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Abstract This review article revisits and outlines the perfectly matched layer
(PML) method and its various formulations developed over the past 25 years for
the numerical modeling and simulation of wave propagation in unbounded me-
dia. Based on the concept of complex coordinate stretching, an efficient mixed
displacement-strain unsplit-field PML formulation for second-order (displacement-
based) linear elastodynamic equations is then proposed for simulating the prop-
agation and absorption of elastic waves in unbounded (infinite or semi-infinite)
domains. Both time-harmonic (frequency-domain) and time-dependent (time-
domain) PML formulations are derived for two- and three-dimensional linear elas-
todynamic problems. Through the introduction of only a few additional variables
governed by low-order auxiliary differential equations, the resulting mixed time-
domain PML formulation is second-order in time, thereby allowing the use of
standard time integration schemes commonly employed in computational struc-
tural dynamics and thus facilitating the incorporation into existing displacement-
based finite element codes. For computational efficiency, the proposed time-
domain PML formulation is implemented using a hybrid approach that couples
a mixed (displacement-strain) formulation for the PML region with a classical
(displacement-based) formulation for the physical domain of interest, using a stan-
dard Galerkin finite element method (FEM) for spatial discretization and a New-
mark time scheme coupled with a finite difference (Crank-Nicolson) time scheme
for time sampling. Numerical experiments show the performances of the PML
method in terms of accuracy, efficiency and stability for two-dimensional linear
elastodynamic problems in single- and multi-layer isotropic homogeneous elastic
media.
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1 Introduction

Large-scale complex wave propagation, radiation or scattering problems are often
set on unbounded (or very large) domains. When using classical numerical approx-
imation methods such as finite difference (FD), finite volume (FV), finite element
(FE), spectral element (SE) or discontinuous Galerkin (DG) methods, their nu-
merical solutions can be computed in using computational models that are con-
structed for bounded subdomains (corresponding to the physical domains of inter-
est), thereby requiring the truncation of the unbounded domain with ad hoc mod-
eling artifacts, i.e. appropriate conditions at the artificial truncation boundaries,
to properly simulate the unimpeded outward propagation of waves without any
spurious reflections coming from the truncation boundaries. Among the numerous
methods dealing with the construction of such bounded (or finite) computational
domains, such as artificial transparent and absorbing boundary conditions (ABCs),
absorbing layers (ALs) methods and alternative techniques (see [137,333,321,138,
149,151,77,155,140,11,160,127] and the references therein for a comprehensive
overview of the existing approaches), the high-order local ABCs (involving only
low-order derivatives, i.e. no high-order spatial and temporal derivatives, having
recourse to special auxiliary variables on the artificial boundary) [143,144,154,12,
148,139,156,141,147,155,152,157,34,24,153,296] and the perfectly matched lay-
ers (PMLs) [46,189,48,170,163,322,318,76,17,54,174,59,200,114] have been ex-
tensively studied during the last decades, since they are neither computationally
expensive, nor difficult to implement, nor limited to domains with simple geo-
metric shapes (e.g. rectangular, cuboidal, circular, spherical, ellipsoidal, etc.), and
allow the outgoing waves to be efficiently absorbed with arbitrarily-high controlled
accuracy for a broad class of wave propagation problems.

The PML method has been introduced in the mid 1990s for simulating the
propagation of electromagnetic waves over time in two-dimensional (2D) [46,47]
and three-dimensional (3D) [189,48] unbounded spatial domains. It basically con-
sists in surrounding the bounded physical domain of interest (resulting from the
truncation of the unbounded domain) by artificial (non-physical) absorbing non-
reflecting layers of finite thickness especially designed to absorb the outgoing waves
(leaving the physical domain) without any spurious (unwanted) reflections. In the-
ory, within the continuous framework, a PML model is then constructed such that
the outgoing waves are perfectly transmitted at the interface between the physical
domain and the absorbing layers whatever their non-zero angles of incidence and
their non-zero angular frequencies, and then they decrease exponentially in the
direction normal to the interface when propagating inside the absorbing layers.
Nevertheless, in practice, within the discrete framework, the numerical approxi-
mations introduced in the PML computational model do not allow such a perfect
matching (reflectionless) property to be still satisfied due to the numerical disper-
sion inherent to any discretization method. Furthermore, since the absorbing layers
(hereinafter referred to as the PML region) have a limited (finite) thickness, the
outgoing waves that are not completely damped while traveling inside the PML re-
gion, being reflected at the exterior boundary and again propagating back through
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the PML region (hence traveling twice through it) re-enter the physical domain and
therefore generate spurious waves with a non-zero amplitude, which is relatively
small in practical applications since it is damped by an exponential factor that
depends on twice the PML thickness. In numerical practice, the layers are then
designed to have minimal reflection and strong absorption properties. Besides, due
to its simplicity of implementation and versatility (broad applicability), the PML
method can be easily implemented in conjunction with any classical numerical
approximation method available in standard computer codes and often performs
very well compared to other existing ABCs for artificially handling problems de-
fined on unbounded domains [187,75,162,76,193,140,276,354,341,127], especially
for arbitrarily heterogeneous materials/media.

1.1 Overview of existing PML formulations

The classical PML formulation, henceforth known as split-field PML (sometimes
referred to as S-PML), is built by artificially splitting the physical fields solution
of the time-domain wave equations (written in Cartesian coordinates) into un-
physical components (according to their spatial derivatives) in the PML region
and considering specific dissipative anisotropic material properties. These dissi-
pative material properties are introduced through the use of artificial damping
terms satisfying a matching impedance condition to achieve a perfect transmis-
sion of outgoing propagative waves (without any reflections) at the interface be-
tween the physical domain and the absorbing layers, with an exponential decay
in the PML region along the direction normal to the interface [46,47,48]. Such
a field-splitting PML formulation alters the original formulation of second-order
time-domain wave equations and introduces two distinct systems of equations
set on the physical domain and the PML region, requiring a special treatment
at the interface between the two and making the implementation into existing
codes rather cumbersome. In the frequency domain, the PML method can be in-
terpreted as a complex space coordinate stretching approach [69,284,285,67,68]
through an analytic continuation of the real spatial coordinates into the complex
space via complex stretching functions, corresponding to a change of metric of
the physical coordinate space [308,315,205,207]. As already mentioned in [59],
the complex coordinate stretching strategy is closely related to the so-called com-
plex scaling technique (also referred to as analytic dilatation technique) originally
introduced in the mid 1970s for the numerical simulation and analysis of the dy-
namical properties (eigenstates) of atomic systems in quantum mechanics [8,300,
168]. The resulting PML formulations based on complex stretched coordinates
then involve complex operators, rendering the PML method difficult to imple-
ment along with any conventional numerical approximation method. Alternative
unsplit-field (or nonsplitting) PML formulations, frequently called uniaxial PMLs
(sometimes referred to as U-PML or N-PML), preserve the original (unstretched)
formulation of second-order time-harmonic wave equations (involving physical
fields and classical real operators), but with specific frequency-dependent complex
anisotropic material properties, thereby allowing the PML region to be interpreted
as an artificial anisotropic absorbing medium (sometimes called anisotropic ma-
terial absorber) [291,130,129,356,357,353,363,287,181,310,311,313,315,2]. The
unsplit-field PML formulations can then be straightforwardly incorporated into
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existing codes (with minor modifications) and implemented using any classical
numerical method unlike their split-field counterparts. Time-dependent PML for-
mulations are usually derived from their time-harmonic counterparts by taking
the inverse Fourier transform in time of time-harmonic PML equations, which
can be performed by directly using convolution products that are usually com-
puted by means of a recursive convolution update technique [228] to avoid ex-
pensive temporal convolution operations [286,288,329,290,326,18,100,192,235,
236,234,146,216,240,136,335,270,263,214,215,230] (henceforth known as the con-
volutional PML or C-PML), or by using a recursive time integration ap-
proach [347,99,133,134,135] (henceforth known as the recursive integration
PML or RI-PML), or by using digital signal processing (DSP) techniques
such as the Z-transform and digital filtering methods [282,279,280,281,210,212,
213,328,116,118,120,121] (henceforth known as the matched Z-transform PML
or MZT-PML), or by introducing additional fields and auxiliary differential
equations [322,171,359,193,278,29,302,325,211,27,198,275,131,237,350,145,104,
105,117,185,43,101,107,108,103,292,335,352,231,128,330,331,360,248] (hence-
forth known as the auxiliary-differential-equation PML or ADE-PML), and thus
require additional resources in terms of computational cost and memory storage
capacity. Note that ADE-PML formulations provide more flexibility allowing for
an easy extension to high-order time integration schemes and are also easier to
implement with classical numerical methods as compared to C-PML formulations
[131,237,350,292,335,352]. In addition, such ADE-PML formulations can be seen
as perturbations of the original (unstretched) formulation of time-domain equa-
tions since they reduce to solving the original system of time-domain governing
equations over the physical domain by considering all additional fields (auxiliary
variables) set to zero and adding the non-zero source terms, boundary and initial
conditions imposed over the physical domain of interest.

Some mathematical analysis results on the existence and convergence
properties of the PML method can be found in [75,206,207,169,25,61]. The
well-posedness and stability properties1 of the PML method have also been
studied in numerous research works [255,1,2,3,265,319,4,35,89,33,40,31,277,
17,18,16,90,242,243,244,92,226,294,295,158,65,41,183,104,105,185,195,87,101,
103,102,159,42,36,39,184,45,293,126,38]. On the one hand, for wave propagation
problems governed by symmetric hyperbolic systems (e.g. in electromagnetics,
acoustics and elastodynamics), classical split-field PML formulations result in
weakly hyperbolic systems and lead to only weakly well-posed problems, which
may become ill-posed under some low-order (small) perturbations on the split
fields [1,2,167,35,183,195], thus making numerical computations impracticable.
On the other hand, unsplit-field PML formulations result in symmetric strongly
hyperbolic systems and lead to strongly well-posed problems [2,3,265,277,158,
104]. Furthermore, standard PML systems derived from both split- and unsplit-
field PML formulations have been proved to be only weakly stable under some
suitable conditions (depending on the symbol of the hyperbolic partial differential
operator) [4,35,33,40,193,65], which means exponentially growing waves are not
supported by the time-domain PML formulation, but linear (or polynomial)
growing waves may potentially exist and be triggered for instance by numerical

1 The interested reader can refer to [197,33,196,17,18,42] for the definition of well-posedness,
hyperbolicity and stability of initial boundary value problems for hyperbolic systems.
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integration (quadrature) or round-off (machine precision) errors [335]. Such
growing waves can then lead to spurious instabilities that spread and adversely
pollute the solution within the physical domain in long-time simulations. Despite
its general success and satisfactory performances in most practical applications,
the PML method has some apparent drawbacks and may fail to absorb the
outgoing waves in some specific situations [170,307,167,3,171,33,89,254,78,84,
97,298,90,18,303,192,236,242,259,226,15,216,92,104,195,88,269,268,270,20,42,
126,214,215,184,36,39,38]. In particular, numerical instabilities may occur in
time-domain simulations for some wave propagation problems in anisotropic
and/or dispersive media (such as negative refractive index metamaterials, also
called left-handed or double negative metamaterials, and cold plasmas, also called
non-thermal plasmas), e.g. in (visco)elastodynamics [33,18,303,192,303,236,242,
15,216,92,104,88,269,268,270,20,42,126,214,215], electromagnetics [33,78,84,
97,298,259,226,42,184,36,39,38], aeroacoustics [170,307,167,3,171,33,89,90,87],
geophysical fluid dynamics [254] and even in anisotropic scalar wave propagation
problems [195]. Such instabilities are due to the presence of backward propagating
waves (for which the phase and group velocities point in opposite directions with
respect to the interface, i.e. they are not oriented in the same way and then have
differing signs with respect to the direction normal to the interface) exponentially
growing within the PML region and producing strong spurious reflections within
the physical domain. Even for isotropic media, the PML method may not only
suffer from long-time instabilities but also exhibit instabilities for near-grazing
incident propagating waves or evanescent waves [250,50,51,75,221,332,123,233,
193,124,122,99,100,192,235,236,234,237,216,240,242,243,244,350,352]. Besides,
the PML method also performs very poorly in the presence of low-frequency
propagating waves or long waves (for which the wavenumber is almost zero)
arising near cut-off frequencies and decaying slowly within the PML region [303,
88].

Several methods have been proposed to avoid and remove growing waves
and improve the stability and accuracy of PML formulations in the presence of
evanescent, near-grazing incident propagating or long waves, e.g. by applying a
numerical filtering (low-pass filter) [170,254], by introducing a complex frequency
shift (known as the complex-frequency-shifted PML or CFS-PML) [202,129,
221,320,286,288,53,52,40,124,122,79,210,17,18,326,325,99,100,192,133,235,
236,234,275,131,237,350,216,240,136,328,272,273,120,335,104,105,101,108,
103,128,336,230], by adding artificial stabilizing parameters (with loss of the
perfect matching property) and/or making use of ad hoc space-time coordinate
transformations [307,167,322,3,171,4,7,150,89,31,173,30,90,262], or by consid-
ering different multi-dimensional damping functions (known as the multiaxial
PML or M-PML) [242,243,244,344,91,92,114,269,268,270,126]. To overcome
(or at least alleviate) the stability issues, the complex-frequency-shifted PML
(CFS-PML) method consists in using a more sophisticated (frequency-shifted)
complex coordinate stretching with a frequency-dependent real part (in addition
to the standard frequency-dependent imaginary part) by simply shifting the
frequency-dependent pole (zero-frequency singularity) of the complex stretching
function off the real axis and onto the negative imaginary axis of the complex
plane, so that the PML region can act as a low-pass (Butterworth-type [63])
filter with a cut-off angular frequency ωc to efficiently improve the absorption
of near-grazing incident propagating waves [52,124,99,192,235,236,234,237,216,
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350] and also the attenuation of evanescent waves [221,286,288,53,52,122,81,
100]. The PML region then depends on the angular frequency ω since it behaves
like the physical medium (losing its absorption properties) at low frequencies
(ω � ωc) and like a dissipative layer (losing its stabilizing properties) at high
frequencies (ω � ωc), thus switching from a transparent behaviour (without
attenuation) to a dissipative behaviour (with an exponential amplitude decay) in
a frequency range around the cut-off frequency ωc [124,242,240]. The CFS-PML
method can then be interpreted as a low-pass filter allowing to efficiently absorb
high-frequency propagating waves (as it reduces asymptotically to the classical
PML method at high frequencies) and improve the absorption of near-grazing
incident propagating waves as well as evanescent waves, while slightly degrading
the absorption of low-frequency propagating waves [288,53,52,40,124,81,242,
240]. To overcome this potential limitation, a second-order PML method has
been proposed in [80,81,227,131,237,116,117,118,119,115,330,331] and extended
to a general higher-order PML method in [134,121]. It allows combining the
advantages of both classical PML and CFS-PML methods (in terms of absorption
performance) by simply considering a more complicated (multipole) stretching
function defined as the product of individual CFS stretching functions. Despite
a rather complex implementation in the time domain and more computational
resource requirements (in terms of computational cost and memory storage
capacity), the resulting higher-order PML method is then highly effective in
absorbing both low-frequency propagating waves and strong evanescent waves,
especially for open-region and periodic problems as well as for waveguide
problems defined over elongated domains. More recently, another multiple-pole
(or multipole) PML method has been introduced in [135] and is based on an
ad hoc multipole complex stretching function simply defined as the sum of
individual CFS stretching functions in order to facilitate the implementation
and parameter optimization of the multipole PML method when compared to
a higher-order PML method. Note that other generalized (multipole) complex
stretching functions have also been considered in [38] to derive stable PML
formulations for dispersive media (e.g. negative index metamaterials). As another
attempt to prevent late-time instabilities occurring in some kinds of anisotropic
elastic media, the multiaxial PML (M-PML) method extends the classical PML
method by considering different multi-dimensional damping functions (that are
proportional to each other in orthogonal directions and in which the ratios
of damping functions are additional user-tunable correction parameters for
improving stability), leading to a more general complex coordinate stretching
involving extra stabilizing correction parameters, so that the outgoing waves
are absorbed along all coordinate directions (i.e. not only along the direction
normal to the interface) with different amplitude attenuation factors (decay
rates). Nevertheless, it has been shown that such a M-PML method results in an
improved sponge layer with better absorption and stability properties in long-time
simulations for some particular 2D orthotropic (visco)elastic media [242,243,244,
236,216,269,268,270,126] or 2D isotropic (visco)elastic media with high Poisson’s
ratios [344,269,270] or even 2D and 3D general anisotropic elastic media [126],
but it is not perfectly matched at the interface with the physical domain even
within the continuous framework [91,92,324,269,268,270,126]. In addition, let us
mention that the CFS-PML and M-PML methods have been recently combined
in [352,214,215] (hence termed the hybrid PML or H-PML) to further improve
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the stability in some strongly anisotropic (2D orthotropic) elastic media without
degrading the accuracy (absorption capacity), thus combining the advantages of
both CFS-PML and M-PML methods for maximizing both accuracy and stability
through the optimization (fine tuning) of the PML parameters involved in the
H-PML (i.e. the combined CFS-M-PML) stretching function. Lastly, we refer to
[182,42] for further discussions about the limitations and failure cases of the PML
method as well as some workarounds.

During the last 25 years, the PML method has been widely used for (tran-
sient) electromagnetic problems [46,69,189,253,291,284,285,47,48,202,130,129,
111,356,357,353,287,203,49,50,187,363,181,232,338,68,309,310,311,312,1,2,
337,177,308,315,314,332,317,316,319,318,75,74,322,223,165,320,51,264,265,
286,288,110,220,219,4,53,52,180,179,278,279,280,281,266,290,35,40,78,84,97,
142,302,306,79,80,81,227,298,5,326,325,260,261,210,211,212,213,54,96,95,258,
133,190,259,226,272,273,6,98,131,134,10,116,117,118,119,120,121,305,105,
107,102,330,331,42,36,39,184,38,135], then quickly extended and successfully
applied to various wave propagation problems [245,222,57,59,239] in diverse
scientific and engineering fields including hydrodynamics and aeroacoustics (e.g.
arising in radiation and scattering problems) [170,340,225,167,274,307,322,
164,3,162,171,188,150,89,277,33,31,348,172,173,251,252,161,30,90,17,299,343,
56,174,175,194,262,16,361,178,342,283,185,87,231,323,128], geophysical fluid
dynamics (e.g. arising in atmospheric and oceanic sciences) [85,254,7,208,26,
246], elastodynamics (e.g. arising in soil dynamics, soil-structure interaction,
earth seismology, geotechnical site characterization and earthquake engineering,
geophysical subsurface sensing/probing) [67,163,351,221,76,37,359,33,193,
123,233,329,224,28,347,72,124,122,60,229,161,18,303,99,100,192,236,237,275,
125,350,349,27,216,242,243,244,186,199,200,201,240,344,104,328,191,354,43,
20,335,269,352,114,113,292,108,106,103,62,263,360,45,293,44,126,214,215],
viscoelastodynamics [29,32,234,268,270], poroelastodynamics [345,346,304,235,
146,166], poroviscoelastodynamics [136], optics and quantum mechanics (e.g.
arising in atomic, molecular and laser physics) [73,9,271,209,151,112,66,358,94,
11,93,13,257,241,267,14], fluid-porous medium coupled problems or fluid-solid
interaction problems (e.g. arising in marine seismology, in non-destructive testing
techniques such as ultrasound evaluation techniques for the characterization of
complex biological systems) [57,59,64,238,239,21,336,297], as well as other gen-
eral wave-like hyperbolic problems [217,17,19,16]. Initially derived in Cartesian
coordinates for simply-shaped domains with straight (planar) artificial boundaries
(e.g. squared, rectangular or cuboidal domains), some PML formulations have
been extended to other (non-Cartesian) coordinate systems such as polar,
cylindrical and spherical coordinates [232,338,68,309,310,339,75,74,312,165,
221,314,355,317,265,359,266,224,57,199,292], and applied to generally-shaped
convex domains using local polygonal or (non-)orthogonal curvilinear coordinates
[311,308,177,316,319,205,207,220,219,124,364,260,261,343,95,125,98,349,352,
10,239,87,323,248]. Such improvements provide more flexibility and choice in the
shape and geometry of the underlying physical domain of interest. As already
pointed out in [359], recall that the first attempts to extend the classical PML
formulation (written in Cartesian coordinates) to non-orthogonal curvilinear
coordinates (such as proposed in [253,334,287,203] for instance) were based on
an approximate impedance matching condition derived under the assumption
that the complex coordinate stretching function is independent of the spatial
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coordinates, hence resulting in an approximate PML formulation. Furthermore,
it should be noticed that a straightforward extension of the classical PML
formulation to cylindrical coordinates (such as proposed in [203] for instance)
leads a loss of the perfect matching (reflectionless) property for curvilinear
(non-planar) interfaces even within the continuous framework, hence resulting in
an approximate PML formulation (henceforth known as the quasi-PML) [223,
165]. In the present work, for the sake of simplicity, we restrict to rectangular
or cuboidal domains with straight (planar) boundaries in Cartesian coordinates,
but the proposed PML formulation could be easily extended and applied to more
complex domains in other coordinate systems.

1.2 Overview of existing PML formulations in linear elastodynamics

Following this general overview of the PML method and its variants addressed
in the literature, we now focus on the different PML formulations as well as
their implementations in linear (visco)elastodynamics. Classical split-field PML
formulations for the linear elastodynamic equations have been initially derived
for the first-order mixed (velocity-stress) formulation [67,163,351,221,76,37,33,
123,233,224,72,229,125,349], then extended to the second-order (displacement-
based) formulation (with a velocity field as additional variable to render the re-
sulting mixed formulation second-order in time) [193,354] and to the second-order
mixed (displacement-stress) formulation of the viscoelastodynamic equations [32].
Classical unsplit-field PML formulations have also been obtained for the linear
elastic wave equations formulated as a first-order mixed (velocity-stress) system
[329,44] and as a second-order system in displacement or velocity (with poten-
tially a stress, strain and/or other auxiliary field(s) as additional unknown(s),
such as time-integral or memory-like terms, thus resulting in a second-order
mixed formulation) [359,28,29,27,60,161,303,186,199,200,201,43,45,293,44,114,
113,20,62,360]. Later, split-field CFS-PML (resp. M-PML) formulations have been
proposed for the linear elastic wave equations written as a first-order system in
velocity and stress [124,122,236] (resp. [242,243,244,344,126] and as a second-
order system in displacement [269,268,270]). Lastly, unsplit-field CFS-PML (resp.
M-PML) formulations have been developed based on either the first-order mixed
(velocity-stress) formulation [18,99,100,192,234,237,275,350,349,103,263] (with
an unsplit-field H-PML, i.e. combined CFS-M-PML, formulation proposed in
[352,214] and an unsplit-field combined CFS-MZT-PML formulation developed in
[328]) or the second-order (displacement-only or mixed displacement-stress) for-
mulation (with potentially additional auxiliary fields) [216,240,104,108,106,335]
(resp. [114], with an unsplit-field H-PML formulation developed in [215]) of the
linear elastodynamic equations. A brief overview of the relations between differ-
ent split-field and unsplit-field (CFS-)PML formulations and their classification for
the linear elastic wave equations formulated as a first-order mixed (velocity-stress)
system can be found in [198]. All the aforementioned PML formulations require
either the use of convolution products (and related recursive convolution update
techniques) or specific (specialized or recursive) time integration schemes with
sometimes a large number of additional fields and auxiliary differential equations
as well as additional assumptions on the solution fields to derive the PML formu-
lations in the time domain. By and large, the PML formulations differ not only
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by the use of split or unsplit primary fields (and auxiliary fields if should be the
case) and the definition of the complex coordinate stretching function, but also by
the choice of numerical approximation methods for space and time discretizations.
The interested reader can refer to [199,200,201,114,335] for an overview of the
various PML formulations and implementations (based on FD, FE or SE meth-
ods) developed for time-domain elastodynamic problems. As already pointed out
in [193,192,292], most existing PML formulations based on the linear elastic wave
equations written as a first-order system in velocity and stress have been devel-
oped for FD methods and cannot be straightforwardly used in classical numerical
approximation methods that are based on the linear elastic wave equations writ-
ten as a second-order system in displacement, such as most FE, SE, DG methods
and some FD methods. Conversely, PML formulations based on the second-order
(displacement-based) linear elastodynamic equations can be more readily imple-
mented in such numerical schemes [192,216,186,199,200,201,104,335,292,20,360,
44] and are more robust (i.e. have much better discrete stability properties) than
the ones based on first-order (velocity-stress) linear elastodynamic equations [104,
195,20,44].

1.3 Introduction of an efficient PML formulation in linear elastodynamics

The main objective of this paper is to derive both time-harmonic (frequency-
domain) and time-dependent (time-domain) PML formulations as well as their
numerical implementations for simulating the propagation of elastic waves in both
two- and three-dimensional unbounded media. For this purpose, we develop an
unsplit-field PML formulation for second-order (displacement-based) linear elasto-
dynamic equations, which is well-suited for numerical implementation using stan-
dard FE, SE or DG methods on unstructured meshes that are well adapted to
handle computational domains with arbitrarily complex geometries and curved
boundaries and allow for a natural application of boundary conditions, as already
mentioned in [199,292]. Despite the zero-frequency singularity, we adopt a stan-
dard stretching function with careful parameterization, since it leads to a simple
and straightforward implementation of the resulting PML formulation and exhibits
better performance in the presence of low-frequency propagating waves (and in the
absence of strong evanescent waves) when compared to CFS-PML formulations,
as clearly explained in [124,240,200,335] and numerically observed in [81] for in-
stance. In order to relax or at least alleviate the temporal complexity arising from
the PML-transformed equations and to derive an unsplit-field non-convolutional
PML formulation in the time domain for both two- and three-dimensional transient
elastodynamic analyses, we first introduce an auxiliary (symmetric) tensor-valued
strain field (defined as the difference between the complex stretched tensor-valued
strain field and the real classical one) treated as an additional unknown vari-
able (only in the PML region) and governed by a second-order ordinary differ-
ential equation in time derived from the strain-displacement kinematic relation.
We then propose to construct a space weak formulation of both the equilibrium
equations and the strain-displacement kinematic relation, resulting in a mixed
(displacement-strain) unsplit-field PML formulation that is second-order in time
and can be discretized in space using a standard Galerkin finite element method.
We finally employ a classical implicit second-order time integration scheme com-
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monly used in computational structural dynamics, that is a Newmark time scheme
coupled with a finite difference (Crank-Nicolson) time scheme, in order to solve
the time-dependent PML equations while preserving second-order accuracy. The
resulting mixed PML formulation can be easily implemented using classical nu-
merical tools incorporated in existing (displacement-based) finite element codes.
Such codes originally developed for bounded computational domains can then
be easily modified to accommodate both time-harmonic (frequency-domain) and
time-dependent (time-domain) PML formulations for the propagation of elastic
waves in unbounded domains. In addition, it requires no field splitting, no non-
linear solvers (such as Newton-type iterative solvers), no mass lumping and no
critical time step size (such as the stability criterion required in explicit time in-
tegration schemes) as well as no complicated or costly convolution operations in
time and no high-order spatial and temporal derivatives, so that the derivation,
resolution and implementation of the proposed PML formulation are made eas-
ier compared to most other existing PML formulations. As in [186,199,200,201,
114,113,20], the proposed PML formulation preserves the second-order form of the
original (unstretched) time-domain linear elastic wave equations while using a very
small number of additional fields and auxiliary differential equations as compared
to most existing PML formulations based on either first- or second-order equa-
tions for time-domain elastic wave propagation in both two- and three-dimensional
unbounded domains. For further computational savings, we finally consider a hy-
brid approach, originally developed for two-dimensional elastodynamic problems
in [201] and later extended to three-dimensional elastodynamic problems in [114],
that couples a mixed displacement-strain unsplit-field PML formulation in the
PML region with a purely (non-mixed) displacement-based formulation (i.e. a
standard displacement-only formulation) in the physical domain.

1.4 Outline of the paper

The paper is organized as follows. In Section 2, we introduce the linear elastody-
namic formulation in both time and frequency domains. In Section 3, we revisit
the time-harmonic (frequency-domain) and time-dependent (time-domain) PML
formulations based on complex coordinate stretching by introducing an auxiliary
tensor-valued strain field and using a space weak formulation of the resulting
PML equations. We also discuss the proposed hybrid approach, whereby a mixed
displacement-strain unsplit-field PML formulation in the PML region is coupled
with a standard (non-mixed) displacement-only formulation in the physical do-
main of interest, and provide details on its finite element implementation in both
the frequency domain and the time domain. In Section 4, we present numeri-
cal experiments carried out on two-dimensional linear elastodynamic problems in
single- and multi-layer isotropic homogeneous media to numerically simulate the
propagation of elastic waves in semi-infinite (unbounded) domains. The capability
of the proposed time-dependent PML formulation to efficiently absorb outgoing
propagative waves is shown by computing relevant local and global quantities of
interest such as the components of the displacement field at some selected re-
ceiving points (called receivers) and the kinetic, internal and total energies stored
in the physical domain of interest. The performances of the PML formulation in
terms of accuracy (absorption capability) are compared to the ones of a classical
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absorbing layer (CAL) formulation. Finally in Section 5, we conclude with further
discussions and give possible perspectives.

2 Problem statement

2.1 Time-domain formulation of linear elastodynamics

Within the framework of linear elasticity theory, we consider a two- or three-
dimensional linear elastodynamic problem. The material is assumed to be linear
and elastic, characterized by the fourth-order Hooke’s elasticity tensor C and the
mass density ρ. The medium is subjected to given external forces represented by
a body force field f . In the time domain, the original problem, initially defined on
an unbounded domain of the d-dimensional Euclidean physical space Rd (d = 2, 3
being the spatial dimension), consists in finding the vector-valued displacement
field u(x, t) and its associated tensor-valued Cauchy stress field σ(x, t) satisfy-
ing the second-order partial differential equation (derived from linear momentum
conservation and hereinafter referred to as the equilibrium equations)

ρü− div(σ) = f , (1a)

for spatial position vector x ∈ Rd and time t > 0, with given initial conditions at
time t = 0

u(x, 0) = u0(x) and u̇(x, 0) = v0(x), (1b)

where div denotes the divergence operator of a tensor-valued field with respect
to x, while the dot and the double (or superposed) dots over a variable denote
respectively the first- and second-order partial derivatives with respect to time t,

i.e. u̇(x, t) =
∂u

∂t
(x, t) and ü(x, t) =

∂2u

∂t2
(x, t). Body force field f(·, t) is a given

function from Rd into Rd for all t > 0. Both fields u and σ are linked through the
linear stress-strain constitutive relation (known as the generalized Hooke’s law)

σ = C : ε(u), (1c)

in which the colon symbol : denotes the twice contracted tensor product, and
where ε(u(x, t)) is the classical linearized tensor-valued strain field associated to
displacement field u(x, t), that is

ε(u) =
1

2

(
∇u+ (∇u)T

)
, (1d)

where the superscript T denotes the transpose operator and ∇ (resp. ∇) denotes
the gradient operator of a vector-valued (resp. scalar-valued) field with respect
to x. Recall that both second-order tensor-valued stress field σ and strain field
ε are symmetric, i.e. σij = σji and εij = εji. Also, the fourth-order elasticity
tensor C satisfies the classical major and minor symmetry properties Cijkl =
Cklij = Cjikl = Cijlk (without summation) and the following ellipticity (hence,
positive-definiteness) and boundedness properties on Rd (see e.g. [176]) : there
exist constants 0 < α 6 β < +∞ such that 0 < α‖ζ‖2 6 ζ : C : ζ 6 β‖ζ‖2 < +∞
for all non-zero second-order symmetric real tensors ζ = (ζij)16i,j6d of dimension
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d(d+ 1)/2, where ζ : C : ζ = Cijklζijζkl and ‖ζ‖2 = ζ2
ij (with summation over all

indices). Besides, the mass density ρ is a strictly positive-valued field.
In the case of isotropic homogeneous linear elastic materials, the constitutive

relation between σ and ε(u) restricts to

σ = λ tr(ε(u))I + 2µε(u)

= λdiv(u)I + µ(∇u+ (∇u)T ),
(2)

where tr denotes the trace operator, div denotes the divergence operator of a
vector-valued field with respect to x, I is the second-order symmetric identity (or
unit) tensor such that Iij = δij , with the Kronecker delta δij = 1 if i = j and
δij = 0 if i 6= j, λ > 0 and µ > 0 are the Lamé’s coefficients (that must be
strictly positive according to the ellipticity properties of elasticity tensor C [327,
109]) defined by

λ =


Eν

(1 + ν)(1− 2ν)
in 2D under plane strain assumption and in 3D

Eν

1− ν2
in 2D under plane stress assumption

and

µ =
E

2(1 + ν)
(also called shear modulus)

with E and ν respectively the Young’s modulus and the Poisson’s ratio of the
isotropic linear elastic material. The fourth-order elasticity tensor C is then con-
stituted of 2 algebraically independent coefficients (λ, µ) (or equivalently, (E, ν))
independent of x such that Cijkl = λδijδkl + µ(δikδjl + δilδjk), leading to
σij = Cijklεkl = λεkkδij + 2µεij (with summation over indices k and l only). In
such an isotropic homogeneous linear elastic medium, the time-dependent elastic
wave system (1) of homogeneous equations (under no external body forces) set on
an unbounded domain of Rd admits bulk (or body) plane wave solutions, namely
longitudinal pressure (or compressional) waves (often referred to as P -waves) with
characteristic velocity cp =

√
(λ+ 2µ)/ρ and whose polarization vector is parallel

to the wavefront propagation direction, and transverse shear waves (often referred
to as S-waves) with characteristic velocity cs =

√
µ/ρ <

√
2cp and whose polariza-

tion vector is perpendicular to the wavefront propagation direction. It also admits
surface- or interface-guided wave solutions, such as Rayleigh waves (propagating
along a free surface) and Stoneley waves (propagating along the interface between
two semi-infinite elastic media), whose amplitudes decay exponentially in the di-
rection normal to and away from the surface (or the interface if should be the case)
[28]. In the more general case of anisotropic and/or heterogeneous linear elastic
media, the fourth-order elasticity tensor C is constituted of 21 algebraically in-
dependent coefficients possibly dependent on x. The time-dependent elastic wave
system (1) admits further plane wave solutions with different characteristic ve-
locities (depending on the material symmetry properties and on the wavefront
propagation direction), such as quasi-longitudinal (or quasi-compressional) waves
(often referred to as qP -waves) and quasi-shear (or quasi-transverse) waves (often
referred to as qS-waves) for orthotropic elastic media [33,18,242], as well as other
wave types in the presence of heterogeneities and interfaces.
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For computational purposes, we introduce a bounded domain ΩBD ⊂ Rd with
sufficiently smooth boundary ∂ΩBD, where the subscript BD refers to “Bounded
Domain”, which corresponds to the physical domain of interest over which the
numerical computations are performed. We assume that the external body force
field f and the initial displacement and velocity fields u0 and v0 have bounded
supports in ΩBD and therefore remain confined within the bounded (or finite)
computational domain. The problem of interest then consists in finding the solution
fields u and σ satisfying the time-dependent elastic wave system (1) only in the
physical bounded domain ΩBD (and not in the entire unbounded domain of Rd).

2.2 Frequency-domain formulation of linear elastodynamics

In the frequency domain, the time-harmonic elastic wave system is obtained by
taking the Fourier transform in time of (1) and reads

−ρω2û− div(σ̂) = f̂ , (3a)

σ̂ = C : ε(û), (3b)

ε(û) =
1

2

(
∇ û+ (∇ û)T

)
, (3c)

where ω > 0 is the angular frequency and the hat (or caret) over a variable

denotes the Fourier transform in time, i.e. û(·, ω) =

∫
R
u(·, t)e−iωt dt, in which i

denotes the unit imaginary number satisfying i2 = −1, and where the spatial and
frequency dependencies of variables are dropped for the sake of readability and
notational brevity. The time-harmonic dependence of the displacement, stress and
strain fields is chosen as the multiplicative factor eiωt by convention. Furthermore,
all the vector-valued and tensor-valued fields are expressed throughout the paper
in a Cartesian coordinate system with canonical basis {ei}16i6d.

3 Perfectly matched layers

We now revisit the PML method that aims at constructing artificial layers (of
finite thickness) surrounding the physical bounded domain ΩBD and designed in
such a way that the incoming waves (entering into the layers) are not reflected
at the interface with the physical domain and decay exponentially into them.
In the following, we implicitly assume that all the outgoing waves (leaving the
physical domain of interest) correspond to purely forward propagating waves in
the direction normal to the interface, i.e. there is no backward propagating waves
or evanescent waves.

We consider a bounded Cartesian domain ΩBD =
d

×
i=1

[−`i , `i] ⊂ Rd surrounded

by an artificial absorbing layer (the PML region) ΩPML =
d

×
i=1

[−`i − hi , `i + hi] \
ΩBD with a constant thickness hi in each xi-direction. The PML region ΩPML is
divided into d overlapping subregions {Ωi}di=1 such that Ωi = {x ∈ ΩPML ; |xi| >
`i} and the outgoing propagative waves are attenuated in the xi-direction within
the PML subregion Ωi (see Figure 1). We denote by Γ = ∂ΩBD ∩ ∂ΩPML (resp.
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Fig. 1: Physical bounded domain ΩBD surrounded by an artificial PML region
ΩPML =

⋃d
i=1Ωi divided into d overlapping subregions Ωi with interface Γ =

∂ΩBD ∩ ∂ΩPML and exterior boundary Γext = ∂ΩPML \ Γ

Γi = ∂ΩBD ∩ ∂Ωi) the interface between the physical domain ΩBD and the PML
region ΩPML (resp. the PML subregion Ωi), and by n = niei the unit normal
vector to Γ pointing outward ΩBD. Furthermore, we define the entire domain
Ω = ΩBD ∪ ΩPML as the disjoint union between ΩBD and ΩPML, and we denote
by Γext the part of its boundary ∂Ω that coincides with the exterior boundary
of ΩPML, that is Γext = ∂ΩPML \ (Γ ∪ Γfree), where Γfree stands for the possible
free surfaces in the case where a semi-infinite medium with free-surface boundary
conditions is considered.

3.1 Complex coordinate stretching

In the frequency domain, the PML method consists in analytically stretching one
or more real spatial coordinate(s) of the physical wave equations into the complex
plane C, the ones corresponding to the direction(s) along which the outwardly
propagating waves have to be attenuated in the absorbing layers. In the following,
for any complex number z ∈ C, we denote by Re(z) and Im(z) the real and
imaginary parts of z, respectively.

Following the complex coordinate stretching approach [69,284,285,67,68], we
introduce a complex change of spatial variable S : x ∈ Ω ⊂ Rd 7→ S(x) = x̃ ∈ C =
S(Ω) ⊂ Cd defining a complex stretching (analytic continuation) x̃i = Si(xi) ∈ Ci
of the real spatial coordinate xi along a curve Ci in the complex plane C parame-
terized by

x̃i = Si(xi) =

∫ xi

0

si(ξ) dξ, (4)

where the tilde over a variable or an operator denotes its stretched version in the
complex space, and si(xi) is a complex coordinate stretching function defining
the absorption profile along the xi-direction, which is a nowhere zero, continuous,
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complex-valued function such that{
Im (si(xi)) < 0 in Ωi,

si(xi) = 1 elsewhere.
(5)

Condition (5) ensures that x̃i = Si(xi) ∈ C \R in the PML subregion Ωi, whereas
x̃i = Si(xi) = xi ∈ R elsewhere and in particular in the physical domain ΩBD,
so that the outgoing propagative waves are perfectly transmitted at the interface
Γ and attenuated (or damped) in the xi-direction inside the PML subregion Ωi.
As an inverse Fourier transform in time may be required to come back into the
time domain by inverting the frequency-domain PML equations, the stretching
function si(xi) is usually chosen frequency-dependent [69,284,285,76,193,33,56,
303,192,99,59,145,195,247,42,360,248] and defined as

si(xi) = 1 +
di(xi)

iω
, (6)

where di(xi) is the so-called damping (or absorption or attenuation) function that
is a continuous and monotonically increasing (i.e. non-decreasing) positive-valued
function of xi such that {

di(xi) > 0 in Ωi,

di(xi) = 0 elsewhere.
(7)

The dependence of the stretching function si(xi) on the factor iω in (6) allows for
an easy application of the inverse Fourier transform in time to the time-harmonic
(frequency-domain) PML equations, and thus a simple derivation of the time-
dependent (time-domain) PML equations. It should be noted that the particular
form (6) of stretching function si(xi) exhibits a zero-frequency singularity (zero-
frequency pole). Therefore, the derivation of the PML formulation considered in
this work naturally excludes the static case corresponding to ω = 0, that means
it does not allow static solutions (displacement and stress fields associated to
a given static loading) to be recovered [200]. In theory, any choice of damping
function di(xi) satisfying (7) ensure both continuity at the interface Γi between
Ωi and ΩBD and exponential amplitude decay along the xi-direction in the PML
subregion Ωi for the outgoing propagative waves. Since the damping function
di(xi) does not depend on angular frequency ω, it further allows obtaining an
exponential amplitude decay of the propagating waves in the PML subregion
Ωi that is independent of ω for non-dispersive PML media (see Section 3.2 for
a discussion). In practice, typical choices for di(xi) in the PML subregion Ωi
are low-degree polynomial functions [46,67,75,74,76,359,233,329,193,123,28,
33,301,306,72,124,161,18,303,54,358,192,99,235,236,234,275,350,216,240,344,
186,199,200,201,335,269,268,270,20,62,263,360] or singular (non-integrable)
hyperbolic or shifted hyperbolic functions [55,57,56,58,59,185,246,249,247,
71,248] according to the underlying problem. In the numerical experiments
shown in Section 4, we adopt the most widely used damping profile (due to its
straightforward implementation) by choosing a polynomial function di(xi) with a
power law dependence on the distance |xi| − `i to ensure a progressive (gradual)
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and smoothly increasing damping of the outgoing propagative waves across the
PML subregion Ωi, that is

di(xi) = dmax
i

( |xi| − `i
hi

)p
in Ωi, (8)

where p is the polynomial degree (that is a nonnegative integer) and dmax
i > 0 is

the damping coefficient (that is a strictly positive parameter) having the same unit
as the angular frequency ω and corresponding to the maximum value of damping
function di(xi). Both p and dmax

i are user-chosen scalar parameters allowing the
shape (sharpness) and the intensity (strength) of the imposed damping profile of
the propagating waves to be controlled within the PML subregion Ωi [200,201].
From a computational viewpoint, choosing a smoothly varying damping profile
is of particular interest for the attenuation of outgoing propagative waves within
the PML region to be adequately resolved by the spatial discretization in order to
minimize the spurious reflections. Furthermore, for any classical numerical method
that implicitly assumes continuity of the spatial derivatives of the solution field,
choosing a constant or linear function di(xi) in the PML subregion Ωi (i.e. taking
p = 0 or p = 1 in (8)) can generate spurious numerical reflections at the interface
Γi. By contrast, for given values of the damping coefficient dmax

i and the PML
thickness hi, choosing a quadratic or higher-degree polynomial function di(xi) in
the PML subregion Ωi (i.e. taking p > 2 in (8)) avoids those numerical issues
and also minimizes the spurious reflections produced at the exterior boundary of
the PML subregion Ωi [74,301,60,303]. In the numerical examples presented in
Section 4, we choose a quadratic form for di(xi) (with a fixed polynomial degree
p = 2) so as to enforce a smooth and gradual spatial attenuation of the outgoing
propagating waves within the PML subregion Ωi.

In the general case of heterogeneous materials, we further assume that the mass
density ρ and the components Cijkl of the fourth-order elasticity tensor C depend
analytically on x in the d-dimensional complex manifold C = S(Ω), so that the
solution fields u and σ of problem (1) (or equivalently, their Fourier transforms in
time û and σ̂ solution of problem (3)) are also analytic with respect to x and can
be evaluated along the complex path C [259,59,182].

3.2 Reflectionless and absorption properties

The wave propagation properties induced by the complex coordinate stretching in
the PML region ΩPML can be merely analyzed by means of a plane wave analysis
[76,28,29,33,123,124,18,54,59,242,243,244,104,42]. We consider harmonic prop-
agative plane waves corresponding to particular solutions of the time-dependent
elastic wave system (1) (or equivalently, of its time-harmonic counterpart (3)) of
homogeneous equations (under no external body force field, i.e. with f = 0) of
the form

u(x, t) = Aei(ωt−k·x), (9)

where A is the polarization vector, k = kiei = kp is the wave vector, with k =
‖k‖ the wavenumber, and p = piei is the unit vector denoting the wavefront
propagation direction, with pi = ki/k the direction cosinus of k along the xi-
direction, and k · x = kixi denotes the usual Euclidean inner product between k
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and x in Rd and ‖k‖2 = k ·k = k2
i the associated Euclidean norm of k in Rd, where

the Einstein notation convention is used for summation over repeated indices.
The complex-valued change of coordinates Si : xi 7→ Si(xi) = x̃i introduced in
(4) allows a propagative plane wave of the form (9) to be transformed into an
attenuated wave

ũ(x, t) = u(x̃, t) = Aei(ωt−k·x̃) = Aei(ωt−k·x)e−α(x)·p = u(x, t) e−α(x) (10)

exponentially decreasing as |xi| increases in each PML subregion Ωi, where α(x) =
αi(xi)ei is the amplitude attenuation vector whose components αi(xi) are such
that

αi(xi) =


k

ω

∫ xi

0
di(ξ) dξ > 0 in Ωi,

0 elsewhere,
(11)

and α(x) = α(x) · p = αi(xi)pi (with summation over index i) is the so-called
amplitude attenuation factor (or decay rate). The phase of the outgoing propaga-
tive plane waves is maintained as they penetrate the PML subregion Ωi, whereas
the amplitude is modulated by an exponential factor e−α(x) that introduces an
exponential decay of the outgoing propagative plane waves along the xi-direction
once they enter the PML subregion Ωi. As the attenuation factor α(x) depends on
the direction of propagation p (characterizing the angle of incidence) and on the
phase velocity vp = ω/k but not directly on the angular frequency ω itself, it turns
out to be frequency-independent (i.e. independent of ω) for non-dispersive PML
media, thus leading to a uniform exponential decay of the outgoing propagative
plane waves with respect to the angular frequency ω. Also note that, using (11),
the stretching function si(xi) and damping function di(xi) introduced in (6) can
be respectively expressed as

si(xi) = 1 +
α′i(xi)

ik
and di(xi) = α′i(xi)

ω

k
, (12)

where the prime over a variable denotes the first derivative with respect to spatial

coordinate xi, i.e. α′i(xi) =
dαi
dxi

(xi). Also, the complex stretched coordinate x̃i =

Si(xi) defined in (4) can be rewritten as [69,285,76,193,33,192]

x̃i = Si(xi) = xi +
1

iω

∫ xi

0

di(ξ) dξ = xi +
αi(xi)

ik
. (13)

Except for near-grazing incident propagative waves (for which k · n ≈ 0), all the
outgoing propagative waves (for which k · n > 0) are exponentially damped in
the PML region ΩPML since the amplitude attenuation factor α(x) is positive and
increases as |xi| increases in each PML subregion Ωi, while all the ingoing ones
(for which k · n < 0) are exponentially amplified in ΩPML since the amplitude
attenuation factor α(x) is negative and increases as |xi| decreases in Ωi.

As all outgoing propagative waves are expected to be damped in the PML
region ΩPML, an ad hoc (Dirichlet, Neumann, characteristic or mixed) boundary
condition can be applied on the exterior boundary Γext of the PML region. Let
us mention that, provided that the PML model is carefully parameterized, the
choice of boundary conditions specified on the exterior boundary of ΩPML does
not seem to have a significant impact on the PML absorption performance [74,
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264]. In the numerical experiments presented in Section 4 (as in most practical
applications), for the sake of convenience and simplicity, we choose to impose
homogeneous Dirichlet boundary conditions on the exterior boundary of ΩPML,
that is for all t > 0,

u(·, t) = 0 on Γext. (14)

The absorptive and attenuative properties in the PML region ΩPML can be
analyzed by studying the reflection of an incident plane wave at the fixed exterior
boundary Γext of ΩPML. A propagative plane wave traveling outward from the
physical domain ΩBD is absorbed into the PML region ΩPML without any reflec-
tions at the interface Γ between ΩBD and ΩPML. At the continuous level, the PML
region ΩPML is thus said perfectly matched to the physical domain ΩBD. A prop-
agative plane wave entering and traversing the PML subregion Ωi, being reflected
at the exterior boundary Γext of ΩPML and again propagating back through Ωi is
attenuated by an exponential factor [75,74,76,303,185]

Ri = exp(−2αi(`i + hi)pi) = exp

(
−2

pi
vp

∫ `i+hi

`i

di(ξ) dξ

)
(15)

before re-entering the physical domain ΩBD, as it travels twice through the PML
subregion Ωi (of finite thickness hi). The theoretical reflection coefficient Ri a pri-
ori depends on the choice of three user-defined and user-tunable PML parameters,
namely the position `i of the interface Γi, the thickness hi of the PML subregion
Ωi and the damping function di(xi), but it is also influenced by the phase veloc-
ity vp = ω/k and the direction of propagation pi of the plane waves along the
xi-direction. For the quadratic damping function di(xi) previously defined in (8)
(with a polynomial degree p = 2), the reflection coefficient Ri can be rewritten as
[46,48,76,303,240]

Ri = exp

(
−2dmax

i hipi
3vp

)
. (16)

As a result, the reflected-wave amplitude Ri defined in (16) decreases as the PML
thickness hi, the wavefront propagation direction pi (along the xi-direction) or
the damping coefficient dmax

i increases, whereas it increases as the phase velocity
vp increases. Note that it does not depend of the size `i of the physical domain
ΩBD. Also, for non-dispersive media, the reflection coefficient Ri is independent
of the angular frequency ω since the phase velocity vp = ω/k is equal to the
wave velocity [124]. In practical computations, increasing the PML thickness hi
allows the outgoing propagative waves to be more attenuated but may induce
substantial computational costs. Besides, for a given PML thickness hi, the damp-
ing coefficient dmax

i cannot be chosen arbitrarily large, since large values of dmax
i

would require fine spatial discretizations to well reproduce and approximate the
fast attenuation of outgoing waves within the PML region with sufficiently good
numerical accuracy, thus leading to high computational costs. Indeed, disregard-
ing any numerical integration or rounding error, the discretization error arising
from the numerical approximation method can cause spurious reflections at the
interface Γ between ΩBD and ΩPML [60]. Also, it becomes predominant compared
to the truncation error related to the spurious reflections at the exterior boundary
of the PML subregion Ωi (of finite thickness hi) as the damping coefficient dmax

i

increases [56,303]. Therefore, for fixed values of PML thickness hi and discretiza-
tion parameters, choosing an optimal damping coefficient dmax

i is essential for
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producing minimal reflections from the exterior boundary of the PML region and
thus maximizing the attenuation of outgoing waves while maintaining a desired
accuracy level. Such an optimal value results from a trade-off between absorption
strength (requiring large enough values of dmax

i ) and numerical accuracy (requir-
ing small enough values of dmax

i ) [75,74,76,23,161,292]. It a priori depends on the
PML thickness hi, the wavefront propagation direction pi, the phase velocity vp
and the discretization error introduced by the numerical scheme. In practice, the
damping coefficient dmax

i is usually chosen such that the reflection coefficient Ri
at normal incidence (i.e. for pi = 1) is equal to an arbitrarily small value R0 < 1
(typically 10−3 to 10−8) and defined as [75,74,76,33,40,193,124,229,303,192,99,
235,234,275,216,186,199,200,201,114,240,344,335,269,268,270,20,263,360]

dmax
i =

3vp
2hi

log

(
1

R0

)
, (17)

or more generally as [123,124,242,243,244]

dmax
i = Ai

vp
hi
, (18)

with Ai a given dimensionless constant adapted to the problem being considered.
Note that there are only few guidelines reported in the literature and based on
either simple heuristics (ad hoc rules of thumb), a priori error estimates or costly
general nonlinear optimization algorithms (see [74,86,23,301,302,60,161,303,245,
218,257,292] for instance) to properly select appropriate values for the PML model
and discretization parameters. Hence, as already pointed out in [199,200,201], ow-
ing to a critical lack of rigorous methodology and simple process for providing
proper guidance on the choice of damping functions and on the selection of optimal
PML parameters, the derivation of an optimal damping function di independently
of the underlying problem and the discretization method is still an open question.
A possible alternative would consist in using the singular (non-integrable) damp-
ing functions proposed in [55,57,56,58,59] that exhibit a power-type singularity
at the exterior boundary Γext of the PML region and allows recovering a reflection
coefficient Ri = 0 for any angle of incidence and for any angular frequency, since
di is a non-integrable function such that

∫ `i+hi

`i
di(ξ) dξ = +∞ [55,56,58]. Nu-

merical computations [56,58,276,246,249,247,248] have shown that such (shifted)
hyperbolic damping functions do not require any tuning of the PML parameters
(whatever the numerical method employed) and provide good results that may
outperform (or at least be comparable with) those obtained with optimized poly-
nomial damping functions.

3.3 Frequency-domain PML formulation

The derivation of the time-harmonic (frequency-domain) PML equations classi-
cally results from the application of the complex coordinate stretching (4) to the
original time-harmonic governing equations (3).
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3.3.1 Classical frequency-domain PML formulation based on complex coordinate
stretching

From the complex coordinate transformation (4) together with (6) and making
use of the fundamental theorem of calculus, we have the following relation and
derivative rule between the complex stretched coordinate system and the real
physical coordinate system

∂x̃i
∂xi

= si(xi) = 1 +
di(xi)

iω
and

∂(·)
∂x̃i

=
1

si(xi)

∂(·)
∂xi

=
iω

iω + di(xi)

∂(·)
∂xi

,

where the partial derivatives
∂(·)
∂x̃i

with respect to the complex coordinates x̃i are

interpreted in the usual Cauchy-Riemann sense [289,59], i.e.
∂(·)
∂x̃i

=
∂ Re(·)
∂ Re(x̃i)

−

i
∂ Im(·)
∂ Im(x̃i)

. The jacobian matrix J =∇S =
∂x̃i
∂xj

ei⊗ ej of the complex coordinate

transformation (4) is then a complex-valued diagonal matrix that is everywhere
non-singular and defined by

J = si(xi)ei ⊗ ei, (19)

in which the symbol ⊗ denotes the usual tensor product. In the following, the
functional (spatial) dependence of stretching function si and damping function di
will be often omitted for the sake of readability and notational brevity.

Therewith, the analytic continuation of the time-harmonic elastic wave system
(3) of homogeneous equations (in the absence of body force field, i.e. with f̂ = 0)
in the PML region ΩPML is basically obtained by replacing the partial derivatives
∂(·)
∂xi

with respect to xi by the partial derivatives
∂(·)
∂x̃i

with respect to x̃i in (3)

and reads [33,28,29,60,200,201,335]

−ρω2û− d̃iv(σ̂) = 0, (20a)

σ̂ = C : ε̃(û), (20b)

ε̃(û) =
1

2

(
∇̃û+ (∇̃û)T

)
, (20c)

which is similar to the original time-harmonic elastic wave system (3) defined over
the physical domain ΩBD, except that the external body force field f̂ has been set
to zero (since f̂ is non-vanishing only within ΩBD) while the partial differential
operators ∇, ∇, div and ε in the real physical x-coordinate system have been
replaced with the frequency-dependent complex stretched operators ∇̃, ∇̃ and
d̃iv and ε̃ in the complex stretched x̃-coordinate system, respectively defined by

∇̃û = J−T∇û =
1

si

∂û

∂xi
ei,

∇̃û = (∇ û)J−1 =
1

sj

∂ûi
∂xj

ei ⊗ ej ,

d̃iv(σ̂) = ∇̃ · σ̂ = (J−T∇) · σ̂ =
1

sj

∂σ̂ij
∂xj

ei,

ε̃(û) =
1

2

(
(∇ û)J−1 + J−T (∇ û)T

)
=

1

2

(
1

sj

∂ûi
∂xj

+
1

si

∂ûj
∂xi

)
ei ⊗ ej .
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Note that the complex coordinate stretching (4) allows the symmetry properties
of the second-order tensor-valued strain field ε to be preserved, so that the second-
order complex stretched tensor-valued strain field ε̃ is symmetric, i.e. ε̃ij = ε̃ji.
Besides, although by construction the complex coordinate stretching (4) implic-
itly excludes the static case for which ω = 0 [199,200,201,114,20], we consider
continuous extensions of the complex stretched strain tensor ε̃(û(x, ω)) and stress
tensor σ̂(x, ω) so that in the static case, i.e. for ω = 0, we have for all x ∈ ΩPML,

ε̃(û(x, 0)) = 0 and σ̂(x, 0) = 0. (21)

Note that condition (21) is (often implicitly) stated as an assumption in other
PML formulations previously derived in the literature, such as in [29,27,186,199,
200,201,114,20,62].

Multiplying (20a) by det(J), where det denotes the determinant operator, and
noticing that det(J)/sj =

∏d
i=1,i6=j si is independent of xj , the complex stretched

(PML-transformed) time-harmonic elastic wave system (20) can be rewritten as
a system similar to (3) with classical real partial differential operators but for
an anisotropic medium made up with a specific frequency-dependent complex
anisotropic heterogeneous material. It reads [359,161,216,240,239,335,297]

−ρ̃ω2û− div( ˆ̃σ) = 0, (22a)

ˆ̃σ = C̃ :∇ û, (22b)

where ρ̃ = ρ det(J) = ρ
∏d
i=1 si is a frequency-dependent complex scalar-valued

field, ˆ̃σ = σ̂ det(J)J−1 is a second-order non-symmetric complex tensor-valued

field such that ˆ̃σij = σ̂ij det(J)/sj , and C̃ is a fourth-order frequency-dependent

complex anisotropic tensor-valued field such that C̃ijkl = Cijkl det(J)/(sjsl) with
only the major symmetry property preserved, but not the minor ones (due to the
non-symmetry of both fields ˆ̃σ and ∇ û)2. In view of the time-harmonic PML
formulation (22), the PML region can be interpreted as an artificial anisotropic
heterogeneous absorbing medium with specific complex material properties [291,
130,129,356,357,353,363,181,310,311,313,315,2].

Remark 1 Alternatively, left multiplying (or pre-multiplying) (22b) by J−T , the
constitutive relation (22b) can be rewritten as [124]

ˆ̃σ′ = C̃′ :∇ û,

where ˆ̃σ′ = J−T ˆ̃σ = det(J)J−T σ̂J−1 is a second-order symmetric complex

tensor-valued field such that ˆ̃σ′ij = ˆ̃σij/si = σ̂ij det(J)/(sisj), and C̃′ is a
fourth-order frequency-dependent complex anisotropic tensor-valued field such
that C̃′ijkl = C̃ijkl/si = Cijkl det(J)/(sisjsl) with only the left minor symme-

try property preserved (resulting from the symmetry of ˆ̃σ′), but neither the right
minor one, nor the major one (due to the non-symmetry of ∇ û).

2 As already mentioned in [161,59,239] and unlike stated in [216,240], the fourth-order

tensor-valued field C̃ does have the major symmetry property, i.e. C̃ijkl = C̃klij , but both

minor ones are lost i.e. C̃ijkl 6= C̃jikl and C̃ijkl 6= C̃ijlk.
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Remark 2 Another anisotropic medium re-interpretation of the time-harmonic
PML formulation (20) is proposed in [60]. It allows for a simple implementa-
tion of the time-harmonic (frequency-domain) PML equations within the context
of finite element methods. Rewriting the kinematic relation (3c) as ε(û) = L :
∇ û, where L is the fourth-order symmetric identity (or unit) tensor such that
Lijpq = (δipδjq + δiqδjp)/2, the complex stretched kinematic relation (20c) then

becomes ε̃(û) = L̃ : ∇ û, where L̃ is a fourth-order complex tensor-valued field

such that L̃ijpq = (δip(J−1)qj + (J−1)qiδjp)/2 = (δipδjq/sj + δiqδjp/si)/2. Note

that both tensors L and L̃ satisfy only the left minor symmetry property (due to
the symmetry of strain tensors ε(û) and ε̃(û)), but not the major and right minor
ones (due to the non-symmetry of ∇ û). The time-harmonic elastic wave system
(22) can then be recast in the same form as the original one (3) and reads [60]

−ρ̃ω2û− div( ˆ̃σ) = 0, (23a)

ˆ̃σ = C̃′′ : ε(û), (23b)

where C̃′′ is a fourth-order frequency-dependent complex anisotropic tensor-valued
field such that C̃′′pqrs = L̃ijpqCijklL̃klrs det(J) which inherits the major and minor

symmetry properties of C (thanks to the left minor symmetry of L̃).

3.3.2 Mixed frequency-domain PML formulation with additional auxiliary field

For the stretching function si chosen as in (6), the jacobian matrix J defined in
(19) can be rewritten as

J = I +
1

iω
D, (24)

where D = di(xi)ei ⊗ ei is a diagonal real matrix with positive diagonal terms.
The stress field ˆ̃σ can then be expressed in terms of the original one σ̂ as

ˆ̃σ =


σ̂

(
I +

1

iω
DΣ

2

)
for d = 2,

σ̂

(
I +

1

iω
DΣ

3 −
1

ω2
DΠ

3

)
for d = 3,

(25)

where DΣ
2 , DΣ

3 and DΠ
3 are diagonal real matrices expressed in the canonical

basis {ei}16i6d of Rd such that

DΣ
2 =

[
d2 0
0 d1

]
=

 2∑
j=1,j 6=i

dj

 ei ⊗ ei,

DΣ
3 =

d2 + d3 0 0
0 d1 + d3 0
0 0 d1 + d2

 =

 3∑
j=1,j 6=i

dj

 ei ⊗ ei,

DΠ
3 =

d2d3 0 0
0 d1d3 0
0 0 d1d2

 =

 3∏
j=1,j 6=i

dj

 ei ⊗ ei.

Note that, since D is a diagonal matrix, DΣ
2 = tr(D)I − D = adj(D) in the

two-dimensional case (i.e. for d = 2), while DΣ
3 = tr(D)I −D and DΠ

3 = adj(D)
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in the three-dimensional case (i.e. for d = 3), where adj(D) denotes the adjugate
of square matrix D (that is the transpose of its cofactor matrix). Accordingly,
DΣ

2 (resp. DΠ
3 ) is such that DDΣ

2 = DΣ
2 D = det(D)I = d1d2I (resp. DDΠ

3 =
DΠ

3 D = det(D)I = d1d2d3I) in the two-dimensional (resp. three-dimensional)
case. Besides,DΣ

3 andDΠ
3 are linked through the relationDDΣ

3 = tr(DΠ
3 )I−DΠ

3 .
Even though the system of time-harmonic PML equations (20) (or equivalently

(22)) could be recast as a single vector equation involving only a single (displace-
ment) field, the resulting system of time-dependent PML equations would involve
convolution products or would require specific (specialized or recursive) time inte-
gration schemes due to the temporal complexity. To further maintain the second-
order (in time) character of the original linear elastodynamic equations (1) while
avoiding convolution operations in time, thereby greatly facilitating time integra-
tion, we now introduce an auxiliary tensor-valued strain field e(x, t) defined by
e(x, t) = ε̃(u(x, t)) − ε(u(x, t)) for any time t > 0 and spatial position vector
x ∈ ΩPML. Its Fourier transform in time ê is then such that

ε̃(û) = ε(û) + ê. (26)

Introducing (25) into (22a), substituting (26) into (20b) and (20c), left mul-
tiplying (or pre-multiplying) (20c) by iωJT and right multiplying (or post-
multiplying) it by iωJ with (24), rearranging and grouping similar terms, we
obtain the following time-harmonic PML formulation that consists in finding the
time-harmonic vector-valued displacement field û(x, ω), tensor-valued stress field
σ̂(x, ω) and auxiliary tensor-valued strain field ê(x, ω) satisfying

ρ
(
−ω2 + iω tr(D) + det(D)

)
û = div

(
σ̂ +

1

iω
σ̂DΣ

2

)
(27a)

in the two-dimensional case (i.e. for d = 2),

ρ

(
−ω2 + iω tr(D) + tr(DΠ

3 ) +
1

iω
det(D)

)
û = div

(
σ̂ +

1

iω
σ̂DΣ

3 −
1

ω2
σ̂DΠ

3

)
(27b)

in the three-dimensional case (i.e. for d = 3),

σ̂ = C : ε(û) +C : ê (27c)

and

−ω2ê+ iω
(
DT ê+ êD

)
+DT êD + iωεD(û) +DT ε(û)D = 0, (27d)

for any spatial position vector x ∈ ΩPML and angular frequency ω > 0, where
εD(û) is a second-order symmetric tensor-valued field defined by

εD(û) =
1

2

(
(∇ û)D +DT (∇ û)T

)
=

1

2

(
dj
∂ûi
∂xj

+ di
∂ûj
∂xi

)
ei ⊗ ej .

Multiplying (27b) by iω, the PML equilibrium equations (27b) in the three-
dimensional case (i.e. for d = 3) can be recast as

ρ
(
−iω3 − ω2 tr(D) + iω tr(DΠ

3 ) + det(D)
)
û = div

(
iωσ̂ + σ̂DΣ

3 +
1

iω
σ̂DΠ

3

)
.

(28)



24 Florent Pled, Christophe Desceliers

Remark 3 Alternatively, multiplying (20c) by det(J) similarly to [201,114], using
(26) and (24), the time-harmonic kinematic relation (27d) can be replaced with(

−ω2 + iω tr(D) + det(D)
)
ê = −iωεD(û)− det(D)ε(û) (29a)

in the two-dimensional case (i.e. for d = 2), and(
−ω2 + iω tr(D) + tr(DΠ

3 ) +
1

iω
det(D)

)
ê = −iωεD(û)−εD3 (û)− 1

iω
det(D)ε(û)

(29b)
in the three-dimensional case (i.e. for d = 3), where εD3 (û) is a second-order
symmetric tensor-valued field defined by

εD3 (û) =
1

2

(
(∇ û)DDΣ

3 + (DDΣ
3 )T (∇ û)T

)
=

1

2

dj
 3∑
k=1,k 6=j

dk

 ∂ûi
∂xj

+ di

 3∑
k=1,k 6=i

dk

 ∂ûj
∂xi

 ei ⊗ ej .

Since both time-harmonic equilibrium equations and kinematic relation are
stretched in the same manner (both multiplied by det(J)), the left-hand sides
of the PML equilibrium equations (27a)-(27b) and the PML kinematic relations
(29) have a similar form, thus leading to a fully-symmetric mixed displacement-
strain unsplit-field PML formulation unlike the non-symmetric one (27) considered
here. Similar mixed unsplit-field PML formulations have already been proposed in
the literature, such as the fully-symmetric ones developed in [201,114] or the non-
symmetric ones proposed in [200,114] for instance, but they retain the stress field
(or, more precisely, the time-history of stress field) as unknown variable (instead
of the auxiliary strain field considered here) in addition to the displacement field.

3.4 Time-domain PML formulation

The time-harmonic PML equations can then be easily transformed into the corre-
sponding time-dependent PML equations for transient analysis due to their simple
frequency-dependence resulting from the specific choice of stretching function (6).
For the subsequent derivations, we introduce the auxiliary fields U(x, t), Σ(x, t)
and Π(x, t), corresponding to the time-integrals (or time-histories) of displace-
ment field u, stress field σ and stress time-history field Σ, respectively, defined
for any spatial position vector x ∈ ΩPML and time t > 0 by

U(x, t) =

∫ t

0

u(x, τ) dτ, Σ(x, t) =

∫ t

0

σ(x, τ) dτ

and

Π(x, t) =

∫ t

0

Σ(x, τ) dτ =

∫ t

0

∫ τ

0

σ(x, θ) dθ dτ.

For any spatial position vector x ∈ ΩPML, we make use of the Fourier transform
in time Σ̂(x, ω) of Σ(x, t) defined by

Σ̂(x, ω) =
1

iω
σ̂(x, ω) + πδ0(ω)σ̂(x, ω), (30)
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where δ0(ω) is the Dirac distribution on R at the origin (i.e. at point ω = 0), in
order to derive the following inverse Fourier transform in time

F−1

[
1

iω
σ̂(x, ω)

]
= Σ(x, t)− 1

2
σ̂(x, 0)

=

∫ t

0

σ(x, τ) dτ − 1

2

∫
R+

σ(x, τ) dτ, (31)

where F−1 denotes the inverse Fourier transform operator. Then, using relation
(21) at angular frequency ω = 0, that is σ̂(x, 0) = 0, the inverse Fourier transform
in time (31) reduces to

F−1

[
1

iω
σ̂(x, ω)

]
= Σ(x, t). (32)

By applying the inverse Fourier transform in time to the time-harmonic PML equa-
tions (27) in which (27b) is replaced with (28) and with the aid of (32), we derive
the corresponding time-dependent PML equations. The time-dependent PML for-
mulation then consists in finding the time-dependent vector-valued displacement
field u(x, t), tensor-valued stress field σ(x, t) and auxiliary tensor-valued strain
field e(x, t) satisfying

ρ (ü+ tr(D)u̇+ det(D)u) = div
(
σ +ΣDΣ

2

)
(33a)

in the two-dimensional case (i.e. for d = 2),

ρ
(...
u + tr(D)ü+ tr(DΠ

3 )u̇+ det(D)u
)

= div
(
σ̇ + σDΣ

3 +ΣDΠ
3

)
(33b)

in the three-dimensional case (i.e. for d = 3),

σ = C : ε(u) +C : e, (33c)

and
ë+

(
DT ė+ ėD

)
+DT eD + εD(u̇) +DT ε(u)D = 0, (33d)

for any spatial position vector x ∈ ΩPML and time t > 0, where the space and time
dependencies of variables are implicit and the triple dots over a variable denotes

the third-order partial derivative with respect to time t, i.e.
...
u(x, t) =

∂3u

∂t3
(x, t).

The set of time-dependent PML equations (33) is complemented with the bound-
ary conditions on the exterior boundary Γext given by (14), the usual continuity
conditions on the displacement and normal stress fields at the interface Γ (which
are not recalled here for the sake of brevity) and the following homogeneous initial
conditions at time t = 0 given for any x ∈ ΩPML by

u(x, 0) = u̇(x, 0) = 0 and e(x, 0) = ė(x, 0) = 0, (33e)

with
ü(x, 0) = 0 for d = 3. (33f)

Note that the PML equilibrium equations (33a) derived in the two-dimensional
case are second-order in time, while the PML equilibrium equations (33b) derived
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in the three-dimensional case are third-order in time. As proposed in [114], in order
to preserve a fully second-order in time PML formulation in the three-dimensional
case, one may analytically integrate (33b) in time over [0 , t] for any time t > 0,
using the initial conditions (33e) and (33f). We then obtain the following PML
equilibrium equations in the three-dimensional case (i.e. for d = 3)

ρ
(
ü+ tr(D)u̇+ tr(DΠ

3 )u+ det(D)U
)

= div
(
σ +ΣDΣ

3 +ΠDΠ
3

)
. (34)

The time-dependent PML formulation is then second-order in time for both dis-
placement field u and auxiliary strain field e in both two- and three-dimensional
cases.

Remark 4 Alternatively, taking the inverse Fourier transform in time of (27b) in
the three-dimensional case, as it was done in [27] for instance, requires the use of
the Fourier transform in time Û(x, ω) of U(x, t) and the one Π̂(x, ω) of Π(x, t),
respectively defined for any spatial position vector x ∈ ΩPML by

Û(x, ω) =
1

iω
û(x, ω) + πδ0(ω)û(x, ω), (35a)

Π̂(x, ω) = − 1

ω2
σ̂(x, ω) + iπδ′0(ω)σ̂(x, ω), (35b)

where δ′0(ω) is the first derivative of δ0(ω) with respect to ω, in order to derive
the following inverse Fourier transforms in time

F−1

[
1

iω
û(x, ω)

]
= U(x, t)− 1

2
û(x, 0)

=

∫ t

0

u(x, τ) dτ − 1

2

∫
R+

u(x, τ) dτ, (36a)

F−1

[
− 1

ω2
σ̂(x, ω)

]
= Π(x, t) +

i

2

(
∂σ̂

∂ω
(x, 0) + i t σ̂(x, 0)

)
=

∫ t

0

∫ τ

0

σ(x, θ) dθ dτ − 1

2

∫
R+

(t− τ)σ(x, τ) dτ. (36b)

By applying the inverse Fourier transform in time to the time-harmonic PML equi-
librium equations (27b) with the aid of (32) and (36), we may recover (34) subject
to silent initial conditions (33e) at time t = 0 under the additional assumptions

û(x, 0) = 0 and
∂σ̂

∂ω
(x, 0) = 0 for all x ∈ ΩPML.

3.5 Space weak formulation

Similarly to [201,114], we adopt a hybrid approach for solving the overall mixed
problem defined over the entire domain Ω = ΩBD ∪ΩPML by considering a mixed
displacement-strain formulation in the PML region ΩPML coupled with a purely
(non-mixed) displacement-based formulation (i.e. a standard displacement-only
formulation) in the physical domain ΩBD for computational efficiency.

Introducing the constitutive relation (27c) into (27a) and (27b), the weak for-
mulation of the system of time-harmonic PML equations (27) consists in finding
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û(x, ω) over the entire domain Ω = ΩBD ∪ ΩPML and ê(x, ω) over the PML re-
gion ΩPML such that for all vector-valued test functions δu(x) in an appropriate
admissible vector space such that δu(x) = 0 for x ∈ ∂Ω \Γfree, and for all second-
order symmetric tensor-valued test functions δe(x) in an appropriate admissible
vector space,

−ω2m(û, δu) + iωc(û, δu) + k(û, δu) + k2(û, δu) +
1

iω
g(û, δu)

+k̃1(ê, δu) +
1

iω
g̃1(ê, δu) = `(δu) for d = 2,

(37a)

−ω2m(û, δu) + iωc(û, δu) + k(û, δu) + k3(û, δu) +
1

iω
(g(û, δu) + g1(û, δu))

− 1

ω2
h(û, δu) + k̃1(ê, δu) +

1

iω
g̃1(ê, δu)− 1

ω2
h̃1(ê, δu) = `(δu) for d = 3,

(37b)

−ω2m̃(ê, δe) + iωc̃(ê, δe) + k̃(ê, δe) + iωc1(û, δe) + k1(û, δe) = 0, (37c)

for any angular frequency ω > 0, where m, c, k, k̃1, k2, k3, g, g̃1, h, h̃1 and
g1 = k2 are sesquilinear forms and ` is an antilinear (i.e. conjugate-linear) form,
respectively defined by

m(û, δu) =

∫
Ω

ρû · δu dΩ, c(û, δu) =

∫
ΩPML

ρ tr(D)û · δu dΩ,

k(û, δu) =

∫
Ω

(C : ε(û)) : ε(δu) dΩ, k̃1(ê, δu) =

∫
ΩPML

(C : ê) : ε(δu) dΩ,

k2(û, δu) =

∫
ΩPML

ρ det(D)û · δu dΩ, k3(û, δu) =

∫
ΩPML

ρ tr(DΠ
3 )û · δu dΩ,

g(û, δu) =

∫
ΩPML

(C : ε(û)) : εΣd (δu) dΩ, g̃1(ê, δu) =

∫
ΩPML

(C : ê) : εΣd (δu) dΩ,

h(û, δu) =

∫
ΩPML

(C : ε(û)) : εΠ3 (δu) dΩ, h̃1(ê, δu) =

∫
ΩPML

(C : ê) : εΠ3 (δu) dΩ,

g1(û, δu) = k2(û, δu), `(δu) =

∫
ΩBD

f̂ · δu dΩ,

where the overline denotes the complex conjugate transpose operator and

εΣd (δu) =
1

2

(
(∇ δu)DΣ

d +DΣ
d
T

(∇ δu)T
)

= tr(D)ε(δu)− εD(δu),

εΠ3 (δu) =
1

2

(
(∇ δu)DΠ

3 +DΠ
3
T

(∇ δu)T
)

= tr(DΠ
3 )ε(δu)− εD3 (δu),

and where m̃, c̃, k̃, c1 and k1 are sesquilinear forms respectively defined by

m̃(ê, δe) =

∫
ΩPML

ê : δe dΩ, c̃(ê, δe) =

∫
ΩPML

(
DT ê+ êD

)
: δe dΩ,

k̃(ê, δe) =

∫
ΩPML

DT êD : δe dΩ, c1(û, δe) =

∫
ΩPML

εD(û) : δe dΩ,

k1(û, δe) =

∫
ΩPML

DT ε(û)D : δe dΩ.
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Since the auxiliary strain field ê needs to be introduced only in the PML region
ΩPML and the diagonal real matricesD (gathering the damping functions di),D

Σ
2 ,

DΣ
3 and DΠ

3 are non-zero only in ΩPML, all the space-integrals involved in the
sesquilinear forms m̃, c, c1, c̃, k1, k2, k3, k̃, k̃1, g, g1, g̃1, h and h̃1 of (37) restrict
to ΩPML. Besides, since the physical domain ΩBD contains the support of the
complex vector f̂ associated to external body forces, the space-integral involved
in the antilinear form ` restricts to ΩBD.

In the following, we will consider vectorial representations of second-order sym-
metric tensor-valued fields e and ê. Also, for the sake of readability and notational
convenience, we will use the same notation for both second-order symmetric tensors
(or tensor-valued fields) of dimension d(d+1)/2 and their vectorial representations.

3.6 Hybrid finite element approximation

For the mixed finite element implementation of space weak formulation (37), both
displacement field u and auxiliary strain field e are retained as unknowns and
treated as independent variables that can be approximated separately. We then
use a classical (displacement-based) finite element method (FEM) [176,362] by
introducing finite-dimensional approximation spaces spanned by piecewise poly-
nomial basis functions for the spatial discretization of both displacement field u
(resp. its Fourier transform in time û) over Ω = ΩBD ∪ΩPML and auxiliary strain
field e (resp. its Fourier transform in time ê) over ΩPML in the time domain (resp.
the frequency domain). For any time t > 0, the finite element approximations of
displacement field u(·, t) and auxiliary strain field e(·, t) can then be identified
with the real vectors U(t) and E(t) gathering the nodal values of u(·, t) in the
entire domain Ω = ΩBD ∪ΩPML and the ones of e(·, t) in the PML region ΩPML,
respectively. Similarly, for any angular frequency ω > 0, the finite element approx-
imations of Fourier transforms in time û(·, ω) and ê(·, ω) can be identified with
the complex vectors Û(ω) and Ê(ω) gathering the nodal values of û(·, ω) in the
entire domain Ω = ΩBD ∪ΩPML and the ones of ê(·, ω) in the PML region ΩPML,
respectively.

3.6.1 Frequency-domain implementation

For the finite element discretization of sesquilinear forms m, c, k, k2, k3, k̃1, g,
g1, g̃1, h, h̃1 and antilinear form ` involved in (37a) and (37b), we introduce the

finite element (frequency-independent) real matrices M, C, K, K2, K3, K̃1, G,

G1, G̃1, H and H̃1, and the finite element (frequency-dependent) complex vector
F̂(ω). Similarly, for the finite element discretization of sesquilinear forms m̃, c̃, k̃, c1
and k1 involved in (37c), we introduce the finite element (frequency-independent)

real matrices M̃, C̃, K̃, C1 and K1.
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In an algebraic setting, the finite element matrix system resulting from the
weak formulation of time-harmonic PML equations (37) reads

−ω2MÛ + iωCÛ + (K + K2)Û + K̃1Ê

+
1

iω

(
GÛ + G̃1Ê

)
= F̂ for d = 2, (38a)

−ω2MÛ + iωCÛ + (K + K3)Û + K̃1Ê

+
1

iω

(
(G + G1)Û + G̃1Ê

)
− 1

ω2

(
HÛ + H̃1Ê

)
= F̂ for d = 3, (38b)

−ω2M̃Ê + iω
(
C̃Ê + C1Û

)
+ K̃Ê + K1Û = 0. (38c)

Then, it comes down to solving the following system of linear algebraic equa-
tions for any angular frequency ω > 0:

−ω2MÛ + iωCÛ + KÛ +
1

iω
GÛ = F̂ for d = 2, (39a)

−ω2MÛ + iωCÛ + KÛ +
1

iω
GÛ− 1

ω2
HÛ = F̂ for d = 3, (39b)

where the (frequency-independent) real matrices M, C, K, G and H, and the
(frequency-dependent) complex vectors F̂(ω) and Û(ω) are respectively defined
by

M =

[
M 0

0 M̃

]
, C =

[
C 0

C1 C̃

]
, K =

[
K + Kd K̃1

K1 K̃

]
,

G =

[
G G̃1

0 0

]
for d = 2, G =

[
G + G1 G̃1

0 0

]
for d = 3,

H =

[
H H̃1

0 0

]
only for d = 3, F̂ =

[
F̂
0

]
and Û =

[
Û

Ê

]
.

Note that all the block-system matrices are frequency-independent square real
matrices, but only the mass matrix M is symmetric and has a block-diagonal
structure, whereas the other matrices K, C, G and H are non-symmetric. Besides,
the block-system (39) has a sparse structure at two levels, coming from the sparsity
pattern inherent to each finite element matrix involved in (38), but also from the

block-sparsity pattern of matrices M̃, C, C1, C̃, K1, K2, K3, K̃, K̃1, G, G1, G̃1,
H and H̃1 that are assembled only from their element-level constituent matrices
defined over the PML region ΩPML. For practical implementation in the frequency
domain, the FE matrix system (39) can be rewritten as

Kdyn(ω)Û = F̂,

where Kdyn(ω) is the complex dynamic (frequency-dependent) stiffness matrix
defined by

Kdyn(ω) =


(
K− ω2M

)
+ i

(
ωC− 1

ω
G
)

for d = 2,(
K− ω2M− 1

ω2
H
)

+ i

(
ωC− 1

ω
G
)

for d = 3.
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Note that Kdyn(ω) is a non-symmetric complex matrix due to the non-symmetry
of real matrices K, C, G and H.

For practical implementation in the time domain, the FE matrix system (39b)
in the three-dimensional case can be recast as

−iω3MÛ− ω2CÛ + iωKÛ + GÛ +
1

iω
HÛ = iωF̂ for d = 3. (40)

3.6.2 Time-domain implementation

The time-harmonic FE matrix system (39a)-(40) can then be easily inverted back
into the time domain for transient analysis due to its simple frequency-dependence.
By applying the inverse Fourier transform in time to the time-harmonic FE matrix
system (39a)-(40), we obtain the following second-order and third-order integro-
differential equations (IDEs) in time

MÜ + CU̇ + KU + GI = F for d = 2, (41a)

M
...
U + CÜ + KU̇ + GU + HI = Ḟ for d = 3, (41b)

for time t > 0, in which the time-dependent real vectors U(t), U̇(t), Ü(t),
...
U(t),

I(t), F(t) and Ḟ(t) are respectively defined by

U =

[
U
E

]
, U̇ =

[
U̇

Ė

]
, Ü =

[
Ü

Ë

]
,

...
U =

[...
U...
E

]
,

I =

∫ t

0

U dτ, F =

[
F
0

]
and Ḟ =

[
Ḟ
0

]
.

The IDEs in time (41) are supplemented with the following initial conditions at
time t = 0:

U(0) = U0 =

[
U0

0

]
and U̇(0) = U̇0 =

[
V0

0

]
, (42a)

with

Ü(0) = Ü0 =

[
A0

0

]
only for d = 3, (42b)

where U0 and V0 are the initial displacement and velocity FE vectors correspond-
ing to the spatial discretization of the initial displacement and velocity fields u0

and v0 over Ω, and A0 is the initial acceleration FE vector corresponding to the
spatial discretization of the initial acceleration field ü(·, 0) over Ω and such that
MA0 = F0 −CV0 −KU0 with F0 = F(0) the initial FE vector of nodal forces
corresponding to the spatial discretization of the initial body force field f(·, 0) at
time t = 0. Note that, since f , u0 and v0 have bounded supports in ΩBD (see the
last paragraph of Section 2.1), F, U0 and V0 have non-zero components only for
the degrees of freedom associated to the spatial discretization of f , u0 and v0 over
the physical domain ΩBD.

In order to recover a second-order IDE in time in the three-dimensional case,
one may analytically integrate (41b) in time over [0 , t] for any time t > 0, using
the initial conditions (42). We then obtain the following second-order IDE in time
in the three-dimensional case

MÜ + CU̇ + KU + GI + HJ = F for d = 3, (43)
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for time t > 0, in which the time-dependent real vector J(t) is defined by

J =

∫ t

0

I dτ =

∫ t

0

∫ τ

0

U dθ dτ.

The semi-discrete systems (41a) in the two-dimensional case and (43) in the three-
dimensional case are then both second-order in time, thus allowing the use of
standard time integration schemes classically employed in computational struc-
tural dynamics. Also, the FE solution U of the time-domain PML formulation
obviously satisfies the causality principle.

Remark 5 In the numerical experiments presented in Section 4, the proposed PML
formulation is compared to a CAL formulation with ad hoc dissipative mate-
rial properties introduced in the PML region ΩPML but without a characteristic
impedance matching the one of the physical domain ΩBD. In the frequency do-
main, the time-harmonic CAL formulation consists in solving the following system
of linear algebraic equations at any angular frequency ω > 0:

Kdyn(ω)Û = F̂, (44)

where Kdyn(ω) is the dynamic (frequency-dependent) stiffness matrix defined by

Kdyn(ω) = K− ω2M + iωC.

Note that Kdyn(ω) is a symmetric complex matrix due to the symmetry of real
matrices K, M and C. In the time domain, the CAL formulation leads to the
following classical second-order ordinary differential equation (ODE) in time:

MÜ + CU̇ + KU = F (45)

for time t > 0, with the initial conditions U(0) = U0 and U̇(0) = V0 at time
t = 0.

3.7 Time sampling scheme

We use both a Newmark time scheme [256] and a finite difference time scheme
based on the trapezoidal rule for solving the equations in the time domain for a
given time sampling of U, U̇, Ü, I and J. Another possibility would consist in using
an extended Newmark time scheme, as it was done in [199,22,114] for instance.
For the sake of simplicity, we consider a uniform time step ∆t over a given time
interval of interest I = [0 , T ], with T = N∆t the final time and N the number of
time steps.

3.7.1 Newmark scheme for the displacement vector U, velocity vector U̇ and
acceleration vector Ü

The Newmark scheme may be either explicit or implicit, unstable or
(un)conditionally stable (depending on the values of the two parameters γ and
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β) and it is based on the following recursive formulae expressed in acceleration
format as

Un = Un−1 +∆tU̇n−1 +
∆t2

2

(
(1− 2β)Ün−1 + 2βÜn

)
, (46a)

U̇n = U̇n−1 +∆t
(

(1− γ)Ün−1 + γÜn
)
, (46b)

where Un, U̇n and Ün denote respectively the displacement, velocity and acceler-
ation FE vectors evaluated at time tn = n∆t, with ∆t = tn − tn−1 the discrete
time step. Alternatively, assuming that β 6= 0, the Newmark time scheme (46) can
also be rewritten in displacement format as

U̇n = γ1

(
Un − Un−1

)
+ (1 + γ2) U̇n−1 + γ3Ün−1, (47a)

Ün = β1

(
Un − Un−1

)
+ β2U̇n−1 + (1 + β3) Ün−1, (47b)

where

β1 =
1

β∆t2
, β2 = − 1

β∆t
, β3 = − 1

2β
,

γ1 =
γ

β∆t
, γ2 = −γ

β
, γ3 =

(
1− γ

2β

)
∆t.

The two parameters γ and β allow the degree of implicitness and the stability of the
time scheme to be controlled [176]. Recall that the Newmark time scheme (46) (or
(47)) is second-order accurate whatever the values of γ and β. Also, when γ < 1/2,
it is unstable, whereas when γ > 1/2 and 2β > γ, it is unconditionally stable for
non-active and non-dispersive media [70,240], and when γ > 1/2 and 2β < γ, it
becomes conditionally stable, which means the choice of time step ∆t is limited
and bounded by the Courant-Friedrichs-Lewy (CFL) stability condition [82,83]
for non-dispersive media [240]. Besides, when β = 0, the time integration scheme
(46) is explicit whatever the value of γ. In particular, when γ = 1/2 and β = 0,
one recovers the explicit conditionally stable central-difference scheme. Such an
explicit time integration scheme has been recently combined with matrix lumping
to avoid the computational burden associated with matrix inversion and applied
in (un)split-field (CFS-)PML formulations to perform two- and three-dimensional
transient elastodynamic analyses in unbounded (or very large) domains [229,236,
27,240,335,341]. In the numerical experiments shown in Section 4, we use the
implicit unconditionally stable constant average acceleration scheme by taking
γ = 1/2 and β = 1/4. Such an implicit time integration scheme requires the solu-
tion of a linear matrix system at every time step (which may be computationally
expensive in very large three-dimensional transient elastodynamic analyses), but it
does not suffer from the CFL stability condition in return, which means the choice
of time step ∆t is not limited by the smallest element size (spatial resolution),
which is of particular interest especially for highly irregular (unstructured) and/or
fine spatial FE meshes. It has already been employed in unsplit-field (CFS-)PML
formulations to perform transient analyses of second-order elastic wave equations
in unbounded domains [29,186,199,200,201,240,114,62,360]. Note that the un-
conditional stability is guaranteed only for non-active and non-dispersive media
[70], and therefore it cannot be ensured to hold in the PML region ΩPML that
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is inherently an anisotropic dissipative (absorbing) medium. Nevertheless, several
numerical experiments have shown that the proposed time stepping scheme is
actually highly stable [240].

3.7.2 Finite difference scheme for the time-integral vectors I and J

The finite difference scheme may be either explicit or implicit, (un)conditionally
stable (depending on the value of the parameter α) and it is based on the following
recursive formulae

In = In−1 +∆t
(

(1− α)Un−1 + αUn
)
, (48a)

Jn = Jn−1 +∆t
(

(1− α)In−1 + αIn
)
, (48b)

where In and Jn denote respectively the time-integral I of displacement FE vector
U and the time-integral J of FE vector I evaluated at time tn = n∆t. Note that
the time scheme (48b) is introduced only in the three-dimensional case (i.e. for
d = 3), since J is involved in the left-hand side of (43) in the three-dimensional
case (i.e. for d = 3), whereas it does not appear in the left-hand side of (41a) in
the two-dimensional case (i.e. for d = 2). Without loss of generality and for the
sake of simplicity, we consider here the same parameter α for both time schemes
(48a) and (48b). The parameter α allows the degree of implicitness and the sta-
bility of the time scheme to be controlled. Recall that when α > 1/2, the finite
difference scheme (48) is unconditionally stable, whereas when α < 1/2, it becomes
conditionally stable. Besides, when α = 0 (resp. α = 1), one recovers the explicit
conditionally stable forward Euler time scheme (resp. the implicit uncondition-
ally stable backward Euler time scheme), which is first-order accurate, whereas
when α = 1/2, it leads to the implicit unconditionally stable Crank-Nicolson time
scheme, which is second-order accurate. In the numerical experiments shown in
Section 4, we use the Crank-Nicolson time scheme by taking α = 1/2 to preserve
the intrinsic second-order accuracy and the unconditional stability of the New-
mark time scheme (46) (or (47)) with γ = 1/2 and β = 1/4 (for non-active and
non-dispersive media).

3.7.3 Time sampling scheme for the PML formulation

Introducing the discretized version of the second-order IDEs in time (41a) and
(43) at time tn and using the above formulae (47) and (48), we derive the time
stepping scheme for the FE discretized wave equations (41a) and (43) expressed
in displacement format that reads as follows for n > 1,

KeffUn = Fn −MÜnβ − CU̇nγ −GInα for d = 2, (49a)

KeffUn = Fn −MÜnβ − CU̇nγ − (G + α∆tH) Inα −HJnα for d = 3, (49b)

where U̇nγ = −γ1Un−1 + (1 + γ2) U̇n−1 + γ3Ün−1, Ünβ = −β1Un−1 + β2U̇n−1 +

(1 + β3) Ün−1, Inα = In−1 + (1 − α)∆tUn−1 and Jnα = Jn−1 + (1 − α)∆tIn−1 are
the respective predictors of unknown FE vectors U̇n, Ün, In and Jn at time tn such
that U̇n = U̇nγ + γ1Un, Ün = Ünβ + β1Un, In = Inα + α∆tUn and Jn = Jnα + α∆tIn,
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Fn is the right-hand side FE vector F evaluated at time tn, and Keff is the effective
stiffness matrix defined by

Keff =

{
β1M + γ1C + K + α∆tG for d = 2,

β1M + γ1C + K + α∆t (G + α∆tH) for d = 3.

Note that Keff is a non-symmetric real matrix (due to the non-symmetry of real
matrices K, C, G and H) which depends on the two parameters γ and β involved
in the Newmark time scheme (47) though γ1 and β1 and also on the parameter α
involved the finite difference time scheme (48). For practical purposes, introducing
the predictors U̇nγ , Ünβ , Inα and Jnα into (49) and using again the discretized version
of the second-order IDEs in time (41a) and (43) at previous time tn−1, the linear
matrix system (49) to be solved at current time tn for n > 1 can be recast as

Keff∆Un = Fn − Fn−1 −∆tGUn−1 − (β2M + γ2C) U̇n−1

− (β3M + γ3C) Ün−1 for d = 2, (50a)

Keff∆Un = Fn − Fn−1 −∆t (G + α∆tH)Un−1 − (β2M + γ2C)U̇n−1

− (β3M + γ3C) Ün−1 −∆tHIn−1 for d = 3, (50b)

in which ∆Un = Un − Un−1 is the displacement increment FE vector. The
time stepping scheme boils down to computing the displacement FE vector
Un = Un−1 + ∆Un solution of the linear matrix system (50), then updating the
corresponding velocity and acceleration FE vectors U̇n and Ün as well as In (only
for d = 3) through (47a), (47b) and (48a) at each time step tn. Note that there
is no need to compute and store the FE vectors In in the two-dimensional case
(i.e. for d = 2) and Jn in the three-dimensional case (i.e. for d = 3). Even though
the computation and storage of FE vector In at each time tn are required in the
three-dimensional case (i.e. for d = 3), it should be noted that In has non-zero
components only for the degrees of freedom associated to the spatial discretization
of the time-histories U(·, tn) =

∫ tn
0
u dτ and E(·, tn) =

∫ tn
0
e dτ (evaluated at time

tn) of displacement field u and auxiliary strain field e, respectively, over the PML
region ΩPML.

Remark 6 Alternatively, considering the acceleration-based formula (46) of the
Newmark time scheme, we derive an equivalent reformulation of the time stepping
scheme (49) expressed in acceleration format that reads as follows for n > 1,

MeffÜn = Fn − CU̇nγ − (K + α∆tG)Unβ −GInα for d = 2, (51a)

MeffÜn = Fn − CU̇nγ − (K + α∆t (G + α∆tH))Unβ
− (G + α∆tH) Inα −HJnα for d = 3, (51b)

where Unβ = Un−1 +∆tU̇n−1 +(1−2β)
∆t2

2
Ün−1 and U̇nγ = U̇n−1 +(1−γ)∆tÜn−1

are the respective predictors of unknown FE vectors Un and U̇n at time tn such
that Un = Unβ + β∆t2Ün and U̇n = U̇nγ + γ∆tÜn, and Meff is the effective mass
matrix defined by

Meff = β∆t2Keff =

{
M + γ∆tC + β∆t2 (K + α∆tG) for d = 2,

M + γ∆tC + β∆t2 (K + α∆t (G + α∆tH)) for d = 3.
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In the same way as Keff, Meff is a non-symmetric real matrix that depends on both
parameters γ and β and also on parameter α. For practical purposes, introducing
the predictors Unβ , U̇nγ , Inα and Jnα into (51) and using the discretized version of the
second-order IDEs in time (41a) and (43) at previous time tn−1, the linear matrix
system (51) to be solved at current time tn for n > 1 can be recast as

Meff∆Ün = Fn − Fn−1 −∆tGUn−1 −∆t (K + α∆tG) U̇n−1

−∆t
(
C +

∆t

2
(K + α∆tG)

)
Ün−1 (52a)

in the two-dimensional case (i.e. for d = 2), and

Meff∆Ün = Fn − Fn−1 −∆t (G + α∆tH)Un−1 −∆t (K + α∆t (G + α∆tH)) U̇n−1

−∆t
(
C +

∆t

2
(K + α∆t (G + α∆tH))

)
Ün−1 −∆tHIn−1 (52b)

in the three-dimensional case (i.e. for d = 3), in which ∆Ün = Ün − Ün−1 is
the acceleration increment FE vector. The time stepping scheme boils down to
computing the acceleration FE vector Ün = Ün−1 + ∆Ün solution of the linear
matrix system (52), then updating the displacement and velocity FE vectors Un
and U̇n as well as In (only for d = 3) through (46a), (46b) and (48a) at each time
step tn. Note that once again there is no need to compute and store the FE vectors
In in the two-dimensional case (i.e. for d = 2) and Jn in the three-dimensional
case (i.e. for d = 3), whereas it is required to compute and store In at each time
tn in the three-dimensional case (i.e. for d = 3).

Remark 7 Following Remark 5, recall that the time-domain PML formulation is
compared to a CAL formulation governed by the second-order ODE in time (45)
in the numerical experiments shown in Section 4. In the time domain, such a CAL
formulation comes down to solving the following linear matrix system at each time
step tn for n > 1:

Keff∆Un = Fn − Fn−1 − (β2M + γ2C) U̇n−1 − (β3M + γ3C) Ün−1, (53)

with the initial conditions given by U0 and V0, and where ∆Un = Un −Un−1

is the displacement increment FE vector and Keff is the effective stiffness matrix
defined by

Keff = β1Meff = β1M + γ1C + K,

with Meff = M + γ∆tC + β∆t2K the corresponding effective mass matrix.

4 Numerical results

In order to assess the performances and the robustness of the proposed PML for-
mulation, we present different numerical experiments for simulating the propaga-
tion and absorption of elastic waves in two-dimensional semi-infinite (unbounded)
single- or multi-layer isotropic homogeneous elastic media (without any viscous
damping) subjected to a directional force point-source. We study numerically the
accuracy and stability of the proposed time-domain PML formulation governed
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by the second-order IDE in time (41a) and compare it to the time-domain CAL
formulation governed by the second-order ODE in time (45).

In all the numerical experiments, an explosive source term f(x, t), acting as
a downward vertical force, is applied to a source point S located in the physical
domain ΩBD at the position xS and defined as

f(x, t) = r(t)g(x)e2,

where the source spatial function g(x) = δ(x − xS) is the Dirac delta function δ
(also known as the impulse function) on Rd at the origin (i.e. at point 0) shifted by
the source position xS , and the source time function r(t) is a second-order Ricker
wavelet3 (sometimes called a Mexican hat wavelet) given by [33,18,242,243,244,
240,62,341,215,166]

r(t) =
(

2(πfd)2(t− td)2 − 1
)

exp(−(πfd)2(t− td)2), (54)

with a central (or dominant) frequency fd = 1/3 Hz, and a source time delay
td = 1/fd = 3 s. The time-Fourier transform r̂(ω) of the wavelet function r(t) is
written as

r̂(ω) = −4
√
π
ω2

ω3
d

exp

(
−ω

2

ω2
d

)
exp(−iωtd)

with a central (or dominant) angular frequency ωd = 2πfd = 2π/3 ≈ 2.0944 rad/s.
Figure 2 shows the evolutions of the Ricker wavelet r(t) with respect to time t and
of the amplitude |r̂(ω)| of its time-Fourier transform r̂(ω) with respect to angular
frequency ω = 2πf .

For the time integration scheme used for solving the time-domain equations,
a constant time step ∆t = 0.025 s is chosen to correctly reproduce the source
time variation and adequately captured the numerical solutions for all the numer-
ical tests. The final sampled time of the numerical simulations is T = 20 s, thus
requiring N = 800 time steps. Besides, the elastic medium is assumed to be at
rest at initial time t = 0, so that zero initial conditions u(x, 0) = u0(x) = 0 and
u̇(x, 0) = v0(x) = 0 hold for any x in Rd. As regards the spatial discretization,
all the finite element meshes considered in the numerical experiments are gener-
ated with Gmsh [132]. Finally, all material parameters and physical quantities are
expressed in terms of the International System of Units (universally abbreviated
SI units), such as times in [s], frequencies in [Hz], angular frequencies in [rad.s−1],
lengths and displacements in [m], velocities in [m.s−1], mass densities in [kg.m−3],
elastic moduli in [Pa], energies in [J], etc., and we further drop units for the sake
of readability.

3 The Ricker wavelet r(t) defined in (54) is such that r(t) =
d2p

dt2
(t), where p(t) =

1

2(πfd)2
exp(−(πfd)2(t− td)2) corresponds to a modified second-order derivative of the Gaus-

sian probability density function t 7→ 1

σ
√

2π
exp

(
− (t− td)2

2σ2

)
with mean value td and stan-

dard deviation σ =
√

2/ωd up to a multiplicative constant 4
√
π/ω3

d with ωd = 2πfd the central
(or dominant) angular frequency.
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Fig. 2: Evolutions of (a) the Ricker wavelet r(t) with respect to time t over the
time interval [0 , 12] s and (b) the amplitude |r̂(ω)| of its Fourier transform in
time r̂(ω) with respect to angular frequency ω over the angular frequency band
[0 , 4π] rad/s (corresponding to the frequency band [0 , 2] Hz)

4.1 Lamb’s problem: directional force point-source applied onto the free surface
of a two-dimensional semi-infinite isotropic homogeneous elastic medium

We first consider the well-known Lamb’s problem [204], which consists in modeling
the propagation of elastic waves in an isotropic homogeneous half-space with free-
surface boundary conditions and a directional force point-source applied onto the
top free surface of the semi-infinite (unbounded) domain.

We aims at numerically simulating the propagation of elastic waves in the half-
plane ]−∞ ,+∞[×]−∞ , 0] ⊂ R2 (with a top free surface Γfree located at x2 = 0)
generated by a vertical force point-source S located at the center of the top free
surface Γfree of the semi-infinite domain, i.e. at the position xS = (0, 0) of the
frame origin (see Figure 3a). The material properties of the isotropic homogeneous
elastic medium are characterized by a mass density ρ = 1, a Young’s modulus
E = 2.5 and a Poisson’s ratio ν = 0.25 under the 2D plane strain assumption, so
that the Lamé’s coefficients are λ = µ = 1, the longitudinal P -wave velocity (resp.
wavelength) is cp ≈ 1.7321 (resp. λp = cp/fd ≈ 5.1962) and the transverse S-wave
velocity (resp. wavelength) is cs = 1 (resp. λs = cs/fd = 3). This academic test
case has already been studied in [62,341]. The exact analytical solution involves
bulk P - and S-waves as well as Rayleigh waves generated by the point-source.

We introduce a rectangular (two-dimensional) bounded domain ΩBD =
[−` , `]× [−` , 0] with length 2` = 8 and width ` = 4, surrounded by a PML
region ΩPML = {x ∈ R2 ; ` < |x1| 6 ` + h and − ` − h 6 x2 < −`} corre-
sponding to three overlapping absorbing layers (on the right, left and bottom
sides of the physical domain of interest ΩBD) with the same finite thickness
h = `/2 = 2 for each absorbing layer (see Figure 3a). The entire computational
domain Ω = ΩBD ∪ ΩPML = [−` − h , ` + h]× [−` − h , 0] is then a rectangular
bounded domain with length 2(`+h) = 12 and width `+h = 6 over which the cal-
culations are performed. As already mentioned in Section 3.2, due to the expected
absorption properties in the PML region ΩPML, we apply homogeneous Dirichlet
boundary conditions u = 0 on the exterior boundary Γext of ΩPML, that is at
|x1| = `+ h = 6 and at x2 = −`− h = −6, and we consider stress-free boundary
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(a) Bounded domainΩBD and PML regionΩPML

separated by interface Γ
(b) Finite element mesh of domain Ω =
ΩBD ∪ ΩPML with interface Γ = ∂ΩBD ∩
∂ΩPML represented by white solid lines

Fig. 3: Lamb’s problem: (a) two-dimensional semi-infinite domain (half-space)
modeled by a physical bounded domain ΩBD surrounded by an artificial PML
region ΩPML, subjected to a downward vertical force point-source S, with a re-
ceiver R, both located at the top free surface Γfree of ΩBD, and (b) associated
finite element mesh

conditions σ ·n = 0 at the top surface Γfree of the entire domain Ω = ΩBD∪ΩPML,
that is at x2 = 0. For the damping profiles in the PML region ΩPML, we use the
empirical damping function di(xi) defined in (8) with a polynomial degree p = 2
and a damping coefficient dmax

i given by (18) with a phase velocity vp = cp (being
equal to the longitudinal P -wave speed) and an amplitude Ai = 6 corresponding
to a small theoretical reflection coefficient Ri = 10−4 in (17). Note that the PML
thickness h = 2 is slightly lower than a half (1/2) of the longitudinal P -wave wave-
length λp ≈ 5.1962 and equal to two thirds (2/3) of the shear S-wave wavelength
λs = 3.

For the spatial discretization, the finite element mesh is an unstructured trian-
gulation of the entire domain Ω that is composed of 6-nodes quadratic triangular
elements with a characteristic element size ∆x = 0.1 such that ∆x = λs/30 ≈
λp/50 (see Figure 3b). It thus contains 38 209 nodes (i.e. 76 418 degrees of freedom)
and 18 924 elements. We use quadratic finite elements for the spatial discretization
of both displacement field u and auxiliary strain field e, since they usually outper-
form linear finite elements in terms of accuracy [60]. Also, standard isoparametric
quadratic finite elements have already been used and found to be numerically sta-
ble in other PML formulations [186,199,200,22,201,114,113,20]. We validate the
proposed PML approach by comparing the numerical PML solution u to a refer-
ence solution uref computed by using a standard purely displacement-based formu-
lation on the same time interval I = [0 , T ] with the same time step ∆t = 0.025 s,
but on an extended (or enlarged) computational domain Ωref = [−L ,L]×[−L , 0]
(containing the physical domain of interest ΩBD) with a top free boundary and left,
right and bottom fixed exterior boundaries, and whose side length L = 6` = 24
is equal to six times the size ` of the physical domain ΩBD, so that any outgoing
waves (exiting ΩBD) remain within Ωref \ ΩBD and do not travel back and do
not interfere with the wave solution in ΩBD during the time interval of interest
I = [0 , T ] (see the first column in Figure 5). This extended domain is discretized
using the same characteristic element size ∆x = 0.1 as the one considered for
the spatial discretization of domain Ω. The reference finite element mesh then
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comprises 610 113 nodes (i.e. 1 220 226 degrees of freedom) and 304 336 quadratic
triangular elements. The extended computational domain Ωref is naturally made
of the same isotropic homogeneous linear elastic material as the physical domain
ΩBD. Note that the reference solution uref computed within Ωref is completely
independent from the PML solution u computed within Ω. Both reference and
PML solutions are compared only within the physical domain ΩBD.

A receiver R is located on the top free surface Γfree, at a distance of 2 from the
source S in the x1-direction, i.e. at the position xR = (2, 0) (see Figure 3a), and
records the two components of the displacement vector u = (u1, u2) over the time
period I = [0 , 20] s. Figure 4 represents the time evolutions of the horizontal and
vertical displacements u1(xR, t) and u2(xR, t) at receiver R for both PML and
CAL solutions compared to the reference solution. For a more quantitative anal-
ysis, the corresponding absolute errors with respect to the reference solution are
plotted in a logarithmic scale. The PML transient dynamical response is very close
to the reference one, whereas the CAL transient dynamical response is clearly not
acceptable from approximately time t = 7 s due to multiple reflections occurring
at the interface Γ between the elastic physical domain ΩBD and the absorbing
unphysical layers constituting ΩPML.

Snapshots of the displacement field magnitude x 7→ ‖u(x, t)‖ =√
u(x, t)Tu(x, t) =

√
u1(x, t)2 + u2(x, t)2 taken at different times are displayed

in Figure 5 for the reference solution computed over the extended computational
domain Ωref and truncated over the computational domain Ω = ΩBD ∪ ΩPML

as well as for the PML and CAL solutions over Ω. We observe that the vertical
force point-source has first generated two weak bulk waves, a longitudinal P -wave
followed by a transverse S-wave (the former being faster with a lower amplitude
than the latter) and then produced two strong Rayleigh waves propagating at the
free surface Γfree with higher amplitudes than the bulk waves. The PML solution
is in very good agreement with the reference solution inside the physical bounded
domain ΩBD without any visible reflections, unlike the CAL solution that suffers
from spurious reflections at the interface Γ between ΩBD and ΩPML. For compar-
ison purposes, Figure 6 shows snapshots of the absolute error on the displacement
field magnitude x 7→ |‖u(x, t)‖ − ‖uref(x, t)‖| at different times for the PML and
CAL solutions compared to the reference solution uref over both the entire com-
putational domain Ω = ΩBD ∪ ΩPML and the physical domain ΩBD. The errors
obtained for the PML solution remain very small, between one and three orders
of magnitude lower than that obtained for the CAL solution. The PML method is
clearly more efficient than the CAL method for absorbing both bulk and Rayleigh
waves.

To further illustrate the accuracy and efficiency of the proposed PML method,
we compute the total mechanical energy E(t) stored in the physical bounded
domain ΩBD as the sum of kinetic and internal energies at each time t

E(t) = Ek(t) + Ei(t),
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(a) Horizontal displacement at receiver R
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Fig. 4: Lamb’s problem: evolutions of (a) the horizontal displacement u1, (b) the
absolute error |u1− uref

1 | on the horizontal displacement, (c) the vertical displace-
ment u2 and (d) the absolute error |u2 − uref

2 | on the vertical displacement at
receiver R with respect to time t for the PML and CAL solutions compared to the
reference solution

where Ek(t) is the kinetic energy and Ei(t) is the internal energy, respectively
defined by

Ek(t) =
1

2

∫
ΩBD

ρ‖u̇(x, t)‖2 dΩ =
1

2
U̇BD(t)TMBDU̇BD(t),

Ei(t) =
1

2

∫
ΩBD

σ(x, t) : ε(u(x, t)) dΩ =
1

2
UBD(t)TKBDUBD(t),

where ‖u̇(x, t)‖ =
√
u̇(x, t)T u̇(x, t) =

√
u̇1(x, t)2 + u̇2(x, t)2 is the amplitude

of the vector-valued velocity field u̇(x, t) at time t > 0 and position x ∈ ΩBD,
UBD(t) and U̇BD(t) are the finite element real vectors associated to displacement
and velocity fields u(·, t) and u̇(·, t) over the physical domain ΩBD, and KBD and
MBD are the corresponding standard finite element stiffness and mass matrices
overΩBD. Figure 7 shows the evolutions of the kinetic energy Ek(t), internal energy
Ei(t) and total energy E(t) (contained in the physical domain ΩBD) with respect
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CAL solution over
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Fig. 5: Lamb’s problem: snapshots of the displacement field magnitude x 7!
ku(x, t)k taken at di↵erent times t = 4, 6, 8, 10, 12, 14, 16, 18, 20 s (from top
to bottom) for the reference solution over an extended computational domain
⌦ref � ⌦ = ⌦BD [⌦PML (first column) with interface � = @⌦BD \ @⌦PML indi-
cated by white solid lines and the exterior boundary �ext of ⌦ indicated by red
solid lines, the reference solution over the computational domain ⌦ = ⌦BD[⌦PML

(second column), the PML solution over ⌦ (third column) and the CAL solution
over ⌦ (fourth column)

Fig. 5: Lamb’s problem: snapshots of the displacement field magnitude x 7→
‖u(x, t)‖ taken at different times t = 4, 6, 8, 10, 12, 14, 16, 18, 20 s (from top
to bottom) for the reference solution over an extended computational domain
Ωref ⊃ Ω = ΩBD ∪ΩPML (first column) with interface Γ = ∂ΩBD ∩ ∂ΩPML indi-
cated by white solid lines and the exterior boundary Γext of Ω indicated by red
solid lines, the reference solution over the computational domain Ω = ΩBD∪ΩPML

(second column), the PML solution over Ω (third column) and the CAL solution
over Ω (fourth column)
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Fig. 6: Lamb’s problem: snapshots of the absolute error on the displacement
field magnitude x 7! |ku(x, t)k � kuref(x, t)k| taken at di↵erent times t =
4, 6, 8, 10, 12, 14, 16, 18, 20 s (from top to bottom) for the PML solution over the
entire computational domain ⌦ = ⌦BD [ ⌦PML (first column) and its restriction
to the physical bounded domain ⌦BD (second column) and the CAL solution over
⌦ and ⌦BD (third and fourth columns)

Fig. 6: Lamb’s problem: snapshots of the absolute error on the displacement
field magnitude x 7→ |‖u(x, t)‖ − ‖uref(x, t)‖| taken at different times t =
4, 6, 8, 10, 12, 14, 16, 18, 20 s (from top to bottom) for the PML solution over the
entire computational domain Ω = ΩBD ∪ΩPML (first column) and its restriction
to the physical bounded domain ΩBD (second column) and the CAL solution over
Ω and ΩBD (third and fourth columns)
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to time t, as well as the ones of the respective absolute errors |Ek(t) − Eref
k (t)|,

|Ei(t) − Eref
i (t)| and |E(t) − Eref(t)| plotted in a logarithmic scale, where the

superscript ref over a variable denotes its reference counterpart computed using
the reference solution uref over ΩBD. We observe that the vertical force point-
source injects energy in the physical domain ΩBD from initial time t = 0 s to
approximately time t = 4.5 s. The energy is then carried by bulk (P - and S-
waves) and Rayleigh waves until they progressively leave the physical domain
ΩBD between approximately time t = 4.5 s for the first P -wave and time t = 9 s
for the last Rayleigh wave (see Figure 5). The errors on kinetic, internal and total
energies computed using the CAL solution reach much higher values than the
ones calculated using the PML solution due to the amount of energy carried by
the spurious waves reflected at the interface Γ and coming back into the physical
domain of interest ΩBD. The energy decay of the PML solution within the physical
domain ΩBD is gradual and closely follows that of the reference solution without
any distinguishable discrepancy, thus indicating the efficiency of the proposed PML
method.

4.2 Directional force point-source buried within a two-dimensional semi-infinite
isotropic homogeneous elastic medium

We again study the propagation of elastic waves in an isotropic homogeneous half-
space with free-surface boundary conditions but the directional force point-source
is now buried within the semi-infinite (unbounded) domain at a given depth.

We perform the numerical simulation of elastic waves propagating in the half-
plane ]−∞ ,+∞[×]−∞ , `] ⊂ R2 (with a top free surface Γfree located at x2 = ` = 4)
submitted to a vertical force point-source buried within the semi-infinite domain
at a depth `, i.e. at the position xS = (0, 0) of the frame origin (see Figure 8a).
We keep the same isotropic homogeneous elastic material properties as the ones
considered in the previous numerical example. A similar test case has already been
investigated in [240] with different geometric features and material properties. As
for the previous test case presented in Section 4.1, the exact analytical solution
brings bulk P - and S-waves into play as well as Rayleigh waves induced by the
vertical force point-source.

We consider a squared (two-dimensional) physical domain ΩBD = [−` , `]×
[−` , `] with side length 2` = 8, bounded by a PML region ΩPML = {x ∈ R2 ; ` <
|x1| 6 `+ h and − `− h 6 x2 < −`} gathering three overlapping absorbing layers
(on the right, left and bottom sides of the physical domain of interest ΩBD) with
the same finite thickness h = 2 as in the first numerical experiment (see Figure 8a).
The entire computational domain Ω = ΩBD ∪ΩPML = [−`− h , `+ h]×[−`− h , `]
is then a rectangular domain with length 2(` + h) = 12 and width 2` + h = 10
over which the numerical simulations are run. Recall that the point-source S is
located at the center of the physical domain ΩBD. Therefore, bulk and Rayleigh
waves are not expected to be formed instantly as in the first numerical example, as
already mentioned in [240]. We also expect the reflection and conversion of waves
at the top free surface. For the same reasons as in the first numerical experiment
shown in Section 4.1, we apply homogeneous Dirichlet boundary conditions u = 0
on the exterior boundary Γext of ΩPML, that is at |x1| = ` + h = 6 and at
x2 = −` − h = −6. We also impose stress-free boundary conditions σ · n = 0 at
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Fig. 7: Lamb’s problem: evolutions of (a) the kinetic energy Ek(t), (b) the absolute
error |Ek(t)−Eref

k (t)| on the kinetic energy, (c) the internal energy Ei(t), (d) the
absolute error |Ei(t) − Eref

i (t)| on the internal energy, (e) the total energy E(t)
and (f) the absolute error |E(t)−Eref(t)| on the total energy stored in the physical
domain ΩBD with respect to time t for the PML and CAL solutions compared to
the reference solution

the top surface Γfree of the entire domain Ω = ΩBD ∪ΩPML, that is at x2 = `. We
use again a quadratic damping function di(xi) in the PML region ΩPML but with
a higher amplitude Ai = 12 corresponding to a very small theoretical reflection
coefficient Ri = 10−8 according to (17).

At the spatial level, the entire computational domain Ω is discretized using an
unstructured finite element mesh made of 6-nodes quadratic triangular elements
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separated by interface Γ

(b) Finite element mesh of domain Ω =
ΩBD ∪ ΩPML with interface Γ = ∂ΩBD ∩
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Fig. 8: Buried source problem: (a) two-dimensional semi-infinite domain (half-
space) modeled by a physical bounded domain ΩBD surrounded by an artificial
PML region ΩPML, subjected to a downward vertical force point-source S buried
in ΩBD, with three receivers R1, R2 and R3 located along the interface Γ between
ΩBD and ΩPML, and (b) associated finite element mesh

with the same mesh density ∆x = 0.1 as in the first test case (see Figure 8b). It
then consists of 63 525 nodes (i.e. 127 050 degrees of freedom) and 31 862 elements.
The extended rectangular computational domain Ωref = [−L ,L]× [−L , `] (with
L = 6` = 24) used to compute a reference solution uref is six times larger than
the physical domain of interest ΩBD in order to mimic the exact solution inside
the physical domain ΩBD over the specified time interval I = [0 , T ]. The reference
finite element mesh is composed of 711 445 nodes (i.e. 1 422 890 degrees of freedom)
and 354 962 quadratic triangular elements.

The time histories of the horizontal component u1 and vertical component u2 of
the displacement vector u are recorded over the time interval I = [0 , 20] s at three
receivers R1, R2 and R3 along the interface Γ , respectively located at the bottom
right corner position xR1 = (4,−4), at the middle right position xR2 = (4,−2)
and at the top right corner position xR3 = (4, 0) of the physical domain ΩBD

(see Figure 8a). The monitored time evolutions of the two components of the
displacement vector for both PML and CAL solutions and their respective absolute
errors with respect to the reference solution are displayed in Figures 9 and 10. The
PML solution closely matches the reference solution for each of the three receivers
R1, R2 and R3 placed at the interface Γ between the physical domain ΩBD and
the PML region ΩPML, while the CAL solution is highly distorted and exhibits
large spurious oscillations from approximately time t = 6 s for receivers R1 and
R3 and time t = 8 s for receiver R2 due to significant spurious reflections at the
interface Γ .

Snapshots of the displacement field magnitude x 7→ ‖u(x, t)‖ taken at different
times from time t = 4 s to final time t = T = 20 s are shown in Figure 11
for the three performed simulations, namely for the reference solution computed
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(c) Horizontal displacement at receiver R2
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(e) Horizontal displacement at receiver R3
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(f) Error on horizontal displacement at re-
ceiver R3

Fig. 9: Buried source problem: evolutions of (a-c-e) the horizontal displacement u1

and (b-d-f) the corresponding absolute error |u1−uref
1 | at three receivers R1 (first

row), R2 (second row) and R3 (third row) with respect to time t for the PML and
CAL solutions compared to the reference solution



Review on the PML method for elastic wave propagation in unbounded domains 47

0 5 10 15 20
−3

−2

−1

0

1

2
×10−2

Time [s]

V
er

ti
ca

l
d

is
p

la
ce

m
en

t

reference

PML

CAL

(a) Vertical displacement at receiver R1
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(c) Vertical displacement at receiver R2
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(d) Error on vertical displacement at re-
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(e) Vertical displacement at receiver R3
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(f) Error on vertical displacement at re-
ceiver R3

Fig. 10: Buried source problem: evolutions of (a-c-e) the vertical displacement u2

and (b-d-f) the corresponding absolute error |u2−uref
2 | at three receivers R1 (first

row), R2 (second row) and R3 (third row) with respect to time t for the PML and
CAL solutions compared to the reference solution
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over the extended computational domain Ωref and restricted to the computational
domain Ω = ΩBD ∪ ΩPML as well as for the PML and CAL solutions over Ω.
It can be observed that two bulk waves have been formed by the driving buried
source, a primary faster longitudinal P -wave followed by a second larger shear S-
wave. Both bulk waves propagate towards the boundaries of the physical domain
ΩBD and enter into the PML region ΩPML at normal incidence. When reaching
and impinging upon the top free surface Γfree, the direct incident bulk waves
give rise to reflected bulk and Rayleigh waves that interfere together. The large
Rayleigh waves can be easily distinguished based upon their elliptical polarizations
and large amplitudes in comparison with the bulk waves characterized by circular
polarizations and smaller amplitudes. The large-amplitude Rayleigh waves can
be observed on the transient dynamical responses of the vertical displacement u2

recorded at receivers R2 and R3 around time t = 6 s and t = 8 s, respectively (see
Figures 10c and 10e). We observe that no reflected waves are visible for the PML
solution (neither any spurious reflections from the interface Γ , nor any residual
reflections from the fixed exterior boundary Γext), whereas multiple reflections
coming from the interface Γ arise for the CAL solution. For further analysis,
Figure 12 shows some snapshots of the absolute errors on the displacement field
magnitude x 7→ |‖u(x, t)‖ − ‖uref(x, t)‖| obtained by comparing the PML and
CAL solutions to the reference one. It confirms that the PML method is clearly
superior to the CAL method for the absorption of both bulk and Rayleigh waves
in this numerical experiment.

Figure 13 displays the time evolutions of the kinetic energy Ek(t), internal
energy Ei(t) and total energy E(t) stored in the physical domain ΩBD, as well as
that of the corresponding absolute errors |Ek(t) − Eref

k (t)|, |Ei(t) − Eref
i (t)| and

|E(t)−Eref(t)|. We can see that some energy is injected by the point-source into the
physical domain ΩBD between initial time t = 0 s and approximately time t = 4 s.
Then, the total energy transported by bulk (P - and S-waves) and Rayleigh waves
decreases gradually as the outgoing waves leave the physical domain ΩBD and are
progressively absorbed inside the PML region ΩPML starting from around time
t = 4.5 s for the first P -wave to time t = 16 s for the last reflected bulk wave (see
Figure 11). The discrepancies between PML and CAL solutions in terms of energy
decay are caused by the spurious waves that send energy back into the physical
domain ΩBD. The numerical results highlight the poor performances of the CAL
solution compared to the PML solution that is in almost perfect agreement with
the reference solution.

4.3 Directional force point-source applied onto the free surface of a
two-dimensional semi-infinite multi-layer isotropic homogeneous elastic medium

We finally investigate the propagation of elastic waves in a two-layer isotropic
homogeneous half-space excited by a directional force point-source placed at the
top free surface in order to assess the accuracy and efficiency of the PML method
in the presence of an interface separating two homogeneous media with different
elastic material properties.

The semi-infinite (unbounded) domain corresponding to the half-plane
]−∞ ,+∞[× ]−∞ , 0] ⊂ R2 (with a top free surface Γfree located at x2 = 0 as
in the first test case) is composed of two elastic layers (with different mechanical
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Fig. 11: Buried source problem: snapshots of the displacement field magnitude
x 7! ku(x, t)k taken at di↵erent times t = 4, 6, 8, 10, 12, 14, 16, 18, 20 s (from top
to bottom) for the reference solution over an extended computational domain
⌦ref � ⌦ = ⌦BD [ ⌦PML (first column) with interface � = @⌦BD \ @⌦PML

indicated by white solid lines and the exterior boundary �ext of ⌦ indicated by red
solid lines, the reference solution over the computational domain ⌦ = ⌦BD[⌦PML

(second column), the PML solution over ⌦ (third column) and the CAL solution
over ⌦ (fourth column)

Fig. 11: Buried source problem: snapshots of the displacement field magnitude
x 7→ ‖u(x, t)‖ taken at different times t = 4, 6, 8, 10, 12, 14, 16, 18, 20 s (from top
to bottom) for the reference solution over an extended computational domain
Ωref ⊃ Ω = ΩBD ∪ ΩPML (first column) with interface Γ = ∂ΩBD ∩ ∂ΩPML

indicated by white solid lines and the exterior boundary Γext of Ω indicated by red
solid lines, the reference solution over the computational domain Ω = ΩBD∪ΩPML

(second column), the PML solution over Ω (third column) and the CAL solution
over Ω (fourth column)
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Fig. 12: Buried source problem: snapshots of the error on the displacement
field magnitude x 7! |ku(x, t)k � kuref(x, t)k| taken at di↵erent times t =
4, 6, 8, 10, 12, 14, 16, 18, 20 s (from top to bottom) for the PML solution over the
entire computational domain ⌦ = ⌦BD [ ⌦PML (first column) and its restriction
to the physical bounded domain ⌦BD (second column) and the CAL solution over
⌦ and ⌦BD (third and fourth columns)

Fig. 12: Buried source problem: snapshots of the error on the displacement
field magnitude x 7→ |‖u(x, t)‖ − ‖uref(x, t)‖| taken at different times t =
4, 6, 8, 10, 12, 14, 16, 18, 20 s (from top to bottom) for the PML solution over the
entire computational domain Ω = ΩBD ∪ΩPML (first column) and its restriction
to the physical bounded domain ΩBD (second column) and the CAL solution over
Ω and ΩBD (third and fourth columns)
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Fig. 13: Buried source problem: evolutions of (a) the kinetic energy Ek(t), (b)
the absolute error |Ek(t) − Eref

k (t)| on the kinetic energy, (c) the internal energy
Ei(t), (d) the absolute error |Ei(t)− Eref

i (t)| on the internal energy, (e) the total
energy E(t) and (f) the absolute error |E(t)−Eref(t)| on the total energy stored in
the physical domain ΩBD with respect to time t for the PML and CAL solutions
compared to the reference solution

properties) separated by an horizontal interface located at a depth of 2 below the
top free surface, i.e. at x2 = −2 (see Figure 14a). The linear elastic material is
assumed to be isotropic and homogeneous in each of the two horizontal layers.
The top layer (denoted Layer 1 in Figure 14a) has the same material properties as
in the two previous test cases, namely a mass density ρ1 = 1, a Young’s modulus
E1 = 2.5 and a Poisson’s ratio ν1 = 0.25 in a state of 2D plane strain, leading to the
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following Lamé’s coefficients λ1 = µ1 = 1, P - and S-wave velocities cp,1 ≈ 1.7321
and cs,1 = 1, and corresponding wavelengths λp,1 = cp,1/fd ≈ 5.1962 and
λs,1 = cs,1/fd = 3. The point-source S is located at the center of the free surface
Γfree of the top layer (Layer 1), i.e. at the position xS = (0, 0) of the frame origin.
A receiver R is also placed at Γfree away from the source S, the distance between
the source S and the receiver R being equal to 2. The bottom layer (denoted Layer
2 in Figure 14a) is characterized by the following material properties: mass density
ρ2 = ρ1 = 1, Young’s modulus E2 = 5E1 = 12.5, Poisson’s ratio ν2 = ν1 = 0.25,
Lamé’s coefficients λ2 = 5λ1 = 5 and µ2 = 5µ1 = 5, P - and S-wave velocities
cp,2 =

√
5cp,1 ≈ 3.8730 and cs,2 =

√
5cs,1 =

√
5 ≈ 2.2361, and corresponding

wavelengths λp,2 =
√

5λp,1 ≈ 11.619 and λs,2 =
√

5λs,1 = 3
√

5 ≈ 6.7082. Thus,
the Young’s and shear moduli (resp. the wave velocities and associated wave-
lengths) are five times (resp. more than two times) higher in the bottom layer
(Layer 2) than in the top layer (Layer 1). As a consequence, the two-layer elastic
system is a dispersive medium and the propagative waves are expected to undergo
multiple reflections and refractions at the material interface between the two elas-
tic layers. As already pointed out in [62], this wave propagation problem is similar
to an open elastic waveguide system in which the elastic waves are guided and
tightly confined within the top layer (Layer 1) with possible radiations in the bot-
tom layer (Layer 2), due to the contrast in the material properties between the two
elastic layers. In addition to bulk waves (such as compressional P -waves and shear
S-waves propagating within the two elastic media) and Rayleigh waves (propa-
gating along the free surface), Stoneley waves (propagating along the material
interface between the two elastic media) can also occur.

We consider the same physical domain ΩBD = [−` , `]×[−` , 0] (with ` = 4) as
in the first test case, bounded at the top by a free surface Γfree and on the other
three remaining sides by a three-overlapping-layer PML region ΩPML = {x ∈
R2 ; ` < |x1| 6 ` + h and − ` − h 6 x2 < −`} with a thickness h = 3`/2 = 6
three times higher than in the two previous test cases (see Figure 14a). As a
consequence, the PML thickness h = 6 is slightly lower than a half (1/2) of the
largest longitudinal P -wave wavelength λp,2 ≈ 11.619 and close to the shear S-
wave wavelength λs,2 ≈ 6.7082 in the underneath layer (Layer 2) corresponding to
a medium with higher velocity. Note that both the physical domain ΩBD and the
nearby PML region ΩPML feature different material properties on either side of
the horizontal interface between the two elastic layers in order to fulfill the perfect
matching property at the interface Γ between ΩBD and ΩPML. The computations
are performed over the entire rectangular computational domain Ω = ΩBD ∪
ΩPML = [−`−h , `+h]×[−`−h , 0] with length 2(`+h) = 20 and width `+h = 10.
We apply the same boundary conditions as in the two previous test cases, namely
clamped conditions u = 0 on the right, left and bottom exterior boundaries Γext

of Ω (i.e. at |x1| = ` + h = 10 and at x2 = −` − h = −10) and stress-free
conditions σ · n = 0 at the top surface Γfree (i.e. at x2 = 0). The damping
functions di(xi) allowing the propagative waves to be absorbed in the PML region
ΩPML are identical to those used in the previous (second) numerical experiment
with a quadratic polynomial degree p = 2 and a rather high amplitude Ai = 12.

We use again a standard (displacement-based) finite element method based on
piecewise quadratic basis functions on a triangulation of the entire domain Ω with
the same characteristic element size ∆x = 0.1 as in the two previous examples.
The unstructured finite element mesh of the entire domain Ω = ΩBD ∪ ΩPML
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ΩPML

h = 6

h

S• R•

ΩBD

` = 4`/2

`/2
Γ

Γext

Γfree

x1

x2

Layer 1 (ρ1, E1, ν1)

Layer 2 (ρ2, E2, ν2)

(a) Bounded domain ΩBD and PML region ΩPML separated by interface Γ represented by
solid lines and the horizontal material interface separating the two elastic layers represented
by a dashed line

(b) Finite element mesh of domain Ω = ΩBD ∪ ΩPML with interface Γ = ∂ΩBD ∩ ∂ΩPML

represented by white solid lines and the horizontal material interface separating the two elastic
layers represented by a green solid line

Fig. 14: Multi-layer problem: (a) two-dimensional (two-)layered semi-infinite do-
main (half-space) modeled by a physical bounded domain ΩBD surrounded by an
artificial PML region ΩPML, subjected to a downward vertical force point-source
S with a receiver R, both located at the top free surface Γfree of ΩBD, and (b)
associated finite element mesh

is represented in Figure 14b. It contains 105 881 nodes (i.e. 211 762 degrees of
freedom) and 52 640 elements. A very large extended computational domain Ωref =
[−L ,L]× [−L , 0] with L = 40 equal to 10 times the size ` = 4 of the physical
domain ΩBD is used to provide a reference solution uref in ΩBD with no parasite
(spurious) waves being reflected at the clamped external boundaries of Ωref (i.e.
at |x1| = L = 40 and at x2 = −L = −40) and sent back into the physical domain
ΩBD over the considered time interval I = [0 , T ]. The associated reference finite
element mesh is made of 845 762 quadratic finite elements with a total of 1 693 925
nodes (i.e. 3 387 850 degrees of freedom).

In Figure 15, we plot the time evolutions of the horizontal and vertical compo-
nents u1(xR, t) and u2(xR, t) of the displacement vector u(xR, t) at the position
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(a) Horizontal displacement at receiver R
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(c) Vertical displacement at receiver R
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(d) Error on vertical displacement at re-
ceiver R

Fig. 15: Multi-layer problem: evolutions of (a) the horizontal displacement u1,
(b) the absolute error |u1 − uref

1 | on the horizontal displacement, (c) the vertical
displacement u2 and (d) the absolute error |u2−uref

2 | on the vertical displacement
at receiver R with respect to time t for the PML and CAL solutions compared to
the reference solution

xR of the receiver R. Despite the numerous reflections and refractions arising from
the material interface between the two elastic layers, the PML solution fits the
reference solution very well at receiver R during the whole time interval [0 , 20] s,
whereas the CAL solution exhibits some discrepancies. According to the time
evolutions of the corresponding errors shown in Figures 15b and 15d, the PML
solution presents higher match with the reference solution than the CAL solution
at receiver R.

Figure 16 displays snapshots of the displacement field magnitude x 7→ ‖u(x, t)‖
at several times for all the three numerical simulations performed up to T = 20 s
over the extended computational domain Ωext (for the reference solution) and
the computational domain Ω (for the PML and CAL solutions). In both PML and
CAL numerical simulations, the propagative waves leave the physical domain then
damp out with an exponential decay inside the absorbing layers so as to mimic
the propagation inside a semi-infinite two-layered medium. Both direct bulk and
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Rayleigh waves can be observed as well as multiple reflected and transmitted waves
at the material interface between the two elastic media. Note that a fast bulk P -
wave with a low amplitude has already entered the (high velocity) bottom layer
(Layer 2) and left the physical domain ΩBD after only t = 4 s. As expected, most
of the waves are guided in the top layer (Layer 1) with minor radiations in the
bottom layer (Layer 2). Figure 17 depicts some snapshots of the absolute errors
on the displacement field magnitude obtained by comparing the PML and CAL
solutions to the reference one. Despite no noticeable spurious reflections can be
clearly seen from the snapshots in Figure 16, we observe that the errors computed
on the PML solution inside the physical domain ΩBD are at least around one order
of magnitude lower than that computed on the CAL solution. All the outgoing
waves are then slightly better absorbed in the PML region ΩPML using the PML
approach than using the CAL approach.

In order to provide further insight into the performances of the PML approach,
Figure 18 shows the evolutions of the kinetic, internal and total energies, namely
Ek(t), Ei(t) and E(t), accumulated in the physical domain ΩBD as functions of
time t for the PML, CAL and reference solutions. Although all energy curves are
almost perfectly superimposed due to the relatively large thickness h = 6 of the
PML region ΩPML, the PML solution is more accurate than the CAL solution
anyway. Indeed, the errors committed on the kinetic energy Ek(t), internal energy
Ei(t) and total energy E(t) are obviously lower for the PML solution than the CAL
solution, especially before all the outgoing waves have left the physical domain
ΩBD, that is up to approximately time t = 14 s. Overall, the performances of the
proposed PML method in terms of absorptive capacity are very good, with no
discernible spurious reflections or numerical instabilities, even in the presence of
material heterogeneities.

5 Conclusion

A review of the current state-of-the-art of the perfectly matched layer (PML)
method and its variants (leading to different PML formulations) developed over
the past 25 years has been first presented with a focus on the elastic wave propa-
gation in unbounded media. An efficient PML formulation has then been proposed
for the numerical simulation and modeling of second-order linear elastodynamic
equations in two- and three-dimensional unbounded domains. Both time-harmonic
(frequency-domain) and time-dependent (time-domain) PML formulations have
been addressed. The frequency-domain PML formulation is based on a classical
complex coordinate stretching and involves a specific auxiliary strain field. The
time-domain PML formulation is then obtained by applying an inverse Fourier
transform in time. The resulting unsplit-field PML weak formulation is discretized
in space using a standard Galerkin finite element method and integrated in time
through classical second-order accurate implicit time schemes, namely a Newmark
time scheme combined with a Crack-Nicolson (finite difference) time scheme. Such
a PML formulation turns out to be intrusive but it can be easily implemented
into existing finite element codes with minor modifications. Furthermore, it does
not require any field splitting, any nonlinear solver, any mass lumping, any limi-
tation in the choice of time step size, and it does not involve any complicated (or
costly) convolution operations in time or any high-order derivatives with respect
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Fig. 16: Multi-layer problem: snapshots of the displacement field magnitude x 7!
ku(x, t)k taken at di↵erent times t = 4, 6, 8, 10, 12, 14, 16, 18, 20 s (from top to
bottom) for the reference solution over an extended computational domain ⌦ref �
⌦ = ⌦BD [⌦PML (first column) with interface � = @⌦BD \ @⌦PML indicated by
white solid lines and the exterior boundary �ext of ⌦ indicated by red solid lines,
the reference solution over the computational domain ⌦ = ⌦BD [ ⌦PML (second
column), the PML solution over ⌦ (third column) and the CAL solution over ⌦
(fourth column)

Fig. 16: Multi-layer problem: snapshots of the displacement field magnitude x 7→
‖u(x, t)‖ taken at different times t = 4, 6, 8, 10, 12, 14, 16, 18, 20 s (from top to
bottom) for the reference solution over an extended computational domain Ωref ⊃
Ω = ΩBD ∪ΩPML (first column) with interface Γ = ∂ΩBD ∩ ∂ΩPML indicated by
white solid lines and the exterior boundary Γext of Ω indicated by red solid lines,
the reference solution over the computational domain Ω = ΩBD ∪ ΩPML (second
column), the PML solution over Ω (third column) and the CAL solution over Ω
(fourth column)
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Fig. 17: Multi-layer problem: snapshots of the error on the displacement
field magnitude x 7! |ku(x, t)k � kuref(x, t)k| taken at di↵erent times t =
4, 6, 8, 10, 12, 14, 16, 18, 20 s (from top to bottom) for the PML solution over the
entire computational domain ⌦ = ⌦BD [ ⌦PML (first column) and its restriction
to the physical bounded domain ⌦BD (second column) and the CAL solution over
⌦ and ⌦BD (third and fourth columns)

Fig. 17: Multi-layer problem: snapshots of the error on the displacement
field magnitude x 7→ |‖u(x, t)‖ − ‖uref(x, t)‖| taken at different times t =
4, 6, 8, 10, 12, 14, 16, 18, 20 s (from top to bottom) for the PML solution over the
entire computational domain Ω = ΩBD ∪ΩPML (first column) and its restriction
to the physical bounded domain ΩBD (second column) and the CAL solution over
Ω and ΩBD (third and fourth columns)
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Fig. 18: Multi-layer problem: evolutions of (a) the kinetic energy Ek(t), (b) the
absolute error |Ek(t)−Eref

k (t)| on the kinetic energy, (c) the internal energy Ei(t),
(d) the absolute error |Ei(t)−Eref

i (t)| on the internal energy, (e) the total energy
E(t) and (f) the absolute error |E(t) − Eref(t)| on the total energy stored in the
physical domain ΩBD with respect to time t for the PML and CAL solutions
compared to the reference solution

to space and time. Besides, it preserves the intrinsic second-order accuracy of the
second-order linear elastodynamic equations.

The performances of the proposed PML method have been illustrated on two-
dimensional linear elastic wave propagation problems defined in semi-infinite (un-
bounded) domains and stated in Cartesian coordinates. Numerical examples in-
clude (horizontally-layered) isotropic homogeneous elastic half-spaces subjected
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to a directional force point-source applied onto the surface (Lamb’s problem) or
buried within the volume. The accuracy of the PML approach is compared to a
classical absorbing layer (CAL) approach with respect to a reference solution com-
puted on an extended computational domain. Numerical results highlight that the
PML acts as a highly efficient absorbing boundary condition (compared to the
CAL) used to attenuate the amplitude of the waves traveling outside the physical
domain of interest. Eventually, the proposed PML method could be applied to
three-dimensional wave propagation problems and readily extended to other coor-
dinate systems, such as polar, cylindrical or spherical coordinates. Also, it would
be interested to extend the PML formulation to fluid-solid (or other multiphysics)
interaction problems. Another ambitious perspective would consist in investigating
the intrinsic stability issues arising in certain kinds of anisotropic (visco)elastic ma-
terials and exhibited by other PML formulations [33,18,192,236,242,216,92,104,
195,352,269,270,20,42,126,214,215]. To date, the construction of a stable PML
formulation for the linear elastodynamic equations in arbitrary anisotropic elastic
media (whatever the level of material anisotropy, i.e. for all the material symmetry
classes ranging from isotropy to pure anisotropy) remains an open problem.
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46. Bérenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves.
Journal of Computational Physics 114(2), 185–200 (1994). DOI 10.1006/jcph.1994.1159.
URL https://doi.org/10.1006/jcph.1994.1159

47. Berenger, J.P.: Perfectly matched layer for the FDTD solution of wave-structure interac-
tion problems. IEEE Transactions on Antennas and Propagation 44(1), 110–117 (1996).
DOI 10.1109/8.477535. URL https://dx.doi.org/10.1109/8.477535
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