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 21 

Abstract 22 

Photocatalytic systems comprising a hydrogenase-type catalyst and CdX (X = S, Se, Te) 23 

chalcogenide quantum dot (QD) photosensitizers show extraordinary hydrogen 24 

production rates under visible light excitation. What remains unknown is the 25 

mechanism of energy conversion in these systems. Here, we have explored this question 26 

by comparing the performance of two QD sensitizers, CdSe and CdTe, in photocatalytic 27 

systems featuring aqueous solutions of a [Fe2 (µ-1,2-benzenedithiolate) CO6] catalyst 28 
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and an ascorbic acid sacrificial agent. Overall, the hydrogen production yield for CdSe-29 

sensitized reactions QDs was found to be 13 times greater than that of CdTe 30 

counterparts. According to emission quenching experiments, an enhanced performance 31 

of CdSe sensitizers reflected a greater rate of electron transfer from the ascorbic acid 32 

(kAsc). The observed difference in the QD-ascorbic acid charge transfer rates between 33 

the two QD materials was consistent with respective driving forces for these systems, 34 

determined from cyclic voltammetry measurements. 35 

Keywords: Photocatalytic hydrogen production, hydrogenase mimic, quantum dot, 36 

CdSe, CdTe, electron transfer, hybrid systems. 37 

 38 

1. Introduction 39 

In the current global context, greenhouse gas emissions due to the combustion of fossil 40 

fuels pose a threat to the global climate change (Fang et al., 2018; Hinojosa-Reyes et al., 41 

2017; Seadira et al., 2018). Therefore, research efforts have been directed towards 42 

finding alternative and environmentally-friendly energy sources. In this context, 43 

hydrogen appears as a clean energy vector whose combustion only produces water 44 

(Chen et al., 2018; Munfarida et al., 2020; Oh et al., 2020). Nowadays, it is mainly 45 

produced by steam reforming from fossil fuels (Chu et al., 2017; Corredor et al., 2020a; 46 

Nikolaidis and Poullikkas, 2017). This process is energy intensive and plagued by the 47 

emission of greenhouse gases (Holladay et al., 2009; Ribao et al., 2019). As a result, the 48 

potential to produce hydrogen from alternative and greener technologies, where 49 

electrolysis takes the leading role, is becoming increasingly important. 50 

Complementarily, hydrogen can be released from residual gas or liquid effluents 51 

through the use of cost-effective technologies, such as photocatalysis (Nasir et al., 2019; 52 
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Rivero et al., 2019; Yue et al., 2017). Photocatalysis is a way to harvest sunlight energy 53 

and store it in the form of solar fuels, just as nature has done through natural 54 

photosynthesis (Christoforidis and Fornasiero, 2017; El-Khouly et al., 2017; Lewis S. 55 

Nathan, 2016; Zamkov, 2017). 56 

As an alternative to noble metal catalysts, (Cho et al., 2021; Lai et al., 2021; Y. Yang et 57 

al., 2021), recent studies have explored heterogeneous photocatalytic systems 58 

comprising hydrogenases catalysts and semiconductor quantum dot (QD) 59 

photosensitizers. The hydrogen production rates for these materials approaching 2 mmol 60 

H2ꞏgcat
-1ꞏh-1 were below those of homogeneous catalysts but showed an impressive long-61 

term stability (Elsayed et al., 2021; Putri et al., 2020; J. Yang et al., 2021). 62 

Hydrogenase mimics is another promising noble metal-free catalyst that shows 63 

compelling hydrogen production performance (Fukuzumi et al., 2018; Trincado et al., 64 

2014). Hydrogenases in nature are enzymes, which active sites are composed of Fe 65 

and/or Ni, synthesized by certain bacteria and algae; these enzymes catalyze the 66 

reversible redox reaction of H+ to H2 (Hemming et al., 2018; Li et al., 2018; Wang et al., 67 

2012). Among hydrogenases, [Fe-Fe]H2-ases have shown a very high production 68 

activity of hydrogen, about 6000-9000 H2 molecules per second per active site (Li et al., 69 

2018; Stripp and Happe, 2009; Wang et al., 2019; Wittkamp et al., 2018). Therefore, 70 

they have been studied in the last decades and have awakened interest in the synthesis 71 

of biomimetic molecules (Ahmed et al., 2018; Capon et al., 2004; Liu and Darensbourg, 72 

2007; Orain et al., 2014; Quentel et al., 2012; Roy et al., 2013). 73 

[Fe-Fe]H2-ases photocatalytic hydrogen production systems containing metal 74 

complexes, such as [Ru(bpy)3]2+ (bpy = 2,2’-bipyridine) or [Re(4,4´-75 

dimethylbpy)(CO)3]+ (Na et al., 2008; Pullen et al., 2013; Streich et al., 2010; Wang et 76 

al., 2010; Yu et al., 2013) or organic dyes such as Eosin Y or Rose Bengal as 77 
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photosensitizers have been extensively studied (Li et al., 2012; Orain et al., 2014; 78 

Supplis et al., 2018). Orain et al studied the photocatalytic hydrogen production in 79 

aqueous solutions with [Fe-Fe]H2-ase mimics, and organic dyes as photosensitizers 80 

(Orain et al., 2014). Despite promising performance, their main drawback was the fast 81 

excitation decay and the spectrally-narrow absorption band of dye sensitizers. In order 82 

to overcome these issues, semiconductor QDs have been employed as photosensitizers 83 

(Jian et al., 2016; Liang et al., 2015; Song et al., 2014; Troppmann and König, 2016; 84 

Wang et al., 2013, 2011; M. Wang et al., 2015; Wen et al., 2017, 2016). Jian et al. 85 

compared the performance of [Ru(bpy)3]2+ and CdSe QDs as a photosensitizer for the 86 

same aqueous system achieving a hydrogen production rate of 301 and 20840 mmol 87 

H2ꞏgcat
-1ꞏh-1, respectively, duplicating the stability of the system. Hydrogen production 88 

was further enhanced by using a sacrificial agent that acted as an electron donor, such as 89 

ascorbic acid (Figure 1) (Goy et al., 2017). 90 

 91 

Figure  1.  Hydrogen  production  by  a  [FeFe]H2‐ase mimic  from  ascorbic  acid  aqueous  solution 92 
with QDs as photosensitizer. 93 
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 94 

The selection of the QD material for sensitizing hydrogen production is still a challenge. 95 

Cadmium chalcogenides, CdS, CdSe and CdTe, are good candidates due to their visible-96 

range absorbance and energetically favorable positions of band edges for driving the 97 

hydrogen production processes. Since CdS absorbs the smallest fraction of the solar 98 

energy, CdSe and CdTe QDs, exhibiting absorption in the visible and near-IR, are 99 

usually preferred. For instance, CdSe has been used as photosensitizer for hydrogen 100 

generation in combination with hydrogenases, hydrogenase mimics, and even with 101 

bacteria that produce hydrogenases (Chica et al., 2017; Ding et al., 2019; Hamon et al., 102 

2014; Jian et al., 2016; Li et al., 2013, 2020; Liang et al., 2015; Sanchez et al., 2019a, 103 

2019b; Shen et al., 2013; Troppmann and König, 2016; Wang et al., 2013; Wen et al., 104 

2016). CdTe has been also used for this purpose (Brown et al., 2014, 2010; Greene et 105 

al., 2012; Jian et al., 2013; Wang et al., 2011; Wroblewska-Wolna et al., 2020). Overall, 106 

the two QD sensitizers appeared to perform differently in the presence of the same 107 

scavenger and catalyst components (Acharya et al., 2011; JACS 2012, 134 (12) , 5627-108 

5636.), which makes this pair of QDs a promising model system for interrogating 109 

energy conversion processes in sacrificial hydrogen production reactions.   110 

The present study offers a comprehensive analysis of the hydrogen production 111 

performance for CdSe and CdTe QD photosensitizers under visible light irradiation. 112 

The photocatalytic systems in present experiments featured a bio-mimetic hydrogenase 113 

catalyst and ascorbic acid as a sacrificial agent. By drawing a comparison between the 114 

two sensitizer QDs, we were able to infer that the primary rate-limiting step in these 115 

systems is an electron transfer between the sacrificial agent and semiconductor QDs. 116 

This conclusion was supported by cyclic voltammetry measurements showing a larger 117 
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difference between the oxidation potential of ascorbic acid and the valence band of 118 

CdSe, as compared to CdTe. 119 

 120 

2. Materials and methods 121 

2.1. Materials 122 

Oleic acid (OA) 90%, 1-octadene (ODE) 90%, trioctylphosphine oxide (TOPO), 123 

cadmium oxide (CdO) 99.5%, tellurium powder 99.8% and tributylphosphine 97% 124 

(TBP) were purchased from Sigma Aldrich. Chloroform and acetone were purchased 125 

from ChemPure Chemicals. L-Ascorbic acid 98+% and methanol were provided by 126 

Alfa Aesar. N-octadecylphosphonic acid (ODPA) was supplied by PCI. 127 

Trioctylphosphine (TOP) was purchased from Strem Chemicals Inc. Selenium powder 128 

99.99% was supplied by Beantown Chemicals. 3-mercaptopropionic acid (MPA) was 129 

acquired from Acros Organics. Sodium dodecyl sulfate (SDS) 10% was provided by 130 

LifeTechnologies. 131 

2.2. Hydrogenase synthesis 132 

[Fe2(µ-1,2-benzenedithiolate)(CO)6], the [Fe-Fe]H2-ase mimic, was synthesized as 133 

previously described in the literature (Cabeza et al., 1998). 134 

2.3. Synthesis of CdSe and CdTe quantum dots  135 

OA-capped CdSe QDs were synthesized according to a procedure adapted from the 136 

literature (Mongin et al., 2018). Briefly, OA-capped CdSe QDs were synthesized from 137 

cadmium and selenium solutions. To prepare cadmium solution, 180 mg of CdO were 138 

dissolved with 75 mg of ODPA, 9 g of TOPO and 6 mL of OA in a flask at 300 ºC 139 

under Ar atmosphere. When the solution turned clear, 5.4 mL of TOP were added. 140 

Selenium solutions were prepared with 180 mg of Se powder and 3 mL of TOP at 140 141 
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ºC under Ar atmosphere. When selenium was dissolved, the solution was cooled down 142 

to 80ºC and it was injected into the cadmium solution. The reaction time was 2 min. 143 

Every step was performed under magnetic stirring. 144 

To synthetize ODPA-capped CdTe QDs, the cadmium solution was prepared with 25.6 145 

mg of CdO, 147.2 mg of ODPA and 8 mL of ODE at 300 ºC under Ar atmosphere. 146 

Tellurium solution was prepared from 51 mg of tellurium powder, 4 mL of ODE, and 147 

0.46 mL of TBP at 80 ºC under Ar atmosphere. Tellurium solution was injected into the 148 

cadmium solution and the reaction was carried out for 4.75 min. 149 

Both CdTe and CdSe solutions were centrifuged for 4.5 min at 6500 rpm after adding 150 

ethanol:acetone solution, with a volume ratio 2:1, to cause precipitation of the crystals. 151 

The ratio between the crystals solution and the ethanol-acetone mixture was 1:3 in 152 

volume. The precipitated crystals were re-dissolved in chloroform. 153 

The ligand exchange process was carried out according to a procedure adapted from the 154 

literature (Chang et al., 2016). Briefly, 0.5 mL of MPA were dissolved in 10 mL of a 155 

1:1 methanol:chloroform solution at basic pH. 1.5 mL of crystals solution were added 156 

under constant stirring. QDs precipitated after centrifugation in acetone. They were 157 

dissolved in water and re-precipitated in acetone. Finally, the QDs were dissolved and 158 

stored in water. 159 

2.4. Materials characterization 160 

1H NMR spectra of [Fe2(µ-1,2-benzenedithiolate)(CO)6] in deuterated acetone were 161 

recorded on a Bruker AC-300 FT-NMR spectrometer and were referenced against 162 

SiMe4. The infrared spectra of [Fe2(µ-1,2-benzenedithiolate)(CO)6] in hexane were 163 

recorded on a Nicolet Nexus FT-IR spectrometer.  164 
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The materials absorbance spectra were recorded in a UV-Vis spectrophotometer Cary 165 

60 (Agilent). Photoluminescence spectra and excitation decay lifetime (τ0) of CdSe and 166 

CdTe QDs were obtained, exciting them with 405 nm PicoQuant PDL 800-D pulsed 167 

laser and measuring their emission with an AndornewtonEM SR-303i-A spectrograph. 168 

2.5. Hydrogen production 169 

Hydrogen production experiments were carried out in an 8 mL reactor under magnetic 170 

stirring. The reaction medium consisted of 4 mL of aqueous solution with ascorbic acid 171 

200 mM (excess of the sacrificial agent was used to avoid its influence on the kinetics 172 

of hydrogen production), 0.1 mM of [Fe-Fe]H2-ase mimic, QDs in a concentration 173 

between 0.001 mM and 0.1 mM, and 10 mM SDS sodium dodecyl sulfate (SDS) to 174 

solubilize the [Fe-Fe]H2-ase mimic (Orain et al., 2014; Supplis et al., 2018). The light 175 

source consisted of a 150 W halogen lamp, provided with a filter which allowed only 176 

visible light to pass (400 nm < λ < 800 nm). The irradiance on the reactor wall was 31 177 

mWꞏcm-2. It was measured with a Compact Power and Energy Meter Console PM100D 178 

from Thorlabs. The concentration of hydrogen was measured with a Shimadzu 8A gas 179 

chromatograph, equipped with a thermal conductivity detector and a molecular sieve 180 

column 80/100 using argon as a carrier gas. Hydrogen production experiments were 181 

performed at pH 4.5, which is close to the ascorbic acid pKa (4.2) (Tu et al., 2017); it 182 

has been reported that working close to the sacrificial agent pKa enhances hydrogen 183 

production (Corredor et al., 2019). 184 

 185 

3. Results 186 

The [Fe-Fe]H2-ase mimic [Fe2(µ-1,2-benzenedithiolate)(CO)6] was characterized by 187 

FTIR and 1H-NMR spectroscopy. Three bands were displayed in the infrared spectra in 188 
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the CO region: 2006, 2045 and 2079 cm-1. 1H-NMR (300 MHz, (CD3)2CO): δ 7.24 (m, 189 

2H), 7.46 (m, 2H). These data are in good agreement with those reported by Cabeza et 190 

al. (Cabeza et al., 1998). The [Fe-Fe]H2-ase mimic absorbance spectra (Figure S1) 191 

showed an absorption peak at 330 nm and absorption at wavelengths lower than 300 192 

nm. Therefore, the catalyst did not absorb radiation during hydrogen production 193 

experiments, which were carried out using visible light excitation (400-800 nm). 194 

The influence of the QD diameter on the effectiveness of hydrogen production with 195 

hydrogenase enzymes has been investigated previously (Brown et al., 2014). In this 196 

work, we only focus on single sizes of CdTe and CdSe QDs (2.95 nm and 2.68 nm, 197 

respectively, see Figure S2. Yu et al., 2003), which were chosen to enable similar 198 

extinction values for the two sensitizers in the visible range. In this size range, the rate 199 

of electron transfer to a catalysis was not expected to be influenced by the particle size 200 

(Brown et al., 2014).  201 

The UV-Vis absorbance and the emission spectra of the synthesized CdSe and CdTe 202 

QDs before and after the ligand exchange process are shown in Figure 2. A slight blue-203 

shift was observed in the absorbance peak of both materials when the hydrophobic 204 

ligands were exchanged with MPA. 205 
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 206 

Figure 2. CdSe and CdTe absorption (black) and emission (red) spectra of: (A) CdSe‐OA; (B) 207 
CdSe‐MPA; (C) CdTe‐ODPA; (D) CdTe‐MPA. 208 

 209 

Figure 3 shows the time-resolved luminescence decay curves of excited CdSe-OA, 210 

CdSe-MPA, CdTe-ODPA and CdTe-MPA. The fluorescence intensity decay lifetime 211 

(τ0) was calculated by fitting the data to a three-phase exponential decay function (Gong 212 

et al., 2013). The τ0 values for CdSe-OA, CdSe-MPA, CdTe-ODPA and CdTe-MPA 213 

were determined to be 38.4, 2.6, 14.7 and 9.6 ns, respectively. The value of τ0 decreases 214 

upon the ligand exchange with MPA for both materials. This decrease was previously 215 

explained by the photoinduced hole transfer from a nanocrystal to MPA, which exhibits 216 

a more negative energy relative to the semiconductor valence band (Ben-Shahar et al., 217 

2015; P. Wang et al., 2015). 218 
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 219 

Figure 3. Time‐resolved photoluminescence decay spectra  for  (A) CdSe‐OA,  (B) CdSe‐MPA,  (C) 220 
CdTe‐ODPA and (D) CdTe‐MPA. 221 

 222 

3.2. Influence of Photosensitizer concentration on hydrogen production  223 

Control tests were carried out in the dark and in the absence of a catalyst and 224 

photosensitizers successfully confirming the absence of hydrogen production. In the 225 

next step, the influence of the CdSe QD concentration on hydrogen production was 226 

investigated in the 0.001 mM to 0.1 mM range. The pH of the solution was the natural 227 

pH of the ascorbic acid (pKa 4.2) (Tu et al., 2017), as the optimal pH for these systems 228 

has a value close to the pKa of the sacrificial agent. In addition, Gloaguen and 229 

coworkers reported that a pH between 3 and 6 favored the protonation of the 230 

electrochemically reduced [Fe-Fe]H2-ase mimic leading to higher hydrogen production 231 

(Quentel et al., 2012). The selected concentration of ascorbic acid was 200 mM 232 
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following previous reports (Jian et al., 2016). Figure 4 shows that the highest amount of 233 

hydrogen was produced using [CdSe] = 0.01 mM, giving a turnover number (TON) of 234 

18.3 mol of H2 produced per mol of [Fe2(µ-1,2-benzenedithiolate)(CO)6] during 3 h. 235 

The corresponding turnover number frequency (TOF), measured in mol of produced H2 236 

per mol of catalyst per unit of time, was 6.5 h-1. Under the conditions of this study, the 237 

generated hydrogen increased with the QD concentration up to a maximum value 238 

obtained at a concentration of CdSe 0.01M, and after that it decreased as the 239 

concentration of the QD increased. 240 
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Figure  4.  Hydrogen  production  for  different  CdSe‐MPA  concentrations.  [Ascorbic  acid]:  200 242 

mM, [Fe2(µ‐1,2‐benzenedithiolate)(CO)6]: 0.1 mM, pH: 4.5. 243 

 244 

Further insights into the influence of the CdSe QD concentration on hydrogen 245 

generation are provided in Figure S3, which shows the number of excited CdSe 246 

particles per second versus the total number of CdSe nanoparticles in the solution. The 247 

procedure for estimating the number of excited QDs is given in SI, together with the 248 
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absorption spectra of QD solutions (Figure S4) and the excitation spectrum (Figure S5). 249 

The dashed line in Figure S3 shows an ideal case in which the average number of 250 

excited nanoparticles approaches that of the nanoparticles in solution. These conditions 251 

are observed when the concentration of the photosensitizer is less than 0.01 mM. 252 

However, only about 75% and 20% of the total particles were excited for QD 253 

concentrations of 0.025 mM and 0.1 mM, respectively. Therefore, the decrease in 254 

hydrogen production for concentrations of CdSe greater than 0.01 mM was attributed to 255 

the inefficient activation of the photosensitizer particles. This is clarified by equation 256 

S6, which shows that the irradiation of the light source strongly influences the optimal 257 

concentration of the photosensitizer because the number of excited particles depends on 258 

the number of accessible photons. 259 

3.3. Comparative performance of the photosensitizers CdSe and CdTe  260 

In order to compare the performance of photosensitizers MPA-CdSe and MPA-CdTe, 261 

experiments were carried out with a concentration 0.01 mM of each photosensitizer. 262 

Figure 6 shows the data of hydrogen production expressed as TON with CdSe and CdTe 263 

during 3 h. Under similar experimental conditions, a TOF of 6.5 h-1 was observed with 264 

CdSe, which is 13-fold higher than with CdTe (TOF = 0.5 h-1). Table S1 collects the 265 

values of the total hydrogen production and the production rate. 266 
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Figure 6. Hydrogen production with CdSe and CdTe as photosensitizers. [Photosensitizer]: 0.01 268 

mM [Ascorbic acid]: 200 mM and [Fe2(µ‐1,2‐benzenedithiolate)(CO)6]: 0.1 mM, pH 4.5. 269 

 270 

Emission quenching spectra with progressive addition of catalyst and ascorbic acid to 271 

CdSe-MPA and CdTe-MPA solutions are shown in Figure 7. According to Figures 7A 272 

and 7B, addition of a catalyst causes a decrease in the fluorescence intensity, which is 273 

consistent with the transfer of photoexcited electrons from CdSe/CdTe to the catalyst. 274 

The comparison of the UV-Vis spectrum of [Fe2(µ-1,2-benzenedithiolate)(CO)6] 275 

(Figure S1), which shows an absorption peak around 340 nm, with the emission spectra 276 

of CdSe and CdTe showing maxima around 545 and 540 nm, respectively (Figure 2), 277 

leads to the conclusion that the catalyst does not absorb the fluorescence emitted by the 278 

photosensitizer. Thus, the loss of fluorescence intensity is due to the transfer of 279 

electrons from the conduction band of the photosensitizer to the catalyst. Consequently, 280 

the quenching constant (kq), calculated using the Stern-Volmer equation (Figure S7) 281 

(Stern and Volmer, 1919), is equal to the rate constant of electron transfer from the 282 
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photosensitizer to the catalyst (kET), kq=kET, with values of 1.55ꞏ1012 M-1ꞏs-1 and 283 

4.02ꞏ1011 M-1ꞏs-1for CdSe and CdTe, respectively. Similarly, quenching of fluorescence 284 

was also observed with increasing concentration of the ascorbic acid (scavenger) in 285 

solution (see Figures 7C and 7D). Since there is no overlap between the ascorbic acid 286 

absorption (Figure S6) and the photosensitizer emission (Figure 2), it was concluded 287 

that the quenching effect is due to the transfer of electrons from ascorbic acid to the 288 

photosensitizer valence band. In this case, the rate constant of electron transfer from 289 

ascorbic acid to the photosensitizer (kasc), was found to be 5.42ꞏ109 M-1ꞏs-1and 4.31ꞏ108 290 

M-1ꞏs-1 for CdSe and CdTe, respectively. 291 
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Figure 7. Emission spectra at different concentrations of (A) catalyst in CdSe‐MPA solution; (B) 293 
catalyst  in  CdTe‐MPA  solution;  (C)  ascorbic  acid  in  CdSe‐MPA  solution;  (D)  ascorbic  acid  in 294 
CdTe‐MPA solution. 295 

 296 
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A difference of 2-3 orders of magnitude was observed between kET and kasc in both 297 

materials. This difference agrees with previous reports (Jian et al., 2016; Wen et al., 298 

2016). Figure 8 depicts the proposed mechanism where the electron transfer from 299 

ascorbic acid to the valence band of the QDs is the rate-limiting step as kasc is two 300 

orders of magnitude smaller than kET. Furthermore, CdSe sensitizer showed a greater 301 

kasc which was nearly 13 times higher than for CdTe. This fact is consistent with the 13 302 

times greater hydrogen production rate obtained with CdSe than with CdTe. Therefore, 303 

it was concluded that the electron transfer from the ascorbic acid to the QD was the 304 

primary rate-limiting step in hydrogen production reactions. 305 

 306 

Figure 8. Mechanism of photocatalytic hydrogen production. 307 

 308 

Figure 9 represents the energy diagram of both systems at pH 4.5. The reduction 309 

potential of the [Fe-Fe]H2-ase mimic was determined by cyclic voltammetry as E1/2 ~ -310 

0.68 V at pH 4.5 (Quentel et al., 2012) and for ascorbic acid the corresponding value 311 

was -0.41 V (Tu et al., 2017). Although it is energetically favorable for the ascorbic acid 312 

to produce hydrogen directly, it was confirmed experimentally that this redox reaction 313 

did not occur. For both semiconductors, Figure 9 illustrates the conduction and valence 314 

band edge energies for CdSe and CdTe QDs adjusted for present particle diameters 315 

considering the variability range found in literature. (Jasieniak et al., 2011). Notably, the 316 

energy difference between the oxidation potential of ascorbic acid and the valence band 317 
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of the QD is greater for CdSe than for CdTe, which is consistent with the higher value 318 

of kAsc of CdSe with respect to CdTe. This causes a comparatively greater driving force 319 

for the photoinduced electron transfer from sacrificial agent to the CdSe.  320 

 321 

Figure 9. Energy levels at pH 4.5 of CdSe, CdTe, [FeFe]H2‐ase mimic and ascorbic acid. 322 

 323 

Overall, the above experiments demonstrate that the rate-limiting step for the hydrogen 324 

production in the QD-([FeFe]H2-ase mimic)-(ascorbic acid) system is the electron 325 

transfer from the ascorbic acid (sacrificial agent) to the valence band of the 326 

photosensitizer characterized by the kinetic constant kAsc.  327 

In an effort to assess the stability of the investigated catalytic system, several selected 328 

experiments were carried out for the duration of 24 h. According to Figure 10A, CdSe 329 

reached a TON value of 100 while CdTe achieved a TON value of 3.5 after 24 h. The 330 

initial TOF with CdSe was 6.5 h-1 decreasing to 1.8 h-1 after 18 h while the initial TOF 331 

with CdTe was 0.5 h-1 decreasing to 0.1 h-1 after 18 h. Therefore, hydrogen production 332 
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rate decreased about 75% for both materials in this period of time. Figure 10B shows 333 

hydrogen production with CdSe operating in different cycles. Cycle 1 shows hydrogen 334 

production with a fresh catalyst. Hydrogen production rate decreased to 1.8 h-1after 18 h 335 

of reaction. Before starting cycle 2, a purge with argon was carried out in the 336 

photoreactor to eliminate any possible inhibitory effect of the product, as has been 337 

previously reported (Corredor et al., 2020b). After this purge, the TOF was 1.7 h-1, 338 

similar to the value at the end of cycle 1. Therefore, the decrease in hydrogen 339 

production was not attributed to the hydrogen inhibitory effect. Next, catalyst 340 

deactivation was examined by addition of 7.5ꞏ10-3 mM of fresh catalyst at the beginning 341 

of cycle 3; hydrogen production recovered similar values to the initial experimental 342 

conditions. Therefore, the decline and stop of hydrogen production is attributed to the 343 

loss of catalyst activity. 344 
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 345 

Figure  10.  Hydrogen  production with  (A)  CdSe  and  CdTe  for  longer  operation  times,  and  (B) 346 
catalyst reuse with CdSe. 347 

 348 

4. Conclusions 349 

In this work, we compare the photocatalytic performance of two QD photosensitizers, 350 

CdSe and CdTe, in hydrogen production systems composed of a hydrogenase mimic 351 

catalyst and ascorbic acid as sacrificial agent. CdSe QDs showed an overall better 352 

performance. For these materials, the highest hydrogen production rate was observed 353 
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using 0.01 mM nanoparticle concentration, 200 mM of ascorbic acid, and 0.1 mM of 354 

[Fe-Fe]H2-ase mimic (excitation intensity = 31 mWꞏcm-2 of, 400 nm < λ < 800 nm).  355 

Quenching experiments revealed that the rate of electron transfer from photosensitizer 356 

to the catalyst, kET, is of 2-3 orders of magnitude higher than that of scavenger → 357 

photosensitizer transfer process, kAsc. In particular, we found that kasc for CdSe was 13 358 

times greater than that of CdTe. The ratio of hydrogen production rates for the two 359 

materials, CdSe and CdTe, exhibited roughly the same ratio (13:1), suggesting that the 360 

photoinduced hole transfer from a QD to a scavenger was the rate limiting step. A 361 

relatively greater value of kasc for CdSe was attributed to the larger difference between 362 

the oxidation potential of ascorbic acid and the valence band energy of CdSe in 363 

comparison with CdTe. This conclusion suggests that photosensitizers that enable faster 364 

sacrificial regenerations may hold the key to improving the hydrogen production rate. 365 

Another important area to be addressed by the future research is the long-term stability 366 

of hydrogenase mimic catalysts, which lost 25% of catalytic activity after 18 h in 367 

present measurements. 368 
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