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High order methods are needed in phase space to study lamentation.

▸ Simplified model

We study the stability problem on a simplify model:

We discretize in space with WENO method [START_REF] Jiang | E cient Implementation of Weighted ENO Schemes[END_REF], and we test various Runge-Kutta methods for the time integrator. We apply von Neumann analysis on space discretization to study ampli cation factor as a curve in complex plane .

Von Neumann analysis usually used on linear method: rst studies on stability of WENO method [START_REF] Wang | Linear instability of the fth-order WENO method[END_REF], and CFL estimate [START_REF] Motamed | On the Linear Stability of the Fifth-Order WENO Discretization[END_REF] have been done on linearized WENO.

We can try to apply von Neumann analysis to the full non-linearized WENO method. WENO method is weakly non-linear then we can compute ampli cation factor.

Ampli cation factor of WENO method (linearized or not)

We de ne stability domain of an explicit Runge-Kutta method RK( , ) as: with the number of stages, the order and the stability function of RK( , ).

▸ Automatic CFL estimate

It is possible to interpret CFL number between time integrator and space method as the biggest homothety ratio that wedges all the ampli cation factor curve into the stability domain of considered Runge-Kutta methods. We estimate numerically the CFL (respectively ) for various couples RK( , ) with WENO (respectively linearized WENO). All CFL have been approved with a long time simulation of ( * ). 

Geometric CFL interpretation

▸ The chosen one

We are interested in the numerical cost of RK( , ). To compare each time integrator, we compute total energy in Vlasov-Poisson system: which is preserved in time. We propose to select the best method by considering:

Tested strategy:

Spectral scheme in , WENO method in , Lawson method of the underlying RK( , ) in time.

as a function of numerical cost in log scale

▸ Conclusion

Promising approach for Vlasov-Poisson simulation, less stages than splitting strategy.

Selected Runge-Kutta method is Dormand-Prince RK(6,5), this is an embedded Runge-Kutta method (adaptative stepsize, relaxation of the CFL).

Extension to multi-dimensional Vlasov-Poisson is easier than splitting strategy.

Simulation of the bump on tail test case :

Bump on tail simulation ( on the left, on the right) 
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  of the form Next we use an exponential integrator (Duhamel formula): of the form With this exponential form we can use a classical Runge-Kutta method, in this context we call them Lawson methods or Integrating factor Runge-Kutta methods [4]. Stability function of Lawson schemes can be expressed in terms of the underlying Runge-Kutta method: with so stability domain is the same. Our numerical CFL study, on simpli ed model, still works on Duhamel formulation of Vlasov-Poisson.
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 1 Vlasov-Poisson equationVlasov equation plays an important role in the modeling of plasma physics, it is a

	non-linear transport in	of a density distribution	; coupled
	with Poisson equation for estimate electric eld	:
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