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Abstract. Quantiles are a fundamental concept in extreme value theory. They can be obtained
from a minimization framework using an absolute error loss criterion. The companion notion of expec-
tiles, based on squared rather than absolute error loss minimization, has received substantial attention
from the fields of actuarial science, finance and econometrics over the last decade. Quantiles and ex-
pectiles can be embedded in a common framework of LP—quantiles, whose extreme value properties
have been explored very recently. Although this generalized notion of quantiles has shown potential
for the estimation of extreme quantiles and expectiles, available estimators remain quite difficult to
use: they suffer from substantial bias and the question of the choice of the tuning parameter p remains
open. In this paper, we work in a context of heavy tails, and we construct composite bias-reduced
estimators of extreme quantiles and expectiles based on LP—quantiles. We provide a discussion of the
data-driven choice of p and of the anchor L?—quantile level in practice. The proposed methodology
is compared to existing approaches on simulated data and real data.

Keywords. Bias reduction, expectiles, extrapolation, extremes, heavy tails, LP—quantiles.

1 Introduction

Carrying out inference about the extremes of a random phenomenon is an important goal in several
fields of statistical applications. The first motivating such problem was to determine how high dikes
constructed in the Netherlands should be so that areas below sea level can be adequately protected
from flooding (de Haan and Ferreira, 2006). Extreme phenomena are also of interest in insurance
and finance, as they may negatively affect financial institutions or insurance companies; examples of
studies in this direction include the analysis of extreme log-returns of financial time series (Drees,
2003) and the inference about extreme risks linked to large losses in insurance (Rootzén and Tajvidi,
1997). Providing a solution to such problems has typically relied on estimating an extreme quantile
of a well-chosen univariate random variable.

Even though quantiles are straightforward to calculate and interpret, they are not devoid of drawbacks:
for instance, a quantile only takes into account information on the frequency of a tail event, ignoring
information about its magnitude, and does not generally induce a coherent risk measure in the sense
of Artzner et al. (1999). This has been the rationale behind the study of alternative extreme value
indicators in the recent literature. Among them is the family of expectiles, introduced in Newey
and Powell (1987) through an asymmetric least squares minimization problem. Expectiles have the
advantage to be a coherent risk measure, contrary to quantiles, making them particularly appealing
in actuarial and financial applications (see, among others, Taylor, 2008; Cai and Weng, 2016). In
fact, Bellini et al. (2014) have shown that expectiles are the only LP—quantiles that are also coherent
risk measures. Expectiles, however, are not comonotonically additive (Emmer et al., 2015), while
quantiles are.

This motivates the use of expectiles as a complement, or alternative, to quantiles for extreme risk
assessment. Inference on, and using, extreme expectiles has recently been studied by, among others,
Daouia et al. (2018), Daouia et al. (2020), Padoan and Stupfler (2020) and Daouia et al. (2021).



This is done in the context of a heavy-tailed underlying distribution, which is also our context in the
present paper: a random variable Y is said to be heavy-tailed when its survival function can be written
P(Y > y) =y~ /74(y), where v > 0 and £ is a slowly varying function, i.e. such that £(ty)/¢(t) — 1 as
t — oo for all y > 0. The parameter +y is the so-called tail index of Y. In this setup, it is a consequence
of the Weissman extrapolation relationship (Weissman, 1978) and of an asymptotic proportionality
relationship between extreme expectiles and quantiles that extreme expectiles can be estimated at
arbitrarily large levels, using an extrapolation methodology featuring an estimator of the tail index.

Existing expectile estimators have certain weaknesses. In particular, they tend to become unstable as
the tail of the underlying distribution gets heavier, because of the inherent non-robustness of expectiles
to extreme observations. This general unstability of extreme expectile estimators with respect to large
observations was the reason for the investigation of extreme LP—quantile estimators in Daouia et al.
(2019): if p > 1 and « € (0,1), the LP—quantile g,(p) of Y is given by

do(p) € argminE [n&p) (Y —t)— n&p)(Y) , (1.1)
teR

where n&p)(y) =|a— ]l{y<0}‘ ly|P. Taking p = 1 leads to the quantile, see Koenker and Bassett (1978);

the case p = 2 leads to the expectile. When E|Y|P~! < oo, problem (1.1) has a unique solution as
soon as p > 1. For p ¢ {1,2}, LP—quantiles are not necessarily coherent nor comonotonically additive,
but like expectiles, extreme LP—quantiles are asymptotically proportional to extreme quantiles (and
therefore to extreme expectiles as well). It follows that extreme expectiles and quantiles can in fact
be estimated using LP —quantiles through inverting this asymptotic proportionality relationship. This
gives rise to classes of LP—quantile-based composite estimators of extreme expectiles and extreme
quantiles. For expectiles, this can beneficial if p is chosen between 1 and 2, because LP—quantiles are
then more robust than expectiles to extreme values. For quantiles, this may also be interesting because
LP—quantiles take into account both the magnitude and frequency of extreme observations, and so may
provide estimators that take a more holistic perspective of the distribution, and especially of its right
tail, than traditional extreme quantile estimators which extrapolate a single order statistic. Of course,
the use of LP—quantiles requires making the moment assumption E|Y|P~! < oo that strictly speaking
is not required for the estimation of extreme quantiles, but in the kind of risk assessment situations we
are interested in, a first or indeed second moment will often exist: see e.g. recently Chavez-Demoulin
et al. (2014), Cai et al. (2015) and Alm (2016), as well as the R package CASdatasets. Even if this is
not the case, the fact that LP—quantiles with low p require only fractional moments ensures that the
LP—quantile approach can always be employed for a (possibly small) range of values of p > 1.

However, these composite estimators typically suffer from bias that can be substantial in finite-sample
situations. This is due to (i) the error made in the use of the asymptotic proportionality relation-
ship, and (ii) the use of the Weissman extrapolation relationship, which strictly speaking will only be
exactly valid when the underlying distribution is purely Pareto rather than just heavy-tailed. The
contribution of the present paper is to develop and analyze (theoretically and empirically) bias-reduced
versions of the LP—quantile-based composite estimators of extreme expectiles and extreme quantiles
introduced in Daouia et al. (2019). Our work is based on an asymptotic expansion of the proportion-
ality relationship between extreme LP—quantiles and expectiles or quantiles, and on an estimation of
the errors terms arising. Because bias also features at the extrapolation step, we propose to use an
LP—quantile-based, bias-corrected estimator of the tail index v to eliminate this extrapolation-specific
bias. This is paired with new selection strategies for the tuning parameters involved in the estimators,
in particular the power p, to result in fully data-driven estimators that can be readily used as part
of the R package Expectrem, available at https://github.com/AntoineUC/Expectrem. The bias-
reduced estimators shall be compared to their original versions, as well as to bias-reduced versions
that do not rely on the connection to LP—quantiles, introduced by Gomes and Pestana (2007) for
extreme quantile estimation and recently by Girard et al. (2020b) for extreme expectile estimation.
We will especially show that our proposed method provides a very substantial improvement when the
response variable has a finite variance and a second-order parameter close to 0, which is an interesting
and difficult case in practice.


https://github.com/AntoineUC/Expectrem

The paper is organized as follows. Section 2 introduces our setting, notation, and modeling assump-
tions. Section 3 discusses the construction of the proposed bias-corrected estimators, first by focusing
on the bias terms arising from the use of the asymptotic proportionality relationship, and then by
constructing an LP—quantile-based, asymptotically unbiased estimator of the tail index. Section 4
introduces selection rules for our tuning parameters and examines the finite-sample performance of
our estimators on a simulation study, and Section 5 showcases our estimators on two real insurance
data sets. Proofs of all our auxiliary and main results are postponed to the Appendices.

2 Setting, notation and model

Let p > 1 and let Y be a real random variable such that E[|Y]?"!] < co having a continuous dis-
tribution function F = F(), Differentiating the cost function (1.1), one finds that the LP—quantile
da(p) of level a € (0,1) of Y is equivalently defined as follows:

E [‘Y - y’p_l ]1{Y>y}}

E [!Y - yl’“]

da(p) = inf {y cR: TP (y) <1-— a} with 7 (y) = (2.1)

This is indeed justified because F(p ) is a decreasing function; see Lemma A.l in the case p > 1. In
view of (2.1), if independent copies Y1,..., Y, of Y are available, an estimator of an LP—quantile can
be obtained by replacing expectations by their empirical counterparts:

1Y P
_ ‘ =(r) R
Go(p) =infsyeR: F, (y) <1l—ap with F,, (y) =

T - (2.2)
Y —yff
=1

The asymptotic properties of g, (p) are established in Daouia et al. (2019) for high levels & — 1 when
Y is heavy-tailed. This corresponds to making the following fundamental assumption on the right tail
of Y:

(1)

C1(7) The survival function F'"/ of Y is regularly varying at infinity with index —1/v < 0, that is:

=(1)
lim w =y 7, vy > 0.
t—o00 F(l) (t)

According to de Haan and Ferreira (2006, Theorem 1.2.1), this is equivalent to assuming that the
distribution of Y belongs to the Fréchet maximum domain of attraction, with extreme value index
v > 0. Under this assumption, one may prove the following asymptotic proportionality relationship
between high quantiles and LP—quantiles: for allp >1and 0 <y < 1/(p—1),

*(1)(

. w@®) . F ) y -
B TT-a B () B i-pt) 9 (), (2:3)

where B(z,y) = fol u 1 (1 — u)¥~Ldu is the Beta function. See Daouia et al. (2019, Proposition 1).
This motivates the following Weissman-type estimator of an extreme LP—quantile ¢¥, (p): if a;, — 1
is such that n(1 — «},) — ¢ < o0,

/
1—aq

20 = ( ) Ton (), (2.4)

1—a,
where 7 is a consistent estimator of v and @, (p) is the estimator in (2.2) at a much lower, in-
the-sample intermediate level a,, (i.e. such that n(1 — ;) — 00). This class of estimators is used
in Daouia et al. (2019) as vehicles to estimate extreme quantiles and expectiles. A drawback of these



extreme LP—quantile estimators is that their finite-sample bias can be fairly substantial; this can
be seen from e.g. Daouia et al. (2019, Proposition 3), whereby the higher-order error terms in the
asymptotic proportionality relationship (2.3) linking extreme LP—quantiles to extreme quantiles can
be quite large. In the following section, we first provide expressions for these higher-order error terms,
before using them to construct bias-reduced, L? —quantile-based estimators of extreme quantiles and
expectiles.

3 Main results

3.1 Construction of bias-reduced L”—quantile-based extreme quantile and expec-
tile estimators

The idea behind the construction of LP—quantile-based extreme quantile and expectile estimators is
to use the asymptotic proportionality relationship

lim 9o (P)
a—1 qa(1>

=[5V & 4a(1) = [gp(M)] qa(p)(1 +0(1)) as & — 1, (3.1)

in order to connect extreme LP—quantiles to extreme quantiles (corresponding to L!—quantiles). It
is then possible to connect extreme LP—quantiles to extreme expectiles by using relationship (3.1) for
p=2

iy GoP) _ o 4a®) aa(1) _ [9(0)] _ 9
limy ey =l e < ey = | )@= [

]A/Qa(p)(l +o(1)) as @ — 1.

These two approximations motivate the following extreme quantile and expectile estimators based on
the Weissman-type extreme LP—quantile estimator ¢, (p) in Equation (2.4):

/
1—aq

() =T )@ = ( ) G () 9o

i g =0 (5) = (1252) 50 (55)

1—a,

These estimators were originally proposed in Daouia et al. (2019, Sections 4 and 5). Their construc-
tion combines several approximations (the Weissman extrapolation relationship and the asymptotic
proportionality between LP—quantiles, quantiles and expectiles) whose use is the main generator of
bias in these estimators. We therefore first carry out a detailed study of the Weissman and pro-
portionality approximations, which will be instrumental in providing a bias-reduced version of these
estimators. The crucial condition for doing so is the following second-order refinement of the heavy
tail assumption.

Ca(7, p, A) The survival function F(l) is second-order regularly varying with index —1/~ < 0, second-
order parameter p < 0 and auxiliary function A having constant sign and converging to 0 at
infinity, i.e.

(1) p/Y —
lim —1(1) (F(I)(ty) _ y—l/*y) _ y—l/vyil7 Yy > 0.
=4 (yFYm) \FY 7

Here (y* — 1)/ should be read as log(y) when x = 0.
Condition Ca(7, p, A) is equivalent to (see de Haan and Ferreira, 2006, Theorem 2.3.9)

. 1 (qi-1/(y)(1) > y? —1
lim -y =y , Yy > 0. 3.2
t—oo A(t) < qi—1¢(1) Y Y p Y (3:2)

Such a second-order condition allows the control of bias terms in statistical extreme value procedures
through the function A, and as such, is the cornerstone for asymptotic normality results in extreme



value theory. Beirlant et al. (2004) provide a large number of examples of commonly used continuous
distributions satisfying Ca(7, p, A). Note also that any distribution satisfying

f(l)(y) =y (a + by + o(yp/7)> as y — 00,

where a,b > 0 and p < 0, will automatically satisfy Ca(v,p, A). This contains in particular the
Hall-Weiss class of models, see Hua and Joe (2011).

The key point for an accurate quantification of bias is to note that by definition of LP—quantiles (see

Equation (2.1)),
Y p—1 p—1
( - 1) 1{Y>qa<p>}] =(1-a)E ] :

9a(p)
Moreover, according to Equation (A.9) in the supplementary material of Daouia et al. (2019), the
left-hand side of the above equation can be expanded as
1

Y p=1
m <qa(p) - 1) 1{Y>qa(p)}]

= lgp(N1 7 (14 A4 (1/F(0a®))) 9] K (p,7,0) (1 + 0(1)))

Y

dalp) !

as a — 1, where

[gpigi)]_p (1= p)BM, (1 -y —p+1) = Blpy —p+1)] ifp<0,
K(p,7,p) = (3.3)
p—1 [ -2, —1/ :
” /1 (u — 1D)P72u= " og(u)du if p=0.
Therefore
Z)
ELe) o)1+ v, (3.4
p—1 _
with 14(p,0) =B {| s =1 | (144 (1/FV 0 (0)) K3 p)lap ()] (1 +0(1)))

as @ — 1. An asymptotic inversion lemma, such as Lemma 2 in the supplementary material of Daouia
et al. (2019), combined with (3.2), then suggests that

[9,(V)] 77 (1 +7(p,a))” —1
p

~1
(1) = [gp(N]” (1 +7(p, @))" (1 + A=) )+ 0(1))> Ga(p)
as a — 1. This quantifies the bias in the asymptotic proportionality relationship (3.1). Besides,
the bias in the Weissman extrapolation formula for extreme quantiles is well-known (see for instance
Chapter 4 in de Haan and Ferreira, 2006):

/
n

- (1—%) -1 -1
> G, (1) | 1+ TA (1—an)™') (1 +0(1))

l—«

/
1—-aq

oy ()=

11—,

Combining these two bias quantifications results in the following asymptotic expansion linking an
extreme quantile to an intermediate LP—quantile:

(11— . (1+r(p,an))’
Gor, (1) = <1 - an) don P (V) p QU n)) P21 A (1= ) ~Y) (1 4+ 0(1))
<17a;1> P 1
1—an —1
e (1=an)™") (1 +0(1))



This identity is the basis for the construction of a bias-reduced version of qN;‘é;l ’p(l) through a plug-in
of estimators of all the unknown quantities on the right-hand side. In particular, this requires the
estimation of the quantity A((1—a,)~!). We assume throughout that the function A can be expressed
as A(t) = byt?; this amounts to assuming that the underlying distribution belongs to the Hall-Welsh
class in the sense of Gomes and Pestana (2007), which is reasonable for modeling purposes. This
reduces the estimation of A((1 — a,)~!) to the estimation of b and p; consistent estimators of b and
p are available from various sources, such as the R package evt0. Assuming then that consistent
estimators b, p and 7 of b, p and v, have been chosen, we construct a bias-reduced version of the
extreme quantile estimator gz, (1) as

/

~+ RB 1 —a,
RB(1) =
- (1o

)_7 G D)) 1+ 7(p.0n)!

1 + [gp(ﬁ)}_ﬁ(1+;(p,an))_ﬁflgﬁ(1 _ an)—ﬁ

-l \ 7P
() -1 ,
b1 —an)" |,

x |14+

where

n -1

1 Y;
1+?(p,0( ):7 ~
" nz; G, ()

-1

p—1 —~ —P
(1 e [ o (G <p>>} "K(p7.7) [gpw)]l*ﬂ)

The estimation of extreme expectiles from LP—quantiles uses two approximations, first at the level
o}, to connect gqr (2) to gur (1), and then to connect an extreme quantile to an extreme LP—quantile.
Compared to the previous construction, reducing the bias of the extreme expectile estimator (7;/" ,p(2)
then involves an extra bias correction at the level «f,. This results in the following bias-reduced
estimator:

N N ~ 714 @O T AEs e )P
q~;,RB(2) _ <1 an) Z]\an (p) <gp('7)> <1 +i<p7 an)) > S— f _ PY( )
P 92(%) 1+ , N W ?

where

L+ = 1)77(1 = o) PE277) ] 7)

~ 1 ¢
1+7(2,a)) = EZ

It is important to note that the estimators @2’,13?5(1) and Q’;’,R’E’(Z) are not straightforward plug-in
estimators of the bias terms obtained in Daouia et al. (2019).” In particular, using a linearization of
the bias term as in Daouia et al. (2019) would have a substantial negative impact on finite-sample
performance.

A crucial component of the estimators g, , ( ) and g , (2) is the tail index estimator 7. We discuss
the construction of a purely LP—quantile- based estlmator of the tail index in the next section.

3.2 An [’—quantile based methodology for bias-reduced tail index estimation

A very popular tail index estimator is the Hill estimator of Hill (1975),

[n(1—an)]
R 1 QI i—1 n( )
() _ I < (i-1)/ )
Yo 0og .
Ln(l - O‘n)J ; d1—|n(1— an)J/n( )




Like the Hill estimator, available tail index estimators (see de Haan and Ferreira, 2006, Chapter 3)
are based on quantiles. We suggest here a construction of a bias-reduced tail index estimator based on
LP—quantiles, which will complement our construction of bias-reduced, L”—quantile-based extreme
quantile and expectile estimators.

For that purpose, we recall (2.3) and note that the function g, is strictly decreasing for all p > 1 (see
Lemma A.2 in the Appendix). A natural idea may then be to estimate the tail index v by inverting the

asymptotic relationship (2.3): in other words, to consider an intermediate sequence (a;,) and define a

tail index estimator ﬁ&’j} as

7 (G ()

i) =inf § 9> 05 gp(7) < =

Since LP—quantiles are equivariant by increasing affine transformations (see Bellini et al. (2014)), it

is noteworthy that the new estimator ﬁé’;) is both shift- and scale-invariant, in contrast to the Hill

estimator which is not shift-invariant. The particular cases p € {2,3,4} yield closed formulas for ﬁc(f;) .

For instance, p = 2 leads to g,(v) = v~ —1 and therefore to the expectile-based estimator

=) -1
Fr (4o, (2))

’77(2) — 1+
1—a,

Qn

This estimator was introduced by Girard et al. (2020a) in a conditional setting. The asymptotic
normality of ‘y\&zn) is established therein under the condition v < 1/2. The objective of this section is
to deal with the case p > 1 in its full generality, to establish a general asymptotic normality result for

AC(YI;) , and in particular to derive its asymptotic bias. This will be a prerequisite for the construction

of a bias-reduced version of ﬁc(f;) .

In the sequel, we denote by IB(t,z,y) = fg u* 1 (1 — u)Y"'du the incomplete Beta function (for
0 <t < 1) and by ¥ the digamma function i.e. the log-derivative of Euler’s Gamma function. Our
first theoretical result provides the joint asymptotic distribution of the empirical intermediate quantiles
and LP—quantiles, for p > 1. Denote by A and V the minimum and maximum operators, i.e. t Ay =
min(z,y) and x V y = max(z,y).

Proposition 1. Assume Y satisfies Co(y, p, A) with v < 1/[2(p—1)] and E(| min(Y, 0)>?~D) < cc.
Let (o) and (Byn) be two intermediate sequences such that \/n(1 — o)A ((1 —an)™t) = O(1) and
(1—-08n)/(1—ay) —0>0asn—oco. Then

— Qoo (P) . 48.(1) d 2
n(1 ”)<qan(p) 1,%(1) 1) — N (0,7°A),

where A is a symmetric 2 X 2 matriz having entries

( I B(2p—1,7v1-2p+2)
YT T By top+l)
Ao = (p—=Dv(gp(0)/OIB ((gp(1)/0) " ALyt =p+1,p—1) + ((gp(1)/0) V1 - 1),
A272 = ]_/0

This result extends Theorem 3 of Daouia et al. (2020) which is dedicated to the case p = 2. It also
extends, in the independent and identically distributed case specifically, Theorem 1 of Daouia et al.
(2019) which focuses on the marginal asymptotic distribution of g,,, (p) only.

Using Proposition 1, the asymptotic normality of %f:l) can then be established, under further conditions

which allows one to evaluate the error in approximation (2.3). Since LP—quantiles are calculated using



the whole of the underlying distribution, it should be expected that these bias conditions will involve
both distribution tails. We therefore assume that F(_l)
yaf(,l)(y) — 0 as y — +oo for all @ > 0 (in particular, it can be light-tailed or short-tailed, and this
condition is especially automatically satisfied when Y > 0 with probability 1) or satisfies a first-order
condition of the form Ci (7). In the case where FY satisfies yaf(j)(y) —0asy — +oo forall a >0,
our subsequent conditions and results may be read with the convention v, = 0.

, the survival function of —Y, either satisfies

With this further assumption, we are now ready to state our next result.

Theorem 1. Assume F' satisfies Co(y, p, A) and F(j) either satisfies yaf(})(y) — 0 asy — 40
for all a > 0, or C1(~y¢). Let (ay,) be an intermediate sequence such that, as n — oo,

i) Vn(l—an)A((1—ay)7t) = A €R,
ii) /Al —an) (E ooy <ummanl an)) S x €R,

o, (1)

iii) \/n(l — an) (E [_Y]l;(;ily;qan“)}] v F(l)(_qan(l))> A3 €R.

Then, for all1 <p < (yV ) b /2+1,

w1 = an) () =) =5 Ny, ), 1(7);

where
_ — (1) (2) (3)
bp(%%ap) - 1+ % (\If (,.y—l —p+ 1) _ (,.)/—1 + 1)) [Albp (7’ 10) + )‘pr (’7) + )‘3bp (7)’75)] 5
o) _ vB (p,y ' =p+1) [ B(2p—1,7"1—2p+2) _1]
(4@ —prn-—wpray) L BRI
and
b (1,0) = g(VK (D, 0),
b5 () = (= Dlgp(MNLgy<ty + [(0 = Dgp(MNBlp — 1,1 =71 = (1 = g,(7))] Lgys13
0 () = —(p—1) [gp (N Lg,<1y + 9N By = p+ 1,1 — 9, )51

where K (p,, p) is given in Equation (3.3).

In Figure 1, the asymptotic variance v,(7y) is compared to the asymptotic variance vg(y) = 72 of the
Hill estimator, for various values of p and v € (0, 1). It can be seen therein that the asymptotic variance
of %ﬁ) is smaller than vy () when 7 is small, for all considered values of p. On the contrary, v,(v)
increases faster than vy (7y) as 7y increases. It also appears that p = 1.4 seems to be a good compromise
when + is less than ~ 2/3, which is in line with what Daouia et al. (2019) found regarding extreme
LP—quantile estimation (see Figure 2 therein). This includes the important case v < 1/2 of a finite
variance, which is widespread in insurance and finance. Note that Theorem 1 involves the condition

v < (p — 1)71/2, which is less restrictive than v < 1/2 when p € (1,2). As such, the estimator
ﬁc(f:? is applicable in a larger range of situations compared to the estimator %?) studied in Girard

et al. (2020a). Note also that, when |p| is larger than 1 and for nonnegative random variables, the
constraint on «, is condition ii) in Theorem 1, which restricts «,, to be such that 1 — «,, = O(n_l/s),
and therefore the rate of convergence of our estimator is capped at n~1/3. This stands in contrast of the

Hill estimator, whose optimal convergence rate is n?/(1=2) . On the contrary, when |p| is smaller than

1, the estimator ﬁc(,fl) attains this optimal convergence rate of n?/(1=22) The value of the estimator will

thus intuitively reside in the cases when |p| is small, which are known to be difficult cases in extreme
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Figure 1: Asymptotic variance vp(y) for p = 1.2 (green), 1.4 (blue), 1.6 (violet), 1.8 (brown) and 2
(red), as a function of v € (0,1). The black curve represents vy (), the asymptotic variance of the
Hill estimator.

value analysis where the Hill estimator tends to perform poorly. A detailed discussion on the choice
of p in practice and the performance of our estimator is proposed in Section 4.

The asymptotic bias component involves three parts, all of which tend to make substantial contribu-

tions to the total bias of the estimator. The quantity b;,l) (v, p) is proportional to the auxiliary function

A, while the quantities b](gz) (7v) and bz(,3) (7v,7¢) are specific to the use of LP—quantiles. We now correct
the bias term in Theorem 1, in order to obtain the most accurate tail index estimator possible from

ﬁc(;i) . One possibility for doing so would be to directly estimate the three bias components, to divide

the estimators by y/n(1 — ay,), and to subtract the obtained quantities from %f;) . This does not tend
to yield good results in practice, not least because bz(,g) (7,7¢) is somewhat difficult to estimate, as it
requires the estimation of the left and right tail indices. We suggest here a simpler and more efficient
methodology whose justification goes back to the construction of the estimator a&’i}. According to

Equation (3.4),
Y () LA (VF @) K7, p)lgp()] (14 0(1))
a 1—a p—1

e[| -]

as a — 1. This suggests to refine the estimator ﬁé’j} by considering instead

9p ()

) 1+mﬁw@~@ﬂwK@vmmww“
F, (Ga,() n o T

1-an nTtyh
1=

AP = inf { v > 0: gy(7) < Y;
o) 1

-

The asymptotic normality of this estimator can be established as a straightforward corollary of The-
orem 1.



Corollary 1. Assume that the conditions of Theorem 1 hold. If moreover A(t) = byt? and 7, p and
b are consistent estimators of v, p and b such that (p — p)log(n) = op(1), then

n(l—an) (32 = 7) =5 N 5,(9).

3.3 Final class of estimators

Here we define our final versions of the estimators as implemented in our simulation study and real
data analysis. To calculate the estimator %3;) , we use the estimators b and p of Gomes and Martins
(2002) and Fraga Alves et al. (2003), implemented in the R package evt0 and particularly the function
mop. We also have to use an estimator 7, which in this case we take to be a bias-reduced version of

the Hill estimator ﬁ&{?, introduced by Caeiro et al. (2005):

- . b .
) =5 (1 - iﬁ(l —an) p> :

This results in the following, final version of the estimator 5((53 :

—an [20 P _(H) _ _ 1+
OIS [F <qan<p>>] K (p.380,5) a0 (F))]
<) — 1t 0. < Fn (20, (p))
o, = nf §7>0: gp(7) < 1
1—O[n nflzn Y; _ ‘
i=1 | G ()

Note that this estimator is computed in the R function lpindex in the package Expectrem. This is a
novel estimator which cannot be deduced in a direct way from the earlier work in Daouia et al. (2019).

To define our class of estimators of an extreme quantile g, (1), we plug in our general expression of
Ej; ’,Rf(l) the estimator ")7&]1) in place of ¥ and we keep our estimators b and p from the R function mop.

This results in the bias-reduced, LP—quantile-based extreme quantile estimator

@ <) )

~(p
~%RB 1—a >_%m qe ~@))] 7" (1+7(p, o))"
, 1) = n P) -
Qo (1) <1 o o (P) [gp <’Yan)] L+ [gpﬁgz)]—ﬁ(l%r?(p,an))—f)—15~(iﬂ)(1 — )P

Yon

1—a/, \ °
(E) v ,
x |1+ %bf}j&[i}(l - an)—p

This quantile estimator is also available in the R package Expectrem, using the function extQuantlp.
A similar procedure applied to (}’;’,RE@) yields the bias-reduced LP—quantile-based extreme expectile

estimator

~(p)
_~() ~()Y\ "o ~(p)
7B = (129 s ) (367 L+ 7(p, an) \ "
1—ay on % (%@) 14+7(2,al)

4 [pGE)] 0y Tt (=)™ -1
X N P . n n x| 1+ LE&(&Z (1 _ an)_p
1o L] e

P
This estimator can be computed using the function extExpectlp in the R package Expectrem.

Our final theoretical result shows that these estimators are asymptotically Gaussian under the condi-
tions of Corollary 1.

Theorem 2. Assume that the conditions of Corollary 1 hold. Assume also that p < 0, and that

(1—al)/(1 = ay) = 0 with \/n(l —ay,)/log[(1 — a,)/(1 — )] — oo.

10



(i) Then

n(l— ay) @ﬁf(l) 1)
log[(1 —an)/(1 = ap)] \ day, (1)

(i) If moreover v < 1 and E(] min(Y,0)|) < oo then

n(l— ay) ?1245?5(2)
log[(1 — an)/(1 = ap)] \ 4oy, (2)

- 1) —Ls N(0,p(7)).

In the next section we examine the finite-sample behavior of the estimators QZ’,RE(l) and ?]’;’/RE@) on

simulated data, and we discuss the choice of their tuning parameters (the power p and the anchor
intermediate level av,).

4 Simulation study
4.1 Experimental design
We consider the following distributions:

e A Burr distribution with parameters v > 0 and p < 0, whose survival function is defined by

1/p
F(l)(y) — (1 + y_P/'Y) , Yy > 0.

The second-order condition Ca(7, p, A) holds with A(y) proportional to y*.

e The Fréchet distribution with parameter v > 0, whose survival function is defined by

1/~

F(l)(y) =1—ec¥ ' y>0.
The second-order condition Ca(7y, —1, A) holds with A(y) proportional to y~*.

e The Inverse-Gamma distribution with survival function defined by

(1) > 1 —1/y—1_—1/t
F (y):/ ——t e Nt y > 0.
y T(/7)

The second-order condition Ca(y, —7, A) holds with A(y) proportional to y~7.

e The absolute value of a Student distribution with 1/ > 0 degrees of freedom, whose survival
function is defined by

T Y41 0o -1
F(l)(y) —9 /7<i>/ (1 _|_ryt2)7’YT+l dt, y > 0.
T (%) v

The second-order condition Ca(v, —27, A) holds with A(y) proportional to y~27.

e The Generalized Pareto Distribution GPD(y) with shape parameter v > 0 and unit scale, whose
survival function is defined by

—=(1 _
FO) = (1+99) 77, y>0.
The second-order condition Ca(7y, —, A) holds with A(y) proportional to y~7.

For each distribution, N = 500 samples of size n = 1,000 are simulated. Our goal is to compare the

finite-sample performance of the proposed estimators Ej:y’,Rf(l) and Ej:y’,Rf@) with:

11



The classical Weissman-type extrapolated estimators of extreme quantiles (Weissman, 1978) and
expectiles (Daouia et al., 2018). These are respectively

/ /
l—an 1_an

- -
qﬁ;wnz( ) G (1) and @42):( ) G (2), with 7 = 34,

1—a, 1—a,

The composite LP—quantile-based extreme quantile and expectile estimators originally suggested
in Daouia et al. (2019) (and thus not featuring bias reduction). These are g}, (1) and g, ,(2),

see Section 3.1. We take again 7 = %f)

in Daouia et al. (2019).

, and we choose p = 1.4 as recommended below Figure 2

e The bias-reduced extreme quantile estimator of Gomes and Pestana (2007), namely

=~ 1—al \ ~°
~ 1- , - ( - Z) a 1* vl ~
q“fB(l) - <0zn) Qo (1) | 1+ ICbeﬁ(l —an)? | with 5y =3UD,

1—aq on

e The bias-reduced extreme expectile estimator of Girard et al. (2020b). This is

T
1—a,

TRR(2) = (1‘““)_7@%@) 1+<1‘°‘”>_1m<1—an>—'9 (1+B)(1+B,).

1—-ay 0

- =/ . .
Here B,, and B,, are bias correction terms defined as

(-n”"
- - ~ (1+E(an)>ﬁ T
1+ Bn = (1+ R(an))” X 1+#by (1—an)
(771_1)7ﬁ -1
= _ DX I \\—F (1+R" (o)) T= I \—P
and 1+ B, =(1+R (a,)) " x |1+ #bv(l —a,)
where the quantities R(ay,) and R’ (a/,) are defined as
Dot P @, )7
— n- n : 1 a. -
1 n) = (1- —=£1 1 SR
R = (1- 1525 o T e
_ 5 ~1
— n iy Y; 1 b(yt-1)"" .
d 1 =11~ i=1"" 1+ =2 (1—-0a)" .
and 1+ 1 (a) ( T (2) 2 1\ TTIIAZS (1= om)

We take 7 = %(f:)
For all the considered estimators and throughout our finite-sample experiments, as in Section 3.3, the
estimators b and p are those of Gomes and Martins (2002) and Fraga Alves et al. (2003), implemented
in the function mop of the R package evtO.

Each of the considered estimators requires to select an intermediate sequence (ay,), and our proposed
estimators require a choice of p. We propose next a technique based on Asymptotic Mean Squared
Error minimization.

12



4.2 Choices of p and «,

The choice of the sequence «, is crucial because of its consequences on the tail index estimator featuring
in the extrapolation procedure: taking ., too close to 1 translates into a large variance, while taking
ay, too far from 1 translates into a large bias. This choice therefore leads to solving a trade-off between
the bias and variance of the tail index estimator to be used. One possibility is to balance bias and
variance by calculating an Asymptotic Mean Squared Error. For the Hill estimator specifically, such
a selection rule is discussed in Section 3.2 in de Haan and Ferreira (2006): the idea is to note that
under the second-order condition Ca(, p, A) and the assumption y/n(1 — a,)A((1 —ay)™!) = A €R,

A= a6 - ) 5 (202,

Minimizing the Asymptotic Mean Squared Error is therefore tantamount to minimizing the quantity

2

[I_A ((1- an)_l)] . m

with respect to ay,. With A(t) = byt?, this yields an optimal value ol defined by

1
2\ 1-2,
1—alf) = <(1—;,OZ;> o n T,

For the LP—quantile-based tail index estimator, the discussion is more involved because, following
Theorem 1, there are three sources of bias involved:

e The first one is proportional to A(n/k,) and represented by the quantity A\ bz(, )( v, p), where

60 (. ) = - D (. ).
e B ¥ iy N T Sy KA

E[Y1{0<y<ga, (1)}]

D) V (1 — ) and represented by the quantity

e The second one is proportional to

A2 b;(?) (7), where

(2) — - (2)
A e T s e RS LA

E[-Y o<y i, \, p(1)
qan(l) \/ F

e The third one is proportional to (—Ga, (1)) and represented by the

quantity A3 65,3) (7v,7¢), where

-
b](;g) ('77 7@) = 1 b;(73) ('77 '76)'

@O —p+ ) - U (D))

Intuitively, the second and third sources of bias should be easiest to correct, because they involve
quantities that can be estimated at the rate /n(1 — ay,) or more. In practice, this means that the
trade-off to be solved when using the LP—quantile-based tail index estimator will essentially involve
this first source of bias. Hence the idea of minimizing the Partial Asymptotic Mean Squared Error

PAMSE,(ay,) = [bz(})(%p)A ((1- an)_l)r + n(ll)ppo)én)

(p)

When A(t) = byt?, minimizing this quantity with respect to 1 — «, yields an optimal ay,’ satisfying

1

Lo = %(7) T
"\ 20022005 (7, )2
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Estimators oz:L’(H) and aﬁ’(p ) of ang) and a,({’ ) are then readily obtained by plugging in estimators of +,

b, p: for the estimation of v in these data-driven choices of «,,, we use the bias-reduced Hill estimator

%Ijgo/n (here 1 — 50/n = 0.95 for our sample size n = 1,000).

An additional quantity to be chosen when using the tail index estimator %ﬁ) is the tuning parameter

p. To this end we note that the optimal value of PAMSE, (o) at o, = o is

2p

PAMSE, () = ([vp(v)]”’bél)(% p)) T (by) T3 (1 — 2p)(—~2p) T B0 T 5.

It is therefore reasonable to choose p which minimizes this quantity and to plug in estimates of v and
p, leading us to consider the optimal value

p* = argmin [v,(7)]"b{" (7, 7).
p>1

Here once again we set 7 = %20 ,,- This choice of p is represented in Figure 2 as a function of v and
p- It is clearly seen that the optimal value of p decreases as 7 increases, suggesting that more robust
LP—quantile-based estimates should be used when the tail gets heavier. Interestingly it also seems
that the selected value of p should be lower as p gets away from 0, i.e. when the underlying extremes
get closer to the extremes of the Pareto distribution. The selected value of p appears to be a convex
function of v and p.

-1.01.0

Figure 2: Optimal value of p minimizing PAMSEp(a,(f )) as a function of p and ~.

4.3 Results

We display in Figures 3 and 4 boxplots of the estimators (}Z’,Rf(l) and (}';’,RB(2), with a;, = o' and

7p
the data-driven choice p = p* (some information about the chosen p* is reported in Table 1), alongside
boxplots of their competitors with «,, = ang). In Figure 5, we also provide a comparison between the

tail index estimators 77,(}1;) and '7&[1)

The proposed estimators seem to perform well overall. They are less biased than the alternative
estimators tested here, particularly when v < 0.5 and in the difficult cases of the Inverse Gamma,
Student and GPD distributions, where the second-order parameter p is close to 0. The improvement is
particularly obvious with respect to the Weissman estimators, and there is also a visible improvement

with respect to the bias-reduced versions of these Weissman estimators. The tail index estimator "?&I;)

appears to be less biased than ﬁ((fj) for v € {0.1,0.3}, and comparable when v € {0.5,0.7}.
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Model v=0.1 v=0.3 v=0.5 v=0.7
(A) Burr, p = —1 2.33 (0.072) | 1.85 (0.086) | 1.58 (0.077) | 1.42 (0.064)
(B) Fréchet 2.23 (0.086) | 1.80 (0.090) | 1.54 (0.079) | 1.40 (0.066)
(C) Burr, p=—0.5 | 2.31 (0.049) | 1.79 (0.075) | 1.52 (0.065) | 1.38 (0.053)
(D) Inverse Gamma | 2.15 (0.061) | 1.75 (0.077) | 1.54 (0.075) | 1.40 (0.063)
(E) Student 2.07 (0.062) | 1.81 (0.079) | 1.59 (0.073) | 1.43 (0.065)
(F) GPD 1.86 (0.068) | 1.68 (0.070) | 1.52 (0.065) | 1.41 (0.058)

Table 1: Average chosen p* using the data-driven selection rule in 500 simulated datasets of size 1,000
(standard deviations reported between brackets). In each case, the average selected p* is written

~(p) (

in green if the observed MSE of the bias-reduced LP—quantile-based tail index estimator 7, (for

o = oh(l) and p = p*) is lower than the observed MSE of the bias-reduced Hill estimator yén) (for

oy = a%H)), in blue if this is not the case but if it is lower than the observed MSE of the Hill estimator

3&5) (for o, = agH)), and in red otherwise.

5 Real data analysis

5.1 Tornado losses data set

We consider a data set on monetary losses consecutive to tornadoes in the USA in 2018. The data,
available at https://www.spc.noaa.gov/wem/#datal, contains in particular the variables loss (total
financial losses in USD), len and wid (respectively length and width of the area affected by the
tornado). We propose to consider the loss per square yard

loss

len X wid '

This leads to a data set Yi,...,Y, of n = 578 nonnegative losses per unit of surface. A histogram of
the recorded log-values is proposed in the top left panel of Figure 6. The heavy-tailed behavior of the
data is assessed through a Generalized Pareto quantile-quantile plot in the top right panel of Figure 6,
inspired by the discussion in pp. 90-91 of de Haan and Ferreira (2006): it can be seen in the Figure
that the excesses Yy,—it1,n — Yp—kn, for 1 <7 <k —1 and k£ = 100, are approximately linearly related
to quantiles of a heavy-tailed Generalized Pareto distribution with tail index around 0.8, obtained via
maximum likelihood fitting with the gpd function in the R package evir. This is a characteristic of a
heavy tail.

We represent in the bottom panels of Figure 6 the bias-reduced Hill estimator %If; In and the bias-
(p)
1—

panel). The estimated value of ~ lies around 1, so that the existence of expectiles of Y is unclear. We

therefore focus on quantile estimation and we represent the four quantile estimators g, (1), Z]\;,RB(l),

reduced LP—quantile-based estimator ~ as a function of k, with a selected p = p* = 1.29 (left

Qo (1) and (}z’,if(l) for o), = 0.995 =~ 1 — 3/n. In the bias-reduced versions of our composite
estimators, we take again p = p* = 1.29. Our composite quantile estimators (non-bias-reduced and
bias-reduced) largely agree in this context of a large value of 4 (in line with the results obtained
in the simulation study of Section 4), and they seem a bit more stable than the classical Weissman
estimators. The bias-reduced estimated values of the quantile (at their respective optimal levels
chosen as in Section 4.2) are (’]\‘S&BE,( 1) = 73.49 and nggggp (1) = 53.97. In this example, our proposed
bias-reduced composite version therefore translates into a substantially lower risk estimate than the

bias-reduced Weissman approach.

5.2 Medical claims data set

We next study the SOA Group Medical Insurance Large Claims Database, available for instance from
the R package ReIns. This data set, made of n = 75,789 claims exceeding $25,000, has been considered

!See the file https://www.spc.noaa.gov/wem//data/2018_torn.csv
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Figure 3: Extreme quantile estimation at level of, = 1 — 1/n = 0.999 for n = 1,000. Left panels:
boxplots of g, (1)/qa;, (1) — 1 (red boxes), c}:ﬁf*(l)/q%(l) — 1 (green boxes) and qA:;,RB( /e, (1) =1
(blue boxes). Right panels: boxplots of gy, | 4(1)/qa; (1) — 1 (yellow boxes) and ¢ a RB o+ (1)/0a, (1) — 1
(green boxes). From top to bottom: v = 0n.1, 0.3,0.5 and 0.7. Model A is the Burr dlstrlbutlon with
p = —1, model B is the Fréchet distribution, model C is the Burr distribution with p = —0.5, model D
is the Inverse Gamma distribution, model E is the Student distribution and model F is the Generalized
Pareto distribution.

a number of times in the extreme value literature, including in the monograph by Beirlant et al. (2004)
where the heavy-tailed character of the data is discussed, and in Daouia et al. (2018) in the context
of extreme expectile estimation. An overview of the data is provided through a histogram in the
top left panel of Figure 7. The literature has found that the heavy tail assumption is reasonable
for this data set, with an estimated tail index of around 1/3 (see for instance Beirlant et al., 2004,

p.123); this is essentially what we find using the estimators 7§ ll/n and vip)k/n (with p = p* = 1.95),

see the top right panel in Figure 7. We therefore propose here to estimate both extreme quantiles
and expectiles, at the level 1 — 1/100,000 = 0.99999 > 1 — 1/n. The bottom two panels of Figure 7
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Figure 4: Extreme expectile estimation at level ab=1-1 / n = 0.999 for n = 1,000. Left panels:
boxplots of Z]\&41 (2)/4ar, (2) — 1 (red boxes), qa, *( )/qa (2) — 1 (green boxes) and qA:;,RB( )/, (2) =1
(blue boxes). Right panels: boxplots of gy, | 4(2)/qa;,(2) — 1 (yellow boxes) and ¢ N*RB 0+ (2)/00,(2) — 1
(green boxes). From top to bottom: v = On.l, 0.3,0.5 and 0.7. Model A is the Burr dlstrlbutlon with
p = —1, model B is the Fréchet distribution, model C is the Burr distribution with p = —0.5, model D
is the Inverse Gamma distribution, model E is the Student distribution and model F is the Generalized
Pareto distribution.

provide graphical representations of the different considered estimators. In this situation of a tail index
around 1/3, the bias correction in the composite estimators has a substantial effect. The bias-corrected
composite estimator (again with a chosen p = p* = 1.95) and its extrapolated competitor essentially
agree both on the quantile and expectile estimation problem, although the composite versions seem to
display slightly more stable sample paths as a function of k. In detail, using the selection rules of «,
and p introduced in Section 4.2, we find estimated extreme quantiles (resp. expectiles) as Z]\Sjg)lggg(l) =
3,544,379 (resp. Gy poggo(2) = 2,856,904) and Gy oag0 »+ (1) = 3,888,743 (resp. Gygang0 »+ (2) = 3,142,720).
The composite estimators here yield a slightly more conservative assessment of risk than their quantile
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Figure 5: Boxplots of the bias-reduced tail index estimators %f:{) (blue) and ’7“853 (green) for each
simulated dataset. From left to right and then top to bottom: ~ = 0.1, 0.3, 0.5 and 0.7. Model
A is the Burr distribution with p = —1, model B is the Fréchet distribution, model C is the Burr
distribution with p = —0.5, model D is the Inverse Gamma distribution, model E is the Student
distribution and model F is the Generalized Pareto distribution.

or expectile-based counterparts.
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Appendix A Preliminary results

The first result states that the function ) defined in Equation (2.1) is continuous and strictly
decreasing on the range of values of Y, and is therefore in particular a survival function, as soon as

FY is continuous (which we assume throughout). A general result for M-quantiles has been proved
in Jones (1994) under conditions whose validity for LP—quantiles is not completely clear.

Lemma A.1. Denote the lower and upper endpoints of Y by y. = inf {y € R: F(I)(y) < 1} and
y* = sup {y e R: F(l)(y) > 0}. Then for all p > 1 such that E [|Y|p*1] < 400, P (y«,y*) — (0,1)

18 continuous and strictly decreasing.

Proof. For all y € (y«,y"), the integration by parts formula easily leads to

E[(y — V)P~ 11 Fooup=2 (1) (4 — #)dt
Lo Bl - eyl ok (y—1)

F(p)(y) E[(Y — y)P gy f0+oo tp—2F(1)(y + t)dt~

Then for all h € (0,5 —y), F¥ (y+ h)~' — FP ()1 =

J0. 4002 sP=2p—2 {F(l)(y +h— t)F(l)(y +5)— FO(y — t)F(l)(y +h+ s)} ds dt

Jire =2 F Wy 4 b tyat [0 2 F Y (y 4 t)dt
Notice that
FO@+h—F 0y +s) - FO@ - FY (g h+s)

= FYy+s) {F<1>(y+h —t) - F<1>(y—t)} + FO(y —¢) {F<1)(y+s) —F(”(y+h+s)} > 0.

Let us suppose now that there exist y € (y«,y*) and h € (0,y* — y) such that 7 (y+h) = 7P (y).

In that case, by continuity of F(l), we necessarily have

Fy+s) {F(”(y+ h—t)— FO(y —t)} — 0 for all 5,¢> 0.

Since y € (ys, y*), F(l)(y + s) > 0 for s small enough, hence
FO(y+h—t)=FY(y—t) for all t > 0.
The contradiction F(M)(y) = 0 is then readily obtained by iterating the above relationship for ¢ = h:
FO@)=FDy+h—h)=FY(y—h)=-..= F(y—Nh) -0 as N — cc.

Hence FP (y+h)~! — 7 (y)~! > 0, proving that FP i strictly decreasing on (y.,y™). Continuity
of this mapping can be shown by proving the continuity of both

y— E [(y — Y)pflll{ygy}] and y — E [(Y — y)pfl]l{y>y}] .
This directly follows from the dominated convergence theorem. O

Our second lemma establishes that the function g, defined in (2.3) is indeed monotonic.



Lemma A.2. For all p > 1, g,(-) is strictly decreasing on (0,1/(p — 1)) and has derivative

_ A1 -1 _ -1 _
9p(7) = I g(p i_ll)_pwﬁ) Pt 1)), for all v € (0,1/(p — 1)).

Proof. The expression of ¢/ (-) follows from direct calculations. Since p > 1, we have ¥ (’7*1 + 1) —
LG (7_1 —-p+ 1) > U (7_1 + 1) - ('y_l) = 7, see Abramowitz and Stegun (1972, Chapter 6). Thus
9,(7) <0 and g, is strictly decreasing as required. O

For all y € R, let us denote by
e W () =E [V =y ysyy| and m®(y) =E [}y - yI*]

the right-tail and total moments of |Y — y|. The associated empirical estimators are
I 1 &
~(k k ~ (k k
P = =D Yi =y Ly and P (y) = - > [¥i - ",
i=1 =1

Note that, for all p > 1, 7 (y) = o?®=V(y)/mP=Y(y) and in particular F(l)(y) = (O (y). The next
lemma, states some properties of ©¥) (1), m®*)(y) and F(p)(y) as y — 00.

Lemma A.3. Assume F satisfies C1(7).
i) For all k €10,1/v),

Bk+17’y_1_k —(1
oB(y) = B = ) T ()14 0(1)) as y - oo,

i) If E(|min(Y,0)|¥) < oo and k € [0,1/7), then
m® (y) = *(1 + 0(1)) as y — co.
iii) If E(|min(Y,0)|P~') < 0o and v < 1/(p — 1), then

FP(y) = By —p+ 1)F(l)(y)(l +0(1)) as y — oo,

v

and the function F(p ) 1s regularly varying:

+=(p)
F —
(t — y—l/’Y or equivalently thm w — y’y'

Yy >0, lim v)
0 Q1—1/t(p)

t—o00 F(P) (t)

iv) Assume further that 7 satisfies Ca(y, p, A). Let up, — oo and €, — 0 be sequences such that
A (1/F(1)(un)) = O(g,). If moreover E(|min(Y,0)[P~1) < oo and v < 1/(p — 1), then

FP (un(1 + £,))

—1- %”(1 +o(1)).



Proof. i) The case k = 0 is straightforward, since ¢(0)(y) = F(l)(y). If £ > 0, remark that

v k
(y - 1) ]]'{Y>y}] )
and apply Lemma 1(i) of Daouia et al. (2019) with H(z) = (x — 1)* and b = 1. ii) follows from noting
that, since E(]Y|¥) < oo, the dominated convergence theorem yields E [|Y/y — 1|F] — 1 as y — oo,
from which ii) follows easily. iii) follows from i) and ii). iv) is intuitively suggested by iii), but its

proof is more involved. We start by using Lemma 1(ii) of Daouia et al. (2019) with H(z) = (z —1)P~1
and b =1 to get

e®(y) = y"E

[e.o]

"D (y) = (p— 1)yp‘1F(1)(y)/ (= 1P 2=
1

P — 1

1+ A(1/FV () -

(1+ 0(1))] dx.

Note that F(l)(un(l +e,)) = f(l)(un)(l + o(1)) by the regular variation property of f(l), which is
known to be true locally uniformly (see Theorem B.1.4 p.363 in de Haan and Ferreira, 2006). Apply
this idea again to the function A to get

s PO (14 2,))

Sp(pil) (un(1+¢n))
@(P_l) (un)

=(14ep)

(14 o(A1/F () -
Now, by local uniformity of condition Ca(7, p, A) (see e.g. Lemma 2 in Stupfler, 2019) combined with
the assumption A(l/F(l)(un)) = O(gp), we get

90(p_1)(un(1 +€n))
gp(l’_l) (un)

1
=1+ <p -1- 7) en(140(1)). (A.1)
(p—1) (p—1) (p—1) _ (p—1) (p—1) (-1 _.
We focus then on m (un(l+e,))/m (up). Clearly m =g +¢7 T +y 7, with

VW) =E [y = V)P  yeyny] and 8V () =B [(y = V)" ey <y -

Notice also that, as y — oo, wgpil)(y) = 4P~ (1 + o(1)) by the dominated convergence theorem, and
wgpil)(y) = o(y?~!). Recalling i) and using (A.1) yields

m® D (u,(1+¢,)) L <¢§P—1)(un(1 +en) 1) (14 o(1)) +0 (‘ gp—l)(w(l +en) 1
+ o(ep). (A.2)

m®= (un) ¥ () Y ()

We thus focus on w%p_l)(un(l + sn))/@bgp_l)(un) and wgp_l)(un(l + sn))/wép_l)(un). To control the
first of these two terms, we start by writing, for n large enough,
P (1) = () = E {1t en) =Y = (= Y Dy iy (e 2]
+ B [(un = Y { Ly <un(ten)2y — Ly <un/2} ] - (A.3)

To control the first term on the right-hand side of (A.3), we use a Taylor expansion with remainder
in integral form in order to write, on the event {Y < w,(1+¢,)/2},

(un(l + Sn) - Y)p_l - (Un - Y)p_l - (p - 1)un€n(un — Y)p_g
Un(l4en)-Y
+ (p—1p-2) / (un(1+e,) =Y — t)tP~3 dt.
Un—Y

To control the integral on the right-hand side, use the change of variables t = (u, — Y')z to get

Un (1+en)-Y 1+unen/(un—=Y) U E
/ (un(1+en) =Y = PP dt = (up — Y)P™! / <1 +— ny - Z) P73 dz.
w 1

n—Y Un —

3



For n large enough, {Y < u,(1+¢,)/2} C {Y < 3u,/4}, on which u,, — Y > u,/4. On this event, it
follows that |upen/(un —Y)| < 4|ey| and thus the segment [1,1 4+ upe,/(u, — Y)] is contained in the
interval [1 — 4|e,|, 1 +4|e,|] C [1/2,2] for n large enough. On this last interval, the function z +— 2P~3
is bounded from above by a positive constant. Writing

1+un5n/(un_y)
/ <1 + Unfn_ _ z) P3dz| <
1 Up — Y

then entails

Unén
Uy — Y

1+‘un5n/(un_y)|
/ P73 dz
1—|unen/(un=Y)|

Un (14en)—Y
/ (un(1+ep) =Y —t)tP™ dt]l{Y<un(1+6n)/2} < C(unen)®(up — Y)p_g]l{YS'un(l—‘rén)/Q}

n—Y

for n large enough, where C is some positive constant. Consequently

E H(un(l + €n) - Y)pil - (un — Y)pil - (p - 1)un€n( Up — Y ‘ ]]'{Y<un(1+€n)/2}]
< C(unen)’E [(un - Y)p_g]l{Ygun(l-&-en)ﬂ}] : (A.4)

Remark that for any oo > 0, E [(un — Y)P"* My <y (14,721 = uh © “1(1 4 o(1)). This is a conse-
quence of the dominated convergence theorem and the bounds

(1= Y/un)P ™ My cuy (14e0)/2y < (/4P
valid for n large enough when p — a — 1 <0, and
(1= Y/un)’ " My cuptgenyyzy < L+ VPO <2270 My gy + 2270 Y P Mgy gy

when p —a — 1 > 0. Using (A.4) then entails

E [{(un(l+en) = Y)P" = (un = Y)Y’} Liycu, (14en)/2y) = (0 — Duben(1+ o(1)). (A.5)
To control the second term on the right-hand side of (A.3), write
[E [ = Y { gy <un4en) /2 = ]1{Y<un/2}}] |
(B4 ) [FO wnt = lenl)/2) = F a1 4 leal)/2)]
FOun(1 = fea)/2) " )<un<1 + lenl)/2)

D (un/2) Fun/2)

by condition Ca(7y, p, A) and its local uniformity. Combining (A.3), (A.5), (A.6) and the asymptotic
equivalent @DEp*l)(y) =yP7 11+ 0(1)) (as y — o00) results in

IN

< ub” s (un/2) =o(uPe,) (A.6)

DD (w, (1 4 2,))
(pil)(un)

—1=(p—1)en(l+0(1)). (A.7)

We turn to the control of wép— (un (1 + En))/¢(p 2 (uy,). For this we write

V& V(y) = (y/2)r [F(I) (y/2) — F(l)(y)] +E[{(y—Y)P" = (y/2)" My pay <] -

Using condition Ca(7y, p, A) gives, as y — oo,

D2y - FV ) =F () (21” — 1+ A(/FY () [2/2fyp‘1 + o<1>] ) -

Meanwhile, an integration by parts yields

E[{(y— YV — /2" Mypery] = 00— Dy FOy) / (1—z)P?
1/2




Using the local uniformity of condition Ca(7, p, A), we find, as y — oo,

1

E{y—Y) " = (/2P Moy = — 1)yp—1f(1)(y) (/1 (1—z)P2 [2_1/7 — 1} dz

/2
1

+ A1 FY ) /1/2(1 _ z)p—Qz—l/vzp/;p_ldzu + 0(1))> .

It then follows from the regular variation properties of F(l) and A that

D8 (u (1 + 1))
7 (uy)

Conclude, by combining (A.2), (A.7) and (A.8), that

mD(u,(L4e) | ( ) 1+ )

—1=0(ey). (A.8)

— 1) (14 0(1)) +o(en) = (p—Den(1+0(1)). (A.9)

m®= (un) U (un)
Writing
F? (un(1+20) _ %D (walten)  m (un)
F(p) (un) sp(p_l) (Un) m(p_l) (Un(]- + En))
and combining (A.1) and (A.9) completes the proof. O

In the following two lemmas, some (joint) asymptotic normality results are established for the estima-
=~(k

tors @%k)(yn) and F,, (yn) where y, — oo and n — oo.

Lemma A.4. Assume F\" satisfies Ca(7y, p, A) with v < 1/[2(p — 1)] and E(| min(Y,0)|?P~1) < cc.

Let (yn) and (yl,) be two sequences such that y, — oo, nf(l)(yn) — 00 and Y, /yn — A >0 asn — oo.
Then

~(p—1) ~0) s
@ V(yn) 0O ()
where 3 is a symmetric matrix having entries
( 5. = 7B (2p— 1,71 —2p+2)
’ B(pyl—p+1)?*
., 7(p —DMIIB(AVD) Ly —p+1p— 1)+ (AV1I—1)P! (A.11)
7 B(p,yt—p+1) ’
Yoo = AV

Proof. Let B = (31, B2) € R? and focus on the asymptotic distribution of

~(p—1) 50)
_ [ = on (yn) Pn (Yn)
P =y ) {ﬂl (d’"”(%) 1) o (do)(y&) il
We clearly have E[Z,] = 0 and Var[Z,] = F(l)(yn)BTS(")ﬁ, where S is the symmetric matrix
having entries

Var [|Y — yal/ ' Liysy,)]

m

S = =D (yy,)? 7

g — (Y P sy Tiysyy)
H P ()9O (1) ’
o _ Var[Liysy,)

»2 PO (y;,)?

5



Let us first focus on Sﬁ). Lemma A.3i) yields

(2p-2) B(2p—1,v1'—2p+2)_
s = £y BOrZ LT SR p o o),
PP~ (yn) B(p,yt=p+1)

(n)

The calculation of the covariance term S) 5 relies on Lemma A.3i) and the decomposition

oo _ E [!Y — ! ]l{Y>byn}] E {IY — P Lgysyovar ) — ]1{Y>byn})} 1
R OIS 2T ()20 (o) B

where b = AV 1. The first term above is evaluated by using Lemma A.3i) to write

p—1 _
B[ gl ] B[S 1 - 0m0  aa + 0 T )

PP D () () Blea = FW () FD (1) (1 + 0(1))

Applying Daouia et al. (2019, Lemma 1(i)) with H(z) = (z — 1)P~! and carrying out straightforward
1)

calculations based on the change of variable t = 1/ and the regular variation property of F'"’, we
obtain

E [|Y — g Pt ]l{Y>byn}}
w(p‘”( )w(o)( '>
() 5" (0 = ) = 1?20 V(1 + 0(1) + (b= 1" T (byn)
B <p v = p+ ) FY ) FV () (1 + 0(1))
IB(b~ Lyt —p+1,p—1) (b—1)P1
B((p,yv'—p+1) B(pyt—p+1)
(1)

Besides, by Lemma A.3i) and the regular variation property of F''"’ again,

FO ()7 (14 0(1)).

Noting that (y, V 4},)/yn — b and using local uniformity of the regular variation property of F
(Bingham et al., 1989, Theorem 1.2.1), we find

= [(p — DA/

E (1Y = gl (U ysyovag) — 1vsim)]
@D (yn) 0 (yy,)

FGavyy) T (bya)
) (y,) V()

~0 (F(l)(yn)_l

)

1
E [|Y — ynl? (ﬂ{Y>ynvy;} - ]1{Y>byn})i| o (F(l)( )71)
2D () O () o
Conclude that

Byt —p+1,p-1) (b—1)!
- ¥ -
B(p,v1-p+1) B(p,yvt—-p+1)

n 1
S§,2) = [(p - 1)7>\l/7

Finally, using regular variation again,
FOw)
=

F ()2

and therefore, Var[Z,] — 8T8 as n — oo, where X is given in (A.11). To prove the asymptotic
normality of Z,, write Z, = " | Z; », where

+(1) -1
nF"" (Yn) i = ynP" Ly 5y Livisyy
Zin = T {61 ( BT R R (90(0) () 1> '

S5 = 1= MFY (4,) 71 (1 + (1)),

)




Since Z1p, ..., Znn are independent and identically distributed centered random variables, according
to the Lyapunov central limit theorem, a sufficient condition for asymptotic normality (A.10) is the
existence of § > 0 such that nE []Z17n|2+5] — 0 as n — oo. To this end, note that, if T7,...,T; have
finite (2 4+ ¢)—moments, then

24457 1/(2+9)

d 1/(249)
o , < ‘ 2+5}
E E 1 (T — E[T}]) 2q max [ITJI ;
J:

by the triangle inequality. Therefore, letting 6 > 0 be so small that § < y~!/(p — 1) — 2, one has

~1)(2+6 =)
E[’Z17n|2+5] < g2 00T (3 Y 1H0/20 =102 %+6w7 §+5M '
=D (y,) 2t FU (1 )2+

_ —6/2
Lemma A.3i) entails nE []Zl,n\“‘s] =0 <(nF(1)(yn)) > = 0(1) and the result is proved. O

Lemma A.5. Under the conditions of Lemma A.4 and with 3 given in (A.11),

%(p)( ) %(1)( )
nF (yn) e Yn —1,2% ) 1] L N(0,3). (A.12)
F (yn) F(yn)

Proof. Let B = (51, f2) € R?, and consider

%(p) %(1) ,
Zin nF( )( n)B1 (n () - 1) + nf(l)(yn)ﬁz (7(11)2%) - 1)

D)

F
m(p_l) n m(p_l) n A(O) n
) { < >4%$”+&WH&) +@<%$§ il
mp (yn) Mn (yn)
Straightforward calculations yleldE[ P 1)( n)/m(pfl)(yn)} =1, and Var[ P )( n)/m(pfl)(yn)} =
O(1/n) by Lemma A.3ii). Thus

— mP—1)
nF (y,) (AM(‘“ - 1) = 0¢ (F(3)) = 021

(Yn)

and the result follows from Lemma A.4. O

The final auxiliary result is a corrected version of Proposition 2 in Daouia et al. (2019).

Proposition 2. Assume 7 satisfies condition Ca(7y, p, A) and F(,l) either satisfies yaf(,l)(y) — 0 as
y — +oo for all a > 0 (in which case we set vy = 0), or C1(y¢). Then, for all1 <p < (y V) ' +1,

(4, () v
1-17 Bp,vt—p+ 1)(1+R(T’p))

where

R(r.p) = (1= gy(M)(1 = 7)1+ 0(1) = (K (p, 7, )AL = 7)) (1 + 0(1))
= (= 1) (9™ OV R (g7 (1), 2,7) = gp(1)7 ™00 Ry, (1),p, 7))



as 7 11, with K(p,~,p) as in Theorem 1 and

E(XTfocx<q))
R.(q,p,7) = q

FO@)B(p—1,1 -7 (1 +o(1) if 7>1,

(140(1)) if y<1,

_ IE(X]l{—q<X<0})

(1+0(1)) if <1,

FO(—q)B(y; ' —p+ 11— (1 +0(1) i 7 > 1.

and R(q,p,ve) =

The difference between Proposition 2 and Proposition 2 in Daouia et al. (2019) is the remainder term
of order (1 — 7), which is incorrect in the latter.

Proof. Retrace the steps of the proof of Proposition 2 in Daouia et al. (2019) and note that (with
the notation therein) Equation (A.15) is incorrect because it does not take term I1(g; p) into account.
Keeping the notation of this paper, using the asymptotic equivalent of this term provided right after
Equation (A.10) and accounting properly for it in (A.15) yields the desired result after straightforward
computations. ]

Appendix B Proofs of main results

B.1 Proof of Proposition 1
Let us introduce (z1,2,) € R?, 0, = 1/1/n(1 — ay,), and, for all p > 1, focus on the probability:

e = o({ (B ) <) (B0 1) <)

dan (P)
= P ({Ga, (1) < da, (0)(1 + 500)} ({5, (1) < g5, (D1 + 2100)} ) -

Remarking that 1—a,, = 7 (qa,, (p)) by continuity of ) (see Lemma A.1) and 1-43,, = 7Y (g8,(1))
_ =(k)
by continuity of F(l), and using the fact that, for all y, o and k, c?ék) ()<y&e F, (y) <1l-—aq,it

follows that ®,,(21, z,) can be rewritten as
~(1)

P ({7 00,00+ 200) < F 0, ) OV{EY 0,00+ 20,0 < 7V @, ).

Equivalently, letting v, = ¢a,, (p)(1 + 2poy) and y, = g, (1)(1 + 2z104,), one has

F =)
®p(21,2) =P nFO (o) [ En W) 1) < \uF Yy ( F™ (40, (P) - 1)

F” (o (p) (1 + 2p0n

o / (1)
N 4 VaFY wa) ?1) Eyn) — 1) < /nF () ((1) (F il ) 1)

F7 (qp,(1)(1 + 2100

Note now that a combination of the local uniformity of condition Cs(7, p, A) (see e.g. Lemma 2 in
Stupfler, 2019) with assumption A((1 — a;,)™1) = O(1//n(1 — ay,)) = O(0,,) yields:

F a0+ 210) = F g5, 1)) (1= 27204 01 )
Besides, applying Lemma A.3iv) gives
P (ga, (D)1 + 200)) = T (qa, (p)) (1 - (14 o<1>>) .
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Here the asymptotic proportionality between g, (p) and ¢4, (1) was used, together with the regular
variation property of A, so as to satisfy the assumptions of Lemma A.3iv) with u, = ¢, (p) and
€n = 2pop. Therefore:

7? (o, (1))

1 = 2o,(1+0(1)),

F? (go, () (1 + 2p02) ot o)
7Y (gs, (1)) o

T @t am) o ot elt)

*(1)(

Since \/nE" " (yn) = o,
condition, it follows that

Ygp(v)(1 + o(1)) from (2.3) and local uniformity of the regular variation

(1) ﬁ(@l) (¥n) 9p(7)
() § VrE (un) mq S#zl(uou)) .
Yn

Another direct consequence of (2.3), using the regular variation property of F(l), is ¢, (1) = 9p(7) "G, (p) (14
o(1)), hence y}, = 07 7¢q,, (1)(1 +0(1)) = 077 gp(7)"yn(1 + o(1)). It only remains to apply Lemma A.5
with A = 677g,(v)” to conclude the proof.

B.2 Proof of Theorem 1
Let again 0, = 1/4/n(1 — ;) and for any z € R, focus on the probability

=1 R
@,(z) = P (anl (Fl(qa(p” - gpw) < ) =P (P @) £ (1= ) 00) 4 20,) ).

Equivalently, ®,(z) = P (qa, (p) > g3, (1)), where 5, =1 — (1 — o) (gp(y) + 205) and therefore,

o) =7 (! (22 1) 3t (el 1) B o (1))

From de Haan and Ferreira (2006, Theorem 2.3.9), condition Ca (7, p, A) entails

Zf”g; =gp(7)" [1 L)1

In addition, combining Proposition 2 with Lemma 1(i) in Daouia et al. (2020) yields

— -1 o fm o . .
A=) ) (o) - B <1>>} (B.1)

G0 0) _ gy (0) [1 — R )1+ o) + 2O E =LA (- o) 4 o<1>>] . B2
with
R(om,p) = [1—gp(MI(1 = an)(1+0(1)) — gp(ME D, 7, p)A ((1 — o)) (1 + 0(1))
— (o= Dgp(y™ (E [Yﬂ{;jﬁan(l)}] Lpay+(I-an)Bp-11-7") ]1{7>1}>
L B[~V yeq,
+ (P = Dgp(y) e [ ]l{q(;n(f) )] Ly<ny

-0
+ (= Dgp(MTFY (o, (1) B (v —p+ L1 =) 1,00y,
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and where K (p,~, p) is given in (3.3). Combining (B.1) and (B.2) yields

() =z 0 o 'R(a 0
<qan<p> 1) =~z + o) 90 Rlan p)(1 +o(1).

In view of conditions 4), #i) and i), one has
7 R, ) = A = = MBS (7, p) + Ao () + AsbP (7, 70)]| s = oo,

Then,
B,(z) =P (g”(”) [—agl <qA°‘" (v) _ 1) to! (55”(1) ~ 1> (1+ 0(1))] + Agp(y) +0(1) < z) ,

ot G (P) qp, (1)

=(1)
and the asymptotic distribution of o, ! <F"(q“"(p)) — gp('y)> is the same as that of

1—an

( ) qan(p) _1
e LM O vl
a5, (1)

=1
Finally, %333 being obtained by inverting g,(-) at F'), (Ga,(p))/(1 — o), its asymptotic distribution is

the limit in distribution of

Z]\Oén (p) —
gp(’)/) (71 1) 0_—1 (/I\an (p) 1 + )\gp(’}/)
v95() C\BEE 1) 50

by the delta-method. Apply Lemma A.2 and Proposition 1 with § = g,(7) to conclude the proof.

B.3 Proof of Theorem 2

We prove the result on Z]'*/RB( 1); the proof of the result about ¢, R ( ) is identical. Using our assump-

tions on b and p and the y/n(1 — a,,)—consistency of ’yc(yn), we ﬁnd

(T

0g<Qa§L(1)>

P loe (L7 Lo (TP Ly lgp (T o Ga, (P)
= o ””g<1—a;q,)“g<qan<p>>“g< o R (el )

—log([lo"} qaf ;)wwmm»

1—ay (1

Combine then Theorem 1 in Daouia et al. (2019) (for independent data), the y/n(1 — a;,) —consistency

of 7&’;), Proposition 2, asymptotic inversion of 7Y (see e.g. Daouia et al., 2020, Lemma 1(i)) and

Theorem 2.3.9 in de Haan and Ferreira (2006) to get

(1)
log | —=P_~ ) = (3®) — )10 (
g(qa;(1)> (Ye&) — ) log =

The proof is complete.

>+O]P (1/v/n(1 = an)).
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