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[1] In this paper, we describe a new multiple change point detection technique based on
segmenting the time series under study into subsequences. These segments correspond to the
episodes that are likely to contain a unique jump. They are found by applying Bayesian
decision theory through the minimization of simple cost functions. All calculations can be
performed explicitly, without falling back on Markov chain Monte Carlo methods and
resulting in particularly light implementation. Through prior distributions derived from a
stochastic renewal process description of jump occurrences, expert knowledge of jump
amplitude and return period is also introduced in our decision process. Comparison to
several multiple change point methods on simulated series lead to similar or better
performance, achieved at lower computational cost.

Citation: Hannart, A., and P. Naveau (2009), Bayesian multiple change points and segmentation: Application to homogenization of

climatic series, Water Resour. Res., 45, W10444, doi:10.1029/2008WR007689.

1. Introduction

[2] Long instrumental climatic records are often affected
by artificial discontinuities due to changes in measurement
conditions. These artificial shifts can wrongly modify the
analysis of natural climate variations [Abarca-Del-Rio and
Mestre, 2006]. The so-called change point statistical proce-
dures have been developed to detect and remove such
inhomogeneities. For a detailed review, the reader is
referred to Peterson et al. [1998] and Beaulieu et al.
[2007]. Classically, inhomogeneities are modelled as
abrupt changes in the mean of the series, leaving its higher
moments unchanged [Alexandersson, 1986]. Current methods
simultaneously determine the number of change points and
infer their positions, for instance through minimization of
penalized likelihood [e.g., Caussinus and Mestre, 2004].
Beyond the specific context of homogenization in climatol-
ogy, the change point problem is a vast, extensively treated
domain of statistics, with diverse applications in economet-
rics, finance, biology, agronomy and hydrology among
others. A general review of most common approaches can
be found in work by Reeves et al. [2007]. In the Bayesian
context, initial procedures by Barry and Hartigan [1992]
and Barry and Hartigan [1993] were based on product
partition models, while Green [1995], Chib [1998], and
Lavielle and Lebarbier [2001] came up later on with
different formulations. Due to the inherent complexity of
the multiple change point problem, especially when the
number of change points is unknown, inference of all these
models have to rely heavily on Markov chain Monte Carlo
(MCMC) methods. The resulting computational cost lead
Fearnhead [2006] to propose a simplified recursive algo-

rithm that was based on product partition models, under the
assumption of independence of priors for each segment
parameters. This algorithm has been further exploited by
Seidou et al. [2007] in the particular case of a linear
regression model with exact expressions for posteriors of
change points positions and a straightforward simulation
for posterior of the number of change points. Fearnhead
and Liu [2007] extended the direct simulation algorithm of
Fearnhead [2006] to online problems, and achieved a linear
complexity in the number of observations through resam-
pling from particle filters. A simpler binary segmentation
procedure relying on a Bayesian criterion was also proposed
by Yang and Kuo [2001] to deal with changes in the
intensity of a Poisson process.
[3] In addition to introduce expert knowledge about the

return period and amplitude of change points through prior
distributions, the advantages of a Bayesian approach are
twofold. In homogenization, change point locations and
amplitudes posteriors are of interest to quantify the amount
of uncertainty introduced by correcting inhomogeneities. It
also gives an objective and coherent decision theory to
decide on the number of change points and on their
positions. The general motivation of this work is hence to
make the most of above mentioned advantages of the
Bayesian approach, while simultaneously minimizing its
main disadvantage, high complexity. Our main purpose,
likewise that of Fearnhead [2006], Fearnhead and Liu
[2007], and Seidou et al. [2007], is therefore to develop
an easy-to-implement Bayesian multiple change point meth-
od. Unlike these authors, we strictly constrain ourselves to
exact formulae, excluding any type of simulation-based
methodology. Also, differently from previous studies, we
leverage Bayesian decision theory to decide on the number
of change points and on their positions. More importantly,
the main originality of our method consists in identifying
subsequences that isolate a unique change point. To perform
this task, we recall that a change point is universally defined
as an abrupt shift. In our view, this characterization makes
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change point a local concept and problem, in the sense that
a change visually stands out as abrupt by comparison to its
surroundings: a value that is too remote from the change
point is less relevant to the detection process than a
neighboring value, especially if other shifts are present
between this value and the change point. In this approach,
our main assumption is hence that the time series does not
need to be treated globally. Rather, it could be segmented
into shorter windows that capture and isolate a unique
change point. If such windows could be obtained for every
change points in the series, inferring their characteristics
would then be straightforward using a single change point
scheme. The main challenge of this approach is therefore to
properly identify such subsequences, and in particular
efficiently tradeoff their length. Windows should be long
enough to provide enough information for accurate infer-
ence, while remaining short enough, e.g., sufficiently local,
to isolate a unique change point and prevent the existence of
multiple change points in the window. It is intuitive that
such a tradeoff would lead to windows length typically in
the order of magnitude of the average time between two
consecutive jumps. If some expert knowledge about this
typical jump return period is available, it would be of
interest using it to perform this tradeoff. The Bayesian
framework, with informative priors, is hence well suited
for the proposed segmenting.
[4] This segmentation approach has a computational cost

advantage, as we no longer need to work with a complex
multiple change point model and a high number of interre-
lated parameters, leading to inextricable inference proce-
dures, especially in the Bayesian context. Rather, two tools
are required: a criterion capable of quickly quantifying the
amount of evidence in favor of the existence of a single
change point in a particular subsequence and a fast and
single change point model to infer change point character-
istics in each subsequence. This plan can be implemented
because basic Bayesian single change points with explicit
solutions are already available [Lee and Heghinian, 1977]
and can be modified in a decision and cost minimization
framework. Sections 2 and 3 provide these extensions of a
Bayesian single change point model and combine them in a

multiple change point algorithm. Sections 4 and 5 test it on
simulated and real climate data, respectively. Section 6
concludes.

2. Homogenization and Single Change Point
Detection

[5] Meteorologists have been measuring, correcting and
interpreting records of temperatures and precipitation for
many decades. For example, Figure 1 (left) displays the
empirical distribution of change point amplitudes derived
from temperatures homogenization results obtained by the
French weather service [Mestre, 1998]. The bimodal shape
of this empirical distribution is artificial in the sense that
change points of small amplitude are practically undetect-
able, but they do exist as suggested by metadata [Moberg
and Alexandersson, 1997]. Hence the solid smooth curves
in Figure 1 indicates that a Gaussian fit seems adequate. The
choice of a zero mean distribution reflects the lack of prior
information on the sign of the jump, an assumption
grounded empirically. An analysis of those data also pro-
vides information about the jump return period. An empir-
ical estimate of the latter is about 13 years. As new time
series from the same region have to be homogenized, it
would be a loss to disregard the information provided by
past analysis and by experts in meteorology. Integrating
such prior knowledge is conceptually easy in a Bayesian
framework via informative priors.
[6] To be more precise, we need to introduce a few

notations for our single change point models. Denote x =
x1:n an univariate time series of n independent real random
variables x1, x2, . . ., xn with overall mean m. We assume x
has zero or one change point in the mean: the binary
variable k 2 {0; 1} is the indicator of jump existence in
x, and jump location and amplitude are called t 2 {1, 2, . . .,
n} and a 2 R, respectively. Concerning the distribution
families, the Gaussian pdf with mean m and variance s2, the
zero mean normal pdf, the inverted gamma pdf with
parameters a and b, the Student pdf with parameters of
position a, scale b and n degrees of freedom, the Bernouilli
pdf with probability w, the uniform pdf on {1, . . ., n} and the
dirac mass in zero are simply denotedN (. j m, s2),N (. j s2),

Figure 1. (left) Histogram of empirical jump amplitude and Gaussian fit (sa = 0.6). (right) Histogram of
empirical time between jumps and gamma fit (l = 13, m = 2). Empirical jump amplitude and time
between jumps were obtained from homogenization results of French weather service temperature series.
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IG(. j a, b), St(. j a, b, n), Be(. j w), U(.) and d0(.),
respectively. Following standard Bayesian notations, q
denotes a vector of parameters, q̂ an estimator of q, p(.)
a distribution and p(.) a prior distribution. With these
notations, we can introduce our first single change point
Bayesian model:

M1:

q ¼ m; s2;k; a; tð Þ 2 R� Rþ � f0; 1g � R� f1; . . . ; ng

p xjqð Þ ¼ Pn
i¼1 N xijmþ di a; tð Þ; s2ð Þ

p qð Þ ¼N mjym; s
2
m

� �
: IG s2jas;bsð Þ : U tð Þ : Be kjwð Þ : p ajk;sað Þ

8>>>><>>>>:
ð1Þ

where di(a, t) = a(t
n
� 1i�t) defines a zero mean jump

sequence, k has a Bernoulli distribution with probability w,
and p(a j k,sa) is the mixture defined conditionally on k
by N (a j sa2) when k = 1 and d0(a) when k = 0. The
definition of M1 is similar to the Lee and Heghinian [1977]
and Perreault et al. [2000a, 2000b] models, but differs from
them in several key aspects. The model now explicitly
allows for the absence of a jump (a = 0) with a nonzero
probability, through the introduction of parameter k.
Metaparameter w represents the prior probability that a
jump exists and metaparameter sa corresponds to the typical
prior jump amplitude. For the former, Figure 1 (left)
provides immediate prior knowledge and for the latter the
empirical knowledge about the return period l can be
converted into w through a relationship w(n, l) on which we
elaborate in section 3.
[7] Theoretical considerations can also justify our choice

of prior distributions. Regarding the motivation to introduce
a dirac mass in zero in p(a j k, sa), we emphasize that the
primary purpose of model M1 is to decide upon the
existence of a jump, a goal that can only be achieved when
the event a = 0 has a nonzero prior probability [Robert,
2006]. The choice of a Gaussian informative prior having a
finite and informative variance sa

2, rather than a noninfor-
mative prior, is primarily based on the empirical evidence
aforementioned. In addition, the use of noninformative
priors is a well known and extensively debated difficulty
in Bayesian analysis, i.e., the paradox of Jeffreys-Lindley
[Jeffreys, 1939; Lindley, 1957]. The parameterization in
M1 in terms of the mean m and jump amplitude a is
slightly different from Lee and Heghinian [1977] who
chose (m1, a) and Perreault et al. [2000a, 2000b] who
opted for (m1, m2), where m1 (m2) stands for the mean
before (after) the jump. This choice has implications on the
so-called reversibility of the model. We call a model
‘‘reversible’’ when inference is not affected by the direc-
tion in which the time series is read: this simply means that
(x1, x2, . . ., xn) and (xn, xn�1, . . ., x1) should lead to the
same detection of jump position and amplitude for inde-
pendent data (as we assume here). In general, neither Lee’s
parameterization nor Perrreault’s one are reversible due to
the inherent asymmetry of their parameterizations but they
can become reversible though, when noninformative priors
on jump parameters are used. Since we explicitly chose to
use prior information here, these past models are not
adapted to handle reversibility.

[8] Before deciding on the existence of a change point,
the posterior pdf’s of jump parameters a and t have to be
derived. From the definition of M1, we can write

p xjqð Þ ¼
Y t

i¼1N xijm� a 1� t
n

� �
; s2

� �Y
n

i¼tþ1N xijmþ a
t
n
; s2

� �
/ 1

s
exp �

s2 � ltDx2t
� �

þ lt a�Dxtð Þ2þ m� xð Þ2

2s2

 !" #n

where x and s2 correspond to the classical empirical mean
and variance estimators, Dxt = xt+1:n � x1:t is the difference
in partial means at time t, the residual variance unexplained

by partitioning at time t equals Rt = 1 � ltDx2t
s2

with the
weighting factor lt = t

n
(1 � t

n
). The full posterior joint

distribution is simply derived through Bayes formula

p qjxð Þ / p xjqð Þ : p qð Þ

Following Lee and Heghinian [1977], we integrate out
parameters s and m to get

p k; a; tjxð Þ / l�
1
2

t R
�n�2

2
t : St ajDxt ;s2

t ; n� 2
� �

: Be kjwð Þ: p ajk; sað Þ
ð2Þ

with st
2 = Rt

nlt
s2 and as, bs, and sm

�1 ! 0. To obtain
closed forms, it is convenient to approximate the Student
t distribution in (2) by a Gaussian distribution. This
approximation is reasonably precise even for small values
of n (we found by simulation an error of �5% for n = 4
and�2% for n = 10). Then, the equalityN (. j a,b) .N (. j a0,
b0) = N (a + a0 j b +b0) . N (. j ab0þa0b

bþb0 ,
bb0

bþb0) allows
approximation of (2) by

p k; a; t j xð Þ /kwl�
1
2

t R
�n�2

2
t N Dxt js2

t þ s2
a

� �
� N a jDxt 1þ s2

t

s2
a

� ��1
;s2

t 1þ s2
t

s2
a

� ��1 !
þ 1� kð Þ 1� wð Þd0 að Þ

Integrating out a and t, it follows that

p k j xð Þ ¼ Be k j w*ð Þw* ¼ 1� 1þ w
1� w

B
h i�1

ð3Þ

with w* the posterior probability of jump existence defined

from the Bayes factors B = 1
n

Pn
t¼1lt

�1
2Rt
�n�2

2 N (Dxt j st2+sa2).
Denoting p1(.) a distribution conditional on k = 1, the
computation of the requested marginal distributions follows

p t j xð Þ ¼ w*p1 t j xð Þ þ 1� w*ð Þ U tð Þ and

p1 t j xð Þ / l
�1

2
t R

�n�2
2

t N Dxt j s2
t þ s2

a

� �
p a j xð Þ ¼ w*p1 a j xð Þ þ 1� w*ð Þd0 að Þ and

p1 a j xð Þ ¼
Pn

t¼1 p1 t j xð Þ : p1 a j t; xð Þ
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where p1(a j t, x) is Gaussian with mean Dxt(1 +
s2
t

s2
a
)�1 and

variance st
2(1 +

s2
t

s2
a
)�1, and p1(a j x) is a mixture of Gaussian

distributions.
[9] Deciding upon the existence of a jump could be

drawn from Bayes factor B using Jeffreys0 absolute scale
[Jeffreys, 1939]. Because this scale neither takes into
account the prior probability w, nor the prior amplitude
sa, we prefer to minimize a cost function to build an
estimator q̂ = (k̂, â, t̂). Our cost function is a basic 0-1
cost associated primarily to appropriately deciding upon the
existence of the jump, and secondly, when it exists, to
accurately estimating its position:

C k; t; k̂; t̂ð Þ ¼
0 if k ¼ k̂ ¼ 0½ � or k ¼ k̂ ¼ 1 and jt � t̂j � h½ �

1 otherwise

8<:
ð4Þ

To be credited by a 0 cost first requires the decision to be
correct (e.g., k = k̂) and second, when a jump is identified,
the estimation to be accurate enough (e.g., j t � t̂ j � h).
Note that accuracy is here defined solely with respect to the
estimation of jump position t̂. This choice is justified by the
fact that the primary goal of homogenization is to detect
artificial jumps, e.g., to correctly identify break positions.
The estimation of jump amplitude in the purpose of series
correction is generally treated separately in an ad hoc
algorithm that accounts for specificities such as seasonal
differences in jump amplitude. Hence, the estimation of a is
not critical in the present context. Nevertheless, the posterior

average
Pn

t¼1p1(t j x) . Dxt(1 +
s2
t

s2
a
)�1 could be used as an

estimator of jump amplitude, obtained by minimizing the
classic quadratic cost (a � â)2 under k = 1. Note that h can
be adapted depending on what is considered an acceptable
level of precision for the estimation, and can be chosen
consistently with the definition of decision performance.
Practically, for yearly series of length in the order of 100,
h = 2 years seems to be a fair requirement.
[10] We nowminimize the average posterior cost r(k̂, t̂ j x)

defined by
R
C(k, t; k̂, t̂)p(k, t j x) dkdt. After simplification

we obtain

r k̂; t̂jxð Þ ¼ w*þ k̂ 1� w*� w*: w1 t̂ j x; hð Þð Þ

where w1(t̂ j x, h) = P (jt � t̂ j� h j k = 1, x) =
Pþh

k¼�h p1
(t̂ + k j x). The minimization of r leads to

k̂ ¼ 1 w* : 1þ w1 t̂ j x; hð Þð Þ > 1f g and t̂ ¼ argmaxtw1 t j x; hð Þ
ð5Þ

the estimators of jump existence and position, respectively.
Equation (5) provides a complete Bayesian decision and
inference scheme in the single change point context. In
section 4, we find this scheme to outperform the classic
procedure consisting in a decision based on the comparison
of the standard normal homogeneity test (SNHT) defined by
maxt (ltDxt

2), to a threshold, and an estimation of jump
location based on the maximum likelihood estimator
defined by t̂mle = argmaxt (ltDxt

2). Performance levels of

Table 1. Performance Levels by Experiment and Method

Experiment Description K n a Noise BSI PL1 PL2 MDL SNHT

1 usual conditions 7 150 0.0 N 0.01 0.00 0.01 0.00 0.00

2 usual conditions 7 150 1.0 N 0.32 0.25 0.36 0.36 0.21

3 usual conditions 7 150 1.5 N 0.57 0.55 0.61 0.63 0.39

4 usual conditions 7 150 2.0 N 0.76 0.81 0.77 0.80 0.58

5 usual conditions 7 150 3.0 N 0.88 0.97 0.87 0.91 0.79

6 usual conditions 15 150 1.0 N 0.16 0.17 0.26 0.25 0.13

7 usual conditions 15 150 1.5 N 0.37 0.32 0.49 0.49 0.23

8 usual conditions 15 150 2.0 N 0.55 0.54 0.67 0.68 0.35

9 usual conditions 7 100 1.0 N 0.25 0.20 0.29 0.28 0.16

10 usual conditions 7 100 1.5 N 0.47 0.44 0.55 0.55 0.30

11 usual conditions 7 100 2.0 N 0.66 0.69 0.70 0.72 0.42

12 usual conditions 7 150 1.5 c2(8) 0.60 0.56 0.63 0.65 0.40
13 usual conditions 7 150 1.5 AR(1) 0.49 0.54 0.46 0.49 0.38
14 usual conditions 7 200 1.0 N 0.35 0.28 0.39 0.38 0.24

15 usual conditions 7 200 1.5 N 0.65 0.64 0.67 0.70 0.48

16 usual conditions 7 200 2.0 N 0.80 0.86 0.80 0.84 0.66

17 usual conditions 11 150 1.0 N 0.23 0.20 0.30 0.29 0.16

18 usual conditions 11 150 1.5 N 0.47 0.41 0.57 0.58 0.30

19 usual conditions 11 150 2.0 N 0.65 0.68 0.74 0.76 0.45

– mean 1–19 0.49 0.48 0.53 0.54 0.35
20 very long series 250 5000 1.5 N 0.57 0.23 0.42 0.38 0.39

21 single change point 0/1 100 1.0 N 0.60 - - - 0.56

22 single change point 0/1 100 1.5 N 0.86 - - - 0.82

23 single change point 0/1 100 2.0 N 0.95 - - - 0.92
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both schemes are shown in Table 1 for a = 1, 1.5, 2
(experiments 21, 22, and 23).

3. Finding Subsequences

[11] We now assume that the number of change point K
can be greater than one. This implies that jump return period
l also has to be integrated into model M1. Past knowledge
can also help us to perform this extension of M1.
[12] A statistical analysis of aforementioned Météo

France results, as shown in Figure 1 (right), indicates that
a gamma distribution fits adequately the empirical distribu-
tion of time between jump arrivals with a mean l of about
13 years and a shape parameter m = 2. Since the variance is
equal to l2

m
, parameter m can be viewed as the level of

determinism associated with the jump process. When m = 1,
the gamma pdf becomes exponential, a memoryless distri-
bution, whereas when m goes to1, the gamma pdf tends to
a dirac mass, i.e., a perfect memory. The short memory
captured by m = 2 is in our view consistent with the nature
of shifts in meteorological series. Station relocations, the
main cause of inhomogeneities, would occur randomly with
a low memory of past relocations. To model the full
structure of change point occurrences, we assume jumps
originate from a renewal process. Renewal processes,
extensively defined and studied in probability theory
[Lefebvre, 2005], generalize Poisson processes with an
arbitrary distribution of time between events. Within this
framework, the sequence of interarrival times (Tj)j=2,. . .,1
is an infinite sequence of independent and identically
distributed random variables with pdf f, and T1 the time of
the first occurrence has pdf f1. The event times (tj)j=1,. . .,1
are then defined by tj = T1 + � � � + Tj. Introducing
G (x j m) = 1

G mð Þ
Rþ1
x

um�1 e�u du the incomplete Gamma
function and n a binary variable indicating the existence of a
jump at the origin of the sequence, we define the initial
distribution with f1(t j m, l, v = 1) = f(t j m, l) and f1 (t j m,
l, n = 0) = l G ( tl j m) (section A1).
[13] To take into account the renewal process, we intro-

duce model M2 which is a generalized version of M1, in
which the prior of the change point location is now a
function of f1 and f (section A2), for example, of meta-
parameters m, l and n, instead of being uniform:

p t jm; l; nð Þ / f1 t jm;l; nð Þ: f1 n� t jm;l; 0ð Þ

Second, the prior probability of jump existence w in model
M1 is no longer a metaparameter in model M2, but a
function of metaparameters m, l and n. To explicit this
function, we define w0 = P(K = 0), w1 = P(K = 1) and w =
P(K � 1) = w0 + w1, and we set

w ¼ P K ¼ 1 jK � 1ð Þ ¼ w1

w0 þ w1

Each of these quantities can be derived from m, l and n,
explicitly or numerically (section A2). It is then immediate
to show that model M1 is a particular case of M2 obtained
with m = 1 and l = nw

1�w.
[14] To identify subsequences that are most likely to

contain a unique jump, a criterion characterizing each
subsequence y = xt1:t2, with t1 2 {1, . . ., n � 1} and t2 2
{t1 + 1, . . ., n}, has to be introduced. We introduce the

cost eC(y) of performing a single jump correction, versus
performing no correction in y simply by differentiating the
values of the 0–1 cost function C of equation (4) obtained
for k̂ = 1 (e.g., the cost of correcting) and k̂ = 0 (e.g., the
cost of not correcting):

eC yð Þ ¼ C y; k̂ ¼ 1; t̂ð Þ � C y; k̂ ¼ 0; t̂ð Þ ð6Þ

so that eC(y) = 1 when y has zero or more than one jump;eC(y) = 0 when y has one jump ty and j ty � t̂y j > h; eC(y) =
�1 when y has one jump ty and j ty � t̂y j � h. While other
cost functions may be defined, our motivation for maintain-
ing simple 0–1 costs is to keep our algorithm light. The
mean posterior cost associated to eC (y) follows

er yjxð Þ ¼ 1� P Ky ¼ 1jx
� �

: P jt � t̂j � hjKy ¼ 1; x
� �

þ 1
� 	

To quantify er, we introduce prior probabilities P(Ky � 1) =
w(ny) and P(Ky = 1 j Ky � 1) = w(ny), where ny denotes the
length of y, so that P(Ky = 1) a priori equals w(ny) . w(ny). We
then update these prior probabilities based on the infor-
mation provided by sequence x by applying model M2 to
sequence y, using it to derive posterior probability of jump
existence. This choice is an approximation, as it restricts the
information provided by x to the information provided by y.
In addition, since M2 holds conditionally on Ky � 1, the
update is relevant for P(Ky = 1 j Ky � 1), but in the absence
of a relevant model to update P(Ky � 1), it is left at its prior
value. This approximation has the advantage of simplicity, as
it avoids the use of a considerably more complex multiple
change point model. Based on this choice, we obtain P(Ky�
1 j x) ’ w(ny) and P(Ky = 1 j Ky� 1, x) ’ w*(ny, y) where
w*(ny, y) stands for the posterior probability of jump
existence in y resulting from the update of prior probability
w(ny), obtained by applying modelM2 to y. Finally, denoting
w1(h, y) = P(jt � t̂ j � h j Ky = 1, x), we obtain

er y j xð Þ ’ 1� w ny
� �

:w* ny; y
� �

: 1þ w1 h; yð Þð Þ ð7Þ

[15] The problem of identifying y* the optimal subse-
quence of x for a single jump correction is therefore resolved
by minimizing the above quantity in y, i.e.,

y* ¼ argmaxy2X w ny
� �

:w* ny; y
� �

: 1þ w1 h; yð Þð Þ ð8Þ

Once the optimal sequence y* is identified, the decision to
detect a jump is obtained by imposing a negative cost,
which is equivalent to applying the detection condition (5)
of model M1:

w ny*
� �

:w* ny*; y*
� �

: 1þ w1 h; y*ð Þð Þ > 1 ð9Þ

[16] Since Card(X ) ’ 1
2
n2, computing the cost of all

sequences y would have at least a quadratic complexity in n.
However, it can be reduced easily noticing that for any y we
have 2w (ny) > w (ny) . w*(ny, y) . (1 + w1(h, y)). It results
from this inequality that whenever w(ny) < 1

2
, sequence y is

necessarily cost positive and can be ruled out as a candidate
for jump detection. Since w(ny) can be expressed as a
function fm(

ny
l ) which is decreasing for any m, there exists

a length ~n = lfm
�(1

2
) which is proportional to l, the
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proportionality factor depending on m: 1.68 for m = 1 and
1.58 for m = 2 such that any sequence y having length ny > ~n
can be excluded. Hence, the cost minimization can be
restricted to eX the subset of X consisting of sequences y
having length smaller than ~n / l. Since Card(eX ) ’ 1

2
n~n /

nl, the complexity of this minimization is therefore linear in
n for a given prior value l. More precisely, for a given
subsequence y = xi:i+l, computing er(y j x) essentially
requires the computation of all the differences in partial
means Dyk = xi:i+k�1 � xi+k:i+l for k = 1, . . ., l from which
Bayes factors and posterior probabilities are derived. This
has a computational cost proportional to l. Therefore, by
summation for all y 2 eX, the total computational cost of the
minimization is proportional to

P
ji�jj<~n (i � j) / nl2.

[17] Based on this subsequence identification method we
now build the following recursive inference scheme.
[18] First, criterion er(y j x) is computed for all sequences

y in eX .
[19] 1. The optimal sequence y* = argmaxy2X w(ny) .

w*(ny, y) . w1(h, y) is identified. If w (ny*) . w*(ny*,

y*) . (1 + w1(h, y*)) < 1, the algorithm is stopped. Other-
wise, a jump is identified in y* at position t̂.
[20] 2. The set X is updated by removing all sequences

y = xt1:t2 such that t̂ 2 [t1, t2].
[21] 3. Go to step 1 and iterate.
[22] Note that all computations are performed at step 0 of

the algorithm, with complexity O(nl2). Iterations of steps 1
and 2 then manipulate the resulting values but no further
computation is actually required. Also note that suppres-
sions performed at step 2 basically reflect a split of the
sequence at the detected jump position, before iterating the
search on its remaining pieces. Figure 2 presents a cost
mapping and iterations of steps 1 and 2 for a simulated
sequence.

4. Simulation Results

[23] To evaluate performance and robustness of the
proposed scheme, we applied it on a set of simulation-based
experiments, on which we also ran various change point
detection algorithms used in climate series homogenization
for comparison.

4.1. Experiment Design

[24] Simulation-based experiments were designed to rep-
resent a range of situations that is diverse enough to perform
sensitivity analysis, yet remaining realistic enough with
respect to length, number and amplitude of jumps to mimic
typical long climate records encountered in homogeniza-
tion. We designed 19 experiments combining lengths n of
100, 150, 200; number of jumps K of 7, 11, 15; amplitude of
jumps a of 0, 1, 1.5, 2, 3; noise of amplitude 1 having
distribution Gaussian-independent, Chi2(8)-independent,
Gaussian-dependent AR(1) with autocorrelation =.25. In
each experiment, we simulated 1000 sequences with same
length, number of jumps and amplitude of jumps, but
different jump positions simulated from the renewal process
described in section 3, and different noise values simulated
from one of above specified distributions. On these 19
experiments, the scheme was run with prior values of
amplitude an return period matching actual values, e.g.,
sa = a and l = n

K
. To assess the robustness of the algorithm

to the mismatch between prior and actual values, we
simulated 16 additional experiments introducing different
values of metaparameters (l, sa) into experiment 4. To
analyze performance on very long sequences, we created
one experiment with n = 5000 and K = 250. Such conditions
can be seen as unusual in the context of homogeniza-
tion but might be representative of other contexts, such
as for instance DNA sequencing. Finally, to assess
performance of the detection and estimation scheme of
the single change point model M1, we created three
experiments with n = 100, K = 0 or 1 with probability 0.5,
for a = 1, 1.5, 2.

4.2. Alternative Methods

[25] Other than the proposed algorithm, the Bayesian
segment inference (BSI), we implemented four change point
detection algorithms of increasing complexity. The first
algorithm (SNHT) is a binary splitting algorithm based on
the frequentist test SNHT. This simple scheme can be seen
as representative of the majority of change point algorithms
used for climate series homogenization. In this basic

Figure 2. (top) Overall sequence x with n = 150, K = 7,
and a = 2. (bottom) Contour plot of er(xi:j j x) restricted
to positive values, computed in the bandwidth (0 < j � i <
1.58 n

K
). Dashed rectangles highlight optimal subsequences

identified at iterations 1 and 2 of the algorithm. Solid
rectangles highlight the domain of value of (i, j) excluded at
each iteration when x is split at the detected change point.
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recursive scheme, the SNHT test is applied on the entire
series. It it exceeds the 95% significance level, the series is
split at the location where the test statistic reaches its
maximum (e.g., the maximum likelihood estimator of
change point position). Then, the process is repeated recur-
sively on the subsequences on both sides of the split, until
the test statistic is below the 95% significance level.
[26] The second (PL1) and third (PL2) algorithms are

more advanced and were popularized in homogenization
quite recently [Caussinus and Mestre, 2004]. They rely on
the maximization of a penalized likelihood (PL), a proce-
dure which is applied in two steps. First, the Gaussian
multiple change point model with known number of shifts K
is resolved by likelihood maximization for every possible
values of K. A naive maximization scheme considering

every combination of shifts positions amongst the Cn
K

possibilities would have complexity in nK and be intracta-
ble. Fortunately, a dynamic optimization scheme with
quadratic complexity in n is available to obtain an exact
solution to this problem [Hawkins, 2001]: the maximum
likelihood LK* can thus be obtained for every possible values
of K with computational time in O(n2). Second, the number
of change points in the series is determined by maximizing a
penalized log likelihood function log LK* � PK where PK

increases with K and penalizes for too high dimensionality
of the model. The reason for introducing such a penalty is
that a direct maximization of LK* would invariably lead to
the highest possible number of jumps, e.g., K = n. Several
penalties have been proposed in the literature to estimate the
dimension of a model. For instance, the popular Bayesian
information criterion (BIC) proposed by Schwartz [1978]
has general validity, and the corresponding penalty has a
simple expression PK = 1

2
K
n
log n. The BIC penalty can be

applied directly to the present problem: algorithm PL1
corresponds to this case. Similarly, algorithm PL2 corre-
sponds to the penalty proposed by Caussinus and Lyazrhi
[1997] in the much more specific present context of
choosing the number of change points in the mean of a
Gaussian sequence. This penalty equals twice the BIC
penalty, and therefore systematically leads to a lower
number of shifts.
[27] The fourth method (MDL) rely on the minimization

of an information criterion known as description length.
Description length can be seen very generally as an alter-
native criterion for quantifying model fit, based on the data
compression enabled by the model. The idea behind the
MDL principle, as exposed by Rissanen [1989], is thus that
the best fitting model is the one that enables maximum
compression of the data. The generality and flexibility of
MDL makes it relevant both for fitting a given number of
model parameters and for choosing the model dimension
itself. MDL has been applied to a wide range of situations
(see Saito [1994] for a review) including the multiple
change point problem. For the latter, Davis et al. [2006]
proposed a method to detect an unknown number of change
points in nonstationary AR series, with changes affecting
potentially all parameters. This method enables to obtain
simultaneously the number of change points and estimates
of all parameters. To reduce minimization complexity, a
genetic algorithm was used, leading to an approached
solution. Our problem can be seen as a special case of the
problem formulated by Davis et al. [2006], looking for

changes in the mean of an AR(0). In this special case, the
minimization can be implemented by adapting Hawkins
algorithm instead of using Davis genetic algorithm which is
more complex. This method has never been applied in the
context of homogenization to our knowledge.

4.3. Metric of Detection Performance

[28] To assess performance, we compute for each exper-
iment the average number of positives n.1 obtained across
all simulations, and split it into true positives n11 and false
positives n01. To perform the latter, a detected jump is
defined to be a true (false) positive when the estimated
change point falls inside (outside) an interval [t � 2, t + 2]
around an actual change point t. Then, n11 and n01 can be
plotted in a ROC chart that provides a mapping of detection
performance. Since we need to come up with a metric for
the sake of intercomparison, we use the quantity n11

K
� n01

n
5
�K.

The weights 1
K
and � 1

n
5
�K associated with n11 and n01 are

chosen to obtain 1 when detection is perfect (e.g., n11 = K
and n01 = 0) and 0 when detection is random. Indeed, in that
case, a position t chosen randomly has probability 5K

n
(1 �

5K
n
) to be a true positive (false positive).

4.4. Comparative Results on Detection Performance

[29] Results for all experiments are shown in Table 1 and
plotted in Figure 3. Averaging on all experiments, the
proposed method BSI, when used with prior information
matching actual situation, performs roughly at the same
level than PL1, PL2 and MDL (performance = 0.51 ± 0.02)
and outperforms SNHT (performance = 0.35) in every
experiments. Qualitatively, two groups can be seen in the
ROC chart: PL1 and SNHT characterized by low true and
false positives; PL2, MDL and BSI characterized by high
true and false positives. The performance of all methods is
quite sensitive to jump amplitude a but with slightly
different sensitivity levels, which has an incidence on their
relative performance as a vary: while BSI is systematically
outperformed by MDL, it outperforms PL1 for small values
of a, and PL2 for large values of a.
[30] We perform a sensitivity analysis by computing the

elasticity of performance to three factors that are systemat-
ically tested in the experiment set: length n, number of
jumps K and amplitude a. It appears that the rank ordering
of methods on their sensitivity is the same for all three
factors: the sensitivity of BSI is positioned in the middle,
while PL1 and SNHT are the most sensitive and PL2 and
MDL are the least sensitive. The performance sensitivity of
BSI to length, number of jumps and amplitude is therefore
average as compared to others.
[31] We analyze robustness to non-Gaussianity (c2(8)

noise) and to dependence (AR(1) noise) by computing the
ratio of the performance obtained under such conditions to
the performance obtained under a Gaussian noise. Robust-
ness to non-Gaussianity appears to be very good for all five
methods as their performance actually improve slightly
instead of degrading. Differently, robustness to dependence
appears to be quite contrasted: PL1 and SNHT are very
robust as their performance are barely unchanged, but PL2
and SNHT robustness is weak as their performance degrade
by almost 25%. Here again BSI has an in-between position
as its performance decrease by 10%.
[32] Increasing length n to high values while maintaining

similar jump return period (e.g., n = 5000, K = 250),
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methods react quite differently (Figure 4). The performance
of BSI and SNHT are maintained at the exact same level,
but the performance of PL1, PL2 and MDL dramatically
decrease. In this situation, BSI is comparatively better
because, as is also the case of SNHT, it is insensitive to n

for a fixed level of jump return period n
K
. This comes from

the fact that the segmenting used in BSI is purely driven by
local values of x, captured through subsequences y. There-
fore it is not influenced by global characteristics of x such as
its total length. By contrast, PL1, PL2 and MDL are clearly

Figure 4. (left) ROC chart and (right) performance obtained for a short experiment (n = 150) and a long
experiment (n = 5000) with the same value of n/K = 20 and amplitude a = 1.5.

Figure 3. (a) ROC chart of percent of true positives versus percent of false positives, the difference
between these two values (highlighted by the arrow) being by definition the detection performance.
Each point represents values obtained by each method, averaged on all 19 ‘‘short’’ experiments.
(b) Performance obtained with n = 150, K = 7, and a varying between 1 and 3. (c) Elasticity of
performance to three factors (n, K, and a), all the rest being equal. (d) Ratio of performance obtained with
c2(8) and AR(1).
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not insensitive to n for a fixed jump return period n
K
. This

comes from the fact that the penalty terms used in PL1 and
PL2 as well as the description length criterion used in MDL,
are not either, since all three terms behave asymptotically
for large n as O(log(n)). As a consequence the induced
penalization becomes excessively heavy when n increases,
and those methods are overly selective for high length,
leading to weak performance. Therefore, for high values of
n, the performance achieved by BSI is much better. Note
that in addition, the comparative advantage of BSI in terms
of computational time also increases with n (see below).
[33] To assess the quality of our approximation in infer-

ring the posterior distribution of jump positions, we com-
pare the distribution obtained with BSI to the one obtained
with the advanced Bayesian scheme proposed by Lavielle
and Lebarbier [2001]. In this method, posteriors are in-
ferred by mean of a MCM sampler in the multiple change
point framework. Although no quantified, systematic testing
has been performed to gauge the match between both
schemes, it has been found to be quite good in general as
the example shown in Figure 5 suggests.

4.5. Comparative Results on Computational
Performance

[34] We measured computational time (in elapsed CPU
seconds) obtained for BSI and each four alternative methods
applied to simulated series of length n increasing from 100
to 1500. We maintained the average return period n

K
= 20

and used a prior return period l matching the actual value
while executing BSI. All algorithms where run on a
desktop computer equipped with a 2.4 GHz Intel processor.

Results are shown in Figure 6: as expected from previous
considerations on complexity, computational time is found
to increase with n, linearly for BSI and SNHT; quadratically
for PL1, PL2 and MDL. More precisely, it approximately
equals 8.8e–4 . n s for BSI; 2.5e–5 . n s for SNHT; 6.7e–6 .

n2 s for PL1, PL2 and MDL. Hence, the simplicity of SNHT
scheme is clearly an advantage in terms of speed (it runs
about forty times faster than BSI), although this simplicity
results in a detection performance that is systematically
much worse than any other tested methods, as detailed
above. On the other hand, while BSI detection performance
is similar to PL1, PL2 and MDL, its linear complexity
makes it faster than all of these multiple change points
schemes as soon as n exceeds 130; the speed ratio then
keeps increasing linearly with n and quickly becomes
considerable for very long series (BSI is ten times faster
for n = 1.3e+3 and a hundred times faster for n = 1.3e+4).
Finally, the aforementioned Bayesian scheme [Lavielle and
Lebarbier, 2001] is found to run in approximately 15 + 6n s.
Hence, BSI produces a reasonably good approximation of
posterior distributions, roughly 10,000 times faster than an
advanced MCMC multiple change point algorithm.

4.6. Robustness to Prior Information

[35] Now focusing solely on BSI, we analyze its robust-
ness to a mismatch between prior amplitude sa and actual
amplitude a, and between prior return period l and actual
return period n

K
. We perform this analysis by computing BSI

performance with a = 2, n = 150, K = 7 (e.g., n
K
= 21),

successively for sa varying in [0, 20] and for l varying in
[0,150]. The obtained performance pattern is similar in both

Figure 5. (top) Simulated series of length n = 150, K = 7, and a = 2. Posterior distributions of jump
locations obtained (middle) with an advanced multiple change point scheme and (bottom) with the
presented segmentation method.
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cases (Figure 7): a sharp increase between 0 and the actual
value followed by a flattening for higher values. Therefore,
BSI robustness is asymmetric: very weak when values of sa
and l are lower than actuals as performance quickly
degrades, but very strong to greater values as performance
is barely unchanged. The latter robustness is striking as
performance is maintained even when prior values sa and l
are much higher than actuals (�10). Elements of justification
for such a pattern can be found in section A3. This robust-
ness pattern suggests that a high value of sa and l should be
used systematically. However, while sa should systemati-
cally be high, using a high value of l has numerical
implications as the algorithm complexity grows in O(nl2).
Therefore the choice of l must be a tradeoff.

5. Application

[36] The BSI algorithm was used for homogenization of
real climate data: we describe in detail the climate data and

the homogenization method used, then we discuss the
results obtained.
[37] The data consists of yearly average series of mini-

mum daily temperature from sixteen stations of the French
weather service. These stations are located in the southeast
of France, most of them near the Mediterranean sea, in an
area ranging from 42�500N to 46�100N in latitude and 300W
to 4�500E in longitude. The record covers a 136 years period
(1882–2007) with some data missing mostly over the late
19th century and early 20th century and during both world
wars, as is common in Europe. This data has already been
homogenized [Mestre, 1998] but since the purpose here is to
test our method, we naturally used the nonhomogenized,
raw data record. Further, a substantial amount of metadata
on the set of selected stations is available regarding reloca-
tions and instrumental changes, so that artificial shifts are
quite well documented. But again, given the purpose is to
test our undocumented change point detection algorithm,

Figure 7. Performance obtained for n = 200; K = 7; and a = 1, 1.5, 2 when varying prior value of jump
amplitude (left) sa and (right) l.

Figure 6. Computing time (in elapsed CPU seconds) as a function of series length n for BSI (dashed
line) and for PL1, PL2, and MDL (solid line) implemented with the Hawkins algorithm. Computing time
of SNHT is not shown, as it is visually not distinguishable from the horizontal axis.
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we did not take into account this information ex ante while
detecting shifts. This information was only used ex post in
order to assess the ability of the algorithm to identify the
shifts which existence is known from the metadata.
[38] To describe the method used, we recall the main

principles at stake in homogenization; for a detailed review,
the reader is referred to Menne and Williams [2008]. First
and foremost, in a nonhomogenized climate series, instru-
mental shifts are mixed with the climate signal. It is widely

recognized that removing the former is necessary to make
the latter enough apparent for reliable detection. To do so,
the relative homogeneity principle is applied: a climatolog-
ical series is relatively homogeneous with respect to a
synchronous series at another place if the differences of
pairs of homologous averages constitute a series of random
numbers (e.g., a white noise), as stated by Conrad and
Pollack [1962]. In other words, it is assumed that inhomo-
geneities of a given series, referred to as the candidate

Figure 8. (top) Series of yearly averages of daily minimum temperature at Gueret station (thick line)
and at neighboring stations (dots) over the period 1882–2007. (middle) Contour plots of the sequence
selection criterion er(xi:j j x) applied to six series of pairwise differences between Gueret and its most
highly correlated neighboring stations (r > 0.75). Negative values of the criterion were excluded for
clarity, and open circles on the diagonal represent the position of shifts detected in the series. (bottom)
Position by amplitude chart of all shifts detected in all difference series (66 shifts) attributed either to the
candidate station (open circles, 39 shifts) or to a neighbor station (crosses, 27 shifts), leading to five break
detections in Gueret in 1947, 1957, 1965, 1974, and 1987.
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series, become apparent when processing its difference with
a comparison series that has similar climatic variations.
Artificial shifts are thus detected on the difference series,
assuming it behaves as a white noise with jumps in the
mean. In many homogenization studies, a so-called refer-
ence series obtained by averaging of sufficiently correlated
nearby stations is used for comparison to the candidate
series. However, since such a regional reference series is an
average of potentially nonhomogeneous series, its homoge-
neity cannot be guaranteed: this is considered a drawback
by some authors [Caussinus and Mestre, 2004; Menne and
Williams, 2008]. Therefore, we prefer to implement the
alternative solution used by these authors, which relies on
pairwise comparisons to several neighboring station series,
instead of a unique comparison to a regional reference
series. Following this approach, the difference series with
every sufficiently correlated neighbor (here we used r >
0.70 as a selection threshold) is derived for each candidate
station. All difference series are then scanned for shifts
using the BSI scheme. After this critical break detection
step, the pairwise difference approach requires two addi-
tional steps, attribution and reconciliation: first, each shift
detected on a paired difference series may be caused by any
two series and must hence be attributed to the culprit series;
second, multiple shift locations estimated on several paired
difference series must be reconciled into a unique date to be
used for adjusting the candidate series. Following Caussi-
nus and Mestre [2004], these two steps were performed by
manual review of the detected shifts. To achieve manual
attribution more easily, we propose to use an original yet
simple visualization tool by plotting, for each candidate, all
the shifts detected on difference series in a position �
amplitude chart (Figure 7, left). In such a chart, shifts that
are attributable to the candidate are detected multiple times
on various difference series, at a similar or identical date
and with comparable amplitude, hence they tend to appear
in the chart overlapping or densely grouped. Conversely,
shifts that are attributable to a neighbor tend to appear
isolated or more scattered. Based on visual inspection of
these charts, shifts that are most obviously grouped in a
given candidate chart are attributed to this candidate and
subsequently removed from all its neighbors charts. Pro-
ceeding so, all shifts are iteratively attributed. Finally,
reconciliation is performed by averaging estimated positions
of shifts that were grouped during attribution.
[39] We applied this method to the 16 above mentioned

series. Identifying correlated neighbors was easy due to the
high level of correlation overall: depending on the candi-
date, we found between 5 and 13 neighbors satisfying to the
selection criterion r > 0.70. We thus obtained 154 difference
series on which BSI was run, leading to the detection of
912 shifts in total. Based on the conclusion of the robustness
analysis presented in section 4, BSI was run using prior
values of shifts amplitude and return period that largely and
undoubtedly overestimate typical values known from past
studies, by choosing sa = 5�C and l = 70 years. After visual
attribution and reconciliation, we finally end up with a total
of 93 shifts. In Figure 8, we illustrate each step of this
process for the candidate station of Gueret. We plotted the
Gueret series together with its ten selected neighbors
(Figure 8, top), the contour plot of the segmentation
criterion applied to difference series for its six most corre-

lated neighbors (Figure 8, middle), and the amplitude �
position chart used for visual attribution (Figure 8, bottom).
The method results in detection of five shifts in Gueret in
1947, 1957, 1965, 1974 and 1987. Ex post, it appears that
detected shifts match quite well with the metadata. The
Gueret station has actually been relocated in 1944, 1957,
1965, 1975 and 1987: hence all five relocations were
correctly detected, with an estimation error on position of
3, 0, 0, 1 and 0 years. Apart from these five relocations, no
significant event susceptible to trigger a shift appear in the
metadata which suggests no false negatives. Therefore,
based on this particular example, the BSI detection method
appears to work efficiently in practice for homogenization.

6. Conclusion

[40] We reached the objective of adapting the simple
single change point framework to the multiple change point
context, through the use of a recursive algorithm relying on
the Bayesian decision theory and the minimization of
simple cost functions. The resulting method obtain similar,
if not better, performance level than three state-of-the art
multiple change point methods. Yet it remains at the same
time as simple and light to implement as a basic single
change point iterative procedure with linear complexity in n.
[41] At a low computational cost, the method therefore

benefits from the strengths of the Bayesian framework,
which mainly consist in introducing expert knowledge
about the return period and amplitude of change points
through prior distributions, and in quantifying the uncer-
tainty on change points characteristics through posterior
distributions. In applications to homogenization, those ben-
efits could be leveraged in two foreseeable ways. Posteriors
of jumps position can be found useful to help objectivize a
decision on the existence of jumps when they are detected
simultaneously on multiple series of pairwise station com-
parison, a process which is currently performed visually.
Also, joint posteriors of jumps position and amplitude can
be used to derive confidence intervals on the corrected
series, and to quantify the uncertainty introduced by ho-
mogenization in climatic trends further obtained.
[42] Robustness to mismatch between prior and actual

values of amplitude and return period shows a pronounced
asymmetry. Hence when expert information is blur, it
appears to be a very safe option to boldly overestimate l
and sa as it will barely affect performance. The method
proved particularly effective for long series with frequent
jumps. In such a situation, the segmentation approach
delivers its full benefit by simultaneously reducing the
complexity of the problem and outperforming other tested
methods. The method may therefore be of interest to other
fields where such long series are found.
[43] Finally, in the context of the multiple change point

problem, the stochastic description of change points occur-
rence used in this article may offer possibilities for Bayesian
and non-Bayesian models.

Appendix A

A1. Deriving f1 From f

[44] Parameter n indicates the existence of a jump at the
origin of the sequence. In case n = 1, t0 the immediate
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antecedent of t1 is equal to zero. Since t1 � t0 � f, thus
t1 � f and f1(t j m, l, n = 1) = f(t j m, l). In case n = 0,
nothing is known regarding the position of t0 except that
t0 � 0 and t1 � t0 � f. Hence f1(t j m, l, n = 1) = P(t1 �
t0 � t) =

Rþ1
t

f(u) du = l G(lx j m).

A2. Deriving Priors From f and f1

[45] We haveP(K = 0) =P(T1 > n) andP(K = 1) =
R n
0
P(T1 =

n � u) P(T2 > u) du. With assumptions and definitions used
in M4, P(T2 > x) = 1 �

R x
0
f(u) du = f1(u j m, l, n = 0).

Therefore:

w m;l; nð Þ ¼P K ¼ 1 jK � 1ð Þ ¼P K ¼ 1ð Þ =P K � 1ð Þ ¼ w1

w0 þ w1

w0 ¼ P K ¼ 0ð Þ ¼ 1�
Z n

0

f1 u jm;l; nð Þ du;

w1 ¼ P K ¼ 1ð Þ ¼
Z n

0

f1 u jm;l; nð Þ : f1 n� u jm;l; 0ð Þ du;

To obtain p(t), we write

P t ¼ t jK ¼ 1ð Þ ¼ P t ¼ t;K ¼ 1ð Þ =P K ¼ 1ð Þ
¼ P T1 ¼ t; T2 > n� tð Þ =P K ¼ 1ð Þ
¼ P T1 ¼ tð Þ :P T2 > n� tð Þ =P K ¼ 1ð Þ
¼ f1 t jm; l; nð Þ : f1 n� t jm;l; n ¼ 0ð Þ =w1

since P(T2 > u) = f1(u j m, l, n = 0).

A3. Robustness of the Method to a Mismatch
Between Priors and Actuals

[46] The above described robustness structure comes
from properties of the Bayes factor and from the nature of
the cost used. To understand robustness to a l mismatch,
note that l influences on the result via two quantities: the
prior probability of jump existence w(ny) in the sequence y
of length ny, and the prior probability that there is at most
one jump w(ny). Now let us assume that the data shows
strong evidence of a jump within a sequence y that is short
(ny < l); for example, the Bayes factor associated to y is
high. The Bayes factor being a very contrasted metric
(hence the logarithmic scale used by Jensen to interpret
it), in that case it is generally so high that even a very low
prior jump probability w(ny) resulting from a low value of

ny
l

will result in a high posterior jump probability. On the other
hand, since

ny
l is low, the prior probability w to find 0 or 1

jump in y is high. Combining, the posterior cost er(y) will
remain high. Therefore, it is very difficult for a large value
of l to discount a short sequence having strong evidence of
a jump. Conversely, let us assume that the data shows strong
evidence of a jump for a long sequence y, e.g., ny > l. Then
both the Bayes factor associated to y and the prior jump
probability are high, resulting in high posterior jump prob-
ability. However, since

ny
l is high, the prior probability w to

find 0 or 1 jump in y is low. Combining, the posterior coster(y) will be low, and even negative if
ny
l is greater than the

threshold above which w < 1
2
(1.58 for m = 2). Therefore, it

is quite easy for a small value of l to rule out a long
sequence with strong evidence of a jump. This asymmetry
in the behavior of the cost when l varies explains the
asymmetry in the robustness to prior return period. The
asymmetry associated to sa is simpler to explain: in that
case, properties of the Bayes factor are only at stake. For a

given sequence y, the Bayes factor is a steeply increasing
function of sa from 0 until a maximum is reached in the
neighborhood of the actual value a, and then decreases to
zero. But while the increase between 0 and a is steep, the
decrease is extremely slow when there is reasonable evi-
dence of a jump in y (for a = 1.5 and n = 100, it requires
sa > 104 to halve its value). Hence, it is considerably more
difficult for a high value of sa to discount this evidence
than it is for a small value.
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