first prove a series of Lemmas. We start by some considerations
on the orthogonal projection onto Ker Lh,�κ=1,α:

Lemma 4.4. The operator

P : l2α(T)1+d → Ker Lh,�κ=1,α (42)

qh =

(
ri,j
ui,j

)

i,j

7→




1
∑
k,`

αk,`∆x∆y

∑

k,`

rk,`αk,`∆x∆y

1

αi,j
Nx∑
k=1

1
αk,j

∆x

Nx∑

k=1

(ux)k,j∆x

1

αi,j
Ny∑
`=1

1
αi,`

∆y

Ny∑

`=1

(uy)i,`∆y



i,j

(43)

is the orthogonal projection Ph,�κ=1,α on KerLh,�κ=1,α. Moreover, if qh is a solution of (19) on T with
initial condition q0

h, then:

q0
h ∈ Ker Ph,�κ=1,α =⇒ qh(t ≥ 0) ∈ Ker Ph,�κ=1,α. (44)

Proof. Recalling that Ker Lh,�κ=1,α is characterized by (33), it is first straightforward to see that
P(qh) ∈ Ker Lh,�κ=1,α. Next, lengthy but easy algebra leads to 〈(qh − Pqh), sh〉α,h = 0 for all sh ∈
Ker Lh,�κ=1,α. These two properties exactly prove that P = Ph,�κ=1,α.

Moreover, when q0
h ∈ KerPh,�κ=1,α, then (43) implies that s(0) = sx,j(0) = sy,i(0) = 0 for all (i, j)

where

s(t) :=
∑

k,`

rk,`(t)αk,`∆x∆y , sx,j(t) :=

Nx∑

k=1

(ux)k,j(t)∆x , sy,i(t) :=

Ny∑

`=1

(uy)i,`(t)∆y.

Then it suffices to prove that dsdt (t) =
dsx,j
dt (t) =

dsy,i
dt (t) = 0 for all time and all (i, j) to obtain (44).

As far as s is concerned, this is a direct consequence of the conservativity of fluxes in the first
equation of (18). As far as sx,j is concerned, extracting the x component of (18) and specializing
to a Cartesian mesh, we get

d(ux)i,j
dt

+
a?

2M∆x
(Fi,i+1,j − Fi,i−1,j) = 0

with Fi,i+1,j = (ri,j + ri+1,j) + 1
α
i+1

2
,j

(αi,j(ux)i,j − αi+1,j(ux)i+1,j) and Fi,i−1,j = (ri,j + ri−1,j)−
1

α
i− 1

2
,j

(αi,j(ux)i,j −αi−1,j(ux)i−1,j), where we recall that αi− 1
2 ,j

is the value of the porosity at the

interface between cells Ωi−1,j and Ωi,j . Multiplying the equality above with (∆x), summing over i
and noting that Fi−1,i,j = Fi,i−1,j , we obtain with periodic boundary conditions that dsx,j

dt (t) = 0
for all t ≥ 0 and all j. The same kind of proof applies for the vertical component sy,i.

We now write a discrete Poincaré-Wirtinger inequality for a function qh ∈ Ker Ph,�κ=1,α.

Lemma 4.5. There exists a constant Kα(T) > 0 depending on T and α such that for any qh :=

(r, ux, uy)Th ∈ Ker Ph,�κ=1,α

‖qh‖2l2α ≤
Kα(T)

min(∆x,∆y)


∑

i,j

∆xαi,j− 1
2
|ri,j − ri,j−1|2 +

∑

i,j

∆yαi− 1
2 ,j
|ri,j − ri−1,j |2

+
∑

i,j

∆y |(αux)i,j − (αux)i−1,j |2
1

αi− 1
2 ,j

+
∑

i,j

∆x |(αuy)i,j − (αuy)i,j−1|2
1

αi,j− 1
2


 . (45)

17



Proof. Let qh = (r, ux, uy)Th ∈ Ker Ph,�κ=1,α. This implies that
∑
i,j

∆x∆yαi,jri,j = 0. Using the

discrete weighted Poincaré-Wirtinger inequality (see Proposition B.2 of Appendix B) on r with
(µi,j , µi− 1

2 ,j
, µi,j− 1

2
) = (αi,j , αi− 1

2 ,j
, αi,j− 1

2
), we obtain

∑

i,j

∆x∆yαi,jr
2
i,j ≤ 2‖α‖2∞

∥∥∥∥
1

α

∥∥∥∥
2

∞

L2
x + L2

y

min(∆x,∆y)


∑

i,j

∆xαi,j− 1
2
|ri,j − ri,j−1|2

+
∑

i,j

∆yαi− 1
2 ,j
|ri,j − ri−1,j |2


 . (46)

As far as ux is concerned since for all j ∈ J1, NyK, 0 =
Nx∑
k=1

(ux)k,j∆x =
Nx∑
k=1

(αux)k,j
1

αk,j
∆x, by

applying the 1D discrete Poincaré inequality (see Proposition B.1 of Appendix B) to the sequence

k 7→ (αux)k,j with the weights (µk, µk− 1
2
) = (

1

αk,j
,

1

αk− 1
2 ,j

), we obtain for all j ∈ J1, NyK

Nx∑

k=1

∆x
1

αk,j
(αux)2

k,j ≤ ‖α‖∞
∥∥∥∥

1

α

∥∥∥∥
∞

L2
x

∆x

Nx∑

k=1

|(αux)k,j − (αux)k−1,j |2
1

αk− 1
2 ,j

.

By multiplying by ∆y and by summing over j, we have

∑

i,j

∆x∆yαi,j(ux)2
i,j ≤ ‖α‖∞

∥∥∥∥
1

α

∥∥∥∥
∞

L2
x

∆x

∑

i,j

∆y |(αux)i,j − (αux)i−1,j |2
1

αi− 1
2 ,j

. (47)

The same analysis holds for uy such that for all i ∈ J1, NxK, 0 =
Ny∑
`=1

(uy)i,`∆y =
Ny∑
`=1

(αuy)i,`
1

αi,`
∆y,

and we finally obtain

∑

i,j

∆x∆yαi,j(uy)2
i,j ≤ ‖α‖∞

∥∥∥∥
1

α

∥∥∥∥
∞

L2
y

∆y

∑

i,j

∆x |(αuy)i,j − (αuy)i,j−1|2
1

αi,j− 1
2

. (48)

With (46), (47) and (48), the result follows.

To prove inequality (38), we first prove the following Lemma which shows that qh,2 tends
exponentially fast to the projection of its initial condition on Ker Lh,�κ=1,α (Items 2. and 3. above):

Lemma 4.6. There exists a constant Kα(T) > 0 depending on T and α such that

∀t ≥ 0,
∥∥∥qh,2 − Ph,�κ=1,αP

h,�
α q0

h

∥∥∥
l2α

(t) ≤
∥∥∥(1− Ph,�κ=1,α) ◦ Ph,�α q0

h

∥∥∥
l2α

exp

(
−a? min(∆x,∆y)

2MKα(T)
t

)
.

(49)

Proof. Let us define q̂h = qh,2−Ph,�κ=1,αPh,�α q0
h := (r̂, û)Th . The idea is to apply the energy estimate

of Theorem 4.1 to q̂h and then the Poincaré inequality of Lemma 4.5. For this, we first remark
that q̂h satisfies (19). Indeed, qh,2 satisfies (40), and Ph,�κ=1,αPh,�α q0

h does not depend on time and
is in the kernel of Lh,�κ=1,α. Then, q̂h is solution of (19) and with Theorem 4.1, we have

1

2

d

dt
‖q̂h‖2l2α (t) = − a?

2M

∑

Γij

|Γij |
(
αij |r̂i − r̂j |2 +

1

αij

∣∣∣
(

(αû)i − (αû)j

)
· nij

∣∣∣
2
)

= − a?
2M


∑

i,j

∆xαi,j− 1
2
|r̂i,j − r̂i,j−1|2 +

∑

i,j

∆yαi− 1
2 ,j
|r̂i,j − r̂i−1,j |2

+
∑

i,j

∆y |(αûx)i,j − (αûx)i−1,j |2
1

αi− 1
2 ,j

+
∑

i,j

∆x |(αûy)i,j − (αûy)i,j−1|2
1

αi,j− 1
2


 .(50)

18



Moreover, the initial condition of q̂h is Ph,�α q0
h−Ph,�κ=1,αPh,�α q0

h, which belongs to KerPh,�κ=1,α. Thus,
applying (44) of Lemma 4.4, it follows that q̂h(t) belongs to Ker Ph,�κ=1,α for all t ≥ 0 and we can
apply Lemma 4.5 to estimate the right-hand side of (50). This leads to

1

2

d

dt
‖q̂h‖2l2α (t) ≤ −a? min(∆x,∆y)

2MKα(T)
‖q̂h‖2l2α (t).

Then Applying Grönwall’s lemma, we obtain (49) because q̂0
h = (1− Ph,�κ=1,α) ◦ Ph,�α q0

h.

Now, we are able to prove Theorem 4.3 (Item 4. above). By applying Lemma 4.6, we have for
all t ≥ 0

∥∥∥qh,2 − Ph,�α q0
h

∥∥∥
l2α

(t) ≥
∥∥∥Ph,�α q0

h − Ph,�κ=1,αP
h,�
α q0

h

∥∥∥
l2α

(t)−
∥∥∥qh,2 − Ph,�κ=1,αP

h,�
α q0

h

∥∥∥
l2α

(t),

≥
∥∥∥(Id− Ph,�

κ=1,α) ◦ Ph,�
α q0

h

∥∥∥
(

1− exp

(
−a? min(∆x,∆y)

2MKα(T)
t

))
. (51)

Since the right-hand side of (51) is a growing function of time, we can obtain a lower bound
by evaluating it at any time; we set C =

∥∥∥(Id− Ph,�
κ=1,α) ◦ Ph,�

α q0
h

∥∥∥ and choose t0 = C2M with

C2 = Kα(T)
a?

and we obtain: ∀t ≥ C2M it holds that

∥∥∥qh,2 − Ph,�α q0
h

∥∥∥
l2α

(t) ≥ C
(

1− exp

(
−min(∆x,∆y)

2

))
. (52)

Using that 1− exp (−x/2) ≥ x/3 for x ∈ [0; 1], Eq. (52) implies that for min(∆x,∆y) ≤ 1

∀t ≥ C2M,
∥∥∥qh,2 − Ph,�α q0

h

∥∥∥
l2α

(t) ≥ C

3
min(∆x,∆y). (53)

In the sequel, we assume that C is strictly positive, which is the case for almost all functions
q0
h ∈ l2α(T)3. Let us now suppose that

C1M ≤ C3 min(∆x,∆y) with C3 =
C

6
,

then we obtain from (41) and (53) that

∀t ≥ C2M,
∥∥∥qh − Ph,�α q0

h

∥∥∥
l2α

(t) ≥ C3 min(∆x,∆y)

for any M ≤ C3

C1
min(∆x,∆y).

Theorem 4.3 tells us that the wrong behavior of the standard Godunov scheme is due at the
same time to a wrong kernel (the image of (Id−Ph,�

κ=1,α)◦Ph,�
α is "too large") and to a fast diffusion

rate, at least proportional to min(∆x,∆y)
M . There are thus two options to propose a correction to this

scheme, namely restoring a correct kernel by setting κ = 0 or drastically diminishing the diffusion
rate by setting κ = M . If none of these solutions is used, then a possible (but expensive) solution is
to choose (∆x,∆y) of the size of M . These three possibilities are studied in the next subsections.

4.3.2 Correction of the Godunov scheme on a Cartesian mesh

Theorem 4.7. Let qh(t) be a solution of scheme (19) with initial condition q0
h.

1. With κ = 0, for all q0
h ∈ l2α(T)3, and all C1 > 0 we have

∥∥∥q0
h − Ph,�α q0

h

∥∥∥
l2α

= C1M =⇒ ∀t ≥ 0,
∥∥∥qh − Ph,�α q0

h

∥∥∥
l2α

(t) ≤ C1M. (54)

2. When κ = M, for all q0
h ∈ l2α(T)3 and all C1, C2 > 0 , there exists C3(C1, C2, q

0
h) > 0 such

that ∥∥∥q0
h − Ph,�α q0

h

∥∥∥
l2α

= C1M =⇒ ∀t ∈ [0;C2M ],
∥∥∥qh − Ph,�α q0

h

∥∥∥
l2α

(t) ≤ C3M (55)

where C3 does not depend on M .

19



Proof. By linearity of Lh,�κ,α , the solution qh of (10) given by scheme (19) with initial condition q0
h

can be written as
qh = qh,1 + qh,2

where qh,1 is the solution of 


∂t(αqh,1) +

Lh,�κ,α
M

(qh,1) = 0,

qh,1(t = 0) = q0
h − Ph,�α q0

h

(56)

and qh,2 is the solution of 


∂t(αqh,2) +

Lh,�κ,α
M

(qh,2) = 0,

qh,2(t = 0) = Ph,�α q0
h.

(57)

We have

∀t ≥ 0,
∥∥∥qh − Ph,�α q0

h

∥∥∥
l2α

(t) =
∥∥∥qh,1 + qh,2 − Ph,�α q0

h

∥∥∥
l2α

(t)

≤ ‖qh,1‖l2α (t) +
∥∥∥qh,2 − Ph,�α q0

h

∥∥∥
l2α

(t)

≤ ‖qh,1‖l2α (0) +
∥∥∥qh,2 − Ph,�α q0

h

∥∥∥
l2α

(t)

≤
∥∥∥q0
h − Ph,�α q0

h

∥∥∥
l2α

+
∥∥∥qh,2 − Ph,�α q0

h

∥∥∥
l2α

(t) (58)

because scheme (19) is dissipative when κ ≥ 0 (see Theorem 4.1). If
∥∥q0
h − Ph,�α q0

h

∥∥
l2α

= C1M,

then (58) shows that we need to find an upper bound for the function

t 7→
∥∥∥qh,2 − Ph,�α q0

∥∥∥
l2α

(t)

where qh,2 is the solution of (57).
Assume that κ = 0. Since Ph,�α q0

h ∈ Eh,�α = Ker Lh,�κ=0,α we have Lh,�κ=0,α

(
Ph,�α q0

h

)
= 0 and

qh,2(t) = Ph,�α q0
h for all t ≥ 0 is the solution of (57). Then of course

∥∥qh,2 − Ph,�α q0
∥∥
l2α

(t) = 0

and (58) reduces to
∀t ≥ 0,

∥∥∥qh − Ph,�α q0
h

∥∥∥
l2α

(t) ≤ C1M

if
∥∥q0
h − Ph,�α q0

h

∥∥
l2α

= C1M . The first point is proved.

Assume now that κ > 0. We have Ph,�α q0
h ∈ Eh,�α ) Ker Lh,�κ,α and we can have Lh,�κ,α

(
Ph,�α q0

h

)
6= 0.

Since Ph,�α q0
h ∈ Eh,�α = Ker Lh,�κ=0,α, we have Lh,�κ=0,α

(
Ph,�α q0

h

)
= 0 and thus

∂t

(
αPh,�α q0

h

)
+

Lh,�κ,α
M

(
Ph,�α q0

h

)
=

Lh,�κ,α − Lh,�κ=0,α

M

(
Ph,�α q0

h

)
.

Combining this with (57), setting q?h := qh,2 − Ph,�α q0
h and using linearity, we deduce that

∂t (αq?h) +
Lh,�κ,α
M

q?h =
Lh,�κ=0,α − Lh,�κ,α

M

(
Ph,�α q0

h

)
. (59)

Taking the weighted scalar product of (59) with q?h
α , we obtain

〈
∂t (αq?h) ,

q?h
α

〉

α,h

+

〈
Lh,�κ,α
M

q?h,
q?h
α

〉

α,h

=

〈
Lh,�κ=0,α − Lh,�κ,α

M

(
Ph,�α q0

h

)
,
q?h
α

〉

α,h

. (60)

It follows from the proof of Theorem 4.1 that
〈
Lhκ,α
M

q?h,
q?h
α

〉

α,h

=
a?
M

∑

Γij

(
αij |r?i − r?j |2 +

κ

αij

∣∣∣
(

(αu?)i − (αu?)j
)
· nij

∣∣∣
2
)
≥ 0.

Thus, from (60) and using the Cauchy-Schwarz inequality, we obtain

1

2

d

dt
‖q?h‖2l2α (t) ≤

∥∥∥∥∥
Lh,�κ=0,α − Lh,�κ,α

Mα

(
Ph,�α q0

h

)∥∥∥∥∥
l2α

‖q?h‖l2α (t)
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which leads to
d

dt
‖q?h‖l2α (t) ≤

∥∥∥∥∥
Lh,�κ=0,α − Lh,�κ,α

Mα

(
Ph,�α q0

h

)∥∥∥∥∥
l2α

. (61)

For any q, a direct calculation shows that (Lh,�κ=0,α − Lh,�κ,α )q is proportional to κ and does not
depend on M . So (61) and the fact that q?h(t = 0) = 0 show that ∃Ĉ3(α, q0

h,∆x,∆y, a?) such that

‖q?h‖l2α (t) ≤ Ĉ3
κ

M
t ∀t ≥ 0. (62)

Then from (58) and (62) when κ = M , we obtain (55) with C3 = C1 + C2Ĉ3.

Remark 4.8. It is important to stress that the constant C3 in item 2 of Theorem 4.7 depends on
a concept of discrete smoothness for q0

h detailed in the next subsection and that, in the worst case,
it may behave proportionally to 1

min(∆x,∆y) .

4.3.3 The case of a very fine mesh

We observe that if the right-hand side of (61) can be bounded by Cκmax(∆x,∆y) with C not
depending on (κ,M,∆x,∆y), then we shall also have a bound of the type (55) if κ = 1 (uncorrected
Godunov scheme) and max(∆x,∆y) ≤ C0M . For this, we introduce the definition of discrete
regularity:

Definition 4.9. Let qh := (rh, uh,x, uh,y) be a family of discrete fields parameterized by (∆x,∆y);
then we define H2

α(T)3 to be the set of families of discrete fields such that

‖qh‖H2
α(T) := sup

∆x>0,∆y>0

∥∥∥∥δc,x
(

1

α
δs,x(αuh,x)

)∥∥∥∥
l2α(T)

+

∥∥∥∥δc,y
(

1

α
δs,y(αuh,y)

)∥∥∥∥
l2α(T)

< +∞

with the following definitions for the centered and staggered finite differences in the horizontal and
vertical directions

(δc,xv)i,j :=
(vi+ 1

2 ,j
− vi− 1

2 ,j
)

∆x
, (δs,xz)i+ 1

2 ,j
:=

(zi+1,j − zi,j)
∆x

,

(δc,yw)i,j :=
(wi,j+ 1

2
− wi,j− 1

2
)

∆y
, (δs,yz)i,j+ 1

2
:=

(zi,j+1 − zi,j)
∆y

.

This concept allows us to prove that with discrete regular initial conditions, refining the mesh
is also a possibility to obtain acceptable results on an O(M) time scale when using the standard
Godunov scheme. Indeed, the following theorem holds:

Theorem 4.10. Let qh(t) be a solution of scheme (19) with initial condition q0
h. When κ = 1, for

all q0
h such that Ph,�α q0

h ∈ H2
α(T)3, and all C0, C1, C2 > 0, there exists C3(C0, C1, C2, q

0
h) > 0 that

does not depend on M, ∆x and ∆y such that




∆x ≤ C0M,

∆y ≤ C0M,∥∥q0
h − Ph,�α q0

h

∥∥
l2α

= C1M

=⇒ ∀t ∈ [0;C2M ],
∥∥∥qh − Ph,�α q0

h

∥∥∥
l2α

(t) ≤ C3M. (63)

Proof. For any qh := (rh, uh,x, uh,y)i,j , a direct calculation shows that

(
(Lh,�κ=0,α − Lh,�κ,α )

Mα
q

)

i,j

=
a?κ

2M




0
∆x
(
δc,x

[
1
αδ

s,x(αuh,x)
])
i,j

∆y
(
δc,y

[
1
αδ

s,y(αuh,y)
])
i,j


 . (64)

Therefore, if Ph,�α q0
h ∈ H2

α(T)3, then (61) and the fact that q?h(t = 0) = 0 show that

‖q?h‖l2α (t) ≤ a?κ

2M
‖Ph,�α q0

h‖H2
α(T) max(∆x,∆y)t ∀t ≥ 0. (65)

Then from (58) and (65) when κ = 1 and max(∆x,∆y) ≤ C0M , we obtain (63) with C3 =
C1 + a?

2 C0C2‖Ph,�α q0
h‖H2

α(T).
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5 Numerical results on the wave equation
In this section, we perform some numerical simulations on the linear wave equation with poros-
ity (10) using the Godunov scheme (18). The aim is to illustrate all the theoretical results of the
article. A 2D periodic domain T = [0, 1[×[0, 1[ is considered. All simulations were run with an
Euler explicit time stepping with a CFL number of 0.4. The parameters a? andM are set to a? = 1
and M = 10−4. We consider a regular Cartesian mesh containing 1 600 cells (∆x = ∆y = 0.025)
and an unstructured triangular mesh containing 2 326 cells generated by GMSH [19].

5.1 A stationary case
We firstly illustrate the influence of the mesh type (triangular or Cartesian) on the kernel of the
Godunov scheme. The initial condition q0 = (r0,u0)T is chosen such that q0 ∈ Eα. We take





r0(x, y) = 1,

u0(x, y) =
∇× ψ
α

(x, y)
(66)

where

α(x, y) =
1

2
+

1

2
exp

(
−‖(x, y)− (0.5, 0.5)‖2

0.252

)
, (67)

ψ(x, y) =
1

π
sin2(πx) sin2(πy). (68)

This expression of ψ corresponds to the "vortex in a box" test case of [9]. We note that ψ is very
important from a numerical point of view because it allows to define q0

h such that q0
h ∈ Eh,�α on

Cartesian meshes and such that q0
h ∈ Eh,4α on triangular meshes. Since q0 ∈ Eα, the field q defined

by
∀t ≥ 0, ∀(x, y) ∈ T, q(t, x, y) = q0(x, y) (69)

is solution of the linear wave equation with porosity (10). We study if (69) is or is not satisfied
at the discrete level when we solve system (10) with Godunov’s scheme (18) on a Cartesian or a
triangular mesh with κ = 0 or κ = 1.

In Figure 1, we plot the norm of αu obtained after 1 000 iterations on Cartesian and triangular
meshes with κ = 1 and κ = 0. The solution is preserved over time on triangular meshes with κ = 1
and κ = 0 but is also preserved over time on Cartesian meshes with κ = 0. This result illustrates
Proposition 3.7 and Proposition 3.9.

5.2 A well-prepared initial condition
We now consider a well-prepared initial condition. It means that the initial condition can be split
into two components, a component in the kernel Eα plus a component of orderM in the orthogonal
set to the kernel, E⊥α . We illustrate the theoretical results Theorem 4.3 and Theorem 4.7 on the
evolution with respect to time of the deviation

∥∥qh − Ph,4 or �
α q0

h

∥∥
l2α

with the different schemes on
triangular and Cartesian meshes. The initial condition q0

h is given by

q0
h = Mq0

h,1 + q0
h,2

where q0
h,2 ∈ Eh,� or 4

α is given by (66) and q0
h,1 ∈

(
Eh,� or 4
α

)⊥
satisfying ‖q0

h,1‖l2α = 1. More
precisely, we take q0

h,1 = q̄h,1/ ‖q̄h,1‖l2α with




r̄0
h,1(x, y) =

(
sin(2πx) cos(2πy)

α(x, y)

)

h

,

ū0
h,1 = ∇hφh

where

φh(x, y) = (sin(2πx) cos(2πy))h .

The discrete field rh,1 is defined at the cell centers, and so is φh on Cartesian meshes; but on a
triangular mesh φh ∈Wh, then φh is defined at the edge midpoints.

22



Reference solution (initial condition), triangles (left) and Cartesian (right)

Triangles, κ = 1 Cartesian, κ = 1

Triangles, κ = 0 Cartesian, κ = 0

Figure 1: Norm of αu obtained after 1 000 iterations with the Godunov scheme (18) with κ = 1
and κ = 0 on triangular and Cartesian meshes.
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Figure 2: Norm of the deviation ‖qh − Ph,4 or �
α q0

h‖l2α(t) obtained with the Godunov scheme with
κ = 1, κ = M and κ = 0 on a Cartesian mesh and with κ = 1 on a triangular mesh for times of
order M : 0 ≤ t/M ≤ 10 (top) and for long times: 0 ≤ t/M ≤ 10/M (bottom).

In Figure 2, we plot the evolution with respect to time of the deviation
∥∥q0
h − Ph,4 or �

α q0
h

∥∥
l2α

with scheme (18) with κ = 1, κ = M and κ = 0 on Cartesian meshes and for κ = 1 on triangular
meshes. The Godunov scheme (κ = 1) on a triangular mesh is accurate at low Mach number.
Indeed, the deviation remains of order M , even for long times (see Theorem 4.2). The Cartesian
case is very different. The Godunov scheme (κ = 1) on a Cartesian mesh is not accurate at low
Mach number, it introduces a deviation greater than ∆x = ∆y = 0.025, even for a time of orderM
(see the case κ = 1 on a Cartesian mesh in Theorem 4.3). The scheme has to be corrected on a
Cartesian mesh at low Mach number. With κ = 0, the deviation remains of order M , even for
long times (see the case κ = 0 in Theorem 4.7). With κ = M , the deviation remains of order M
for times of order M (see the case κ = M in Theorem 4.7), but this is not the case for long times
(times of order one).

6 The non linear case

6.1 Numerical schemes
Since α is regular and does not depend on time, we can write system (1) as

∂tW +∇ · f(W) = S(W)∇α (70)

where W = (α, αρ, αρu)T and the flux f and the source term S(W) are given by

f(W) =




0
αρu

αρu⊗ u + αpI


 S(W) =




0
0
p


 .

The numerical scheme for system (70) is given by

Wn+1
i −Wn

i

∆t
+

1

|Ωi|
∑

Γij⊂∂Ωi

|Γij |F−(Wn
i ,W

n
j ,nij) = 0 (71)

where W = (α, αρ, αρu)T and F− is the non conservative numerical flux. In this paper, we use
two different fluxes, a VFRoe flux and the well-balanced Lax-Friedrich scheme of [26].
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6.2 Well-balanced Lax-Friedrich scheme of [26]
The well-balanced Lax-Friedrich scheme of [26] allows to maintain equilibrium states and is easy
to implement. The non-conservative numerical flux is given by

FLF-WB
− (WL,WR,n) = FLF(WL,W−

R,n) (72)

where FLF corresponds to the standard Lax-Friedrich numerical flux

FLF(WL,WR,n) =
f(WL) + f(WR)

2
· n−

max
i∈{L,R}

(|ui · n|+ ci)

2
(WR −WL)

and the state W−
R = (α, αρ, αρu)−R is defined such that





α−R = αL,
(αρu)−R = (αρu)R,
‖u−R‖2

2
+ h(ρ−R) =

‖uR‖2
2

+ h(ρR)

where h(ρ) = κγργ−1/(γ − 1). For the existence and uniqueness of W−R , we refer to [26].

6.3 VFRoe scheme
We want to write a non-linear scheme that is consistent with the study we did in the linear case (see
section 3 and section 4). We recall that in the linear case, Godunov’s scheme (18) can be interpreted
as a VFRoe scheme [18, 6] in variables (α, r, αu) (see Remark 3.2). The VFRoe solver consists in a
local linearization of a Riemann problem which is simpler to handle since it only deals with linear
problems and avoids the complex exact resolution of the Riemann problem with porosity jump.
Then, in the non-linear case, we write a VFRoe scheme in variables Y = (α, ρ, αρu)T . Another
advantage of this set of variables is that we get a scheme that is well-balanced in the sense that it
exactly preserves the one-dimensional steady states. For the VFRoe scheme (with another set of
variables) applied to system (70), we refer to [40, 39]. The VFRoe numerical flux is given by

FVFRoe
− (WL,WR,n) = f(R(0−,YL,YR,n)) · n (73)

where R(0−,YL,YR,n) corresponds to the solution in ξ/t = 0− of the linearized Riemann problem
that is detailed in Appendix C.

The VFRoe solver considered does not allow to treat the resonant cases when eigenvalues
λ1 = u · n − c or λ2 = u · n + c vanish. The resonant cases are out the scope of this paper since
we focus here on the accuracy at low Mach number. For the resonant cases, we refer to [10].

6.4 All-Mach VFRoe scheme
The flux in the all-Mach VFRoe scheme is given by

FAM-VFRoe
− (Wi,Wj ,n) = FVFRoe

− (Wi,Wj ,n)

+ (θij − 1)
αiĉij
α̂ij

(
0

[((αρu)i − (αρu)j) · n]n

)
(74)

where α̂ij and ĉij correspond to VFRoe average states (see (80) in the Appendix) and θij =
min(1,max(Mi,Mj)) = min(1,max(‖ui‖/ci, ‖uj‖/cj)). We remark that in (74), we recover the
classical VFRoe scheme if θij = 1. This means that we correct the numerical flux only if both
states Wi and Wj are subsonic.

6.5 Numerical results
We perform a one dimensional test to check the robustness of the low Mach corrected scheme
but also the capability of the scheme to maintain equilibrium states across a discontinuous cross-
section. Indeed, since the low Mach correction reduces the numerical diffusion of the scheme,
stability of this scheme for unsteady low Mach flow has to be tested. Moreover, it is well-known
that schemes which do not maintain the equilibrium states may give unsatisfactory results when
refining the mesh [26], so that the well-balanced property also has to be tested. Then, we perform
a two dimensional test to check the low Mach accuracy of the different schemes on triangular and
Cartesian meshes.

For all simulations, we use the following pressure law p(ρ) = κργ where κ = 1 and γ = 1.5 and
CFL = 0.4.
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6.5.1 A one dimensional unsteady subsonic flow

Let us denote U = (α, ρ, u). The initial condition is a Riemann problem where the left state UL

and the right state UR are given by

UL = (1, 1, 0.001), UR = (0.75, 0.3, 0.005).

The domain is [0, 1] and the discontinuity in the initial condition is set to x = 0.5. The exact
solution is 1-rarefaction followed by a stationary contact, then followed by a 3-shock. For an exact
solution, we refer to [27]. The Mach number of the solution varies from 4× 10−4 to 0.85 and then
allows to test the robustness of the all-Mach VFRoe scheme. Moreover, since α is discontinuous
between UL and UR, we also test the capability of the scheme to preserve the two invariants of
the stationary contact αρu and u2/2 + h(ρ) where h(ρ) = κγργ−1/(γ − 1).

In Figure 3, we plot the porosity (or cross-section) α, the density ρ, the velocity u, the Mach
number, αρu and u2/2 + h(ρ) at time t = 0.25 obtained with the well-balanced Lax-Friedrich
scheme [26], the VFRoe scheme and the all-Mach VFRoe scheme. The all-Mach VFRoe scheme is
stable. In fact, as for the constant porosity case, numerical tests seem to show that the all-Mach
scheme is stable under a degenerated CFL condition which is exactly the half of the classical one
(see [13, 5] for more details). This justifies why all numerical results are obtained with CFL = 0.4.
As expected, the all-Mach VFRoe scheme is the least diffusive scheme and the well-balanced Lax-
Friedrich scheme is the most diffusive one. Looking at the stationary contact in x = 0.5, we remark
that the two invariants of the stationary contact αρu and u2/2 + h(ρ) are preserved across the
discontinuity of α. Then, the VFRoe and all-Mach VFRoe schemes are also well-balanced, like the
well-balanced Lax-Friedrich scheme.

6.5.2 Two-dimensional low Mach flow

We consider a two-dimensional low Mach vortex flow. Domain, meshes and boundary conditions
are the same as for the wave equation (see section 5). The initial condition is an exact, steady and
regular solution of the incompressible system (8). Then, (7) tells us that the solution of (3) will
remain close to the initial condition since the latter solves (8) for all times. Note that in order to
build an exact solution of the incompressible system (8), we adapted the isentropic vortex solution
of [43, 44] to the case of variable porosity fields. The initial condition is given by





α = α0α̃
(0)
0 = α0Ωc1 ,

ρ0 = ρ0

(
ρ̃

(0)
0 +M2ρ̃

(2)
0

)
= ρ0

(
1 +M2c2Ωc3

)
,

u0 = u0ũ
(0)
0 = u0

∇× ψ
α

where Ω = exp

(
− (x− 0.5)2 + (y − 0.5)2

2×R2

)
, R = 0.15, α0 = 1, ρ0 = 1, u0 = M × c(ρ0), c1 = 0.25,

c3 = 2× (1− c1), c2 = −1/(α2
0c3) and ψ = RΩ. We can easily check that (ρ̃

(2)
0 , ũ(0)

0 ) is regular and
satisfies {

∇ · (α̃ũ)
(0)
0 = 0,(

ũ(0)
0 · ∇x̃

)
ũ(0)

0 +∇x̃ρ̃
(2)
0 = 0.

We firstly study from a numerical point of view if the background (order 0 in the asymptotic
expansion) steady incompressible solution is preserved over time and secondly if the different
schemes are accurate at low Mach number in the sense that the amplitude of the perturbation
with respect to the background incompressible solution satisfies (7) at the discrete level.

In Figure 4 and Figure 5, we plot the norm of αu obtained at time t = 2s with M = 10−4

on Cartesian and triangular meshes with the well-balanced Lax-Friedrich, the VFRoe and the
all-Mach VFRoe schemes. The incompressible steady velocity seems to be preserved over time
with the all-Mach VFRoe scheme on triangular and Cartesian meshes and with the VFRoe scheme
on triangular meshes. With the other schemes, the solution is extremely diffused. Note that the
accuracy problem of the Lax-Friedrich scheme at low Mach number on triangular mesh was already
illustrated in [36] for the uniform porosity case.

In Figure 6, we study the low Mach accuracy of the different numerical schemes in the sense
that we check whether (7) is or is not satisfied at the discrete level. For that, we study the
amplitude of the deviation of the numerical solution from the incompressible solution (which is
the initial condition) with respect to the Mach number. We plot the norm of the deviation for the
dimensionless density ρ̃ and the dimensionless field α̃ũ for Mach numbers M ranging from 10−1
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Figure 3: One dimensional unsteady subsonic flow : porosity (or cross section) α, density ρ,
velocity u, Mach number, αρu and u2/2 + h(ρ) obtained at time t = 0.25 with the well-balanced
Lax-Friedrich scheme (referenced by LF-WB), the VFRoe scheme and the all-Mach VFRoe scheme
(referenced by AM-VFRoe). The mesh contains 200 cells.
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Reference solution (initial condition) Cartesian, well-balanced Lax-Friedrich

Cartesian, VFRoe Cartesian, all-Mach VFRoe

Figure 4: Norm of αu obtained at final time t = 2s with the well-balanced Lax-Friedrich
scheme (72), the VFRoe scheme (73) and the all-Mach VFRoe scheme (74) on Cartesian meshes
with an initial Mach number M = 10−4.
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Reference solution (initial condition) Triangles, well-balanced Lax-Friedrich

Triangles, VFRoe Triangles, all-Mach VFRoe

Figure 5: Norm of αu obtained at final time t = 2s with the well-balanced Lax-Friedrich
scheme (72), the VFRoe scheme (73) and the all-Mach VFRoe scheme (74) on triangular meshes
with an initial Mach number M = 10−4.
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ũ

) i
n

co
m

p
‖ 2

slope=-1

Cartesian, LF-WB

Cartesian, VFRoe

Cartesian, AM-VFRoe

10−7 10−6 10−5 10−4 10−3 10−2 10−1

Mach number

10−7

10−6

10−5

10−4

10−3

10−2

10−1

‖(
α̃

ũ
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Figure 6: Norm of the deviation from the incompressible solution for the dimensionless density and
dimensionless field α̃ũ at final time t = 2s for Mach numbers M ranging from 10−1 to 10−7 with
the well-balanced Lax-Friedrich scheme (72), the VFRoe scheme (73) and the all-Mach VFRoe
scheme (74) on Cartesian and triangular meshes.

to 10−7. Recall that α̃, ρ̃ and ũ are defined by (2) where here α0 = ρ0 = 1 and u0 = c(ρ0) ×M.
Note that it is very important to initialize the field αu and compute the incompressible solution by
using (24) for triangular meshes and (29) for Cartesian meshes, in which the discrete values of ψ
are interpolated from the analytical expression of ψ, because otherwise (i.e. if the discrete values of
αu are initialized directly from their analytical expression) an error of the order of the space step
will be introduced and will hide the deviation that scales like the Mach number. We observe that
the VFRoe scheme is accurate at low Mach number on triangles while the all-Mach VFRoe scheme
is the only one which is accurate on Cartesian and triangular meshes. Indeed, for these schemes,
the density deviation is of order M2 and the velocity deviation is of order M , as expected. The
well-balanced Lax-Friedrich scheme and the VFRoe scheme on Cartesian meshes are not accurate
at low Mach number because their velocity deviation is of order M0, and, moreover, the density
deviation of the VFRoe scheme scales like M .

7 Conclusion
In this article, we proposed a well-balanced compressible scheme accurate at low Mach number for
the Euler equations with porosity. The proposed scheme is based on the study that is performed
on the linear wave equation with porosity. Indeed, the low Mach accuracy problem of the Godunov
scheme can be understood and cured in the linear case. For this, we extended the discrete Hodge
decomposition of [16] to a weighted L2 space in order to take into account the porosity, and we
extended to the discrete level the properties that were proven by studying the modified equation
related to the Godunov scheme in [14]. We enlightened the influence of the cell geometry on
the accuracy of this scheme. In the triangular case, the stationary space of the Godunov scheme
approaches well enough the continuous space of constant pressures and divergence-free velocity
fields (up to the porosity factor), while this is not the case in the Cartesian case. On Cartesian
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meshes, we have to delete the usual numerical diffusion on the velocity field to preserve constant
pressure fields and divergence-free velocity fields (up to the porosity factor). Moreover, as the aim
was to design an all Mach regime scheme, the correction that is introduced varies continuously
with respect to the Mach number. As a result, on Cartesian meshes, we propose to multiply the
numerical diffusion on the velocity field by the Mach number M when M is smaller then 1. We
check with numerical tests that this corrected scheme is accurate at low Mach number. Note that
these conclusions are only valid when the boundary conditions are periodic: non-periodic boundary
conditions may require additional analysis that was not performed in the present work.

The proposed non-linear scheme is based on a VFRoe solver and is a non linear extension of
the Godunov scheme proposed for the linear case. The VFRoe solver avoids the exact resolution
of a Rieamnn problem with variable porosity and is easy to implement. Like in the linear case,
the VFRoe scheme for the non linear system is not accurate at low Mach number on Cartesian
meshes but is accurate at low Mach number on triangular meshes. Based on the linear study, a fix
is proposed for Cartesian meshes. This fix is easy to implement, requires only the modification of
a few lines of code and allows to recover the accuracy at low Mach number on Cartesian meshes.

Further research could be driven by the following issues : First, if the porosity α is discontinuous,
then care must be taken in the interpretation and the numerical treatment of System (1). Such
questions are dealt with for example in [27] and we note that, in the particular case of Section 6.5.1,
the scheme proposed in the present work computes a relevant numerical approximation. A second
topic that needs to be studied is the extension of the approach presented here to the full Euler
system with energy balance.

Appendices
A Kernel of the Godunov and modified Godunov schemes on

general meshes
We prove Lemma 3.4:

Proof. The proof uses the fact that for any qh ∈ Ker Lhκ,α defined by (20), we have

∑

Γij

|Γij |
[
αij(ri − rj)2 +

κ

αij

((
(αu)i − (αu)j

)
· nij

)2
]

= 0. (75)

This equality is implied by the energy estimate (36) since any element in the kernel is stationary.
Since for all i, j we have αij > 0, (75) leads to the fact ri = rj for all neighboring cells (i, j)

and thus
∃c ∈ R, ∀i ∈ J1, NK, ri = c. (76)

If κ > 0, we also deduce from (75) that

∀i ∈ J1, NK, ∀j ∈ {neighboring cell of i}, (αu)i · nij = (αu)j · nij ,

which allows to write (21). If κ = 0, we can only deduce (76) from (75). Nevertheless, by injecting
ri = c in the first relation of (20), we obtain

∀i ∈ J1, NK, ∀j ∈ {neighboring cell of i},
∑

Γij⊂∂Ωi

|Γij |
(
(αu)i + (αu)j

)
· nij = 0,

which allows to write (22).
Let us prove that Ker Lhκ>0,α ( Ker Lhκ=0,α. Let qh ∈ Ker Lhκ>0,α. We have for all i ∈ J1, NK

∑

Γij⊂∂Ωi

|Γij |
(
(αu)i + (αu)j

)
· nij =

∑

Γij⊂∂Ωi

|Γij |
(
(αu)i + (αu)i

)
· nij = 2(αu)i ·

∑

Γij⊂∂Ωi

|Γij |nij = 0

and then qh ∈ Ker Lhκ=0,α.
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B Discrete Poincaré-Wirtinger inequalities with weights
Proposition B.1. (one-dimension) Let T =]a1, b1[ be covered by a uniform rectangular mesh with

Nx cells of size ∆x :=
b1 − a1

Nx
=

Lx
Nx

. Let (µi)1≤i≤Nx be a positive sequence. Let (µi− 1
2
)1≤i≤Nx

be a strictly positive sequence. Set ‖µ‖∞ = supi (µi) and
∥∥∥∥

1

µ

∥∥∥∥
∞

= supi

(
µ−1
i+ 1

2

)
. Then, for any

(φi)1≤i≤Nx (for which we set for the sake of periodicity φ0 = φNx), there holds

Nx∑

i=1

∆xµi
(
φi − φ̄

)2 ≤ ‖µ‖∞
∥∥∥∥

1

µ

∥∥∥∥
∞

L2
x

∆x

Nx∑

k=1

|φk − φk−1|2 µk− 1
2

where φ̄ =
1

Lµ

Nx∑

j=1

∆xµjφj with Lµ =
Nx∑
j=1

∆xµj.

Proof. For all i ∈ J1, NxK, we have

∣∣φi − φ̄
∣∣ =

1

Lµ

∣∣∣∣∣∣

Nx∑

j=1

∆xµj (φi − φj)

∣∣∣∣∣∣

=
1

Lµ

∣∣∣∣∣∣

Nx∑

j=1

∆xµj

i∑

k=j+1

(φk − φk−1)

∣∣∣∣∣∣
≤ 1

Lµ

Nx∑

j=1

∆xµj

Nx∑

k=1

|φk − φk−1| =
Nx∑

k=1

|φk − φk−1|

and then, using the discrete Cauchy-Schwarz inequality, we get

(
φi − φ̄

)2 ≤ Nx
Nx∑

k=1

|φk − φk−1|2 ≤ Nx
∥∥∥∥

1

µ

∥∥∥∥
∞

Nx∑

k=1

µk− 1
2
|φk − φk−1|2 .

By multiplying by µi∆x and by summing over i, we have, since Lx = Nx∆x

Nx∑

i=1

∆xµi
(
φi − φ̄

)2 ≤ Nx

∥∥∥∥
1

µ

∥∥∥∥
∞

Nx∑

i=1

∆xµi

Nx∑

k=1

µk− 1
2
|φk − φk−1|2

≤ ‖µ‖∞
∥∥∥∥

1

µ

∥∥∥∥
∞

L2
x

∆x

Nx∑

k=1

µk− 1
2
|φk − φk−1|2 .

Proposition B.2. (two-dimensions) Let T =]a1, b1[×]a2, b2[ be covered by a uniform rectangu-

lar mesh with cell sizes ∆x × ∆y where ∆x =
b1 − a1

Nx
=

Lx
Nx

and ∆y =
b2 − a2

Ny
=

Ly
Ny

. Let

(µi)1≤i≤Nx,1≤j≤Ny , (µi− 1
2 ,j

)1≤i≤Nx,1≤j≤Ny and (µi,j− 1
2
)1≤i≤Nx,1≤j≤Ny be three strictly positive

sequences. Set ‖µ‖∞ = supi,j (µi,j) and
∥∥∥∥

1

µ

∥∥∥∥
∞

= supi,j

(
µ−1
i− 1

2 ,j
, µ−1
i,j− 1

2

, µ−1
i,j

)
. Then, for any

(φi,j)1≤i≤Nx,1≤j≤Ny (for which we set for the sake of periodicity φ0,j = φNx,j and φi,0 = φi,Ny),
there holds

∑

i,j

∆x∆yµi,j
(
φi,j − φ̄

)2 ≤ 2‖µ‖2∞
∥∥∥∥

1

µ

∥∥∥∥
2

∞

(
L2
x

∆x
+
L2
y

∆y

)
∑

i,j

∆xµi,j− 1
2
|φi,j − φi,j−1|2

+
∑

i,j

∆yµi− 1
2 ,j
|φi,j − φi−1,j |2




where φ̄ =
1

Aµ

∑

k,`

∆x∆yµk,`φk,` with Aµ =
∑
k,`

∆x∆yµk,`.
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Proof. For all (i, j) ∈ J1, NxK× J1, NyK, we have

|φi,j − φ̄| =

∣∣∣∣∣∣
1

Aµ

∑

k,`

∆x∆yµk,` (φi,j − φk,`)

∣∣∣∣∣∣

≤ 1

Aµ

∑

k,`

∆x∆yµk,` (|φi,j − φi,`|+ |φi,` − φk,`|)

≤ 1

Aµ

∑

k,`

∆x∆yµk,`

(∑

n

|φi,n − φi,n−1|+
∑

m

|φm,` − φm−1,`|
)
.

We have to take into account that the sum over n does not depend on (k, `), while the sum over
m depends on ` but not on k. This provides:

|φi,j − φ̄| ≤
∑

n

|φi,n − φi,n−1|+
1

Aµ
Nx∆x∆y‖µ‖∞

∑

`

∑

m

|φm,` − φm−1,`|

|φi,j − φ̄|2 ≤ 2

(∑

n

|φi,n − φi,n−1|
)2

+ 2


 1

Aµ
Nx∆x∆y‖µ‖∞

∑

`,m

|φm,` − φm−1,`|




2

. (77)

The first term in the right-hand side of (77) depends on i but not on j, while the second does not
depend on (i, j). This implies, on the one hand

∑

i,j

∆x∆yµi,j

(∑

n

|φi,n − φi,n−1|
)2

≤ ∆x∆y‖µ‖∞Ny
∑

i

(∑

n

|φi,n − φi,n−1|
)2

≤ ∆x∆y‖µ‖∞N2
y

∑

i,n

|φi,n − φi,n−1|2

≤ L2
y

∆y
‖µ‖∞

∥∥∥∥
1

µ

∥∥∥∥
∞

∑

i,n

∆xµi,n− 1
2
|φi,n − φi,n−1|2 (78)

and, on the other hand

∑

i,j

∆x∆yµi,j


 1

Aµ
Nx∆x∆y‖µ‖∞

∑

`,m

|φm,` − φm−1,`|




2

≤ 1

Aµ
L2
x∆y2‖µ‖2∞


∑

`,m

|φm,` − φm−1,`|




2

≤ 1

LxLy

∥∥∥∥
1

µ

∥∥∥∥
∞
L2
x∆y ‖µ‖2∞NxNy

∥∥∥∥
1

µ

∥∥∥∥
∞

∑

m,l

∆yµm− 1
2 ,`
|φm,` − φm−1,`|2

≤ L2
x

∆x
‖µ‖2∞

∥∥∥∥
1

µ

∥∥∥∥
2

∞

∑

m,l

∆yµm− 1
2 ,`
|φm,` − φm−1,`|2 . (79)

The result follows from (77), (78), (79) and from the fact that ‖µ‖∞
∥∥∥ 1
µ

∥∥∥
∞
≥ 1.

C VFRoe scheme
We now detail how we obtain the solution R(0−,YL,YR,n) in ξ/t = 0− of the linearized Riemann
problem that is used to compute the VFRoe flux (73). Since the variables used for the VFRoe
scheme are Y = (α, ρ, αρu)T , we write system (70) as

∂tY +
∑

i∈{x,y,z}

Bi(Y)∂iY = 0

where
∑

i∈{x,y,z}

Bi(Y)ni =




0 0 0
0 0 nT /α

−ρuu · n −αuu · n + αc2n u · nId + u⊗ n


 .
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Then, R(0−,YL,YR,n) corresponds to the solution in ξ/t = 0− of the linearized Riemann problem

∂tY + (B(Ŷ) · n)∂ξY = 0 with Y(ξ, t = 0) =

{
YL if ξ < 0,
YR elsewhere

where B(Y) · n =
∑
i∈{x,y,z}Bi(Y)ni and Ŷ is defined by

α̂ =
αL + αR

2
, ρ̂ =

ρL + ρR
2

, û =
uL + uR

2
and ĉ = c(ρ̂). (80)

Eigenvalues of B(Y) ·n are λ0 = 0, λ1 = u ·n−c, λ2 = u ·n+c, λ3 = λ4 = u ·n and the associated
left li and right ri eigenvectors are

l0(Y) =
1

α (c2 − (u · n)2)
(1, 0, 0, 0) ,

l1(Y) =
1

2αc

(
ρ(u · n)2

u · n− c , α(u · n + c),−nT
)
,

l2(Y) = − 1

2αc

(
ρ(u · n)2

u · n + c
, α(u · n− c),−nT

)
,

l3(Y) =
(
−ρu · ta,−αu · ta, (ta)T

)
,

l4(Y) =
(
−ρu · tb,−αu · tb, (tb)T

)

and

[r0|r1|r2|r3|r4] (Y) =




α
(
c2 − (u · n)2

)
0 0 0 0

ρ(u · n)2 1 1 0 0
αρc2(u− (u · n)n) α(u− cn) α(u + cn) ta tb


 .

The solution R(0−,YL,YR,n) is given by

R(0−,YL,YR,n) = YL +
∑

λi<0

li(Ŷ)(YR −YL)ri(Ŷ).
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