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Abstract

Even if shared mobility services are encouraged by transportation policies, they remain

underused and inefficient transportation modes because they struggle to find their customer

base. This paper aims to estimate the potential demand for such services by focusing on

individual trips and determining the number of passengers who perform similar trips. Con-

trary to existing papers, this study focuses on the demand without assuming any specific

shared mobility system. The experiment performed on data coming from New York City con-

ducts to cluster more than 85% of the trips. Consequently, shared mobility services such as

ride-sharing can find their customer base and, at a long time, to a significantly reduce the

number of cars flowing in the city. After a detailed analysis, commonalities in the clusters are

identified: regular patterns from one day to the next exist in shared mobility demand. This

regularity makes it possible to anticipate the potential shared mobility demand to help trans-

portation suppliers to optimize their operations.

Introduction

Recent studies of human behavior reveal the predictability in the mobility of individuals [1, 2].

A significant regularity appears at a larger scale, making it possible to identify recurrent trends

in urban mobility even if variability can be observed in the trips at the scale of a particular indi-

vidual [3] and to derive behavioral laws [4–6]. It appears that patterns repeating from one day

to the next can be identified either by observing the traffic conditions [7], the most used roads

[8, 9], or in the choice of modes of transport [10]. Despite this conformity in individual

human behavior, private cars and taxis (and related services of transportation network compa-

nies) remain largely inefficient modes of transport, carrying less than 1.5 passengers on aver-

age, leading to significant traffic congestion and generating irreversible economic and

environmental impacts [11]. Therefore, there is a significant challenge to massifying transport

by encouraging travelers to share either their vehicle or their trip [12]. At least, it necessitates

two essential ingredients: the existence of transportation services to match similar travel

requests; and the intrinsic potential for ride-sharing of the transportation demand. In practice,
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this ensures that, every day, shared mobility systems will have enough demand and that any

travelers that want to share their trip will find a suitable and efficient solution.

If the literature devoted to the optimization of shared mobility services is large [13–15], it

remains significantly weak on the real capacity of an urban network to gather individuals actu-

ally making similar routes. However, two recent studies are of particular interest as they quan-

tify the benefit of vehicle pooling for the urban network [16, 17]. Two tremendous results are

obtained. Firstly, the analysis of data coming from New York City taxis shows that sharing the

ride by two or three customers simultaneously and optimizing the match would lead to a 40%

reduction of the total distance traveled by the fleet of taxis [16]. Secondly, an empirical univer-

sal law is exhibited, at a macroscopic scale, to qualify the capacity of the users of the transporta-

tion network to share their trips [17]. These results are fascinating and encourage us to go

even further by trying to group as many passengers as necessary and to focus on the spatio-

temporal features of the shareable trips of a city. The particularly interesting point is to deter-

mine if we can reveal a day-to-day regularity in the shared mobility demand patterns that can

be used, at a long time scale, to design and provide adapted transportation services.

To this end, we try to identify individuals that perform similar trips on an urban network

and then construct groups of trips sharing the same spatio-temporal characteristics: origin and

destinations whereabouts, departure, and arrival times. Indeed, even if many psychological

considerations play a significant role in the transportation mode choice of individuals [18],

travel times, and the delays imposed by ride-sharing are determinant. Moreover, we show that

these groups of trips exhibit day-to-day regularity, although different individuals realize these

trips. Therefore, it seems conceivable that this demand can be realized, in the long term, into

the same vehicle. Indeed, the stability of the demand is vital for ride-sourcing / ride-sharing

services and individuals that want to use shared transportation modes. An extreme example is

the case of the airports where travelers and taxis, respectively, are confident of finding a trans-

portation supply and a patron, respectively. Consequently, identifying day-to-day regular pat-

terns is essential to ensure that shared mobility services can be long-standing propositions to

fight against single-occupancy vehicles, reduce the traffic flow, and tend towards a more virtu-

ous mobility [19].

The rest of the paper is organized as follows. Section 1 introduces the methodology used to

detect similar trips and estimate demand patterns. Section 2 focuses on the analysis of the

results for both scales: daily similar trip clusters and day-to-day mobility patterns. Finally, Sec-

tion 3 is devoted to a final discussion.

Estimation of the shared mobility services’ demand

Observing human mobility has become an easier task with the development of telecommuni-

cation devices. Individual trips can now be effortlessly tracked through mobile phone data,

embedded GPS in vehicles, or many other sources of data [1]. Even if it is now possible to col-

lect all the travelers’ entire trajectories, we only consider origin/destination locations and

departure/arrival times of users to represent their trip. There are at least two main reasons.

First, such observations can be derived from more numerous sources of data than trajectories

(such as origin-destination matrices or other data often aggregated at the transportation analy-

ses zone level). Second, two individuals may have the same origin/destination and departure/

arrival times but use different routes, which has no impact on our study. To this end, we use a

dataset released by the New York City Taxi and Limousine Commission (https://www1.nyc.

gov/site/tlc/index.page) that are freely available. Although these data are not fully representa-

tive of human mobility since they only correspond to taxi trips, such a dataset provides an

attractive proxy for studying the individuals’ routes within a city. The study focuses on

PLOS ONE Finding similar trips in the city

PLOS ONE | https://doi.org/10.1371/journal.pone.0238143 September 17, 2020 2 / 15

https://www1.nyc.gov/site/tlc/index.page
https://www1.nyc.gov/site/tlc/index.page
https://doi.org/10.1371/journal.pone.0238143


morning peak hours from 8h to 11h and a well known high-density area in terms of mobility

in New-York City: Midtown and Upper East Side. For each trip i, the dataset gives access to

the following information: departure time tPUi and location pPUi ¼ ðx
PU
i ; y

PU
i Þ of the pick-up of

the passenger(s); and arrival time tDOi and location pDOi ¼ ðx
DO
i ; yDOi Þ of the drop-off. All the

notations used in the paper are listed in Table 1.

The data used in the paper comes from taxi and limousine services. However, the method

presented works with any data type, as long as we have access to the origin/destination where-

abouts of the trips. Nevertheless, as we can see in [20], taxi trips represent almost a third of

total trips in NYC. The authors of this study also underline the fact that a taxi is used, on aver-

age 60% of the time. Consequently, these data constitute an excellent indicator to describe the

urban mobility of NYC. Because the private car data are not available, it is not easy to precisely

estimate the representativeness of taxi trips compared to the total of private car trips, except

for this rough value of one-third given by many communications. It is almost sure that taxi

users’ are not recurrent users of private cars. Therefore, the demand identified in this study is

likely to use the transit system. However, we assume that a significant ratio of taxi trips is com-

parable to private car trips.

As already stated, the methodology used in this paper to gather observed trips for a given

day is based on two successive steps. First, an index of similarity is defined that gives the

Table 1. Nomenclature.

Notation General

l Pick-up (PU) / Drop-off (DO)

tPUi Departure time of trip i

pPUi PU location of trip i

tDOi Arrival time of trip i

pDOi DO location of trip i

dðpli; pljÞ Euclidean distance between l locations

jtli � tlj j Difference between l times

Distance function

�Sði; jÞ Similarity index without penalties

S(i, j) Similarity index with penalties

fl(i, j) Feasibility function

αl Coefficient to penalize the delay

γ Average pace to connect travelers

d
l
x

Spatial threshold

d
l
t

Temporal threshold

Clustering

nk Number of trips in the cluster k
Q(k) Quality index of the cluster k
Qmax Maximal dissimilarity of clusters

�Dl
k

Average distance between l locations in cluster k
�Tl
k

Average offset between l times in the cluster k
�lk Average length of nk trips within cluster k

�tk Average duration of nk trips within cluster k
K Number of estimated cluster

n Total number of trips before clustering

~n Total number of trips that have been clustered

ρ Ratio of trips clustered n=~n

https://doi.org/10.1371/journal.pone.0238143.t001
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potentiality between each pair of individual trips to be gathered. Second, using this function,

trips are clustered to identify groups of users that can potentially share the same vehicle to

travel based on the spatio-temporal features of their trips.

Two different categories of ride-splitting scenarios can be defined: (i) travelers share the

entire trip, and (ii) travelers share only a part of the trip. The second category is a source of

many interesting studies that mainly focus on the optimization of shared mobility services

[13]. On the opposite, our work only considers the first category when users share a vehicle for

the entire trip, i.e., multi-hop service is out of the scope.

Modeling similarity between individual trips

Even if several attempts exist in the literature to express the similarity between two trips [21–

23], these studies mainly aim at estimating the likeness between trajectories using variants of

Euclidean distance between points of interest or at measuring the number of points shared by

two trajectories [24, 25]. This issue is quite different from our goal because the number of

observations is much higher in these previous cases. The existing methods to estimate the like-

ness between trips based on variants of the Longest Common Subsequence Problem (LCSS)

need a critical number of observation points to define trips correctly. Here, only the origin and

destination whereabouts and times are considered. This choice has been motivated by two

main reasons. The first one is the simplicity of our method and the low complexity of calculat-

ing the similarity index. The second reason is data accessibility. Many datasets exist for which

we do not have access to trajectories to describe trips, but only pairs origin/destination. This

method has been developed to estimate the similarity between trips easily and to work with a

large number of datasets, not only with datasets containing trajectories. Unfortunately, the

research on the similarity between origin and destination of individual trips is very sparse. The

main contribution to our work on the similarity between trips is the study of [26]. The authors

introduce a similarity measure calculated as the arithmetic mean of the distance between ori-

gin/destination locations to evaluate the proximity between two trips i and j. This index is the

weighted geometric mean of Euclidean similarity (spatial) and their temporal similarity. In the

following l indicates a pick-up or a drop off, pli and tli indicate respectively the spatial position

and the timestamp of a point i. To be consistent with our modeling framework, we can formu-

late the index as follows:

Simði; jÞ ¼
1

2

X

l2½PU;DO�

e
w1 ln ð 1

1þdðpli ;p
l
jÞ
Þþw2 ln ð 1

1þjtli � t
l
j j
Þ

w1þw2

0

B
@

1

C
A

� 1

ð1Þ

where d is the geodesic distance and w1 and w2 are weighting factors.

The main limitation of the approach described above to evaluate the similarity (such as the

other attempts based on the Euclidean distance) is that it does not discriminate. It sufficiently

enhances the difference between trips when applied to origin/destination locations and desired

departure/arrival times only. Specifically, index of two trips with similar origin/destination, i.e.

dðpli; p
l
jÞ close to zero (with d a distance function), but with significant difference in their

desired departure/arrival times, i.e. high values of jtli � tljj, remains still low, see Fig 1. As a con-

sequence, it deteriorates the ability of clustering methods to capture similar trips.

To overcome this drawback, we define a function S(i, j) to evaluate the similarity between

two trips i and j based on the characteristics of their origin and destination [27]. From a physi-

cal point of view, the intuition is that two (or more) travelers may have the interest to share

their trip if they start in the same neighborhood and at the same moment, and want to go to
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the same destination. The function S must encompass these different spatio-temporal attri-

butes of the trips.

To fill this lack of modeling, we proposed the following function:

Sði; jÞ ¼
X

l2½PU;DO�

ale
jf lði;jÞj

ð2Þ

where fl(i, j) is the feasibility function and αl is a coefficient. Function f describes the service’s

potential to operate the shared trips, i.e. the ability to pick up (or drop off) the two travelers

before both of their desired departure times:

f lði; jÞ ¼ jtli � tljj � gdðp
l
i; p

l
jÞ ð3Þ

where γ is the average pace to connect travelers that want to share a trip.

This parameter is a general and synthetic formula to describe the service’s operation and

how it gathers two demand requests into the same vehicle: defining a meeting point, successive

pick-ups, etc. For example, if the first traveler must walk to the second traveler’s pick-up point,

then γ is equal to the inverse of the walking speed. If this distance is traveled by car, meaning

that the service offers door-to-door service, then γ is equal to the inverse of the vehicle speed.

Consequently, f is positive if the time difference between the two desired departure times tPUi
and tPUj (or respectively the two arrival times) is enough to allow users to join. Whereas f is neg-

ative if travelers have to experience a delay in making the match possible.

Moreover, αl is equal to 1

2
if fl(i, j)>0 and to 3

2
otherwise because it is more disadvantageous

to be delayed.

In addition to this first index of similarity Sði; jÞ, excessive distances/durations for rendez-

vous are penalized. Thus, penalties y
l
x and y

l
t are added when, respectively, the distances

between origin (or destination) locations and departure (or arrival) times of trips i and j

Fig 1. Comparison of different similarity indexes.

https://doi.org/10.1371/journal.pone.0238143.g001
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exceed, respectively, specific thresholds, d
l
x and d

l
t :

y
l
x ¼ edðp

l
i ;p

l
jÞ� d

l
x 8l = dðpli; p

l
jÞ > d

l
x ð4Þ

y
l
t ¼ e

jtli � t
l
j j:
d
l
x

d
l
t

� d
l
t
8l = jtli; t

l
jj > d

l
t

ð5Þ

Otherwise, these penalties are null. In this manner, Sði; jÞ ¼ Sði; jÞ þ ylx þ y
l
t defines a sharp

function that enhances the differences between trips and facilitates identification of similar

travelers in the data set. Notice that S is minimal (and equal to 1) when the two trips are

identical.

Fig 1 highlights the evolution of S (in red) with regards to the difference between two hypo-

thetical trips. A comparison with the similarity function Sim of [26] can be made. We complete

this comparison by introducing a naive combination of the Euclidean distance and the abso-

lute difference in time:

sði; jÞ ¼ 1þ
X

l2½PU;DO�

ðjtli � tljj þ dðpli; p
l
jÞÞ ð6Þ

The constant 1 is added to have the same minimal value than S and Sim. Notice that the dif-

ferent functions have been normalized to make them comparable. It is also important to

remember that trips are similar when different functions are minimized. It turns out that Sim
and s have a linear increase (quasi-linear for Sim) with the difference in departure/arrival

times (curves of evolution with regard to the difference in origin/destination locations are

strictly similar). On the opposite, our function S is much more discriminant. Consequently,

differences between trips are clearly enhanced. This means that it will ease to cluster similar

trips with good intra-cluster homogeneity and, simultaneously, a significant inter-cluster

dissimilarity.

Clustering similar trips

Now, we can identify groups of travelers likely to share a vehicle. To this end, a clustering

method gathers the trips. Among the vast body of existing work, the main significant contribu-

tions for our study are the density-based methods. Indeed, we want to determine spatio-tem-

poral areas where similar trips occur. Moreover, it is essential to use an algorithm to detect

clusters of different densities, which is not the case for all density-based algorithms. Between

the different choices, DB-SCAN holds our attention. This popular and classical method only

requires two parameters: a threshold � and a minimum number of points MinPts, which have

to be in a radius � so that the studied point is considered as an element of the cluster, see [28]

for more details. The parameter � is the maximal distance between trips, i.e. the maximal value

of S, allowed to consider them as similar and group them into the same cluster. However, this

method must be slightly adapted to detect groups of different density. We decide to perform

successive DB-SCAN clustering, i.e. itdbscan, using the similarity function S as the distance

while updating the parameter values iteratively. Starting with a large value of MinPts = M and

a drastic �, it makes it possible to identify large groups of travelers in the initial data set of trip

T. In other terms, we first detect large and high-density clusters. Then, the DB-SCAN method

is applied to the remaining non clustered trips to detect groups of minimal size M − 1. This

process is repeated until MinPts = 2.
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Simultaneously, we have defined an indicator of quality to select only the most promising

clusters. A cluster can be considered satisfactory if locations of origin/destination and arrival/

departure times of the trips within the cluster are relatively close. To this end, the function S is

extended to consider sets of trips. In other terms, jtli � tljj and dðpli; p
l
jÞ are respectively replaced

by the mean distances, i.e. 1

nk

Pnk
i¼1
jtli � tljj and 1

nk

Pnk
i¼1

dðpli; p
l
jÞ where nk is the number of trips

inside the cluster k. We then normalized these values because the acceptable delays are strongly

related to the length of the trips. Consequently, the quality index of cluster k, Q(k), is the func-

tion S applied to the set of clustered trips divided by the average length of the trips within-clus-

ter k. Notice that we aim at minimizing the quality index, i.e. best clusters present values of Q
close to zero. Indeed, Q(k) is low when (i) the spatio-temporal distance between origins is low,

(ii) the spatio-temporal distance between destinations is low, and (iii) the mean travel distance

is large. A cluster k is selected if and only if Q(k) is below a specific threshold Qmax. In the

remaining of the study, we set Qmax at 3. It corresponds to a restrictive matching policy.

Finally, Algorithm 1 itdbscan outlines the framework of the demand estimation method.

Table 2 sums up the values of the parameters that are used to produce the results.

Algorithm 1 Iterative DBSCAN—itdbscan
1: function itdbscan data, similarityMatrix, minPtsMin, minPtsMax,
epsMin, epsMax, Qmax
2: mainClustering  ;
3: id  0
4: test  0
5: for minPts in {minPtsMax,minPtsMin} by step of -1 do
6: for eps in {epsMin,epsMax} by step of 1 do
7: clustering, K = dbscan(data,similarityMatrix,eps,minPts)
8: for k in (0,K) by step of 1 do
9: if Q(k) � Qmax then
10: Save k in mainClustering with the number id
11: id  id+1
12: Delete travels of cluster k from data
13: test  1
14: end if
15: end for
16: if test == 1 then
17: if data == ; then
18: break
19: end if
20: Delete travels of cluster k from similarityMatrix
21: test = 0
22: end if
23: end for
24: end for
25: return mainClustering
26: end function

Table 2. Values of the parameters used to produce the results.

Parameter Value Signification

γ 0.18 h/km Average pace to connect travelers

d
PU
t

0.25 h Threshold on departure times

d
DO
t

0.25 h Threshold on arrival times

d
PU
x

0.25 km Threshold on origin locations

d
DO
x

0.25 km Threshold on destination locations

Qmax 3 Maximal dissimilarity of clusters

https://doi.org/10.1371/journal.pone.0238143.t002
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Results

Detection of clusters of similar trips in New York City

The clusters are firstly estimated for a random test-day. The visual analysis of the trips, pro-

jected on the road-map network, of four of these clusters Fig 2 reveals that the origin/destina-

tion whereabouts are adjacent and the differences in departure/arrival times remain low.

Furthermore, clusters have different sizes, from 2 trips to 74 trips gathered into the same

group. It brings to light that the shared mobility demand may take many aspects requiring dif-

ferent forms of transportation services to be optimally satisfied. To go further on the analysis,

average distances between origin and respectively destination locations within cluster k are

defined �Do
k ¼

Pnk � 1

i¼1

Pnk
j¼iþ1

Dðoi ;ojÞ
1
2
nk:ðnk � 1Þ

and �Dd
k ¼

Pnk � 1

i¼1

Pnk
j¼iþ1

Dðdi ;djÞ
1
2
nk:ðnk � 1Þ

where nk is the size of the cluster

k and D is the Euclidean distance. Similarly, average offsets between departure / arrival times

are given by �Tt
k ¼

Pnk � 1

i¼1

Pnk
j¼iþ1

jti � tjj
1
2
nk :ðnk � 1Þ

and �Ta
k ¼

Pnk � 1

i¼1

Pnk
j¼iþ1

jai � ajj
1
2
nk:ðnk � 1Þ

. Moreover, the average travel

length �lk is directly the arithmetic average of the length of nk trips within the cluster k, whereas

the average travel time �tk is the arithmetic average of the duration of the nk trips.

Interestingly, the features of these 4 clusters reveal that the trips that have been gathered for

each of them are similar. Origins/destinations are located in the same area of the city (the aver-

age distance between locations is 220 m). The average offsets in the departure/arrival times are

also very similar (the average offsets between departure and respectively arrival times are 12.5

minutes and 13.5 minutes). We focus our study on the long-term human mobility and not on

real-time request satisfaction. The delay may become tolerable because it can be balanced by a

change in departure time and the benefits of sharing vehicles such as cost reduction, positive

action for the environment, and social interaction. The regularity in the day-to-day pattern is a

point determinant to favor a modal shift from a single-occupancy vehicle to a shared mobility

system.

The study can now be extended to the whole dataset. The quality of the clustering results is

assessed through three indicators: (i) ~n the total number of trips that have been gathered, (ii)

the ratio ρ of trips that have been gathered with n the total number of trips within the period,

and (iii) the number of estimated clusters K. Fig 3 depicts the number of trips clustered by day

and the ratio ρ. We observe that, on average, each day more than 85% of trips are clustered

according to their spatio-temporal commonalities. This clustering generated 19.466 clusters in

which all the clustered trips of the 14 days are distributed. This result means that each day, on

average, from 8h to 11h, we detect more than 1300 spatio-temporal areas containing similar

trips.

Because the characteristics of the clusters are remarkably stable among the observation

days, we investigate if commonalities in the clusters can be identified. Many approaches exist

to derive the most representative partition from a group of partitions, such as meta-clustering

or consensus cluster method [7]. Here, we use the same clustering method to maintain consis-

tency when scaling-up. Thus, for each of the 19.466 clusters identified for 14 days of the data-

set, centroids are calculated. Centroids correspond to the mean origin/destination locations

and mean departure/arrival times of the clustered trips. This information can be handy to

design the transportation supply because centroids can be the location of common meeting

points of the standby areas of shared vehicles.

Indexes of similarity S between any pairs of centroids of the 19.466 clusters are calculated.

Then, centroids are gathered to obtain clusters of groups of similar trips, i.e. meta-clusters.

Interestingly, more than 94% of the daily clusters are recurrent from one day to the other. The

most interesting point is to observe the daily trips forming a randomly selected meta-cluster.
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Fig 2. In the following, green markers denote departure points and red markers denote arrival points. Each point

corresponds to a triplet (longitude, latitude, timestamp). (a) illustrates the functioning of the similarity function,

departure and arrival points of each trips are compared in twos according to the feasibility function described in

section Estimation of the shared mobility services’ demand—Modeling similarity between individual trips. (b) Depicts

the area of study: Midtown and Upper East Side (Manhattan). (c), (d), (e), (f) shows clusters of different sizes and

characteristics. nk denotes the number of trips in the cluster k, �lk denotes the average length of trips in k and �tk denotes

the average duration of the trips in k. Map data copyrighted OpenStreetMap contributors [29].

https://doi.org/10.1371/journal.pone.0238143.g002
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Simultaneous analysis of the evolution of the size of the daily cluster and the localization of the

related origin/destination whereabouts (Fig 4a) shows that similar trips can be observed every

day, except on weekends. It is important to note that different individuals perform these trips

from one day to another. However, global human mobility is remarkably regular; this is a valu-

able insight to efficiently tune transportation services and favor shared mobility. For the spe-

cific case highlighted in Fig 4, the estimated demand can be served by dispatching, every

morning, small vans (or customized buses) in the vicinity of the origin whereabouts and then

use these vehicles later during the day for other groups of trips. For the whole set of the meta-

clusters, the average length of a trip is around 2.7 km (road distance), and the average travel

time is about 11.1 min. Table 3 shows the results for the whole set of meta-clusters. The charac-

teristics of these meta-clusters, are very similar from those observed for the daily clusters. It

also confirms the robusteness of our demand estimation method.

Projected model

We are now going to take advantage of the above significant result and verify that the identifi-

cation of the regular pattern can be used to gather individual trips into the same vehicle. In

other words, we want to investigate that the estimated meta-clusters can predict the number of

similar trips for a future traveler and thus anticipate the shared mobility service demand, as

claimed before.

The first step is to determine if a trip T of new observation day can be included in a meta-

cluster without degrading the quality (according to the values of similarity defined in Table 2).

Let M be a meta-cluster and Td
a the hypothetical trip described by the centroids of the depar-

tures and arrivals of M. A trip T of a new observation day is included in a meta-cluster M if the

similarity between Td
a and T is lower than the maximal similarity between any trip of the meta-

Fig 3. Number of clustered trips per day in New York City (Midtown and Upper East Side) from 8h to 11h. The

ratio ρ of the clustered trips over the total trips is very constant for one weekday to the other. The recurrent variations

correspond to week-ends.

https://doi.org/10.1371/journal.pone.0238143.g003
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cluster M and Td
a . It means that a traveler will have a high probability of finding at least another

user performing a similar trip.

Secondly, since the inclusion in a meta-cluster must guarantee a minimum number of simi-

lar trips, this condition must be verified to confirm the predictive power of the global method-

ology. Consequently, the minimum number mintrips of trips that can be included in the meta-

cluster M is determined. This condition means that if a new trip T is in a meta-cluster, then

there will be at least mintrips in M similar to T (according to the values of similarity defined in

Table 2). In other words, for a new random trip at a given hour and location, it estimates the

minimal number of travelers performing a similar trip. Fig 4b depicts the percentage of trips

for a new day that can be included into a meta-cluster in function of the value of mintrips.

Fig 4. (a) Example of meta-cluster: evolution of the number of trips that can be gathered each day. Effects of week-end

clearly appears. During weekdays, daily clusters size is almost always bigger than 15 trips. Meanwhile, the inspection of

the locations of the 4 first daily clusters confirms the similarity in the selected trips (figures on the top). For this specific

case, it can be easily imagined that this demand could have been served by a small van or an on-demand transit system.

(b) Evolution of the ratio of future trips that can be clustered in groups of size mintrips. The value of mintrips is minimal

number of similar trips that can be guaranteed. © OpenStreetMap Contributor.

https://doi.org/10.1371/journal.pone.0238143.g004

PLOS ONE Finding similar trips in the city

PLOS ONE | https://doi.org/10.1371/journal.pone.0238143 September 17, 2020 11 / 15

https://doi.org/10.1371/journal.pone.0238143.g004
https://doi.org/10.1371/journal.pone.0238143


In the New York City dataset, it can be observed that more than 12% of the realized trips

could have been gathered in groups of 50 travelers. It means that massive shared mobility sys-

tems, such as transit on-demand services, can find potential customers and yield to a signifi-

cant reduction of the number of cars flowing in the city. Interestingly, every weekday, one

traveler over two might find at least 27 other users to share a vehicle with an acceptable delay.

Shared mobility systems with smaller capacity (such as ridesharing, carpooling, small van, or

future shared autonomous vehicles services) could also find their appropriate demand [30].

Indeed, more than 85% of the trips can be clustered in groups of size smaller than 10. If only

pairs of similar trips are searched, this value increases until 98%, a result close to the one pro-

posed by [16]. Notice that this very high matching rate is due to the high density of trips in the

studied area. However, almost as good results are obtained for a less dense city (see S1 Text).

To the best of our knowledge, such a method does not exist in the literature. It allows estimat-

ing for any future trips in a city at a given time the potential number of passengers who can

perform a similar trip. Moreover, these results confirm that a significant ratio of trips could be

grouped into the same vehicle every day.

Conclusion

In this paper, we investigated whether groups of travelers that realize similar trips in a city

exist. These users constitute the potential demand for future shared mobility services such as

ride-sharing, shared taxis, or carpooling. The ability to share a trip with another traveler relies

on factors such as cost, comfort, reliability, etc. To tackle this challenge, only spatio-temporal

features are considered here: origin and destination, desired departure, and arrival times.

Based on these attributes, a general methodology has been elaborated and experimented using

data giving access to this information: the set of trips realized by users of taxi and limousine

services in NYC.

The methodology mainly relies on a function to evaluate the similarity between any pair of

trips. This index drastically differs from the existing works because the shape of the function is

very sharp (making it particularly convenient for clustering) and considers the feasibility of the

trip sharing, i.e. ability of the transportation service to realize multiple pick-up/drop-off. Then,

the classical DB-SCAN clustering method has been adapted to the specific case of the shared

mobility services demand estimation. We have designed an algorithm able to gather similar

trips into groups of different sizes and characteristics by fixing only the maximum dissimilarity

allowed between trips of the same group. This method has then been experimented using a

data set released by the New York City Taxi and Limousine Commission. However, the

method is enough general to be performed with any other source of data giving access to

Table 3. Metrics of the meta-clusters estimated from the daily clusters of the period between June 06, 2011 and the

June 19, 2011.

Description Value

Number of Meta-clusters 2136

Number of clusters grouped to form Meta-clusters 18456

Mean number of clusters by Meta-cluster 8.64

Mean distance between origins and the origins’ centroids 0.2 km

Mean distance between destinations and the destinations’ centroids 0.2 km

Mean offset time between origins and the origins’ centroids 6.16 min

Mean offset time between destinations and the destinations’ centroids 6.27 min

Mean distance of travels 2.7 km

Mean travels time 11.1 min

https://doi.org/10.1371/journal.pone.0238143.t003
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origin/destination and desired departure/arrival times of trips: GPS trajectories, OD matrices,

travel surveys, etc.

The results show that more than 80% of the trips can be clustered for the 30 observation

days of the data set by maintaining a relatively restrictive matching policy. Travelers are gath-

ered on groups of different sizes: from pairs of travelers to groups of 70 users that realize

almost the same trips at the same time. The most significant part of the clusters is composed of

groups of 2 or 3 travelers, meaning that services such as ride-sharing, shared taxis, or carpool-

ing are the most promising solutions between all the different versions of shared mobility ser-

vices. Interestingly, characteristics of the clustered trips are entirely consistent with the

fundamental idea of what similar trips should be: the average length is around 2.7km (road dis-

tance), whereas the average travel time is about 11 min. The travelers wishing to share their

trips must bring them back or forward 6 minutes on average, which is entirely acceptable.

Finally, we start to investigate if commonalities exist between the clusters of 14 successive

days. Using the same clustering method, regular patterns have been identified among the daily

clusters, i.e. meta-clusters. Specifically, large clusters are recurrent, i.e. one can observe a signif-

icant number of trips with the same origin/destination and desired departure/arrival times

from one day to the other. The analysis of meta-clusters shows that 94% of the trips are recur-

rent. Detection of regular patterns is a point essential because it ensures the presence of the

potential daily users for the transportation network companies. For individuals, the transpor-

tation supply must be stable over time; otherwise, private vehicle continues to be the best

option. Thus, this stability of the demand pattern ensures that the critical mass is reached

every day to enable shared trip options. These options can be provided either by the individu-

als themselves (ride-sharing such as carpooling or vanpooling) or by transportation companies

(ride-sourcing such as shared taxi or shuttle). As indicated in S1 File, our method is generic

and reproducible with datasets coming from different cities in the world such as New York

City, US, and Chengdu, China, in this paper; Lyon, France, is under investigation. In conclu-

sion, the method presented in this paper provides a valued design pattern for the implementa-

tion of new shared mobility services. These elements suggest that shared autonomous vehicle

solutions may be viable, from a pure transport perspective.
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