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aUniv. Lyon, ENTPE, IFSTTAR, LICIT, F-69518, Lyon, France
bSPIE CityNetworks, F-69320, Feyzin, France

cIRT System-X, Lyon, France

Abstract

In this paper, a new practice-ready method for the real-time estimation of traffic

conditions and travel times on highways is introduced. First, after a principal

component analysis, observation days of a historical dataset are clustered. Two

different methods are compared: a Gaussian Mixture Model and a k-means

algorithm. The clustering results reveal that congestion maps of days of the

same group have substantial similarity in their traffic conditions and dynamic.

Such a map is a binary visualization of the congestion propagation on the free-

way, giving more importance to the traffic dynamics. Second, a consensus day

is identified in each cluster as the most representative day of the community

according to the congestion maps. Third, this information obtained from the

historical data is used to predict traffic congestion propagation and travel times.

Thus, the first measurements of a new day are used to determine which con-

sensual day is the closest to this new day. The past observations recorded for

that consensual day are then used to predict future traffic conditions and travel

times. This method is tested using ten months of data collected on a French

freeway and shows very encouraging results.

Keywords: congestion maps, travel times, freeway, prediction, consensual
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1. Introduction

Prediction of traffic states and travel times evolution is a key component of

any traffic monitoring system and decision support system. Their accurate es-

timation is critical for freeway managers, especially when the network becomes

congested. This problem has been extensively investigated in the transporta-

tion literature using model-based, simulation-based and data-driven approaches

(Vlahogianni et al., 2005; Mori et al., 2015; Wang et al., 2018). For short-time

prediction, model-based and simulation-based approaches use traffic flow models

in conjunction with data assimilation techniques such as recursive Bayesian es-

timators to predict the traffic states and the resulting travel times (Vlahogianni

et al., 2014; Mori et al., 2015; Wang et al., 2006; Kumar et al., 2017). Most data-

driven approaches use general purpose parameterized mathematical model such

as linear regression (Rice and Zwet, 2004), Kalman filtering (Van Lint, 2008;

Nanthawichit et al., 2003), particle filters (Wang et al., 2007) support vector re-

gression (Huang et al., 2014), random forest, Bayesian network (Li et al., 2019),

artificial neural networks (Adeli, 2001; Van Lint, 2008; Vlahogianni et al., 2005;

Xu et al., 2020; Li et al., 2017) and many other techniques to capture and learn

from data the correlations between traffic variables (speed, travel-time) over

space and time (Coifman, 2002; Polson and Sokolov, 2017; Ma et al., 2020). As

pointed out by Yildirimoglu and Geroliminis (2013), who wrote a complete and

useful state of the art of the estimation methods, these approaches suffer from

various limitations. To quote only a few, a common limitation is the spatio-

temporal correlations that are mainly artificially selected (Xu et al., 2020). Be-

side, some of the existing methods resort to experienced travel times, i.e. travel

times calculated by traveling a trajectory through the velocity field. However,

this information is rarely available in real time because experienced travel time

is usually greater than the prediction horizon.

Consequently, the purpose of this paper is to the evolution of congestion,

therefore, travel times with a simple, fully explainable, and practice-ready method.

The proposed method uses both historical and real time traffic information to
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calculate short-term congestion and travel time evolution forecast. To this end,

we used the concept of congestion map to consider queue propagation rather

than traffic states variables evolution, such as density or speed. Figure 1 presents

the mechanism of the global algorithm of the proposed method.

The fist step ( 1○) consists in partitioning historical information into k clus-

ters Ck presenting similar characteristics based on the traffic patterns observed

in the highway. As in Yildirimoglu and Geroliminis (2013), Nagendra and Khare

(2003) and many other papers, we first resort to a Principal Component Anal-

ysis to reduce the number of variables. Then, a Gaussian Mixture Model and

a k-means algorithm are used to gather the historical data. Note that both

approaches are used to evaluate the sensitivity of the estimation method to the

clustering process. Then, the proposed method differs from the one of Yildiri-

moglu and Geroliminis (2013): rather than considering the global behavior of

the clusters, we try to identify which day dk within the cluster Ck is the most

representative of the group. This so-called consensual day is determined based

on the congestion maps of the clustered days through a method derived from

consensual learning technique (Filkov and Skiena, 2004).

Once a set of consensual days Dk has been established, the second step of

the method ( 2○) is devoted to real-time application. Based on the first minutes

/ hours of a new observation day, measurements are processed in real-time to

identify in this set which is the closest consensual day in Dk. The recorded

congestion map and the observed speed of this closest consensual day are then

used to predict the congestion and travel times evolution of the next minutes /

hours of the new observation day. The main benefit of using past measurements

to compute future traffic conditions is to ensure realistic values that are fully

consistent with traffic dynamics.
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Figure 1: Graphical representation of the proposed method

The remainder of the paper is organized as follows: Section 2 presents the

case study and the dataset used in the paper, Section 3 introduces the prediction

methods, Section 4 is devoted to the clustering process and Section 5 to the

analysis of the results, while Section 6 includes a conclusion.

2. Case study and dataset

In this paper, we focus on the M6 highway near Lyon, France. Figure 2

depicts a sketch of the site. It is important to notice that this highway is

used to access Lyon’s city center through a tunnel, which is a recurrent, active

bottleneck. Moreover, this highway is one of the most important in France and

favored by holidaymakers because it links Paris to the south of France (French

Riviera) and the Alps. This highway is thus also called Motorway of the Sun.

Consequently, major traffic jams are always observed during holidays.
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Figure 2: Sketch of the studied site

Regularly staggered loop detectors can be found on this highway section.

These detectors provide average flow, speed and occupancy rate per lane every

1 minute. In this study, we mainly focus on data from 9 detectors of a 7 km

long section, see Figure 2. Accordingly, 9 sections of length ∆l roughly centered

on the detectors have been defined. The maximal authorized speed varies from

90 km/h to 70 km/h within this section. In the remainder of the paper, detec-

tors are labeled by increasing positions from 0 to 8. We consider that traffic

conditions between detectors can be interpolated by using observations of the

closest detector. All data from January 2018 to October 2018 is available (ex-

cept May). We partitioned the data by day from 6:00 to 22:00 (960 observations

per day). Finally, data has been roughly cleaned up to remove unrealistic values

or problem of acquisition.

3. Methodology

3.1. Congestion maps

To mainly focus on traffic dynamic rather than speed evolution, we used the

concept of congestion map. Indeed, recorded values of speed can vary because

of many local phenomenons (such as variations in driving behaviors, noises in

measurements, etc.) but without correlation with the macroscopic dynamics of

flow that rule traffic conditions. One potential method, but far from perfect,

to reduce this bias is to average the observations. Here, we decide to use a

more drastic method to only focus on two possible traffic states: free-flow and

congestion. For each loop detector l ∈ [0, 8], we consider therefore a variable xl

that, at time t, is equal to 1 if the observed speed vl(t) is lower than a congested

speed threshold vcong (fixed here at 40 km/h) and equal to 0 otherwise. It makes

5



it possible to compute map Md of day d as Boolean matrix of size ”number of

detectors” x ”number of observations per day” composed of elements xl(t).

Figure 3a shows the classical speed maps for 6 randomly selected days of the

case study. Note that the darker the color the lower the speed and that the

traffic flows from the top to the bottom of the graphs. Different congestion

patterns clearly appear with different length propagation and duration. These

observation are easier when focusing on the associated congestion maps Md in

Figure 3b. Note that black color stands for xl(t) = 0 (free-flow) and white color

for xl(t) = 1 (congestion).

(a)

(b)

Figure 3: (a) Speed maps for 6 different days of the historical dataset (traffic flows from 0 to

8), and (b) associated binary congestion maps Md

3.2. Clustering historical data

The regularity of traffic events makes very useful the information that we

can obtain from historical data and what can been learned from past situations.

Consequently, it is worth appealing to classify the different observation days.

Because the size of the initial dataset is very large (8640 variables for a single

day), the first step, to speed up the clustering methods and obtain accurate

results, is to perform a Principal Component Analysis (PCA) to reduce the

dimensions of the observations (Nagendra and Khare, 2003). Notice that we

consider here speed vl(t) for l ∈ [0, 8] and t ∈ [0, 960] as the main vector of the

PCA. Since PCA is a usual method, we do not study here the results in details.
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Then, the purpose of the second step of the method is to cluster similar

days of the historical dataset. To this end, we use two classical clustering

algorithms: (i) the k-means with an Euclidean distance between observations to

gather and (ii) a Gaussian Mixture Model (GMM) as proposed in Yildirimoglu

and Geroliminis (2013).

(i) The k-means algorithm is one of the most popular unsupervised learn-

ing methods, that aims to gather the data into groups of equal variance that

minimize the inertia, i.e., within-cluster sum-of-squares. With a fast comput-

ing time, results are easy to interpret, but k-means implicitly assumes that all

clusters are spherical. This shape could introduce a strong bias, especially for

observations of highly non-linear phenomenons.

(ii) In the GMM method, the underlying idea is to consider that similar days

constituting the different clusters follow normal distributions. Consequently, the

set of clusters, i.e., the partition, is ruled by a GMM. This clustering method

gives importance to the distribution of the data points and not only the distance

between them. Consequently, GMM is well adapted to our case because it

provides clusters that may have different sizes and correlation within them.

Note that a full covariance matrix is assumed in GMM.

3.3. Identifying consensual days

Now, the idea is to determine which day of a cluster is the most representative

of the group. As already explained, the motivation is to use the representative

days as the prediction for the coming days, see Figure 1. To this end, we have

adapted the consensual learning method used in Lopez et al. (2017) to our

specific case. Thus, the representative day of a cluster is identified according

to a distance based on the Rand index, i.e., the accuracy between congestion

maps. The Rand index between two maps Md and Mp of days d and p is defined

as the number of concomitant results among the total number of observations.

Here, we consider two observations as concomitant when, at a given detector l

and time t, both observations for day d and p are in the same state (free-flow /

free-flow or congested / congested), i.e. Md(i, j) = Mp(i, j). The distance that
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we used can be formulated as:

RM (d, p) =
a

a+ b+ c
(1)

where:

• a is the size of {xl(t),Md(l, t) − Mp(l, t) = 0} (free-flow / free-flow or

congested / congested);

• b = |{xl(t),Md(l, t)−Mp(l, t) = 1}| (free-flow / congested);

• c = |{xl(t),Md(l, t)−Mp(l, t) = −1}| (congested / free-flow);

Then, we define the consensual day dk of a given cluster Ck as the one that

maximizes the sum of the Rand indices within a cluster:

dk = arg max
d∈Ck

{
∑
p∈Ck

RM (d, p)} (2)

Consequently, the set of consensual days Dk can be determined for the whole

historical dataset.

3.4. Travel time prediction

We are now going to take advantage of the consensual days to predict both

congestion and travel times evolution in real time. Consider a new day of

observation p. The time interval is discretized into periods of δt minutes. At

time t, we try to determine which consensual day dk ∈ Dk is the closest to this

new day p. To this end, we only consider the last ∆t observations and build a

partial congestion map mp(t−∆t, t) composed of xl(t) for t ∈ [t−∆t, t] and l ∈

[0, 8]. This map is compared to the partial maps extracted from the congestion

maps of the consensual days mdk
(t − ∆t, t) = Mdk

(t′), ∀t′/t′ ∈ [t − ∆t, t] and

dk ∈ Dk. The consensual day d∗p(t) that has the maximal Rand index, based on

the partial maps, with the observation p is selected:

d∗p(t) = arg max
d∈dk

{Rm(p, dk)} (3)
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Now that d∗p(t) have been identified, we used the historical data xl(t) and

vl(t) of d∗p to predict variables of day p for the next time step δt. This process is

iterated at every δt, and congestion and speed maps can be built by gathering

the data. Notice that the optimal consensual day d∗p can (and surely will) change

with time t. Duration δt (prediction horizon) and ∆t (learning period) belong to

the parameters of the proposed method. Thus, the prediction of the congestion

map and the travel times (respectively) of day p are (respectively):

M∗p (l, t) = Md∗p(t)
(l, t), ∀l ∈ [0, 8] (4)

and:

v∗(l, t) = vd∗p(t)(l, t). (5)

where Md∗p(t)
(l, t) is the element of the observed congestion map of the consen-

sual day d∗p(t) at time t for detector l, and vd∗p(t)(l, t) is the observed speed at

time t on the congestion day d∗p(t) for detector l.

The travel time τ at time t is calculated as:

τ(t) =

9∑
l=0

∆xl
vl(t)

(6)

where ∆xl is the length of section l, see Figure 2. It is important to notice that it

corresponds to the definition of the instantaneous travel times: the travel time

at time t is calculated based on the speed at the different detector locations

at time t (Yeon et al., 2008). It may introduce some bias compared to the

experience travel times, but, in our case, this bias is very limited because of the

relatively short length of the case study (less than 10 km).

In order to evaluate the global prediction method proposed in the paper,

a cross-validation procedure can be used. A simple holdout method is consid-

ered by randomly selecting 75% of the initial data as the learning set. This

training set is clustered into K groups, and the associated K consensual days

are determined. Then, travel times are predicted for the remaining 25% and

compared with the observations to evaluate and validate the method. Details

are presented in the following section.
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3.5. Comparison with the method presented by Yildirimoglu and Geroliminis

(2013)

As already mentioned, our method share several common features with the

work of Yildirimoglu and Geroliminis (2013). Consequently, this section pro-

poses a short comparison of the two approaches.

To summarize, the method of Yildirimoglu and Geroliminis (2013) aims to

identify groups of days presenting similar traffic conditions to build stochastic

congestion maps, identifying the probability that a section of the test case is

congested. According to the newly available information, the stochastic con-

gestion maps are used to revise the state of a priori knowledge. Their work is

organized as follows:

• Historical data:

– Groups of similar days are identified with a PCAxGMM combination

(speed is the observation vector);

– Stochastic congestion maps are produced for each group to highlight

blocks of recurrent congestion;

• Real-time: the goal is to identify the closest situation in the historical

data to determine which bottlenecks are active. Then, potential active

bottlenecks are integrated in the processing of real-time measurements to

produce experienced travel times.

– Identification of the active blocks based on the comparison of the

real-time congestion map with stochastic congestion maps;

– Travel times are produced by combining the real-time measurements

of the speed at the different detectors and a correction based on the

identification of potential bottleneck.

In comparison, our method aims to identify groups of days presenting sim-

ilar traffic conditions to determine a single representative day of each group.

The measurements of these representative days are then used in real-time to
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predict future traffic conditions. The newly available information is only used

to determine the closest representative days and is directly processed to product

prevision of the travel times. The method can be resumed as follows:

• Historical data:

– Groups of similar days are identified with a PCAxGMM / k-means

combination (speed in the observation vector);

– Identification of the most representative day of each group by con-

sensual learning and congestion maps;

• Real-time: the goal is to identify the closest consensual day and use past

observations to predict future conditions.

– Identification of the closest consensual day by the comparison of real-

time congestion map with the consensual congestion maps;

– Travel times are directly those observe for the identified consensual

day.

4. Clustering of days with similar traffic conditions into the historical

dataset

4.1. Determining the optimal number of clusters

For both approaches, the number of groups K has to be fixed exogenously,

i.e., before performing the clustering of the dataset. Even if there is no defini-

tive answer, several methods exist to determine the optimal number of clusters.

These methods are either based on a criterion minimization/maximization (such

as the elbow or averaged Silhouette methods (Rousseeuw, 1987)) or on a statisti-

cal test (such as gap statistic method, Bayesian information criterion or Akaike

information criterion). However, these criteria are frequently not consistent be-

tween them, and it was the case for our study. Consequently, we have decided

to tailor our metrics to determine the optimal number of clusters K that we

need to predict the evolution of congestion and travel times.
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The prerequisite is to determine clusters that gather a sufficient number of

days (for example, 5% of the test dataset) with similar traffic conditions (intra-

cluster homogeneity) and that are different enough from one to the other to

justify different groups (inter-cluster dissimilarity). To this end, three metrics

have been developed. The intra-cluster homogeneity is appraised by calculating

the average of the Rand index inside a cluster:

1

|Ck|
∑
k∈K

1

|Ck| − 1

∑
∀(p,q)∈Ck,p6=q

RM (p, q), (7)

where K is the number of clusters, Ck is the cluster k, dk is the consensual

day of cluster Ck, p and q are days belonging to Ck, and |Ck| is the cardinal

of cluster Ck. The inter-cluster dissimilarity is evaluated by determining the

average of the Rand index between each pairs of consensual days:

1(
n
2

) ∑
∀(p,p′)inDk

RM (p, p′). (8)

Finally, we also compared the number of clusters nmin gathering more than 5

days to the targeted number of cluster K.

In order to perform this analysis, the clustering process is iterated 20 times

to ensure the generality of the results. Then, the averages of the three metrics

presented above are calculated.

Figure 4a compares the intra-cluster homogeneity with inter-cluster dissimi-

larity in regards to various values of K for both approaches. It reveals that the

inter-cluster dissimilarity is stable for K > 10. Simultaneously, the intra-cluster

homogeneity continues to increase but a very low rate. In the meantime, Figure

4b depicts nmin the number of clusters gathering more than 5 days in function

of K. We also propose the evolution of the Silhouette score with the number

of clusters (see Figure 4c). It clearly shows that for K bigger than 30, both

methods are unable to identify large clusters. It is even worse for high values

of K. Consequently, it appears that nopt = 18 constitutes a good balance to

gather the data of our test site (black cross in Figure 4a, b, and c). Especially,

we can almost observe a local optimum for the average silhouette width at be-

tween 15 and 20 clusters. nopt = 18 ensures a sufficient number of clusters and a
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sufficient number of days per cluster (more than 13 days on average) with an ac-

ceptable intra-cluster homogeneity and inter-cluster dissimilarity. It also means

that clusters can be modified or removed retrospectively without changing the

metrics significantly.

Figure 4: (a) Comparison of intra-cluster homogeneity and inter-cluster dissimilarity, (b)

Number of large clusters vs K for the k-means and the GMM methods, and (c) Evolution of

the Silhouette score with the number of clusters

.

In addition to these averaged metrics, the stability of the clustering results

is also studied. To this end, the Rand index between successive partitions is

calculated. Consequently, if (Cn−1) is the n − 1 partition and (Cn) is the n

partition, the Rand index can be expressed as follows:

R =
a+ b

a+ b+ c+ d
(9)
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where:

• a is the number of pairs of days that are in the same clusters in (Cn−1)

and (Cn);

• b is the number of pairs of days that are different clusters in (Cn−1) and

(Cn);

• c is the number of pairs of days that are in the same clusters in (Cn−1)

and in different clusters in (Cn);

• d is the number of pairs of days that are in different clusters in (Cn−1)

and in the same clusters (Cn).

Figure 5 shows the evolution of the Rand index with the number of clusters

for the two clustering methods. From 10 to 50 clusters, less than 5% of days

change group when increasing the number of clusters. It appears that the results

are reasonably stable and confirm that nopt = 18 is a satisfying trade-off between

the different metrics.

Figure 5: Evolution of the Rand Index between successive partitions

.
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4.2. Post-clustering analysis

First of all, Figure 6a (b, respectively) shows the congestion maps of the

consensual days Dk that have been obtained for the k-means method (GMM,

respectively). Interestingly, the patterns are quite different from one day to

the other, for both methods. Note that dk have been sorted by decreasing size

of Ck, i.e. Ci gathers more days than Ci+1. Notice that the consensual days

of the k-means are denoted di whereas those of GMM method are denoted d′i.

Congestion maps of d1 (6a) for k-means clustering and of d′1 for GMM method

(6b) clearly correspond to the cluster of free-flow days. Situations with morning

and evening peak hours can be identified (see, for example, d3 and d′2) or with

only a morning peak hour (see, for example, d4 and d′15). It is also important

to notice that the two methods do not lead exactly to the same consensual

days (and the same clusters). In this case, they only have 7 consensual days in

common.
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(a) k-means method

(b) GMM method

Figure 6: Congestion map of consensual days dk identified with (a) k-means method and (b)

GMM method

.

Figure 7 shows the different congestion maps of the days gathered into cluster

C3. Visually, the pattern is similar with always morning and evening peak hours.
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Figure 7: Congestion maps cluster C3 obtained with the k-means method

.

Interpreting the results of the clustering methods is always a difficult task

because a relevant balance must be found between a trivial classification and

useless and complex justifications of the hypothetical links between observations

grouped into the same cluster. In our case, the number of attributes available to

analyze and explain the configuration of the computed clusters is very limited.

Consequently, the post-clustering analysis is mainly focused on the weekday and

the month of the observations that are gathered into the same group.

Figure 8 shows the distributions of both variables. It turns out that distri-

butions among days (Figure 8a and c) and months (Figure 8b and d) are very

similar. Note that several iterations have been performed for each method and

that the histograms have been normalized.
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Figure 8: Distribution of weekdays and months of identified consensual days for the (a-c)

GMM method and (b-d) k-means method

.

To continue the post-clustering analysis, distributions of weekdays and months

of the days gathered into the same clusters are now analyzed. Because the results

are very similar for both approaches, the study is now centered on the k-means

method. Let us focus on the six largest clusters of the partition, see Figure 9

that shows the normalized distributions of the weekdays and the months. Clus-

ter C1 mainly gathers Saturdays and Sundays, and the month of August, that

corresponds to the summer holidays in France. Without any surprise, the vi-

sual inspection of the congestion maps reveals that this group is composed of

free-flow situations, see the congestion map of d1 in Figure 6. Cluster C2 en-

compasses the weekdays, mainly during winter. Furthermore, Cluster C3 is very

interesting because it almost only holds Saturdays of holidays: February/March

for winter holidays and August for summer holidays. Cluster C5 gathers the

18



beginning of the week (Mondays and Tuesdays), whereas Cluster C6 the end of

the week. The comparison of the congestion maps of the different days, and d5

and d6 reveals different patterns: the midday hours are more congested for C5.

Finally, cluster C4 groups days with only evening congestion; it may explain the

majority of Sundays in the set.

Figure 9: Distribution of weekdays and months of the days of the 6 largest clusters identified

with k-means method

.

Because analyzing the results cluster by cluster is a tedious task, a convenient

approach is to use an alluvial diagram. Figure 10 shows the contribution of

each weekday and month into the different clusters. The careful analysis of the

alluvial diagram completes the previous analysis. For example, it appears that

Sundays are only present in 5 clusters, such as the Saturdays. On the contrary,

each weekday can be found in 10 different clusters. A similar analysis can be

performed with the contribution of the months to each cluster.
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Figure 10: Alluvial diagram of contribution of days and months into each cluster

.

These results are very encouraging: the GMM and the k-means methods

capture physically similar situations. Because the two approaches are fully

explainable and rely on understandable metrics, all the identified clusters can

be easily justified and interpreted.

5. Results

The global prediction method is now tested for our case study. We mainly

focus on two metrics: the predicted congestion maps and the travel times series.

As already explained, the data has been divided into a training set (75% of the

initial data) and a validation set (the remaining 25%). Moreover, we decided to
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only focus on the k-means method for the sake of brevity in the presentations

of the results.

5.1. Comparison with existing method

We first decide to compare our method with existing approaches to identify

the optimal domain of application. This task is tough for many reasons. No-

tably, it necessitates selecting an existing method that is accurate enough, and

which does not require tremendous work to be developed and calibrated. More-

over, existing methods have different objectives and domains of applications.

Consequently, we decided to compare our approach to a naive instantaneous

method and a historical average method. Besides, the comparison with two

other versions of our method is performed to convince about the predictive

power of our approach.

Therefore, we define the following methods:

• M0 is a naive approach consisting in shifting the observation made at time

t to a horizon δt. Consequently, this method will be almost perfect for

short δt;

• M1 is a historical average method consists in calculating average values

of the historical data for each day of the week and each time period.

• M2 is the original method proposed in the paper based (Figure 1) on the

clustering of the historical data and the identification of consensual days;

• M3 is the same asM2 except that averaged congestion maps are calculated

for each group instead of identifying a consensual day;

• M4 follows the same process as M2 except that historical data are not

clustered. Each day of the historical dataset can be used as a prediction.

To compare these approaches, we use the following metrics:

• congestion prediction: Rand indexes, i.e. accuracy, and F1-score between

predicted congestion maps and ground truth;
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• Travel times prediction: RMSE between prevision and observation.

The test set is composed of the 56 days that have not been used to perform

the clustering (167 days in the historical data set).

Figure 11: Evolution of the boxplots of (a) Rand index, (b) F1-score, (c) MSE according to

the horizon (in minutes) between predictions and observations

.

Figure 11a (respectively b) shows the evolution of the boxplots of the rand

index (respectively F1-score) between predicted and observed congestion maps

for the four different methods according to the horizon predictions. It turns out

that methods M2, M3, and M4 outperform the instantaneous method M0 for

horizons bigger than 30 minutes. In the same time, these methods are better

than the historical approach M1 for horizons smaller than 1 hour. Figure 11c

depicts similar results for the MSE between predicted and observed travel times,

22



except that that M1 is almost the worst method between the five tested. The

comparison shed light on the optimal domain of application of our method.

Consequently, a horizon of δt = 60 minutes is used in the remaining of the

paper.

It is also important to notice that methods M1, M2, and M3 have similar

performance concerning the congestion propagation prediction. This is not sur-

prising because they are three variants of the same methods. Besides, method

M2 and M1 are slightly better than M3 for the travel times. However, we pre-

fer to retain method M1 because the clustering makes it more understandable

(prediction can be related to qualitative transportation scenario), and the use

of a consensual day produces more realistic travel times when focusing on the

time series of the predicted travel times.

5.2. Congestion propagation

The ability of the proposed method to anticipate congestion propagation

is now appraised by comparing the predicted congestion maps with the real

observations. Remember that the prediction method has three parameters: the

duration ∆t that is used to make the prediction, the horizon δt for which the

prediction is made, and the congested speed threshold (fixed here to 40 km/h).

Figure 12 shows the observed maps, the predicted congestion maps (for

∆t = 15 min and δt = 60 min), and the difference between these maps for 6

randomly selected days of the testing sample. Note that the predicted conges-

tion maps are the result from the repeated previsions at every time step (one

minute in our case). The visual inspection reveals that the differences are very

low between prediction and ground truth, and this for significantly different

shapes of congestion propagation (Figure 12c, the blue color is when a con-

gestion propagation is predicted, but the observation is free-flow, red for the

opposite). This qualitative analysis is very encouraging.
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(a) (b) (c) (d)

Figure 12: Comparison of (a) observed and (b)predicted congestion maps (black is for free-

flow - FF conditions, beige for congestion - C Conditions), (c) difference between them (blue

is for C / FF and red for FF /C , white and gray for correct predictions) and (d) operational

metrics of prediction accuracy (red is for +1, blue -1, black - 2, beige +2 and gray for correct

predictions)

To go further, we decided to calculate the accuracy of the prevision. The

values are particularly good since they are very close to 100%, see titles of

Figure 12. This score might be imputed to the free-flow situations that are the

most frequent and easy to predict in the congestion maps. We also calculate

the F1-score of the prevision, that are all satisfying even if this metrics is more

sensitive to the wrong prediction. However, it should be noted that the F1-score

is calculated with the congested traffic conditions only. It may introduces a bias
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when comparing days with significant different volume of congestion. However,

the forthcoming travel times evolution analysis will confirm that the results of

the method are encouraging.

Keeping in mind that the method proposed here is tailored to be practice-

ready and answer to operational needs, specific metrics are developed to evaluate

the prediction accuracy. The confidence that can be allowed by an operator to

a decision support system, such as a traffic evolution predictor, is often based

on simpler indicators than those used in a research paper. A potential criterion

is the decision support system’s ability to predict in the same direction what

can be observed in real-time by the operator. For example, if an increase of

the congestion is predicted for a horizon δt, will the operator really observe the

congestion propagation in his.her monitoring system a time δt later?

Consequently, only predictions of variations are now evaluated. To this end,

the difference ∆Md = Md(i+1, j)−Md(i, j) can be calculated for all i ∈ [1, n−1].

This variable is equal to 0 if queue length remains stable, 1 if the congestion

propagates upstream, and −1 if the queue length reduces. Then, ∆Md can be

compared to the prediction ∆M∗d . It leads to the following table of the values

of ∆Md −M∗d .

minus ∆M ∗d (i, j)

- 0 1 -1

0 0 -1 1

1 1 0 2
∆Md(i, j)

-1 -1 -2 0

Table 1: Comparison of the evolution of predicted and observed congestion lengths based on

the congestion maps

Figure 12d shows the colormap of ∆Md − ∆M∗d for the 6 random selected

day. It clearly reveals that only a few errors about the evolution direction are

made by the method. Especially if we compare to the rough differences of the

prediction and the observation (Figure 12d), we do not accumulate the errors.
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In addition to this qualitative analysis, a global indicator can be computed: the

ratio ρ of accurate prediction over the total number of observations.

ρ(d) =
card

(
{∆Md −∆M∗d = 0}

)
n− 1

(10)

Distribution of ρ for the whole testing set is not shown because it is com-

pletely centered on the mean value (ρ̄ = 98.2%) with a minimal standard devi-

ation (0.4%). Therefore, the accuracy in the prediction of the evolution of the

traffic conditions is excellent. It is very encouraging for the potential integration

of the method into an operational decision support system. This will be the case

for our test study.

5.3. Travel times estimation

As already mentioned, the proposed method can predict travel times by

using the observed speeds of the consensual days. The main benefit of this

approach is to produce realistic travel times because predictions come from

past observations.

Figure 13a shows the travel times series for the 6 previously studied days.

The orange curves correspond to the prediction, whereas the blue ones are the

observations. Note that a horizon δt = 60 min and a learning duration of

∆t = 15 min have been used.
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Figure 13: (a) Comparison of observed (in blue) and predicted travel times (in orange),

(b) distribution of the absolute errors, (c) evolution of optimal consensual days along the

prediction

Visually, the results are very good, and the trends of traffic evolution are

well predicted. The method can accurately capture the variations of travel

times. Besides, we have calculated the normalized RMSE between observations

and predictions, and the criterions appear to be satisfying. To complete the

analysis, Figure 13b shows the distributions of the errors between predictions

and observations. The proportion of the predictions that have a precision below

2 minute stands from 40% to 79%. If we focus on the 3 minutes window, this

value increases to 68% to 87%. Finally, Figure 13c highlights the variation of the

optimal consensual day determined by the prevision method. It shows out that

a large subset of the consensual days is used to predict travel times throughout

the day.
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6. Conclusion

Prediction of congestion propagation and travel times evolution is still a

topic actively studied in the literature. This paper tries to make its contribu-

tion by proposing a simple method, which has the main benefit of being fully

explainable compared to recent approaches based on machine learning or artifi-

cial intelligence methods.

The key component is the concept of congestion map, which is a binary ob-

servation metric of traffic states on a highway. Using this proxy reinforces the

importance of focusing on traffic dynamics rather than on the numeric values

of observation variables. Thus, the historical dataset of a French 10 km long

freeway is classified into groups of days presenting similar traffic states. The

second innovation of the proposed method is to identify a consensual day for

each cluster. According to a distance based on the Rand index, the objective

is to determine the day that is the most representative of the cluster. It makes

it possible to find almost the expected traffic situations of this highway: morn-

ing and evening peak hours, only morning/evening peak hours, all day long

congestion, free-flow day, holiday traffic, etc.

Once those consensual days have been determined, the method can be ap-

plied in real-time to predict congestion propagation and travel times evolution.

According to a real-time learning period, observations of a new day are com-

pared to the consensual days’ congestion maps. The closest one is identified,

and the congestion map and speeds that have been observed for this specific day

are used to predict the behavior of the new day for a given horizon. This very

simple method gives encouraging results for both congestion and travel times

evolution. Especially, the comparison with naive methods (instantaneous and

historical average) reveals that the proposed model is useful for longer prediction

horizons.

Various future directions can be pursued. The methodology can be improved

by identifying the best duration to compare congestion maps, the accurate pre-

diction horizon, and the congested speed threshold. To perform the study, we

28



naively tested different values, but a sensitivity analysis could be conducted. A

second improvement could be to use congestion maps that are no more depen-

dent on the time of the day. The idea is to focus only on the shape of the maps,

i.e., shockwaves profiles. These claims still need to be researched and validated.
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List of notations

Variable Description

t Time of the day

l Loop detector index

∆xl Length of section l

xl(t) Binary variable

vl(t) Speed recorded at detector l at time t

vcong Congestion speed threshold

Md Boolean matrix of congestion map of day d such as Md(l, t) = xl(t)

RM (d, p) Rand index between congestion maps of day d and p

Ck Cluster k

K Number of clusters

dk consensual day of cluster Ck

Dk Set of consensual days

∆t Learning period

δt Horizon of prediction

d∗p(t) Optimal consensual day for a new observation day p at time t
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