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Abstract. Turbulence is thought to play a key role in the dynamics of interstellar clouds. Here, we do not seek to
explain its origin or decipher the mechanisms that maintain it, but we start from the observational fact that it is
present. Arnéodo et al. have developped a method based on wavelet analysis to study incompressible turbulence
experiments. We propose to use this method with the same propagator to derive quantitative information on the
structure of a turbulent field. Then we build a synthetic velocity field with the same statistical properties and
we show that a reactive fluid subject to turbulent forcing exhibits self-organised structures that depend on the
chemical species considered. Such effects could explain why observational evidence shows that the bulk of the
mass is distributed smoothly whereas some chemical species are extremely patchy.

Key words. turbulence – methods: numerical – ISM: general – ISM: molecules – ISM: structure

1. Introduction

Turbulence has been believed to play a key role in the
dynamics of molecular clouds for a long time (see for
example Larson 1981; Myers 1983; Scalo 1987; Scalo
1990; Falgarone & Phillips 1990; Falgarone et al. 1994;
Ballesteros-P. et al. 1999; Pety & Falgarone 2000).
However, many questions are still subject to debate. What
is the origin of that turbulence? Is compressibility an es-
sential feature? What is the role of the magnetic field (e.g.
Myers & Khersonsky 1995)? How does the velocity field
couple to other aspects of interstellar cloud dynamics? The
origin of these difficulties can be traced to at least two
facts:

– The turbulence regime is far out of reach of present
computational model possibilities. 3D models are lim-
ited to 10243 grids, leading to Reynolds numbers
several orders of magnitude below that in “real”
clouds. Most self-consistent models have stressed large-
scale turbulence in the atomic and ionised gas (e.g.
Vázquez-Semadeni et al. 1995), where the state equa-
tion and the cooling function of the gas are simpler
than inside molecular clouds;
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– Observational data are difficult to compile. Relevant
information on the velocity field requires both a high
spectral resolution and a wide range of spatial scales.
Only fully sampled, large maps at the highest spatial
and spectral resolution carry enough information. The
observed cloud has to be homogeneous, and devoid of
internal active objects (which is almost impossible).
Furthermore, the information we collect is integrated
along the line of sight and needs to be de-convolved.

1.1. Analysis of turbulence

Progress has been made recently along two lines. Lis et al.
(1996), Lis et al. (1998), Miesch & Scalo (1995) and Miesch
et al. (1999) have analysed the Probability Distribution
Functions (PDF) of line centroid velocity increments (see
Appendix B). These quantities are the closest available to
velocity increment PDFs widely used in laboratory exper-
iments on turbulence (see Frisch 1995, for the necessary
background). These PDFs suggest that intermittency is
present in the turbulent velocity field. However, their best
maps come from the ρ Ophiuchi cloud which exhibits an
active star formation region, and it is not clear whether the
velocity field is characteristic of turbulence alone or dom-
inated by the interactions between newly-formed YSOs
and the embedding gas. Statistical analyses have also been
carried out, for example by Padoan et al. (1999).
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Although starting with very different assumptions,
Stutzki et al. (1998) and Mac Low & Ossenkopf (2000) de-
veloped an analysis based on a form of wavelet transform
(either directly or via some related mathematical tools).
They have shown that quantitative information can be ex-
tracted in that way, but their results are plagued by a low
signal-to-noise ratio and a lack of scale dynamics, which
leads to heavy uncertainties. Furthermore, it is far from
obvious how to use these results in order to gain a deeper
understanding of the underlying physics.

1.2. Effects of turbulence

Whatever the detailed characteristics of the velocity field
inside a molecular cloud, its influence on the dynamics
of the gas and thus on the interpretation of observational
quantities has to be taken into account. The first and most
obvious effect is the interpretation of line width as Doppler
broadening. This gives a simple measure of a typical ve-
locity dispersion within the emitting region. In quiescent
clouds, that value is usually much higher than the pure
thermal broadening and controls the radiative cooling of
the gas. There is now a fairly well-established relation be-
tween velocity dispersion and the size of the emitting re-
gion (σlv ∝ lβ, with 0.3 < β < 0.5 (see e.g. Miesch &
Bally 1994)). Evidence of high clumpiness of the cloud
density, or even of fractal structure may be found e.g. in
Falgarone et al. (1991) or Falgarone et al. (1994) and ref-
erences therein.

An elaborate analysis of the interaction between line
formation and a turbulent velocity field is given by Kegel
et al. (1993) and Piehler & Kegel (1995) who compute
the effects of a finite correlation length within a cloud
(see also Park & Hong 1995). These computations prove
that line profiles may be significantly modified and that
neither micro- nor macro-turbulence approximations are
usually valid. However, their cloud models are far too sim-
ple to take into account the real structure of a cloud and
their mean field approach neglects realisation effects in
any specific object. The latter point has been stressed by
Rousseau et al. (1998), but their model is otherwise too
qualitative and remote from observational aspects to shed
much light on the physics of “real” clouds.

Another potentially important influence of turbulence
is on the chemical evolution of molecular clouds. A number
of key chemical species have observational abundances far
larger than what any model predicts. The best case is that
of CH+ whose only formation route requires an energy of
4640 K, and is widely observed. Intermittent dissipation of
turbulence has been proposed as the source of heat that
could drive the formation. Since that dissipation occurs
in a small fraction of volume (typically less than 10−3),
the overall gas temperature is not affected. Joulain et al.
(1998) have proposed a model of chemistry within one spe-
cific vortex that supports well that mechanism. Following
Falgarone & Puget (1995), turbulence may also induce a
decoupling between gas and grains that leads to a high

relative velocity of the two fluids. The kinetic energy re-
leased in a gas-grain collision then exceeds the thermal
one and could help to drive slightly endothermic reactions
or increase collisional excitation.

1.3. What are we interested in?

It can be seen that the induced effects of a turbulent ve-
locity field do not rely upon the fact that interstellar tur-
bulence complies with what is implied by a canonical aca-
demic description of turbulence in fluids. Most phenomena
follow only from the existence of a large deviation to from
a Gaussian distribution of some properties of the veloc-
ity field (not necessarily the velocity components them-
selves). Therefore, in an attempt to study those effects,
we do not need to solve the Navier-Stokes equations at a
high Reynolds number in a compressible gas in order to
build a realistic velocity field. Such a task is out of reach
of present computing facilities, and even if achieved would
leave no computing power to deal with chemistry, radia-
tive transfer, and other intensive computing tasks. What
we need is a velocity field compatible with all (or most)
observational constraints. Then, once that field is built
and characterised, it can be used as an input for a model
of molecular clouds, and the effects of varying the velocity
field measured in the model.

In this paper, we have tried to follow such a program
(or at least the first steps of it). Current work on incom-
pressible turbulence in the laboratory leads us to believe
that the intrinsically multi-scale character of turbulence
can only be grasped with a specifically multi-scale tool,
namely wavelet transform.

In Sect. 2, we gather observational data and sub-
mit them to an analysis that extracts a small number
of parameters that quantify interstellar turbulence under
the assumption that results on incompressible terrestrial
turbulence can be extended to compressible interstellar
turbulence. In Sect. 3, we use these parameters to build
a synthetic velocity field whose statistical properties are
identical to the observed ones. In Sect. 4 we build a
1D time-dependent lattice dynamical network that is the
frame on which our interstellar cloud model is built. In
Sect. 5 we present a toy model chemistry with some
qualitative properties of interstellar chemistry. In Sect. 6
that chemistry is coupled to the velocity field, and the
structures that follow are illustrated. Section 7 is our
conclusion.

2. Interstellar velocity field analysis

Following Stutzki et al. (1998) we use a wavelet analysis
to characterise the velocity field in one specific interstellar
cloud. However, the particular method we chose is dictated
by our reconstruction technique, described below. The ob-
servational map has been collected during the IRAM key
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project1, see Falgarone et al. (1998). It is a 12CO 1 → 0
fully sampled 48× 64 map of the Polaris cloud. The pixel
size is 1125 AU for a cloud at 150 pc from the sun, and
the spectral resolution is 0.05 km s−1. At each point in the
map, the centroid velocity was computed by J. Pety as de-
scribed in Lis et al. (1996) or Pety (1999) and kindly pro-
vided prior to publication (Pety & Falgarone submitted).
Note that these centroid velocity increments might differ
from the actual PDF of velocity differences due to various
effects such as radiative transfert effects or line of sight
averaging.

2.1. Theory

The method we use to build a velocity field takes into
account that turbulence is believed (at least in the inertial
range) to be a multiplicative cascade process. We follow
the work of Castaing (1996) as extended by Arnéodo et al.
(1997), Arnéodo et al. (1998), Arnéodo et al. (1999). The
basic concept is that the PDF of velocity increments at
one scale (a) can be expressed as a weighted sum of dilated
PDFs at a larger scale (a):

Pdfa(δv) =
∫
Gaa′(lnα)Pdfa′

(
δv

α

)
d lnα
α

(1)

where δv = v(x+ a) − v(x), α is a scale factor, and Gaa′
is an unknown function (at this point) of a and a′ alone
called a propagator. Using velocity field data, Castaing
(1996) was able to derive some characteristics of Gaa′ ,
but did not determine the full propagator.

Arnéodo and collaborators have generalised this ap-
proach by computing first the wavelet transform of the
velocity field v. The PDFs of the wavelet coefficients T
(Pdf(T )) follow a relation similar to that in Eq. (1), but
here the propagator is easily computed, allowing for a re-
construction of the velocity field. Replacing δv by T and α
by e−x, Eq. (1) may be written:

Pdfa(T ) =
∫
Gaa′(x) e−xPdfa′(e−xT ) dx (2)

or, taking the logarithm of the wavelet coefficients’ abso-
lute value:

Pdf lna(ln |T |) =
∫
Gaa′(x)Pdf lna′(ln |T | − x) dx (3)

which is a simple convolution equation. Deconvolution is
easily done in Fourier space:
let M(p, a) =

∫
eipyPdf lna(y) dy be the Fourier transform

of Pdf lna, then

Ĝaa′(p) =
M(p, a)
M(p, a′)

· (4)

From wind tunnel experiments on incompressible turbu-
lence, Arnéodo et al. (1999) have shown that, in the limit
of very high Reynolds numbers, Gaa′ is a Gaussian, lead-
ing to a log-normal cascade for the velocity field.

1 Raw data are available at
http://adc.gsfc.nasa.gov/adc-cgi/cat.pl?/catalogs/

8/8066

0.01

0.1

1

−10 −8 −6 −4 −2 0 2 4

ln
(P

df
(ln

(δ
v)

)

ln(δv)

∆ = 1
∆ = 2
∆ = 4
∆ = 8

∆ = 16
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2.2. Wavelet analysis of the Polaris centroid map

Using J. Pety’s centroids of Polaris, Fig. 1 shows the PDFs
of log (|δv|), with δv = v(x+ a)− v(x) and v(x)) the cen-
troid velocity at point x, for various scales a. Despite the
rather large size of our map, the PDFs are noisy. However,
the evolution through scales of the general shape is fairly
regular.

Figure 2 shows the same analysis for the wavelet co-
efficients2. We use a Daubechies 3 wavelet, which has a
compact support in order to minimise boundary effects.
Order 3 is a compromise in order to maintain enough reg-
ularity within our limited range of scales. Note that order 1
would be equivalent to the previous velocity increments.
Increasing the order helps to eliminate large-scale effects

2 All wavelet computations are performed with the
“LastWave” software package:
http://wave.cmap.polytechnique.fr/soft/LastWave/

index.html by E. Bacry.
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in the velocity field, but fewer ranges are accessible due to
the larger support requirement.

Assuming as above that the propagator is Gaussian,
we may write:

Gaa′(x) =
1√

2πσ2
aa′

exp
(
− (x−maa′)2

2σ2
aa′

)
Ĝaa′(p) = exp(−ipmaa′) exp

(
−p

2σ2
aa′

2

)
·

(5)

The only free parameters are maa′ and σaa′ , which may be
extracted from a fit to the PDFs’ ratios. Figure 3 shows
the resulting parameters as a function of scales. Note that
the propagator is theoretically completely determined by
Eq. (4). However the results obtained are limited in fre-
quency space by the size of the map: few points in a map
lead to large PDF channels that preclude access to high
frequencies of the propagator. So, we choose to fit the re-
sults by a Gaussian (which is the simplest two parameter
propagator), leading to a log-normal model. Better data
could require a more sophisticated propagator, that would
include compressible effects. However, the rest of our dis-
cussion does not depend on that choice.

The evolution of the propagator parameters versus
the logarithm of the scales ratio (Fig. 3) is linear within
the error bars which suggests a second assumption: the
cascade is scale-similar (or scale-invariant). This means

that Ĝaa′(p) = Ĝ(p)ln
(
a′
a

)
for a′ > a and leads to

maa′ = m ln
(
a′

a

)
and σ2

aa′ = σ2 ln
(
a′

a

)
. Actually, as

developped in Arnéodo et al. (1998) the scale similar-
ity is a specific case of continuously self-similar cascades
that have a propagator satisfying the following relation:
Ĝaa′(p) = Ĝ(p)s(a,a

′) where s(a, a′) = s(a′) − s(a). The
function s(a) could have the following form: 1−a−α

α with
a very small value for α; the small range of scales in our
study prevents us from distinguishing between this form
and ln(a) (scale similarity). In both cases, we find values
of m and σ of: m ' −1± 0.1 and σ ' 0.25± 0.05. These
values are used in the following sections.

3. Velocity field generation

We generate a velocity field by constructing its wavelet
decomposition coefficients. We use the concept of multi-
resolution associated with an orthogonal wavelet (see
Mallat 1999): the dilated and translated family{
ψj,n(t) =

1√
2j
ψ

(
t− 2jk

2j

)}
(j,k)∈Z

(6)

can be an orthonormal basis of L2(R) on which any func-
tion may be decomposed. With f the velocity field, we
have:

∀f ∈ L2(<), f =
∑
j

∑
k

< f,ψj,k > ψj,k

=
∑
j

∑
k

dj,k ψj,k (7)

−2.5

−2

−1.5

−1

−0.5

0

0 0.5 1 1.5 2 2.5 3 3.5 4

m
(a

,a
’)

log2(a/a’)

δv
D3

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4

σ2 (a
,a

’)

log2(a/a’)

δv
D3

Fig. 3. Mean and standard deviation of the propagator ver-
sus scale difference. δv: centroid velocity increments, D3:
Daubechies 3 wavelet coefficients.

where dj,k =< f,ψj,k > are the wavelet coefficients, but
also for any j0

f =
∑

0≤k<2j0

cj0,k φj0,k +
∑
j≥j0

∑
0≤k<2j

dj,k ψj,k (8)

where φj0,k is the scaling function associated with ψ (see
Mallat 1999). The cj0,k (approximation coefficients) and
the dj,k (detail coefficients) completely characterise f , and
one still has the freedom to choose the scale threshold j0
at which the field f is approximated. To build a velocity
signal which has a resolution 2−n, we set j0 = 0, c0,0 = 0
(which means that we are in the centre-of-mass frame),
and dj0,0 to a non-zero value. Then all the coefficients
dj+1,k are generated from the dj,k by a multiplicative log-
normal process with prescribed coefficients. Thus, we ob-
tain a synthetic velocity field with the same statistical
properties as the one analysed. More precisely the dj,k are
obtained by{

dj+1,2k = M
(2k)
j dj,k

dj+1,2k+1 = M
(2k+1)
j dj,k

(9)
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where
∣∣∣M (k)

j

∣∣∣ are realisations of a random variable Mj

that follow the log-normal law from Sect. 2.2 with a =
2−j and a′ = 2−j−1. Numerical values of the velocity are
expressed in units of dj0,0.

The standard deviation of the velocity field as a func-
tion of size is plotted in Fig. 4. The law σl(v) ∝ lβ fits
both the synthetic velocity field and the Polaris region
well with an exponent of β ' 0.5 in both cases. This ex-
ponent is clearly irrelevant (or equal to 0) for a classical
Gaussian field: for such a field the standard deviation is
the same for any scale; the difference observed is just a
sampling effect. The model is adjusted to observations by
fixing d0,0 so that the curves coincide. Here, d0,0 = 250 for
13 octaves (reductions of scale by a factor of 2) between
the integral scale and the ∆ = 2 scale.

The resulting velocity field is then submitted to the
same analysis as the original one, and the number of
steps between our integral scale and the Polaris map scale
is fixed by adjusting the non-Gaussian wings. Figure 5
shows the resulting PDFs. Here N = 13 between the in-
tegral scale and the ∆ = 2 scale. Note that the synthetic
field PDFs are in good agreement with the observed ones,
and that the synthetic field is correlated at all scales (a
rough estimate of the synthetic signal correlation length
at scale a is a) unlike the uncorrelated Gaussian field used
for comparisons.

We are now able to determine the scaling of our model
by identifying size at scale N with Polaris resolution. In
Fig. 5, ∆ = 2 pixels corresponds to lN = 2250 AU, so
that our integral scale is l0 = 2N .2250 AU = 90 pc. Note
that this is not the size of the cloud that we generate: the
Polaris map size is reached after 9 steps in the generating
process. A side effect of that sub-sampling is that the mean
global velocity of the generated cloud is slightly non 0.0
(see Sect. 4.4).
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the Polaris map (points) and the reconstructed field (lines) for
different scales.

4. One-dimensional model

4.1. Why a cellular automata

The use of a wavelet decomposition of our synthetic ve-
locity field gives access to the best approximation at any
scale between the integral scale l0 (where it is just the
mean velocity, and is 0.0 by construction) and the small-
est accessible scale l0 2−Nmax , where Nmax is the number
of steps in the wavelet transform.

As we are interested in the effects of turbulence on
the dynamics of a cloud, the smallest significant scale is
the turbulence dissipation length. Any cell of gas smaller
than that length is homogeneous and statistically iden-
tical to its nearest neighbour. That scale may be esti-
mated from classical results on Kolmogorov turbulence
(see Frisch 1995): the energy flux through scales is ε = v3

l ,
which is true also at lN , the Polaris resolution scale with
vN , the turbulent velocity at that scale. We can estimate
that quantity from the observations if we take ∆v, the
standard deviation of centroids increments at scale lN , as
an estimate of vN . From the Polaris map, vN = 0.1kms−1,
so that ε = 3×10−5 cm2 s−3. Then the dissipation scale is

given by η =
(
ν3

ε

)1/4

, where ν is the kinematic viscosity.
In a diluted gas, ν ' vth

nσ , where vth is the thermal velocity,
n the gas density, and σ the collision cross section. Inside
a molecular gas, we can take a mean H2–H2 cross section
of σ = 1.5 × 10−14 cm2 (see Le Bourlot et al. (1999)),
a density of 104 cm−3 and a temperature of 10 K. This
gives:

η = 7.5× 1011
( n

104

)−3/4
(

ε

3× 10−5

)−1/4 (
T

10

)3/8

cm.

From lN , we can proceed with the cascade process down
to the smallest scale lNmax that depends mainly on com-
putational power. However, lN

η ∼ 215, which is still
too much for us. We have chosen to stop the model at
lNmax = 140 AU (Nmax = 17). The corresponding angular
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resolution at Polaris would be 0.94′′. The associated time
scale is tNmax = lNmax

vNmax
= 5.25×1011 s (note that the effec-

tive velocity dispersion at that scale vNmax ' 0.04 kms−1

is close to the value deduced from a constant ε up to that
scale).

Since we are not interested in the physics inside that
box, we can use a coarse-grained approximation by look-
ing at a collection of identical cells of size lNmax , coupled
by convection (hence our need to prescribe the velocity
field) or radiatively (i.e. in velocity space nearest neigh-
bour but not necessarily in physical space, see Rousseau
et al. 1998). Thus, we by-pass the need to solve partial
differential equations and need only to prescribe the evo-
lution of mean variables inside each box and their mutual
coupling (hereafter only by convection). The most accu-
rate way to realise that smoothing is to use the approxi-
mation coefficients of the wavelet transform at that scale.

So we consider a set of identical boxes, each charac-
terised by local dynamics (a set of local variables, coupled
by physical relationships) with the same variables and evo-
lution laws in each cell, but not necessarily the same ini-
tial conditions. Evolution is computed over a continuous
time within each box, and a spatial coupling is applied
at discrete times. The velocity at the smallest scale lNmax

is taken as the mean velocity of a box in a rest frame.
Therefore we use an Eulerian representation. Velocity is
prescribed a priori, and is not modified by the evolution
of any local variable. It is understood that the way the
velocity field is built takes care of all (mostly unknown)
processes that constrain its evolution. What we need now
is a way to progress in time.

4.2. Time dependence

As a first stage, our goal is to model a cloud in steady
state. This means that all its statistical properties remain
constant on average, but are not necessarily time indepen-
dent! They may fluctuate in time around a mean value,
and only that value is constant in time. This has to be
true also for the velocity field, so that we need to pre-
scribe the evolution in time of the static field of Sect. 3.
To that end, we make the hypothesis that turbulence is
homogeneous, isotropic, and stationary. Under these three
conditions, the Taylor hypothesis applies and the statisti-
cal properties of v(x0, t) as t varies are the same as those of
v(x, t0) along an axis x. This hypothesis may be extended
to a 1D structure: the statistical properties of a velocity
field v(X, t) along an axis X as t varies are the same as
that of a collection of lines in a 2D plane at a given time t0.
The second hypothesis is stronger than the first because
cross-correlations between orthogonal directions X and Y
have to be included and is only true if the three conditions
of homogeneity, isotropy, and stationarity strictly apply,
see Appendix A for a demonstration.

The extension to 2D of the velocity field generation al-
gorithm is straightforward (although computationally in-
tensive). Details are given in Arnéodo et al. (1999) and

references therein (see Appendix C). Once a 2D X–Y
field has been generated, the Y axis can be interpreted
as u0t, where u0 is a “scanning” velocity that sets a time
scale for the model. For consistency, we take u0 = vNmax .
From this point, the velocity in our model is prescribed in
each box of size δ = lNmax = l0 2−Nmax and at each time
tj = j tNmax = j δ

vNmax
(where tNmax = 5.25× 1011 s is the

crossing time at the smallest scale).

4.3. Density field

Mass conservation reads:

∂ρ

∂t
+−→∇.(ρ−→v ) = 0. (10)

Once the velocity field is known (which is our case), this
equation becomes a linear PDE in only one unknown, ρ.
It can be solved easily as soon as initial and boundary
conditions are set. The system is dissipative and a typical
stationary state is reached after a relaxation time of a
few tNmax (with tNmax = 5.25× 1011 s).

We use uniform initial conditions and assume peri-
odic boundary conditions. Equation (10) is solved in each
“box” as a balance equation. We “count” the total amount
of matter that escapes and enters each box: namely, for
three successive boxes (at step j, density ρji−1, ρji and ρji+1

and velocity vji−1, vji and vji+1, we have:

ρj+1
i =ρji−1

vji−1

u0
Y +
i−1 +ρji

1−

∣∣∣vji ∣∣∣
u0

−ρji+1

vji+1

u0
Y −i+1(11)

where Y +
i = 1 if vi is positive, Y −i = 1 if vi is negative,

and both are zero otherwise. Within a time step tNmax ,
the number of sub-step k is chosen to ensure that vi

k u0
stays lower than 1 (as a further development, the method
may include asynchronous time integration). Note that
the absolute value of the density scaling is arbitrary, since
velocity evolution does not depend on it; all density fields
follow the same evolution.

After a transitory period, the density and velocity
fields “couple” together and the standard deviation sta-
bilises (the mean density is constant because periodic
boundary conditions ensure conservation of the total
mass). In Fig. 6 we have plotted the evolution (after the
transitory period) of the relative difference in the standard
deviation for two different initial density fields (random
value on the interval [0; 2] and a constant initial density
of 1): this relative difference maintains a very small value
(typically 1%).

A typical example of a density field is given in the top
panel of Fig. 7. We see that large fluctuations of ρ are
possible within a few cells and dense cores develop over a
low-density background.

The density field obtained with our synthetic turbulent
velocity field and the one obtained with a Gaussian veloc-
ity field of the same mean and standard deviation are very
different (see Fig. 7): for the Gaussian field, the density
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Fig. 6. Relative difference (in %) in the standard deviation of
the density field as a function of time for two different initial
fields (constant initial density of 1 and random initial density
in the range [0; 2]).

seems relatively uniform but for the turbulent field, some
structures appear naturally at all scales. Figure 8 shows
the PDF of the logarithm of the density obtained with our
synthetic turbulent velocity field. It is log-normal towards
high density and exhibits a strong power law towards low
density. The high density cut-off is a finite size effect, and
the power law may be interpreted as an indication that
our velocity field mimics that of a non-isothermal fluid,
but we did not try to check that point further. This point
will be dealt with in a further paper with an improved
model, easier to compare to observations and hydrody-
namical models.

A relation between size and density can be computed:
Using a Gaussian wavelet we compute for each scale the
mean value of the density above the mean (which is here
the same at all scales). Figure 9 shows a power law relation
with an index of −0.32±0.03. This is much lower than the
n ∝ l−1 law that results from self-gravitating clouds. Such
a flat index is probably a consequence of our 1D model and
further discussions should wait for 2D results.

4.4. Mixing of a passive scalar

Mixing properties of our synthetic velocity field may be
derived from the evolution in time of the distribution of a
passive scalar (say a non-reacting chemical species). The
initial density is 1 in a single box located at x = 256
and 0 elsewhere. The density after 1024 iterations (i.e.
some 17 Myr) is shown Fig. 10 for two different velocity
fields: a random Gaussian field (without correlations), and
our synthetic turbulent field.

The resulting density profiles are quite different: a ran-
dom Gaussian field leads to a localised Gaussian pro-
file, whilst a turbulent field leads to a wider disper-
sion after a much shorter time (typically, the large-scale

−7

−6

−5

−4

−3

−2

−1

0

1

2

0 100 200 300 400 500

ln
(ρ

(x
))

x

turbulent velocity field

−7

−6

−5

−4

−3

−2

−1

0

1

2

0 100 200 300 400 500

ln
(ρ

(x
))

x

Gaussian velocity field

Fig. 7. Log of the density field for a turbulent and for a
Gaussian velocity field (mean and standard deviation are the
same for both fields).

turnover time, here, about 1 Myr). As a check of our
numerical procedure, we plot in Fig. 11 the mean posi-
tion (relative to the initial maximum position) and stan-
dard deviation of the density profile obtained with the
Gaussian velocity field. As expected, the mean position
is a linear function of time (x/∆x ≈ vmean n∆t/∆x, here
vmean ∆t/∆x = −5.5×10−3 and the fit gives −4.5×10−3)
and the standard deviation increases as the square root of
time (σx/∆x ≈

√
2Dn∆t/∆x with the diffusion coefficient

D = σv∆x/3, here 2
3σv ∆t/∆x = 0.69 and the result of

the fit is 0.76). These results demonstrate that our lattice
dynamical network is an accurate approximation of the
diffusion equation.

5. Local dynamic

Interstellar chemistry is known to be sensitive to den-
sity since some destruction processes (photo-ionisation
and/or destruction by cosmic rays) proceed as the density,
whereas chemical reactions proceed as the square of the
density. Le Bourlot et al. (1995) have shown that under
some fairly ordinary physical conditions, two stable chem-
ical phases may exist. So, depending on initial conditions,
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some parts of the cloud may evolve towards one phase as
others evolve towards the other phase. Interfaces between
those phases lead to reaction-diffusion fronts where un-
usual chemical abundances may prevail for long times in
a manner similar to reaction-diffusion fronts in a thermally
bistable fluid studied by Shaviv & Regev (1994).

Thus, a minimal local dynamic should at least exhibit
bistability. This can be achieved with a 3-variable model
which is the minimal non-passive scalar model possible.
By turning on or off turbulent mixing, we can test the
effects of that mixing on mean abundances along the line
of sight and on time and length scales for each variable
within the cloud.

This is an extension to intrinsically scale-dependent
models of the work of Xie et al. (1995) and Chièze &
Des Forêts (1989). However, full-size interstellar chemical
schemes are still beyond our reach.
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Fig. 10. Dispersion of a passive scalar (after 1024 iterations of
tNmax = 5.25× 1011 s) by our synthetic turbulent field and by
a Gaussian field (mean and standard deviation of the velocity
field are the same for both fields). Point source released at t = 0
at x = 256.

As a test model, we chose the following set of chemical
reactions (inspired from Gray & Scott 1990):


R → A (k1)
A → B (k2)

A+ 2B→3B (k3)
B → P (k4)·

(12)

Such a model can be seen as an excerpt from a larger chem-
ical network with R = R′ρ, being a production term pro-
portional to the density, and where the product(s) P re-
turns to the rest of the gas.

If we suppose that k1 has the following tempera-
ture dependence k1 = k10 exp(− Ea

kbT
) and that reac-

tion (4) is exothermic, then thermal balance is gov-
erned by: ∆U = k4∆t∆HnB − k5kb∆t(nA + nB)T (with
U = ρcp,ρT = nRcp,RT ). Here the cooling term mimics
radiative cooling by both A and B after collisional
excitation.

We can reduce the problem to a simple dynamical sys-
tem with three differential equations and four parame-
ters (r, ε, k, γ):



dα
dτ

= r exp
(
−εru

)
− kα− αβ2

dβ
dτ

= kα+ αβ2 − β

du
dτ

= β − γ(α+ β)ur

(13)
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tion of the passive scalar density distribution for our two fields.
As expected for diffusion by a Gaussian field, the mean and
variance are proportional to time.

with

α=
√
k3

k4
nA

β=
√
k3

k4
nB

u=
U

∆H

√
k3

k4
τ = k4t

r=
k10

k4

√
k3

k4
nR

ε=
Eacp,R k4

k10kb∆H
k=

k2

k4

γ=
k5kbk10

cp,R k2
4

·

(14)

This simple dynamical system leads to many different situ-
ations: bistability or limit cycle with Hopf bifurcation (see
Fig. 12) for different parameters3. In the following, we use

3 Figure 12 was created using the software package
CANDYS/QA by W. Jansen. See
http://www.agnld.uni-potsdam.de/~wolfgang/ca-inst.html
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Fig. 12. An example of bistability and limit cycle with Hopf
bifurcation. The parameters values are k = 0.001, γ = 1, ε =
0.01. We plotted the values of α and β, at the equilibrium, for
different values of the r parameter (x axis).

k = 0.001, r = 1, γ = 1 and ε = 0.01 as our reference
bistable model. The chemical time scale is 1/k4, so that
the ratio of turbulent to chemical time scales is k4tNmax .
In the following, we usually use k4tNmax = 0.1 (tNmaxbeing
the crossing time at the smallest scale we resolve).

6. Reactive medium in turbulent flow

It is then possible to add the effects of that non-trivial
local dynamic to turbulent mixing. We select the model
of Sect. 5. In order to study the influence of the turbu-
lence, we again do a comparison between a turbulent and
a Gaussian velocity field (Fig. 13 for one example). Note
that A, B (chemical species), U (internal energy) and R
(proportional to the total density) are advected as de-
scribed by Eq. (11) extended to 4 variables.

We can observe that, as in the previous case (Sect. 4.3),
structures appear naturally at all scales in the turbulent
case and not with a Gaussian velocity field. Appendix D
shows the variations of A on a much larger time scale.
Different initial conditions give indistinguishable results,
suggesting that steady state is reached. However, we can-
not exclude that some long time drift may still exist which
our computation is unable to uncover.

Turbulent structures are not the same for the different
components (A, B, R) neither in position nor in size, as
can be seen in Fig. 14, which is an horizontal cut of Fig. 13.
In order to study more precisely these effects, we plot the
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Fig. 13. Density of component A (see Eq. (12)) in a bistable
case. The horizontal axis represents position and time flows
from top to bottom, using the same initial conditions. Only the
latest iterations are shown. Lowest densities are deep blue and
highest densities light red. Top panel: mixing by a Gaussian
velocity field; bottom panel: mixing by a turbulent field (see
Appendix D for a much longer time evolution).

probability density function of A (Fig. 15) which should
be compared to Fig 8.

Note that the presence of a non-uniform velocity field
leads to a single-peaked broad distribution. Turbulence
leads to a broader distribution and extended wings. Thus
the probability to find some regions at far from equilib-
rium values is enhanced.

We also plotted the density of α =
√

k3
k4
nA as a func-

tion of size (see Fig. 16) using the same procedure as for
Fig. 9. The slope is −0.17± 0.03 (instead of −0.32± 0.03
for the total density, cf. Sect. 4.3). The evolution through
scales is therefore significantly different for one particular
component and for the total density.
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Fig. 14. Density of components A and R as a function of po-
sition at a given time (last time step of Fig. 13 i.e. last “line”),
for a turbulent field.
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7. Discussion

The structure of interstellar clouds remains a subject of
debate because different observations suggest different,
and often contradictory, interpretations. The Thoraval
et al. (1999) results, based on infrared observations are
sensitive mainly to the dust distribution and thus proba-
bly to the bulk of the mass distribution. On the contrary,
some low-abundance species (see for example Marscher
et al. 1993 and Moore & Marscher 1995 results) exhibit
large abundance variations down to the smallest accessible
scales.

Our results show that the structuring of the gas by
the turbulent velocity field leads naturally to different dis-
tributions for different species, without requiring any ex-
ternal mechanism. Thus, seemingly contradictory obser-
vations find a unified explanation which applies to any
turbulent region in the interstellar medium. Naturally,
this does not preclude a significant influence of other
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mechanisms. Star formation does occur within clouds and
leads to a number of fancy phenomena that stimulate the
imagination of the modelist. We still need to explain how
turbulence survives and is fed despite its fast dissipation
timescale. However, since it is there, it must be taken into
account.

In this paper, we have shown how interstellar turbu-
lence properties could be reduced to a small number of
quantitative parameters by wavelet analysis. A pure log-
normal cascade (as in incompressible turbulence) is char-
acterised with only two numerical quantities. Deviation
from that behaviour could be managed with a third. These
parameters are directly accessible from observations, but
require fully sampled, large-scale, high-resolution maps.
New observational facilities such as array detectors now
available at the 30 m IRAM observatory (HERA), or the
future ALMA project should provide such maps at a rea-
sonable cost.

These parameters can be used to build synthetic ve-
locity fields at a numerical cost well below that of solv-
ing the full Navier-Stokes equations. Time and length
scales are easily adjusted to the observations, allowing for
direct comparison of predicted and observed structures.
Generalisation to 2D and 3D fields of techniques described
here is straightforward, but would then require the use of
large, massively parallel computers. It is not obvious that
qualitatively different results would result from such an ex-
tension, with one exception: a 1D velocity field precludes
vorticity and so our density field probably has excessive
contrasts when matter is squeezed between two cells with
opposite velocity direction. Extension of the chemical set
is straightforward.

We have shown that a density structure develops with
different scale properties for different chemical species.
The mixing properties of turbulence ensure that on any
line of sight a fraction of the gas is in a far from equilibrium
state. Thus species that do not peak at the same evolution-
ary stage in a classical time-dependent model can coexist
naturally without the need to invoke any “early-stage”

argument. Conversely no indication about the age of the
cloud may be derived from abundance ratios.
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Appendix A: Extended Taylor hypothesis

A.1. One-point Taylor hypothesis

Let us consider a 1D stochastic time-dependent pro-
cess v(x, t). A mean value of some function f(v) at po-
sition x and time t is computed from an ensemble ε of N
realisations of the process by:

〈f (v(x, t)〉ε = lim
N→∞

1
N

∑
i∈ε

fi (v(x, t)) .

However, effective computation of that quantity requires
discretisation of all variables. So let us choose a time
step ∆t, a spatial step ∆x, and elementary step for vari-
able v: ∆v. Then the indicatrix function IIv0

x0,t0(v) is de-
fined by: IIv0

x0,t0(v) = 1 if v0 ≤ v < v0 + ∆v where
x0 ≤ x < x0 + ∆x and t0 ≤ t < t0 + ∆t; and is zero any-
where else. Then we may write our definition of a mean
value as:

〈f (v(x0, t0))〉ε = fε(x0, t0)

= lim
N→∞

1
N

∑
i∈ε

∑
v′,x,t

fi (v′(x, t)) IIvx0,t0

=
∑
v′,x,t

fi (v′(x, t))

(
lim
N→∞

1
N

∑
i∈ε

IIvx0,t0

)

where the sums extend over all possible values of v′, x
and t. The sum over all possible realisations now defines
the probability distribution function of v, at x0,t0 with
resolution ∆x,∆v. We write it Px0,t0(v) or only P (v) here-
after.

For one specific realisation ε0, we can also write a space
mean of f(v) at given time t0 as:

〈f (v(x, t0))〉x = fx(t0)

= lim
∆x
xmax

→0

∆x
xmax

∑
v′,x

f (v′(x, t0)) IIvx,t0 .

The sum over v′ and the indicatrix select the proper value
of v at x.

A time mean of f(v) at a given place x0 is defined as:

〈f (v(x0, t))〉t = ft(x0)

= lim
∆t
tmax

→0

∆t
tmax

∑
v′,t

f (v′(x0, t)) IIvx0,t.

Now, if the stochastic process v is homogeneous in
space and stationary in time, then fε does not depend
on x0 (homogeneity) or on t0 (stationarity). The latter
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hypothesis requires that our process be dissipative and
that any initial condition be forgotten, that is tmax should
be large compared to all characteristic time scales of the
process. By the same argument, fx does not depend on t0,
and ft does not depend on x0.

That these three mean values are the same follows
Birkhoff’s ergodic theorem, as developed in Frisch (1995)
Chapters 3 and 4. Therefore, we get fx = ft, which is the
Taylor hypothesis.

If v is a 3D phenomenon, then isotropy is further re-
quired to chose at random a direction x so that the result
is independent of that specific direction. Note that the ar-
gument does not depend on the choice of f , which can be
any function of the stochastic process v, thus it is true for
all moments of the process v itself, whatever its distribu-
tion function (Gaussian or not Gaussian).

Stationary developed turbulence is supposed to be ho-
mogeneous and isotropic so that this result applies for any
component of the velocity field.

A.2. Extended Taylor hypothesis

Now let us consider a 2D stochastic process v. Using
isotropy, we select a random direction x to which y is
orthogonal. Then, we choose a segment Sy0 along x at y0.
Again, space is discretised by ∆x = ∆y, time by ∆t, and
v (assumed scalar) by ∆v. All previous results apply to
any one-point function of v, that is any mean quantity is
independent of the choice of y0 (homogeneity), of any x0

along Sy0 (homogeneity again), of time (stationarity) or
of the choice of the initial direction (isotropy).

However, we may also define on Sy0 two-point (or
more) functions that are not taken care of by the pre-
vious results. For two points x1 and x2 along Sy0 such
that |x2 − x1| = L, we have:

〈f (v1(x1, t0), v2(x2, t0))〉x = fx(L)

= lim ∆x
xmax

→0

∆x
xmax

∑
v′1,x1,v′2,x2

f(v′1(x1, t), v′2(x2, t)) IIv1
x,t0IIv2

x,t0

and an analogous expression for ft(L). But now, if L is
shorter than any spatial correlation length of the pro-
cess v, then the expression for fx(L) does not factorise,
since events at x1 and x2 are not independent. However,
it remains independent of y0, x1 and x2 separately, and t0.
Only the distance L between the two points matters. By
the same argument, ft(L) is also independent of y0, and
x1 and x2 separately. We may again apply Birkhoff’s the-
orem, and state that fx(L) = ft(L).

Strictly speaking, a third mean value can be defined,
which is fy(L), for two points separated by L along di-
rection x, but with samples taken out of parallel seg-
ments Sy along y. For a scalar process, isotropy ensures
that fx(L) = fy(L). We assume here that the same is true
for any component of the velocity field, thus neglecting
the possible effect of cross-correlations.

Within that restriction, we see that, providing all sizes
considered are large with respect to the largest correla-
tion size within our sample, the same reasoning leads to a

value of f(L) independent of the fact that we computed a
spatial mean, or a temporal mean (in the same way that
we needed to consider time scales large with respect to
the largest correlation time to get the usual Taylor hy-
pothesis). This is again independent of the choice of the
function f and can be generalised to any number of points
(or any order).

Thus we see that statistical properties of v along a
segment S as time flows are the same as the statistical
properties of a family of parallel segments in space at a
given time. By choosing a “scanning velocity” u0, we are
able to transform a 2D static field v(x, y) into a 1D, time
varying field v(x, t = y/u0).

Appendix B: Centroid velocity increments

The centroid velocity (C) is the mean radial velocity: if we
call T (u) the intensity as a function of the radial velocity,
then by definition C =

(∫
uT (u)du

)
/
(∫
T (u)du

)
. In the

case of an optically thin medium, T (u) ∝ N(u), where
N(u) is the column density as a function of the radial ve-
locity (N(u) =

∫ s0
0
n(u)ds). It is then easy to show that

C =
(∫
u(s)n(s)ds

)
/N . This quantity is very commonly

used because of the lack of information about the velocity
spatial repartition along the line of sight. The centroid ve-
locity increment at scale a is then: δCa = C(r+a)−C(r),
where r is a position on the plane of the sky. The prob-
ability density function (PDF) of this quantity in a tur-
bulent velocity field is essentially indistinguishable from
a Gaussian for the integral scale and develops more and
more non-Gaussian wings as the lag decrease (see Lis et al.
1996; Pety 1999; Miesch et al. 1999).

Appendix C: 2D log-normal cascade

For any function f ∈ L2
per([0, L]2), f can be written under

the form

f(x, y) =
N∑
j=0

2N−j−1∑
m,n=0

3∑
k=0

ckj,m,nψ
k
j,m,n(x, y).

The construction rule is the following: one generates the

modulus dj,m,n =
([
c1j,m,n

]2 +
[
c2j,m,n

]2 +
[
c3j,m,n

]2)1/2

of the wavelet coefficients in a recursive way by:

dj−1,2m,2n = M
(1)
j,m,ndj,m,n

dj−1,2m+1,2n = M
(2)
j,m,ndj,m,n

dj−1,2m,2n+1 = M
(3)
j,m,ndj,m,n

dj−1,2m+1,2n+1 = M
(4)
j,m,ndj,m,n.

Mj,m,n follows the prescribed log-normal law (m,σ).
The wavelet coefficients themselves are computed via

two angles (θ, φ):
c1j,m,n = cos(φ) cos(θ)dj,m,n

c2j,m,n = cos(φ) sin(θ)dj,m,n

c3j,m,n = sin(φ)dj,m,n
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where θ is randomly chosen between [−π, π] and φ is
randomly chosen between [−φ∗, φ∗] where φ∗satisfies

sin (2φ∗)
4φ∗

=
2τ(2)/2+3

1 + 2τ(2)/2+3
− 1

2

with

τ(q) = −σ
2

2
q2 −mq − 2.

Finally, isotropy follows from adjusting the weights at the
largest scale:
c10,0,0 = d0,0,0, c20,0,0 = d0,0,0, and c30,0,0 = 2−(τ(2)/4+1)d0,0,0

(see Decoster et al. 2000 for all details).

Appendix D: Evolution on large time scales

We give in Figs. D.1 to D.4 the evolution of the α density
with the same turbulent field and the same parameters as
in Fig. 13 but on a larger time scale.
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Arnéodo, A., Manneville, S., & Muzy, J. F. 1998, Eur. Phys.
J. B, 1, 129
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