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Parametric Semidefinite Programming:

Geometry of the Trajectory of Solutions

Antonio Bellon∗ Didier Henrion∗† Vyacheslav Kungurtsev∗

Jakub Mareček∗

Abstract

In many applications, solutions of convex optimization problems are updated on-line,
as functions of time. In this paper, we consider parametric semidefinite programs, which
are linear optimization problems in the semidefinite cone whose coefficients (input data)
depend on a time parameter. We are interested in the geometry of the solution (output
data) trajectory, defined as the set of solutions depending on the parameter. We propose an
exhaustive description of the geometry of the solution trajectory. As our main result, we
show that only six distinct behaviors can be observed at a neighborhood of a given point
along the solution trajectory. Each possible behavior is then illustrated by an example.

1 Introduction

A semidefinite program (SDP) is a convex constrained optimization problem wherein one wants
to optimize a linear objective function over the intersection of the cone of positive semidefinite
matrices with an affine space. In this paper we consider parametric SDPs, which are problems
of the form

min
X∈Sn

⟨C(t), X⟩

s.t. A(t)[X] = b(t)

X ⪰ 0

(Pt)

whose coefficients depend on a parameter t belonging to a given open interval T = (ti, tf ) ⊆ R.

The goal of (Pt) is to optimize a linear objective function over a feasible region defined by
non-linear constraints, where the data of the problem depend on the parameter t, which we will
often refer to as time. The objective is to minimize the scalar product ⟨C(t), X⟩ between two
matrices of Sn, the vector space of symmetric matrices of size n with real entries. The parametric
feasible region is an intersection of the semidefinite cone Sn+ = {X ∈ Sn | vTXv ≥ 0, ∀v ∈ Rn}
with a parametric affine subspace described by linear equations. The notation X ⪰ 0 is a
shortcut for X ∈ Sn+. The notation A(t)[X] = b(t) models linear equations that X must also
satisfy: ⟨Ai(t), X⟩ = bi(t) for i = 1, . . . ,m, where Ai(t) ∈ Sn are given matrices and bi(t) are
given scalars depending on the parameter t. Thus, problem (Pt) is convex and its feasible region
at any value of parameter t ∈ T is an affine section of the semidefinite cone, often referred to as
a spectrahedron. In Section 2, we present our notation in more detail.
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Parametric SDP appears in numerous applications, where the parameter often coincides with
time. For example, in power systems, semidefinite programming relaxations of the so-called
alternating-current optimal power flow (ACOPF) are very successful, cf. [19]. Tracking of a
trajectory of solutions to ACOPF with supply and demand varying over time is crucial for a
transmission system operator, who decides on the activation of ancillary services to balance the
transmission system, cf. [20]. In general, our goal is to understand certain properties of such
solution trajectories, which would make it possible to design algorithms for parametric SDP with
guarantees on their performance.

Background and Contribution

SDP can be thought of as a generalization of linear programming (LP) with a number of
applications in data science. [5] offered a snapshot of the state of the art in the areas of
SDP, conic optimization, and polynomial optimization. Polynomial optimization problems can
be approximated via a hierarchy of SDP problems of increasing size, developed by [18], also
known as the moments - sum of squares (SOS) hierarchy. Many problems in control theory can
be reduced to solving polynomial equations, polynomial inequalities, or polynomial differential
equations, and they can hence be often solved approximately by the moment-SOS hierarchy, see
[15] for a recent overview. Applications in theoretical computer science include approximation
algorithms for fundamental problems like the Max-Cut problem or coloring problems, quantum
information theory, robust learning, and estimation.

The geometry of SDP, that is, the geometry of the feasible region of an SDP problem, is
well understood. We refer to [27, Chapter 3 by Pataki] for an excellent overview. Likewise,
solution regularity (duality, strict feasibility, uniqueness of the solution, strict complementarity,
non-degeneracy) and its prerequisites are well understood; see for example [3] where the relation
between uniqueness of the solution, non-degeneracy of the solutions and strict complementarity
is discussed.

Here, our purpose is to study the behavior of the trajectory of the solutions to parametric SDP.
Around points of the trajectory satisfying strict complementarity and uniqueness, by means of
the implicit function theorem, one can show that the trajectory defines a smooth curve (Theorem
2.23). When this fails to happen, a number of irregular behaviors may arise. The main result of
this paper (Theorem 3.15) consists of a complete classification of such points. So far, to the best
of our knowledge, a complete classification of types of behavior of points making up the trajectory
of solutions has not been proposed. Here, we suggest one based on a purely logical construction,
whose definitions use set-valued analysis. In particular, we use the Painlevé-Kuratowski extension
of the notion of continuity to the case of set-valued functions, so as to reason about continuity
properties at values of the time parameter, when there are multiple solutions. Informally, we
now define the types of points that our classification comprises. This is based on the geometry
of the trajectory of solutions parametrized over a time interval. Before a given time, we assume
that the trajectory is regular and follows a continuous curve. Then at the time of interest, we
can distinguish between the following situations:

• Non-differentiable point: the trajectory is single-valued but not differentiable;

• Discontinuous isolated multiple point: a loss of continuity causes a loss of uniqueness
of the solution, implying a multiple-valued solution. After the point, uniqueness is restored,
and hence the loss of uniqueness is isolated;

• Discontinuous non-isolated multiple point: a loss of continuity causes a loss of
uniqueness of the solution, implying a multiple-valued solution. After the point, uniqueness
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is not restored hence the loss of uniqueness is not isolated;

• Continuous bifurcation point: the trajectory splits into several distinct branches. This
results in a loss of uniqueness which still preserves continuity;

• Irregular accumulation point: accumulation point of a set made of either bifurcation
points or discontinuous isolated multiple points.

The formal definitions of the point types can be found in Def. 3.4, 3.6, 3.7, 3.8, 3.10, and 3.11

We believe that a first contribution of this paper is precisely the definition of these types of
points. In this respect, our approach was deeply inspired by [11, Chapter 2] where a classification
of solutions to univariate parametric nonlinear constrained optimization problems (NLPs) is
proposed. There, critical points satisfying first-order optimality conditions are considered. Under
precise algebraic conditions, these points are “non-degenerate” (see Remark 3.14). The local
behavior of such points is then shown to be regular. If a critical point is instead “degenerate”
then, according to which algebraic condition is satisfied, the point is classified into four different
types. Our approach is the same in spirit, in that we also start by considering algebraic conditions
ensuring a regular behavior. As a main difference, we classify irregular points according to the
behavior of the trajectory of solutions at the point considered rather than according to different
sets of algebraic conditions (see Remark 3.14). We point out that both the following classification
results consider an optimal solution X∗ at a time t∗ under the assumption that optimal solutions
are unique in a sufficiently small left time neighborhood of t∗. The main results that we present
in this paper are Theorem 3.15 and Theorem 3.16, which we informally state here.

Theorem 1.1 (Informal statement of Theorem 3.15). Under assumptions of Linear Independence
Constraint Qualification (LICQ, cf. Assum. 3.1), existence of strictly feasibile point (cf. Assum.
3.2) and continuity of the data with respect to time (cf. Assum. 3.3), the trajectory can only be
comprised of points of the six types described above.

Theorem 1.2 (Informal statement of Theorem 3.16). Under the same assumptions of Theorem
1.1, suppose that the problem data are polynomial functions of time and that there exists a generic
non-singular time (see Def. 2.21). Then the trajectory is comprised of only regular points (cf.
Def. 3.4), non-differentiable points (cf. Def. 3.6), or isolated multiple points (cf. Def. 3.7).
In other words, non-isolated discontinuous multiple points (cf. Def. 3.8), bifurcation (cf. Def.
3.10) points, and irregular accumulation points (cf. Def. 3.11) cannot appear.

Notice that while we only assume continuity of the data for Theorem 3.15, we need stronger
regularity assumptions to guarantee the validity of Theorem 3.16 (as well as Theorems 2.23 and
2.24).

Other than interesting for a purely theoretical study, we believe that these results could be
useful for algorithmic design as follows. If one can guarantee that the conditions of Theorem 3.16
are satisfied, algorithms for parametric optimization need not consider the behaviors corresponding
to Definitions 3.10, 3.8, and 3.11. If, however, one would like to develop a solver for the case
where only Assumptions 3.1, 3.2, and 3.3 are satisfied, some rather pathological behaviors, such
as non-isolated discontinuous multiple points (Def. 3.8) or bifurcation points (Def. 3.10), need
to be to considered. In this respect, we believe that our work has the merit of clarifying and
making explicit the nature of the irregularities of the trajectories to parameteric SDP. Even
though the precise algorithmic consequences will clearly be strongly dependent on the type and
the properties of the algorithm in use, hence lying beyond the boundaries of our discussion,
we very much hope that our study leads to the development and the improvement of practical
algorithms for parameteric semidefinite programming.
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Previous Work

Following the pioneering contribution of [10], who first studied the properties of the optimum as
a function of a varying parameter and extended the concept of the optimal partition from LP to
SDP, a number of important papers appeared recently. In decreasing order of generality of the
dependence of problem data (coefficients) on the parameter (time):

• Al-Salih and Bohner [2] studied LP on time scales, which allows for the mixing of difference
and differential operators in a broad class of extensions of LP models. While very elegant,
mathematically, it seems non-trivial to extend this approach to SDP;

• Wang, Zhang, and Yao [26] studied a broad family of parametric optimization problems,
which are known as separated continuous conic programming (SCCP). They developed a strong
duality theory for SCCP and proposed a polynomial-time approximation algorithm that solves
an SCCP to any required accuracy. This algorithm does not, however, seem easy to extend to
SDP;

• Mohammad-Nezhad [21], together with Terlaky [22], Haunstein, and Tang [14] are perhaps
the closest to our work, in spirit. Their dependence of the problem on the data is assumed to
be linear, which is a more restrictive assumption than the one we use. Moreover, they do not
provide a complete characterization of the possible behaviors of the trajectory of the solutions.
In part, we build upon their theoretical results, but instead of building upon the concepts of
non-linearity intervals, invariancy intervals, and transition points, we use a purely set-valued
analysis approach;

• El Khadir [7] and Ahmadi [1] studied time-varying semidefinite programs (TV-SDPs) in
the setting where the data vary with known polynomials of the parameter and showed that
under a strict feasibility assumption, restricting the solutions to be polynomial functions of the
parameter does not change the optimal value of the TV-SDP. They also provided a sequence
of SDP problems that give upper bounds on the optimal value of a TV-SDP converging to the
optimal value.

Let us remark here the difference in the literature between TV-SDPs and parametric SDPs.
The first type is the one considered by the aforementioned [7] and [1]. There, the constraints
at a given time point are linked to to the solutions at the previous times via kernel terms. In
this case, the solutions are thought as measurable functions, which are required to satisfy the
constraints only on a set of times that is the complement of a measure-zero set, i.e. almost
everywhere. Instead, we consider the easier case of parametric SDP, where constraints are
independent through time and the solutions can be thought of as set-valued maps. This approach,
considered by [10], [28] and [14], simply assumes that the coefficients of the SDP depend on a
parameter.

2 Preliminaries

In this section, we expose the tools needed to state and prove our main result. In Subsection 2.1
we first review geometric properties of SDP. In Subsection 2.2 we survey continuity properties of
the optimal and feasible sets of parametric SDP, considered as set-valued maps, in terms of inner
and outer semi-continuity and Painlevé-Kuratowski continuity, to adopt the notions of [24]. Then,
in Subsection 2.3 we show that the existence of a unique pair of strictly complementary primal
and dual solutions at a value of the time parameter t̂ implies that there is a neighbourhood of t̂
where both the primal and dual optimal trajectory have a regular behavior. Finally, we observe
that under fairly weak assumptions, among which the existence of a generic non-singular point in
the parameterization interval, the number of points where strict complementarity or uniqueness
is lost is finite.
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2.1 SDP optimality conditions and properties

In this section, we assume for notational simplicity that the data A, b, C are not parameter-
dependent. Let us review geometric properties of SDP in primal form

min
X∈Sn

⟨C,X⟩

s.t. A[X] = b

X ⪰ 0

(P)

and dual form
max

y∈Rm, Z∈Sn
⟨b, y⟩

s.t. A∗[y] + Z = C

Z ⪰ 0.

(D)

The linear operator A maps X ∈ Sn to (⟨A1, X⟩, . . . , ⟨Am, X⟩) ∈ Rm where Ai ∈ Sn are given
matrices for i = 1, . . . ,m and b ∈ Rm. A∗[y] =

∑m
i=1 Aiyi is the linear operator adjoint to A.

Remark 2.1. Throughout this paper, we assume that the linear operator A is surjective (see
Assum. 3.1). Then, given a matrix Z ∈ Sn satisfying the dual constraint A∗[y] + Z = C for
some y ∈ Rm, y can be uniquely determined by solving the linear system (AA∗)[y] = A(C −Z).
We exploit this fact and when discussing a dual point (y, Z) we will often omit y and refer to a
dual point simply as a matrix Z ∈ Sn.

We call a matrix X satisfying the constraints of (P ) a primal feasible point, a matrix Z
satisfying the constraints of (D) a dual feasible point, a pair of matrices (X,Z) satisfying the
constraints of (P,D) a primal-dual feasible point. We call a solution X∗ to (P ) a primal optimal
point, a solution Z∗ to (D) a dual optimal point, a solution (X∗, Z∗) to (P,D) a primal-dual
optimal point. First, we recall that for the primal-dual pair of SDPs (P,D) a set of first order
optimality sufficient conditions is available. Given two matrices X and Z of Sn, their scalar
product is denoted by ⟨X,Z⟩ = trace(XZ) =

∑n
i,j=1 Xi,jZi,j .

Definition 2.2 (KKT conditions). A primal-dual feasible point (X,Z) ∈ Sn × Sn satifies the
Karush-Kuhn-Tucker conditions (KKT) for (P,D) if

A[X] = b
A∗[y] + Z = C
X,Z ⪰ 0
⟨X,Z⟩ = 0

(KKT)

for some y ∈ Rm.

It is well-known that for a convex optimization problem, conditions (KKT) are sufficient for
optimality. Under strict feasibility, the KKT conditions are also necessary.

Definition 2.3 (Strict feasibility). We say that strict feasibility holds for (P ) (or that (P ) is
strictly feasible) if there exists an interior point of the primal feasible region. That is, there exists
a matrix X ≻ 0 satisfying A[X] = b. Similarly, strict feasibility holds for (D) (or (D) is strictly
feasible) if there exists an interior point of the dual feasible region. That is, there exist y ∈ Rm

and a matrix Z ≻ 0 satisfying A∗[y] + Z = C.
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Definition 2.4 (Strict complementarity). A primal-dual optimal point (X,Z) is said to be
strictly complementary if rank(X)+rank(Z) = r+s = n. A primal-dual problem (P,D) satisfies
strict complementarity if there exists a strictly complementary primal-dual optimal point (X,Z).

We now introduce the definitions of primal and dual non-degeneracy. All the definitions and
results exposed below until the end of the subsection are due to [3].

Definition 2.5 (Primal non-degeneracy). We say that a primal feasible point X is primal non-
degenerate if

N (A) + TX = Sn,

where N (A) = {Y ∈ Sn|⟨Ai, Y ⟩ = 0 for all i = 1, . . . ,m},

TX =

{
Q

(
U V
V T 0

)
QT

∣∣∣ U ∈ Sr, V ∈ Rr×(n−r)

}
is the tangent space at X in Sn+ with r = rank(X), Q = QT ∈ Rn×n is an orthogonal matrix
such that its columns form a basis of eigenvectors relative to the eigenvalues λi of X:

X = Qdiag(λ1, . . . , λr, 0, . . . , 0)Q
T . (1)

Definition 2.6 (Dual non-degeneracy). We say that a dual feasible point Z is dual non-
degenerate if

R(A) + TZ = Sn,

where R(A) = span(A1, . . . , Am) and

TZ =

{
Q̃

(
0 V
V T W

)
Q̃T

∣∣∣ W ∈ Ss, V ∈ R(n−s)×s

}
is the tangent space at Z in Sn+, s = rank(Z), Q̃ = Q̃T ∈ Rn×n is an orthogonal matrix such
that its columns form a basis of eigenvectors relative to the eigenvalues ωi of Z:

Z = Q̃diag(0, . . . , 0, ωn−s+1, . . . , ωn)Q̃
T . (2)

Definition 2.7 (Non-degeneracy). We say that a primal-dual feasible point (X,Z) is non-
degenerate if X is primal non-degenerate and Z is dual non-degenerate.

Our interest in non-degeneracy is motivated by the following result:

Proposition 2.8.

1. If (X∗, Z∗) is a primal-dual non-degenerate optimal point then (X∗, Z∗) is the unique
primal-dual optimal point for (P,D).

2. Under strict complementarity, if (X∗, Z∗) is a primal-dual unique optimal point then
(X∗, Z∗) is a non-degenerate primal-dual optimal point for (P,D).

Remark 2.9. For a given point (X,Z), there exist linear algebraic conditions to check whether
it is non-degenerate or not (see Theorems 6 and 9 in [3]).
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2.2 Set-valued analysis for parametric SDP

We are interested in studying the trajectories of solutions to the primal parametric SDP

min
X∈Sn

⟨C(t), X⟩

s.t. A(t)[X] = b(t)

X ⪰ 0

(Pt)

with time parameter t ∈ T = (ti, tf ) ⊂ R. For a given value of t the dual SDP is

max
y∈Rm, Z∈Sn

⟨b(t), y⟩

s.t. A∗(t)[y] + Z = C(t)

Z ⪰ 0.

(Dt)

Definition 2.10 (Set-valued maps). A set-valued map F from a set T to another set X maps a
point t ∈ T to a non-empty subset of F (t) ⊆ X. In symbols:

F : T ⇒ X

t 7→ F (t) ⊆ X.

We say that F is single-valued at t ∈ T if F (t) is a singleton. We say that F is multi-valued at
t ∈ T if F (t) is neither empty nor a singleton.

Given a primal-dual pair of parametric SDPs (Pt, Dt), we can now define the primal and dual
feasible set-valued maps:

P(t) = {X ∈ Sn | A(t)[X] = b(t), X ⪰ 0},
D(t) = {Z ∈ Sn | A∗(t)[X] + Z = C(t), y ∈ Rm, Z ⪰ 0}.

The primal and dual optimal value functions are defined as

p∗(t) = min
X∈Sn

{⟨C(t), X⟩ | A(t)[X] = b(t), X ⪰ 0},

d∗(t) = max
Z∈Sn

{⟨b(t), y⟩ | A∗(t)[y] + Z = C(t), y ∈ Rm, Z ⪰ 0}.

Finally, the primal and dual optimal set-valued maps are

P∗(t) = {X ∈ P(t) | ⟨C(t), X⟩ = p∗(t)},
D∗(t) = {Z ∈ D(t) | ⟨b(t), y⟩ = d∗(t), A∗(t)[y] + Z = C(t), y ∈ Rm}.

Continuity properties of set-valued maps can be defined in terms of outer and inner limits,
leading to the notion of Painlevé-Kuratowski continuity. First, we introduce the notion of inner
and outer limits of a set-valued map.

Definition 2.11 (Inner and outer limits). Given a set-valued map F : T ⇒ X, its inner limit
at t̂ ∈ T is defined as

lim inf
t→t̂

F (t) :=
{
x̂
∣∣ ∀{tk}∞k=1 ⊆ T such that tk → t̂, ∃{xk}∞k=1 ⊆ X, xk → x̂ and xk ∈ F (tk)

}
,

while its outer limit at t̂ ∈ T is defined as

lim sup
t→t̂

F (t) :=
{
x̂
∣∣ ∃{tk}∞k=1 ⊆ T such that tk → t̂, ∃{xk}∞k=1 ⊆ X, xk → x̂ and xk ∈ F (tk)

}
.
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Definition 2.12 (Painlevé-Kuratowski continuity). Let F : T ⇒ X be a set-valued map. We
say that F is outer semi-continuous at t̂ ∈ T if

lim sup
t→t̂

F (t) ⊆ F (t̂).

We say that F is inner semi-continuous at t̂ ∈ T if

lim inf
t→t̂

F (t) ⊇ F (t̂).

Finally, we say that F is Painlevé-Kuratowski continuous at t̂ if it is both outer and inner
semi-continuous at t̂.

Remark 2.13 (Continuity). Note that a single-valued map F : T → X is continuous in the
usual sense at a point x ∈ X if and only if it is Painlevé-Kuratowski continuous at x ∈ X as a
multi-valued map F : T ⇒ X. Thus, without ambiguity, we will refer to Painlevé-Kuratowski
continuity simply as continuity.

In the following, we list some continuity results on the feasible and optimal set-valued maps.
The proof of Theorem 2.15 in the primal version is an original contribution of this paper.

Theorem 2.14 (Example 5.8 in [24]). If A(t), b(t) and C(t) are continuous functions of t
(see Assum. 3.3 in Section 3), then the feasible set-valued maps P(t) and D(t) are outer semi-
continuous at any t ∈ T .

Theorem 2.15. Assume that strict feasibility holds at any t ∈ T (see Assum. 3.2 in Section 3),
that the linear operator A(t) is surjective for every t ∈ T , that the norm of A(t) and the norm

of its pseudo-inverse A∗(t)
(
A(t)A∗(t)

)−1
are uniformly bounded in t (see Assum. 3.1 in Section

3), and that A(t), b(t) and C(t) are continuous functions of t (see Assum. 3.3 in Section 3).
Then the set-valued maps P(t) and D(t) are inner semi-continuous for every t ∈ T .

Proof. Proof. For the dual case, we refer to Lemma 1 in [14] for a version of this theorem where
only the matrix C depends on the parameter and this dependence is linear. We prove the primal
case in the more general case where the left hand side A(t) is time-dependent and continuous
and the right hand side b(t) is continuous. The dual case can be proven in an analogous way.
Fix t̂ ∈ T and X̂ ∈ P(t̂). Given a sequence of times {tk}∞k=1 with tk → t̂, we will construct a

convergent sequence Xk → X̂ so that Xk ∈ P(tk) for all sufficiently large values of k. If X̂ ≻ 0
we define

Xk := X̂ +A∗(tk)
(
A(tk)A∗(tk)

)−1 (
b(tk)− b(t̂)

)
.

The definition is well posed because under the assumptions of the theorem the operator A(tk)
has full rank, thus A(tk)A∗(tk) is invertible. Clearly, A(tk)[Xk] = b(tk). Furthermore, we have

that ∥Xk − X̂∥F = ∥A∗(tk)
(
A(tk)A∗(tk)

)−1 (
b(tk)− b(t̂)

)
∥F ≤ CA∥b(tk) − b(t̂)∥ → 0 for some

constant CA (which exists by the hypothesis of uniform boundedness) and by continuity of b(t),
so that Xk → X̂ and Xk ⪰ 0 for sufficiently large k. If X̂ ⪰ 0 and its smallest eigenvalue λmin(X̂)
is zero, we define

Xk := (1− αk)X̂ + αkX̄ +A∗(tk)
(
A(tk)A∗(tk)

)−1 (
b(tk)− b(t̂)

)
for a fixed X̄ ∈ P(t̂) such that X̄ ≻ 0, which exists by the strict feasibility assumption, and
for a sequence {αk}∞k=1 ⊆ [0, 1] which we shall conveniently define in the following. Clearly,
A(tk)[Xk] = b(tk) and hence we only need to prove that Xk ⪰ 0 or, equivalently, that

λmin

(
(1− αk)X̂ + αkX̄ +A∗(tk)

(
A(tk)A∗(tk)

)−1 (
b(tk)− b(t̂)

))
≥ 0,
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which, thanks to Weyl’s inequality (see e.g Theorem 1 in [8], Section 6.7) holds if

αkλmin(X̄) + λmin

(
A∗(tk)

(
A(tk)A∗(tk)

)−1 (
b(tk)− b(t̂)

))
≥ 0.

Rearranging:

αk ≥ −
λmin

(
A∗(tk)

(
A(tk)A∗(tk)

)−1 (
b(tk)− b(t̂)

))
λmin(X̄)

.

We then define αk := max{0, βk}, where

βk := −
λmin

(
A∗(tk)

(
A(tk)A∗(tk)

)−1 (
b(tk)− b(t̂)

))
λmin(X̄)

.

For sufficiently large k, βk ≤ 1, so that {αk}∞k=1 ⊆ [0, 1] and thus Xk ∈ P(tk), since βk → 0,

αk → 0 and Xk → X̂.

Theorems 2.14 and 2.15 show that the primal and dual feasible set-valued maps P(t) and D(t)
are always continuous, under the assumptions of Theorem 2.15. Naturally, we now investigate
the inner and outer semi-continuity of the optimal set-valued maps. We have:

Theorem 2.16 (Theorem 8 in [16]). If A(t), b(t) and C(t) are continuous functions of t (see
Assum. 3.3 in Section 3) and the primal and dual feasible set-valued maps are continuous, then
the optimal set-valued maps P∗(t) and D∗(t) are outer semi-continuous at any t ∈ T .

However, in general, it is not true that the optimal set-valued maps P∗(t) and D∗(t) are inner
semi-continuous. Still, the set of t ∈ T such that P∗(t) or D∗(t) fails to be inner semi-continuous,
is of first category, i.e., countable and nowhere dense.

Theorem 2.17 (Theorem 5.55 in [24]). The subset of points t ∈ T at which P∗(t) or D∗(t) fails
to be inner semi-continuous (and hence continuous) is the union of countably many sets that are
nowhere dense in T . In particular, it has empty interior.

However, if the optimal set is single-valued, then it is continuous everywhere. In order to
show this, we first introduce a lemma which guarantees the local uniform boundedness of P∗ and
D∗.

Lemma 2.18 (Lemma 3.2 in [25]). Assume that strict feasibility holds at any t ∈ T (see Assum.
3.2 in Section 3) and that A(t), b(t) and C(t) are continuous functions of t (see Assum. 3.3
in Section 3), then P∗(t) and D∗(t) are locally uniformly bounded at any t ∈ T , i.e., for every
t ∈ T there exists compact sets Cp, Cd and δ ≥ 0 such that P∗(s) ⊆ Cp and D∗(s) ⊆ Cd for all
s ∈ [t− δ, t+ δ].

Proof. Proof. Since we assume that primal-dual strict feasibility holds at any t ∈ T , the
assumptions of both Lemmas 3.1 and 3.2 in [25] are satisfied at any t ∈ T .

Proposition 2.19 (Corollary 8.1 in [16]). Assume that strict feasibility holds at any t ∈ T (see
Assum. 3.2 in Section 3), so that by Lemma 2.18 P∗(t) and D∗(t) are locally uniformly bounded
at any t ∈ T , and that A(t), b(t) and C(t) are continuous functions of t (see Assum. 3.3 in
Section 3). If P∗(t) is single-valued at t̂, then P∗(t) is continuous at t̂. The same holds for
D∗(t).
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2.3 Regularity properties of the parametric SDP optimal set-valued
map

Given a primal-dual pair of parametric SDPs (Pt, Dt), we denote a primal-dual point by (X,Z, t).
If at a fixed value of the parameter t̂ ∈ T there exists a primal-dual non-degenerate optimal
point (X∗, Z∗), then, by Proposition 2.8 (X∗, Z∗) is a unique primal-dual optimal point, and by
Proposition 2.19, around t̂ the primal and dual optimal set-valued maps are continuous single-
valued functions. Under strict complementarity, these functions are analytic. Below we provide
details of this fact.

The optimality conditions (KKT) for (X,Z, t) to be a solution of (Pt, Dt) at a fixed value of
the parameter t ∈ T can be equivalently written as

F (X, y, Z, t) :=

 Ã(t) svec(X)− b(t),

Ã(t)T y + svec(Z)− svec(C(t))
1
2 svec (XZ + ZX)

 = 0, (3)

X,Z ⪰ 0 (4)

for some y ∈ Rm, where Ã(t) := (svec(A1(t)), . . . . svec(Am(t)))
T

and svec(X) denotes a linear
map stacking the upper triangular part of X, where the off-diagonal entries are multiplied by√
2:

svec(X) :=
(
X11,

√
2X12, . . . ,

√
2X1n, X22,

√
2X23, . . . ,

√
2X2n, . . . , Xnn

)T

so that ⟨X,X⟩ = svec(X)T svec(X).

Definition 2.20 (Singular points). We say that a point (X, y, Z) is singular at t if the Jacobian
w.r.t (X, y, Z) of F at (X, y, Z, t)

JF (X, y, Z, t) =

 Ã(t) 0 0

0 ÃT (t) Iτ(n)
Z ⊗s In 0 In ⊗s X

 (5)

is not invertible, where ⊗s denotes the symmetric Kronecker product between two n×n matrices
A and B and is defined by

(A⊗s B) svec(H) =
1

2
(AHBT +BHAT ) for any H ∈ Sn.

Otherwise, we say that (X, y, Z) is non-singular at t.

Definition 2.21 (Singular times). We say that a time t̂ is singular if there exists a singular point
(X, y, Z) at t̂ such that F (X, y, Z, t̂) = 0. Otherwise, we say that t̂ is non-singular. Furthermore,
following [14], we say that a non-singular time t̂ is generic if the data tuple (A(t̂), b(t̂), C(t̂)) is
generic, in the sense that the number of solutions for (3) matches the generic number of solutions
(see Theorem 7 in [23]).

Note that if t̂ is non-singular, every point (X, y, Z) such that F (X, y, Z, t̂) = 0 is non-singular
at t̂.

The following lemma gives equivalent conditions for a primal-dual optimal point (X,Z) to
be non-singular at t.
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Lemma 2.22 (Theorem 3.1. in [4], Theorem 3.1. in [12]). A primal-dual optimal point (X,Z)
is non-singular if and only if (X,Z) is a strictly complementary and non-degenerate primal dual
optimal solution.

Note that under strict complementarity part 2. of Proposition 2.8 holds. Therefore, the
Jacobian of F is non-singular at an optimal primal-dual solution (X,Z, t) if and only if (X,Z) is
a unique primal-dual optimal point satisfying strict complementarity. We use this result in the
following theorem.

Theorem 2.23. Let (Pt, Dt) be a primal-dual pair of parametric SDPs parametrized over a
time interval T such that primal-dual strict feasibility holds for any t ∈ T (see Assum. 3.2
in Section 3) and assume that the data A(t), b(t), C(t) are continuously differentiable functions
of t. Let t̂ ∈ T be a fixed value of the time parameter and suppose that (X∗, Z∗) is a unique
primal-dual optimal and strictly complementary point for (Pt̂, Dt̂). Then there exists ε > 0 and
a unique continuously differentiable mapping (X∗(·), Z∗(·)) defined on (t̂ − ε, t̂ + ε) such that
(X∗(t), Z∗(t)) is a unique and strictly complementary primal-dual optimal point to (Pt, Dt) for
all t ∈ (t̂− ε, t̂+ ε).

Proof. Proof. By Assumption 3.2 (primal-dual strict feasibility), for each t ∈ T the pair
of problems (Pt, Dt) must have at least a primal-dual feasible and optimal solution which
correspond to a solution of the KKT system (3)-(4). By Lemma 2.22, the assumptions of strict
complementarity and uniqueness ensure that at t̂ we can apply the Implicit Function Theorem
(see, e.g., Theorem 3.3.1 in [17]), so that there exists ε′ > 0 and a continuously differentiable
curve (X∗(·), y∗(·), Z∗(·)) on (t̂−ε′, t̂+ε′) such that (X∗(t), y∗(t), Z∗(t), t) is a solution of (3) for
all t ∈ (t̂− ε′, t̂+ ε′) and X∗(t̂) = X∗, Z∗(t̂) = Z∗. Due to the assumed strict complementarity,
λi(X

∗(t̂)) · λi(Z
∗(t̂)) = 0 and λi(X

∗(t̂)) + λi(Z
∗(t̂)) > 0, where λi(·) denotes the i-th smallest

eigenvalue of a matrix, and from the continuity of the eigenvalues of X∗(t) and Z∗(t) with respect
to t, the non-zero eigenvalues remain non-zero and positive for a small enough perturbation of t̂.
On the other hand, the last equation in (3) implies λi(X

∗(t)) ·λi(Z
∗(t)) = 0 for t ∈ (t̂−ε′, t̂+ε′),

so that that the zero eigenvalues stay constant in a small open neighborhood of t̂. In other
words, the perturbed solutions remain positive semidefinite and strictly complementary, hence
satisfying (4). Finally, by observing that the Jacobian (5) stay non-singular in a small open
neighborhood of t̂, and by Lemma 2.22, we can conclude that (X∗(t), Z∗(t)) is a unique optimal
solution for (Pt, Dt) for t ∈ (t̂− ε, t̂+ ε) and a small enough ε′ > ε > 0.

By adding further assumptions, one can improve the information given by Theorem 2.17 on
the cardinality of the singular points set and prove that the number of singular points of (3) is
finite.

Theorem 2.24 (Proposition 5 in [14]). For the primal-dual parametric SDPs (Pt, Dt), assume
that there exists a generic non-singular time (see Def. 2.21) and that the data A(t), b(t), C(t) are
polynomial functions of t. Then the set of values of the time parameter t at which the primal-dual
optimal point is either not unique or not strictly complementary is finite.

Proof. Proof. Following the proof of Proposition 5 in [14] we deduce that T only contains a finite
number of singular points, implying that the number of optimal primal-dual points that are not
strictly complementary or non-unique, hence singular by Lemma 2.22, is finite

Thus, under the assumption of Theorem 2.24, the values of t at which strict complementarity
or uniqueness of the primal-dual solution is lost is finite. In particular, the values of t at which
P∗(t) or D∗(t) fails to be inner semi-continuous (and hence fails to be continuous) are finite. It
also implies that wherever P∗(t) defines a continuous curve of unique optima, the values of t at
which P∗(t) fails to be differentiable are finite. The same holds for D∗(t).
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3 A complete classification of optimal points

The focus of our study is first put on values t∗ of the time parametrization interval T at which
strict complementarity or uniqueness of the primal-dual optimal point is lost. In other words,
these are singular points preceded by non-singular points. By Theorem 2.24 such points are finite.
There, the trajectory described by the primal and dual optimal sets can exhibit a restricted
number of irregular behaviors. By an irregular behavior we mean any situation that differs from
the solution following a uniquely well-defined smooth curve. Describing these situations is the
goal of this Section. If, instead, all primal-dual optimal points (X,Z, t) are singular for every
t ∈ T , the number of possible types of irregular behaviors grows. In our main Theorem 3.15, we
provide a complete classification of these behaviors under both cases. The object of our study is
the trajectory of solutions to the primal SDP (Pt), that is, the primal optimal set-valued map.
Every result that we propose can be clearly transposed to the dual case.

We first adopt the following standard assumptions:

Assumption 3.1 (LICQ and uniform boundedness of A). The m matrices {Ai(t)}i=1,...,m are
linearly independent in Sn for every t ∈ T , so that the linear operator A(t) is surjective for every
t ∈ T . This condition is known as the linear independence constraint qualification (LICQ).

Furthermore the operator A(t) and its pseudo-inverse A∗(t)
(
A(t)A∗(t)

)−1
have a uniformly

bounded norm.

The LICQ assumption allows us to describe the dual solution just in terms of matrix Z
(see Remark 2.1). The assumption of uniform boundedness is needed to ensure the inner semi-
continuity of the feasible set-valued maps, see Theorem 2.15.

Assumption 3.2 (Strict feasibility). For every t ∈ T , problem (Pt) and its dual (Dt) are strictly
feasible.

This assumption is standard in the SDP literature ([10], [1], [14]). Strict feasibility guarantees
that the primal and dual optimal sets P∗(t) and D∗(t) are non-empty and bounded for any
t ∈ T (Lemma 3.2 in [9]). Checking strict feasibility of a given SDP can be done by solving
another SDP and checking whether its optimal value is positive or not (see for example [13],
Theorem 3.1 and 3.5).

Assumption 3.3 (Data continuity). Data A(t), b(t) and C(t) depend continuously on the time
parameter t.

This assumption is quite general compared to those usually found in the parametric SDP
literature, where the data are often assumed to vary linearly with respect to the time parameter.
This linearity assumption is standard when one studies sensitivity properties, so that the perturbation
can be assumed to be linear. Instead, our purpose is to give a geometric characterization of the
points of the trajectory of solutions, in which case we can keep a high degree of generality by
just assuming continuity of the data, without any further differentiability requirement.

Summarizing, Assumptions 3.1, 3.2, and 3.3 ensure that:

• There is no duality gap: p∗(t) = d∗(t) for all t ∈ T .

• The primal and dual optimal faces P∗(t), D∗(t) are non-empty and bounded for all t ∈ T .
In other words, (Pt) and (Dt) are both feasible and bounded.

• The optimal set-valued maps are outer semi-continuous at any t ∈ T .

• The subset of T where the optimal set-valued map fails to be inner semi-continuous has
empty interior and it is the union of countably many sets that are nowhere dense in T .
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Equipped with the results of the previous section, we introduce a classification into six
different types of primal optimal points according to the behavior of the optimal set-valued
map at these points. Our purpose is to study irregularities arising after an interval where the
optimal set-valued map has regular behavior. We hence classify points for which the optimal
set-valued map on a left neighborhood is unique and thus continuous.

Let (Pt, Dt) be a primal-dual pair of parametric SDPs with t ∈ T . For a fixed t∗ ∈ T , we
consider a primal optimal point (X∗, t∗) for (Pt∗). Based on the behavior of the primal optimal
set-valued map P∗(t) at t∗, we can distinguish between six different cases. According to these
cases we classify the primal point (X∗, t∗) into six different types. This can be done analogously
for the dual case.

Definition 3.4 (Regular point). At a regular point (X∗, t∗), P∗(t∗) = {X∗} and there exists
ε > 0 such that

• P∗(t) is single-valued and continuous for every t ∈ (t∗ − ε, t∗ + ε), for some ε > 0,

• P∗(t) is differentiable at t∗.

Remark 3.5. Note that a primal optimal point (X∗, t∗) for (Pt∗) for which there exists a dual
optimal point (Z∗, t∗) for (Dt∗) such that (X∗, Z∗, t∗) is a non-singular point for (Pt∗ , Dt∗), is
necessarily a regular point. This follows directly from Theorem 2.23 and Lemma 2.22. The
converse does not hold in general.

Definition 3.6 (Non-differentiable point). At a non-differentiable point (X∗, t∗), P∗(t∗) = {X∗}
and there exists ε > 0 such that

• P∗(t) is single-valued and continuous for every t ∈ (t∗ − ε, t∗ + ε),

• P∗(t) is not differentiable at t∗.

Definition 3.7 (Discontinuous isolated multiple point). At a discontinuous isolated multiple
point (X∗, t∗), X∗ ∈ P∗(t∗) and there exists ε > 0 such that

• P∗(t) is single-valued and continuous for every t ∈ (t∗ − ε, t∗) ∪ (t∗, t∗ + ε),

• P∗(t) is multi-valued at t∗.

Definition 3.8 (Discontinuous non-isolated multiple point). At a discontinuous non-isolated
multiple point (X∗, t∗), X∗ ∈ P∗(t∗) and there exists ε > 0 such that

• P∗(t) is continuous at any t ∈ (t∗ − ε, t∗) ∪ (t∗, t∗ + ε),

• P∗(t) is single-valued for every t ∈ (t∗ − ε, t∗),

• P∗(t) is multi-valued for every t ∈ [t∗, t∗ + ε).

Remark 3.9. Let (X∗
1 , t

∗
1) be a discontinuous isolated multiple point and (X∗

2 , t
∗
2) a discontinuous

non-isolated multiple point. Then by definition the optimal solution is not unique neither at t∗1
nor at t∗2. Thus, a loss of inner semi-continuity of the optimal set-valued map P∗(t) must occur
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both at t∗1 and at t∗2. However, while for any ε > 0 the set of points t ∈ (t∗2 − ε, t∗2 + ε) where
the optimal set P∗(t) is multi-valued has a non-empty interior, there always exists a ε̄ > 0 such
that the set of points t ∈ (t∗1 − ε̄, t∗1 + ε̄) where the optimal set P∗(t) is multi-valued has empty
interior. This observation suggests the choice of the terms “isolated” and “non-isolated”.

Definition 3.10 (Continuous bifurcation point). At a continuous bifurcation point (X∗, t∗),
P∗(t∗) = {X∗} and there exists ε > 0 such that

• P∗(t) is continuous at any t ∈ (t∗ − ε, t∗ + ε),

• P∗(t) is single-valued for every t ∈ (t∗ − ε, t∗],

• P∗(t) is multi-valued for every t ∈ (t∗, t∗ + ε).

In particular, there exist at least two distinct continuous curves

X1 : (t∗, t∗ + ε) → Sn
t 7→ X1(t)

X2 : (t∗, t∗ + ε) → Sn
t 7→ X2(t)

such that X1(t) and X2(t) are two distinct points of P∗(t) for every t ∈ (t∗, t∗ + ε) and
limt→t∗+ X1(t) = limt→t∗+ X2(t) = X∗. In this sense, a continuous bifurcation point can be
thought as a continuous loss of uniqueness from a single branch into two or more branches.

Definition 3.11 (Irregular accumulation point). At an irregular accumulation point (X∗, t∗),
X∗ ∈ P∗(t∗) and there exists ε > 0 such that

• P∗(t) is single-valued and continuous for every t ∈ (t∗ − ε, t∗)

and for any δ > 0 at least one of the following is true:

• there exists a sequence of times {tk}∞k=1 ⊆ (t∗, t∗+δ) at which a loss of inner semi-continuity
occurs and limk→∞ tk = t∗. At these times, either a discontinuous isolated multiple point
or a discontinuous non-isolated multiple point appears.

• there exists a sequence of times {tk}∞k=1 ⊆ (t∗, t∗ + δ) at which a continuous bifurcation
occurs and limk→∞ tk = t∗.

When convenient, instead of saying that (X∗, t∗) is a regular point, we will say that X∗ is a
regular point at t∗. The same applies to all the other types of points that we defined.

Remark 3.12. The above definitions consider points whose sufficiently small left time neighborhood
consists of all regular points. By a change of sign of the parameter, the definition clearly extends
to points whose sufficiently small right time neighborhood consists of all regular points.

Remark 3.13 (Existence of a continuous selection). The optimal set-valued map is continuous
in a neighborhood of a regular, non-differentiable, or a continuous bifurcation point. Instead, at
a discontinuous isolated or non-isolated multiple point (Definitions 3.7 and 3.8), a loss of inner
semi-continuity occurs. For such points (X∗, t∗) it holds lim inft→t∗− P∗(t) ̸= P∗(t∗). However,
in both cases, clearly only one of the following is true:

(A) lim
t→t∗+

P∗(t) = P∗(t∗),

(B) lim inf
t→t∗+

P∗(t) ̸= P∗(t∗).
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In case (A), one can select a continuous curve (t∗ − ε, t∗ + ε) ∋ t 7→ X(t) ∈ Sn such that
X(t) ∈ P∗(t) for every t ∈ (t∗ − ε, t∗ + ε), while in case (B) such a curve does not exist.
Furthermore, for a discontinuous isolated multiple point under case (A), such a curve is unique.
Also note that in case (A) it might be impossible to select a curve that is differentiable at t∗.

Remark 3.14 (Comparison with [11]). The definition of the six different types of points was
inspired by [11, Chapter 2], where a classification of solutions to univariate parametric non-linear
constrained optimization problems was proposed. There, critical primal-dual points satisfying
first-order optimality (or KKT) conditions for a given parametric non-linear optimization problem
are classified. These points are defined as non-degenerate if strict complementarity holds as well
as the invertibility of the Hessian of the Lagrangian of the considered problem restricted to the
tangent space at the point. We remark that this notion of non-degeneracy does not coincide
with that of primal and dual non-degeneracy defined in Definitions 2.5 and 2.6. However, one
can still identify an algebraic resemblance between primal non-degeneracy as defined in 2.5 and
the non-singularity of the Hessian of the Lagrangian.

In the terminology that we used, the notion of non-degeneracy adopted by Jongen in [11] is
analogous to non-singularity, as defined in Definition 2.20, as they both guarantee the applicability
of the implicit function theorem, hence ensuring a regular behavior (Theorem 2.4.2 in [11]).
Around these points the optimal set can be parametrized by means of a single parameter and the
parameterization is a differentiable map. If a critical point is instead degenerate then, according
to which algebraic condition is not satisfied by such points, these are classified in four different
types. Instead, we classified irregular points according to the behavior of the trajectory of
solutions at the point considered, focusing at the possible local topological structure of points

Theorem 3.15 (Main result). For a primal-dual pair of parametric SDPs (Pt, Dt), let Assumptions
3.1, 3.2, and 3.3 hold and consider a time t∗ ∈ T , X∗ ∈ P∗(t∗). If P∗(t) is unique for every
t ∈ (t∗ − ε′, t∗) for some ε′ > 0, then (X∗, t∗) must be a point of a type defined in Definitions
3.4, 3.6, 3.7, 3.8, 3.10, or 3.11. The same holds for D∗(t)

Proof. Proof. First, let t∗ ∈ T and X∗ ∈ P∗(t∗). By hypothesis, there exists ε′ > 0 such that
P∗(t) is single-valued and hence, by Proposition 2.19, continuous for every t ∈ (t∗ − ε′, t∗). Let
us perform a first binary case partition:

A P∗(t∗) is a single-valued (and thus equal to {X∗}).

B P∗(t∗) is multi-valued.

Then, we also define a three-way case partition, independent from the previous one:

1 there exists ε′′ > 0 such that P∗(t) is single-valued for every t ∈ (t∗, t∗ + ε′′).

2 there exists ε′′ > 0 P∗(t) is multi-valued for every t ∈ (t∗, t∗ + ε′′).

3 for every δ > 0 there exists t′, t′′ ∈ (t∗, t∗ + δ) such that P∗(t′) is single-valued and P∗(t′′) is
multi-valued.

Combining the two partitions, we obtain one consisting of six cases:

A1 in this case P∗(t) is a single-valued function defined in (t∗−ε, t∗+ε), where ε := min{ε′, ε′′},
which is hence continuous by Proposition 2.19. According to whether P∗(t) is differentiable
at t∗ or not, (X∗, t∗) is a regular point or a non-differentiable point.
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A2 if there exists ε′′ > 0 such that P∗(t) is continuous at any t ∈ (t∗ − ε′, t∗ + ε′′) then by
definition (X∗, t∗) is a continuous bifurcation point (Definition 3.10). Otherwise, for every
k ∈ N there must exist a point tk ∈ (t∗, t∗ + 1

k ) such that a loss of inner semi-continuity
occurs a tk. Hence, (X∗, t∗) is an irregular accumulation point (Definition 3.11).

A3 if there exists ε′′ > 0 such that P∗(t) is continuous at any t ∈ (t∗ − ε′, t∗ + ε′′) then, as for
any δ > 0 a continuous switch from unique to non-unique solutions must occur, we can
construct a sequence of times {tk}∞k=1 at which a continuous bifurcation occurs converging
to t∗. Otherwise, we can proceed as in case A2 and construct a sequence of times at which
a loss of inner semi-continuity occurs converging to t∗. Hence, (X∗, t∗) is an irregular
accumulation point.

B1 in this case, simply by definition, (X∗, t∗) is a discontinuous isolated multiple point (Definition
3.7).

B2 if there exists ε′′ > 0 such that P∗(t) is continuous at any t ∈ (t∗+ε′′), by definition (X∗, t∗)
is a discontinuous non-isolated multiple point (type 3.7). Otherwise, for every k ∈ N there
exists a point tk ∈ (t∗, t∗ + 1

k ) such that a loss of inner semi-continuity occurs a tk. Hence,
(X∗, t∗) is an irregular accumulation point.

B3 the same discussion as in A3, (X∗, t∗) is hence an irregular accumulation point. □

Theorem 3.16. For a primal-dual pair of parametric SDPs (Pt, Dt), let Assumptions 3.1, 3.2,
and 3.3 hold. Suppose that there exists a generic non-singular time (cf. Def. 2.21) and that
the data of (Pt, Dt) are polynomial functions of t. Then, along the parametrization interval T
the number of points in times at which there is a non-differentiable point (cf. Def. 3.6) or a
discontinuous isolated multiple point (cf. Def. 3.7) for P∗(t) or D∗(t) is finite. All the other
points are regular points (cf. Def. 3.4) for both P∗(t) and D∗(t). Furthermore, the number of
regular points where P∗(t) or D∗(t) is not continuously differentiable is finite.

Proof. Proof. By Theorem 2.24, the hypothesis implies that the number of values of t ∈ T at
which there exists an optimal primal-dual singular point for (3) is finite. Let S denote the set of
such values. First, let t∗ns ∈ T \ S. Then there exists an optimal primal-dual non-singular point
(X∗

ns, Z
∗
ns, t

∗
ns). By Theorem 2.23, both (X∗

ns, t
∗
ns) and (Z∗

ns, t
∗
ns) are regular points (cf. Def.

3.4 and Rem. 3.5) where both P∗(t) and D∗(t) are continuously differentiable. Now consider
t∗s ∈ S. Then there exists an optimal primal-dual singular point (X∗

s , Z
∗
s , t

∗
s). If at t∗s a loss of

inner semi-continuity for P∗ occurs then P∗(t∗s) is multi-valued, hence (X∗
s , t

∗
s) is a discontinuous

isolated multiple point (cf. Def. 3.7). The same holds in the dual version for D∗ and (Z∗
s , t

∗
s).

If instead at t∗s continuity of P∗ is preserved, then P∗(t∗s) is a singleton. According to whether
P∗ is differentiable at t∗s or not, (X∗

s , t
∗
s) is a regular point or a non-differentiable point (cf. Def.

3.6). At regular points in S that are differentiable, the derivative of P∗(t) and D∗(t) might yet
fail to be continuous. Being in S, such points are in a finite number, hence proving the last
sentence of the theorem. Since P∗(t∗s) is a singleton, a loss of differentiability only happens when
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t∗s is in S; that is, when either D∗(t∗s) is multi-valued or strict complementarity between X∗
s and

Z∗
s fails (this follows from Lemma 2.22). The same holds in the dual version for D∗ and (Z∗

s , t
∗
s).

To prove that any type of point that we defined can actually appear, in the following section
we exhibit an example of each type.

4 Examples

4.1 Regular, non-differentiable and discontinuous isolated multiple points

For t ∈ T = (−3, 2), consider the primal SDP

min tx+ ty + z

s.t.

1 x y
x 1 z
y z 1

 ⪰ 0.
(P1

t )

The feasible region is known as Cayley spectrahedron. We have:

P∗(t) =



1 1 1

1 1 1

1 1 1

 for t ∈ (−3,−2],

 1 −t/2 −t/2

−t/2 1 t2

2 − 1

−t/2 t2

2 − 1 1

 for t ∈ (−2, 2) \ {0},


1 a b

a 1 −1

b −1 1

∣∣∣∣∣ a+ b = 0

a, b ∈ [−1, 1]

 at t = 0.

In (−3,−2), the trajectory is constant. All points are hence regular (Def. 3.4). In both
intervals (−2, 0) and (0, 2), the solution to (P1

t ) is unique and the trajectory describes a parabolic
differentiable curve and hence all its points are also regular.
Instead, t = −2 is a non-differentiable point (Def. 3.6). Indeed:

d

dt
P∗(t)|t=−2− =

0 0 0
0 0 0
0 0 0

 ̸=

 0 −0.5 −0.5
−0.5 0 −2
−0.5 −2 0

 =
d

dt
P∗(t)|t=−2+ .

Moreover, at t = 0 there is a loss of uniqueness, as P∗(0) is a one-dimensional face of Cayley
spectrahedron. Thus, t = 0 is a discontinuous isolated multiple point (Def. 3.7), as uniqueness
is holding before for t ∈ (−2, 0) and after for t ∈ (0, 3).
Consider now the SDP dual to (P1

t )

max α+ β + γ

s.t.

−α t/2 t/2
t/2 −β 1/2
t/2 1/2 −γ

 ⪰ 0. (D1
t )
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Figure 1: Trajectory of solutions of (P1
t ). Its feasible set is time-invariant and it is the Cayley

spectrahedron (orange). Its optimal set-valued map coincides with the red dot at (1, 1, 1) for t ∈ (−3,−2],
moves along the blue curve (−t/2,−t/2, t2/2−1) for t ∈ (−2, 2)\{0}, and covers the whole red top edge
{(x, y,−1)|x+ y = 0} at t = 0.

The optimal set-valued map for (D1
t ) is

D∗(t) =



−t t/2 t/2

t/2 −(t+ 1)/2 1/2

t/2 1/2 −(t+ 1)/2

 for t ∈ (−3,−2),

t2/2 t/2 t/2

t/2 1/2 1/2

t/2 1/2 1/2

 for t ∈ [−2, 2).

At t = −2, D∗(t) has a non-differentiable point (Def. 3.6) too. Indeed:

d

dt
D∗(t)|t=−2− =

−1 0.5 0.5
0.5 −0.5 0
0.5 0 −0.5

 ̸=

−2 0.5 0.5
0.5 0 0
0.5 0 0

 =
d

dt
D∗(t)|t=−2+ .

For t ∈ (−3, 2) \ {−2} the primal-dual pair of solutions is strictly complementary. Being both
unique solutions for every t ∈ (−3, 2) \ {0}, we conclude by Lemma 2.22 and Theorem 2.23 that
for t ∈ (−3, 2) \ {−2, 0} the primal-dual trajectory of solutions consists of regular points.

Notice that −2 and 0 are singular times for the parameterization interval T = (−3, 2). Indeed,
at t = −2 there is a loss of strict complementarity (the rank of both primal and dual solution is
1), while at t = 0 there is a loss of primal uniqueness, hence a dual degenerate solution.

Note that this example illustrates Theorem 3.16, as there exists a non-singular time t̂ ∈ (−3, 2)
(Def. 2.21). Take for example t̂ = 1: equation (3) has a finite set of 8 solutions, which can be
described as the intersections in R6 of 3 sets, each of which is the union of 2 hyperplanes, with
3 hyperplanes. If we set

(X,Z) =

1 x y
x 1 z
y z 1

 ,

−α 1/2 1/2
1/2 −β 1/2
1/2 1/2 −γ

 ,
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then equation (3) can be rewritten as:

x = α+ β − γ

y = α− β + γ

z = −α+ β + γ

(1 + α− β − γ)(1 + β + γ) = 0

(1− α+ β − γ)(1 + α+ γ) = 0

(1− α− β + γ)(1 + α+ β) = 0.

(6)

The solutions of this system are:

(− 1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ), (1, 1, 1, 1, 1, 1),

(1, 1,−2, 1,− 1
2 ,−

1
2 ), (−1,−1, 1,−1, 0, 0),

(1,−2, 1,− 1
2 , 1,−

1
2 ), (−1, 1,−1, 0,−1, 0),

(−2, 1, 1,− 1
2 ,−

1
2 , 1), (1,−1,−1, 0, 0,−1).

It is then possible to check that each of these 8 points makes the Jacobian (5) invertible, hence
guaranteeing that t̂ = 1 is a non-singular time, so that the hypothesis of Theorem 3.16 are
satisfied. Notice that the first solution above corresponds to the optimal primal-dual solution at
t̂ = 1.

4.2 Discontinuous non-isolated multiple points

For t ∈ T = (−2, 1), consider the SDP

min tx+ ty + z

s.t.


1 x y 0
x 1 z 0
y z 1 0
0 0 0 1 + x+ y + z

 ⪰ 0 (P2
t )

for which

P∗(t) =




1 −t/2 −t/2 0

−t/2 1 t2

2 − 1 0

−t/2 t2

2 − 1 1 0

0 0 0 t2

2 − t

 for t ∈ (−2, 0),



1 a b 0

a 1 −1 0

b −1 1 0

0 0 0 0

∣∣∣ a+ b = 0

a, b ∈ [−1, 1]

 for t ∈ [0, 1).

The optimal set-valued map P∗(t) is continuous for every t ∈ (−2, 1) \ {0}, it is single-valued
for every t ∈ (−2, 0), and it is multi-valued for every t ∈ [0, 1), as for every t ∈ [0, 1) the optimal
face at t is 1-dimensional. A loss of inner semincontinuity occurs at t = 0. Hence, t = 0 is a
discontinuous non-isolated multiple point, according to Def. 3.8.

19



Figure 2: Trajectory of solutions of (P2
t ). Its feasible set is time-invariant and it is the Cayley

spectrahedron (orange) intersected with half space {(x, y, z)|1 + x + y + z ≥ 0} (green). Its optimal
set-valued map moves along the blue curve (−t/2,−t/2, t2/2 − 1) for t ∈ (−1, 0), and covers the whole
red top edge {(x, y, z)|x+ y = 0, z = −1} for t ∈ [0, 1).

4.3 Continuous bifurcation point

For t ∈ T = (−1, 1), consider the primal SDP

min x11

s.t. x44 − x33 = 0

x22 = 1

2x12 + x33 + x44 = −t

X ⪰ 0

(P3
t )

for which

P∗(t) =





0 0 0 0

0 1 a b

0 a −t/2 c

0 b c −t/2


∣∣∣∣∣ a2 + b2 + c2 ≤ t2

4 − t

− t
2 (a

2 + b2) + c2 − 2abc ≤ t2

4

 for t ∈ (−1, 0),


t2/4 −t/2 0 0

−t/2 1 0 0

0 0 0 0

0 0 0 0

 for t ∈ [0, 1).

The optimal set-valued map P∗(t) is continuous for every t ∈ (−1, 1), it is multi-valued for every
t ∈ (−1, 0), being there a 3-dimensional face, and it is single-valued for every t ∈ [0, 1). Hence
t = 0 is a continuous bifurcation point for (P3

t ) according to Def. 3.10 (with reversed time, see
Remark 3.12).

When there exists a continuous bifurcation point it is necessary that all the times of the
parameterization interval are singular according to Def. 2.21. In other words, at any time t ∈
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(−1, 1) there exists a primal-dual point which is either degenerate or not strictly complementary.
Indeed, the dual SDP to (P3

t ) is

max y − tz

s.t.


1 −z 0 0
−z −y 0 0
0 0 −x− z 0
0 0 0 x− z

 ⪰ 0, (D3
t )

which is equivalent to max{y + tz | y + z2 ≤ 0, −z ≤ x ≤ z} and for which

D∗(t) =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 for t ∈ (−1, 0],




1 t/2 0 0

t/2 t2/4 0 0

0 0 −a 0

0 0 0 a+ t


∣∣∣∣∣ a ∈ [−t, 0]

 for t ∈ (0, 1).

The dual optimal set-valued map D∗(t) is continuous for every t ∈ (−1, 1), single-valued for
every t ∈ (−1, 0], and it is multi-valued for every t ∈ (0, 1), being there a 1-dimensional face.
Thus, t = 0 is a continuous bifurcation point for (D3

t ), according to Def. 3.10.

In particular, a pair of primal-dual solutions for (P3
t ,D

3
t ) is not unique, hence degenerate, for

every t ∈ (−1, 1) \ {0}; for t = 0, there is a unique pair of primal-dual solutions for which
however strict complementarity does not hold. This implies that all t ∈ (−1, 1) are singular
times.

Figure 3: Trajectory of solutions of (D3
t ). Its feasible set is time-invariant and it is the set {(x, y, z)|y +

z2 ≤ 0, −z ≤ x ≤ z} (orange). Its optimal set-valued map coincides with the red dot at (0, 0, 0) for
t ∈ (−1, 0]. At t = 0, (0, 0, 0) is a continuous bifurcation point, as for every t ∈ (0, 1) the solution is
multi-valued and equal to the set {(x, y, z)|x ∈ [−t/2, t/2], y = −t2/4, z = −t/2}. In the picture, the
blue segments illustrate the optimal multiple-valued solution for t = {0.1, 0.2, . . . , 0.9, 1}
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4.4 Irregular accumulation points

For t ∈ T = (−1, 1), consider the SDP

min f(t)(x− y) + z

s.t.


1 x y 0 0
x 1 z 0 0
y z 1 0 0
0 0 0 g(t) x− y
0 0 0 x− y g(t)

 ⪰ 0 (P4
t )

where

f(t) :=

{
t sin π

t if t > 0,

0 otherwise,
and g(t) :=

{
2t if t > 0,

0 otherwise.

For t ≤ 0 the feasible region is the intersection between Cayley spectrahedron and the plane
x−y = 0. For t > 0 the feasible region is the intersection between Cayley spectrahedron and the
region x− y ∈ [−2t, 2t]. Expressing the solutions of P(4t ) in terms of the variables x(t), y(t), z(t),
we have:

(x(t), y(t), z(t)) =


(0, 0,−1) for t ∈ (−1, 0],

(t,−t,−1) for t ∈
(

1
2k−1 ,

1
2k

)
, k = 1, 2, . . .

{(α,−α,−1) | α ∈ [−t, t]} for t = 1
k , k = 1, 2, . . .

(−t, t,−1) for t ∈
(

1
2k ,

1
2k+1

)
, k = 1, 2, . . .

For every t ∈ (−1, 0], P∗(t) is continuous and single-valued. The parameter sequence
{tk}∞k=1 ⊆ (0, 1] defined by tk := 1

k is such that limk→∞ tk = 0 and at each tk a loss of inner
semi-continuity occurs. Hence, t = 0 is an irregular accumulation point, according to Def. 3.11

Figure 4: Graph of the x coordinate of the optimal set of (P 4
t ) as a function of time t. The blue segments

correspond to regular points, the red dot corresponds to an irregular accumulation point, and the orange
vertical segments correspond to discontinuous isolated multiple-points, where the solution is multiple
valued.

In the following, we also provide an example of an accumulation point for a sequence of
continuous bifurcation points.
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For t ∈ (−1, 1), consider the SDP

min z

s.t.


1 x y 0 0
x 1 z 0 0
y z 1 0 0
0 0 0 2h(t) x− y
0 0 0 x− y 2h(t)

 ⪰ 0, (P5
t )

where

h(t) :=

{
t sin2 π

t if t > 0,

0 otherwise.

For t ≤ 0 and for t = 1/k, k = 1, 2, . . . the feasible region is the intersection between Cayley
spectrahedron and the plane x − y = 0, while for t ∈ (1/k, 1/(k + 1)) , k = 1, 2, . . . the feasible
region is the intersection between Cayley spectrahedron and the region x − y ∈ [−2h(t), 2h(t)].
Writing the solutions of (P5

t ) in terms of the variables x(t), y(t), z(t), we have:

(x(t), y(t), z(t)) =


(0, 0,−1) for t ∈ (−1, 0],

{(α,−α,−1) | α ∈ [−h(t), h(t)]} for t ∈
(

1
k ,

1
k+1

)
, k = 1, 2, . . .

(0, 0,−1) for t = 1
k , k = 1, 2, . . .

For every t ∈ (−1, 1), P∗(t) is continuous. The parameter sequence {tk}∞k=1 ⊆ (0, 1] defined
by tk := 1

k is such that limk→∞ tk = 0 and each tk is a continuous bifurcation point. Hence,
t = 0 is an irregular accumulation point, according to Def. 3.11.

Figure 5: Graph of the x coordinate of the optimal set of (P5
t ) as a function of time t. The blue segment

consists of regular points, the red dot corresponds to an irregular accumulation point, and the orange
dots correspond to continuous bifurcation points. The gray region corresponds to times intervals where
the optimal solution is multi-valued.

5 Discussion

Our approach draws upon a long history of work in parametric optimization. In particular, the
pioneering work of [11, Chapter 2] outlined a classification of solutions to univariate parametric
non-linear constrained optimization problems. There, precise algebraic conditions are shown for
points satisfying first-order optimality conditions to be non-degenerate (see Remark 3.14). These
points exhibit a regular behavior. For degenerate points, four different types are defined according
to which subset of non-degeneracy conditions is violated. Analogously, our approach also starts by
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considering algebraic conditions that ensure a regular behavior, but our classification of irregular
points was made according to the local behavior of the trajectory of solutions at the point
considered, rather than according to different sets of algebraic conditions.

We notice that regular points and discontinuous isolated multiple points, defined as in
Definitions 3.4 and 3.7 respectively, were first identified by [14] (see e.g. Example 1 there)
within the optimal partition approach to parametric analysis for linearly parametrized SDP.
Furthermore, non-differentiable points (Definition 3.6) can be easily derived from their results.

Our work can hence be seen as a completion of the effort of [14]. Likewise, in our analysis,
Theorem 3.16 relies on Theorem 2.24 and Theorem 2.23. There, the proof of Theorem 2.24 uses
the technique of [14], while Theorem 2.23 is essentially an application of the implicit function
theorem, implying that this can be applied almost everywhere. Theorem 3.15 suggests that
when, instead, the assumptions for implicit function theorem do not hold almost everywhere,
this allows for a broader range of possible behaviors, listed in the last row of Table 1.

Problem assumptions Type of points
SDP with LICQ, continuous data, Regular points

strict feasibility, and a non-singular time Non-differentiable points
Discontinuous isolated multiple points

SDP with LICQ, continuous data, Regular points
strict feasibility, without a non-singular time Non-differentiable points

Discontinuous isolated multiple points
Discontinuous non-isolated multiple points
Continuous bifurcation points
Irregular accumulation points

Table 1: Assumptions on parametric SDP and associated possible type of points

From the point of view of formulating a parametric SDP, the key insight of [14] and ours is that
even seemingly strong and standard assumptions such as the continuity of the data and primal-
dual strict feasibility are not sufficient to prevent pathological behavior. We presented a complete
characterization of such behaviors. Thereby, we showed that guaranteeing the existence of a
generic non-singular point along the trajectory suffices to prevent highly pathological behaviors.
However, this does not prevent from a finite number of losses of differentiability or isolated losses
of uniqueness to occur.

One may also be interested in understanding how the main result of this paper specializes to
restricted classes of parametric SDP, such as parametric linear programming (LP) and parametric
second order cone programming (SOCP). In the first case, if the data are assumed to be
continuous functions, one can easily construct an example of each type of behaviors of the
trajectory of solutions described in Definitions 12-17.

For example, for t ∈ (−1, 1) consider:

1. min{x : x ≥ 1 + t}.

2. min{x : x ≥ |t|}.

3. min{tx : −1 ≤ x ≤ 1}.

4. min{f(t)x : −1 ≤ x ≤ 1}, with f(t) = t if t ≤ 0, otherwise f(t) = 0.

5. min{0x : −g(t) ≤ x ≤ g(t)}, with g(t) = 0 if t ≤ 0, otherwise g(t) = t.

6. min{0x : −h(t) ≤ x ≤ h(t)}, with h(t) = 0 if t > 0, otherwise h(t) = t sin2 π
t .
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At t∗ = 0, x∗ = 0 is 1. a regular point, 2. a non-differentiable point, 3. an isolated discontinuous
multiple point, 4. a non-isolated discontinuous multiple point, 5 a continuous bifurcation point,
6 an irregular accumulation point. Hence, restricting to the class of parametric LP does not
exclude any type of point. It follows that also in the case of SOCP, a class that generalize LP,
all the type of points can possibly appear. From this point of view, it is surprising that the
trajectories of solution to parametric SDP, a class of optimization problems much wider than
LP, does not present, in the general framework that we adopted, any behavior which does not
already show up in parametric LP. However, we believe that under a set of assumptions more
specific than the one that we adopted in Theorem 3.15, some type of behaviors may be ruled out
in parametric LP, but not in parametric SDP.

Take as an example non-differentiable points (see Def. 3.6). If one assumes that the time
dependence of the data is smooth, e.g. polynomial, non differentiable points can still appear in
parametric SDP (see the first example of Section 4). This is due to the facial geometry of SDP,
where positively curved surfaces appear, which must then entirely consist of extreme points (0-
dimensional faces). Instead, in LP, extreme points are always isolated, so that when the solution
is unique, this must coincide with a fixed extreme point. If the time dependence is smooth,
this should imply that the feasible set, hence its extreme points, should also move smoothly,
preventing non-differentiable points to show up. The investigation of such distinctions between
parametric LP and parametric SDP may be an interesting direction for future research.

6 Conclusion

We used set-valued analysis to describe and study the trajectory of solutions to parametric
SDP. The analysis we carried out brought us to define six different types of points, according to
the local structure of the solutions trajectory. Our main result consists in proving that under
standard assumptions, there are no other types of points.

One could extend our research by weakening our assumptions: continuity of the data dependence
on the parameter, and primal and dual strict feasibility throughout the parameterization interval.
These requirements avoid highly degenerate situations. In particular, without continuity of the
data, one can expect the trajectory to potentially present a lot of irregularities, e.g., it may fail
to be both inner and outer semi-continuous, while, as Theorem 2.16 shows, under the continuity
of the data outer semi-continuity is ensured. When strict feasibility is lost, two additional forms
of degenerate behavior might occur: the optimal value may not be attained at any feasible point,
or there may be a strictly positive duality gap between the primal and dual optimal values. It
is not clear whether there could be other types too, perhaps akin to irregular accumulation points.

Finally, the properties of specific classes of trajectories of solutions in specific applications
may be of considerable interest.

Acknowledgments.

This research has been supported by the OP RDE funded project CZ.02.1.01/0.0/0.0/16 019/0000765
“Research Center for Informatics”.

25



References

[1] A. A. Ahmadi and B. El Khadir. Time-varying semidefinite programs. Mathematics of
Operations Research, 46(3):1054–1080, 2021.

[2] R. Al-Salih and M. Bohner. Linear programming problems on time scales. Applicable
Analysis and Discrete Mathematics, 12(1):192–204, 2018.

[3] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton. Complementarity and nondegeneracy
in semidefinite programming. Mathematical Programming, 77(1):111–128, 1997.

[4] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton. Primal-dual interior-point methods
for semidefinite programming: convergence rates, stability and numerical results. SIAM
Journal on Optimization, 8(3):746–768, 1998.

[5] M. F. Anjos and J. B. Lasserre. Handbook on Semidefinite, Conic and Polynomial
Optimization, volume 166. Springer, 2011.

[6] D. Drusvyatskiy, H. Wolkowicz, et al. The many faces of degeneracy in conic optimization.
Foundations and Trends in Optimization, 3(2):77–170, 2017.

[7] B. El Khadir. Semidefinite Representations in Semialgebraic Optimization and Dynamics-
Oriented Learning. PhD Thesis, Princeton University, 2020.

[8] J. N. Franklin. Matrix Theory. Courier Corporation, 2012.

[9] D. Goldfarb and K. Scheinberg. Interior point trajectories in semidefinite programming.
SIAM Journal on Optimization, 8(4):871–886, 1998.

[10] D. Goldfarb and K. Scheinberg. On parametric semidefinite programming. Applied
Numerical Mathematics, 29(3):361–377, 1999.

[11] J. Guddat, F. G. Vazquez, and H. T. Jongen. Parametric Optimization: Singularities,
Pathfollowing and Jumps. Springer, 1990.

[12] J.-P. Haeberly. Remarks on nondegeneracy in mixed semidefinite-quadratic programming.
Unpublished memorandum, 1998.

[13] J. D. Hauenstein, A. C. Liddell Jr, S. McPherson, and Y. Zhang. Numerical algebraic
geometry and semidefinite programming. Results in Applied Mathematics, 11:100166, 2021.

[14] J. D. Hauenstein, A. Mohammad-Nezhad, T. Tang, and T. Terlaky. On computing the
nonlinearity interval in parametric semidefinite optimization. Math. Oper. Res., 47(4):2989–
3009, 2022.

[15] D. Henrion, M. Korda, and J. B. Lasserre. The Moment-SOS Hierarchy. World Scientific,
2020.

[16] W. W. Hogan. Point-to-set maps in mathematical programming. SIAM Review, 15(3):591–
603, 1973.

[17] S. G. Krantz and H. R. Parks. The Implicit Function Theorem: History, Theory, and
Applications. Springer Science & Business Media, 2002.

[18] J. B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM
Journal on optimization, 11(3):796–817, 2001.

26



[19] J. Lavaei and S. H. Low. Zero duality gap in optimal power flow problem. IEEE Transactions
on Power Systems, 27(1):92–107, 2011.

[20] J. Liu, J. Marecek, A. Simonetto, and M. Takač. A coordinate-descent algorithm for tracking
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