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Abstract

In many applications, solutions of convex optimization problems must
be updated on-line, as functions of time. In this paper, we consider time-
varying semidefinite programs (TV-SDP), which are linear optimization
problems in the semidefinite cone whose coefficients (input data) depend
on time. We are interested in the geometry of the solution (output data)
trajectory, defined as the set of solutions depending on time. We propose
an exhaustive description of the geometry of the solution trajectory. As
our main result, we show that only 6 distinct behaviors can be observed
at a neighborhood of a given point along the solution trajectory. Each
possible behavior is then illustrated by an example.

1 Introduction

A semidefinite program (SDP) is a convex constrained optimization problem
wherein one wants to optimize a linear objective function over the intersection
of the cone of positive semidefinite matrices with an affine space. In this paper,
a time-varying semidefinite program (TV-SDP) is an SDP

min
X∈Sn

C(t) •X

s.t. A(X) = b(t)

X � 0

(Pt)

whose coefficients depend on a time parameter t belonging to a given real open
interval T = (ti, tf ) ⊆ R.

∗CONTACT A. Bellon. Email: antonio.bellon@fel.cvut.cz
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The goal of (Pt) is to optimize a time-varying linear objective over a non-
linear time-varying feasible region, whose dependence is restricted to the right-
hand side of the equality constraints. The objective is to minimize the scalar
product C(t) • X between two matrices of Sn, the vector space of symmetric
matrices of size n with real entries. The time-varying feasible region is an in-
tersection of the semidefinite cone Sn+ = {X ∈ Sn | vTXv ≥ 0, ∀v ∈ Rn} with a
time-varying affine subspace described by linear equations. The notation X � 0
is a shortcut for X ∈ Sn+. The notation A(X) = b(t) models linear equations
that X must also satisfy: Ai • X = bi(t) for i = 1, . . . ,m, where Ai ∈ Sn are
given matrices and bi(t) are given time-varying scalars. Thus, problem (Pt) is
convex and its feasible region at any value of parameter t ∈ T is an affine section
of the semidefinite cone, often referred to as a spectrahedron. In Section 2, we
present our notation in more detail.

TV-SDP appears in numerous applications. For example, in power sys-
tems, semidefinite programming relaxations of the so-called alternating-current
optimal power flow (ACOPF) are very successful, cf. Lavaei and Low (2011).
Tracking of a trajectory of solutions to ACOPF with supply and demand vary-
ing over time is crucial for a transmission system operator, who decides on the
activation of ancillary services to balance the transmission system, cf. Liu et al.
(2018). In general, our goal is to understand certain properties of such solution
trajectories, which would make it possible to design algorithms for TV-SDP
with guarantees on their performance.

Background and Contribution

SDP can be thought of as a generalization of linear programming (LP) with
a number of applications in data science. Anjos and Lasserre (2011) offered a
snapshot of the state of the art in the areas of SDP, conic optimization, and poly-
nomial optimization. Polynomial optimization problems can be approximated
via a hierarchy of SDP problems of increasing size, developed by Lasserre (2001),
also known as the moments - sum of squares (SOS) hierarchy. Many problems
in control theory can be reduced to solving polynomial equations, polynomial
inequalities, or polynomial differential equations, and they can hence be often
solved approximately by the moment-SOS hierarchy, see Henrion et al. (2020)
for a recent overview. Applications in theoretical computer science include ap-
proximation algorithms for fundamental problems like the Max-Cut problem or
coloring problems, quantum information theory, robust learning, and estima-
tion.

The geometry of SDP, that is, the geometry of the feasible region of an
SDP problem, is well understood. We refer to (Wolkowicz et al. 2012, Chapter
3) for an excellent overview. Likewise, solution regularity (duality, Slater’s
condition, uniqueness of the solution, strict complementarity, non-degeneracy)
and its prerequisites are well understood; see for example Alizadeh et al. (1997)
where the relation between uniqueness of the solution, non-degeneracy of the
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solutions and strict complementarity is discussed.
Here, our purpose is to study the behavior of the trajectory of the solutions

to TV-SDP. Around points of the trajectory satisfying strict complementarity
and uniqueness, by means of the implicit function theorem, one can show that
the trajectory defines a branch of a smooth curve (Theorem 2.26). When this
fails to happen, a number of irregular behaviors may arise. The main result of
this paper (Theorem 3.11) consists of a complete classification of such points.
So far, to the best of our knowledge, a complete classification of types of be-
havior of points making up the trajectory of solutions has not been proposed.
Here, we suggest one based on a purely logical construction, whose definitions
use set-valued analysis. In particular, we use the Painlevé-Kuratowski exten-
sion of the notion of continuity to the case of set-valued functions, so as to
reason about continuity properties at values of the parameter, when there are
multiple solutions. Informally, we now define the types of points that our classi-
fication comprises. This is based on the geometry of the trajectory of solutions
parametrized over a time interval. Before a given time, we assume that the tra-
jectory is a continuous curve. Then at the time of interest, we can distinguish
between the following situations:

• Regular point: the trajectory is single-valued and Fréchet differentiable;

• Non-differentiable point: the trajectory is single-valued but not con-
tinuously differentiable;

• Continuous bifurcation point: the trajectory splits into several dis-
tinct branches. This results in a loss of uniqueness which still preserves
continuity;

• Discontinuous isolated multiple point: a loss of continuity causes
a loss of uniqueness of the solution, implying a multiple-valued solution.
After the point, uniqueness is restored, and hence the loss of uniqueness
is isolated;

• Discontinuous non-isolated multiple point: a loss of continuity causes
a loss of uniqueness of the solution, implying a multiple-valued solution.
After the point, uniqueness is not restored hence the loss of uniqueness is
not isolated;

• Irregular accumulation point: accumulation point of a set made of
either bifurcation points or discontinuous isolated multiple points.

The formal definitions of the points discussed above can be found in Def. 3.1,
3.3, 3.4, 3.5, 3.6, and 3.7

We believe that a first contribution of this paper is precisely the defini-
tion of these types of points. In this respect, our approach was deeply in-
spired by (Guddat et al. 1990, Chapter 2) where a classification of solutions
to univariate parametric nonlinear constrained optimization problems (NLPs)
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is proposed. There, critical points satisfying first-order optimality (or KKT)
conditions are considered. Under precise algebraic conditions, these points are
“non-degenerate” (see Remark 3.10). The local behavior of such points is then
shown to be regular. If a critical point is instead “degenerate” then, according
to which algebraic condition is satisfied, the point is classified into four different
types. Our approach is the same in spirit, in that we also start by considering al-
gebraic conditions ensuring a regular behavior. As a main difference, we classify
irregular points according to the behavior of the trajectory of solutions at the
point considered rather than according to different sets of algebraic conditions
(see Remark 3.10). The main result that we present in this paper is Theorem
3.11, which we informally state here.

Theorem (Informal statement of Theorem 3.11). Under assumptions of Lin-
ear Independence Constraint Qualification (LICQ, cf. Assum. 1), existence of
Slater’s point (cf. Assum. 2) and continuity of the data with respect to time
(cf. Assum. 3):

(i) If the trajectory has at least a non-singular point (cf. Def. 2.24), then
the trajectory is comprised of only regular points (cf. Def. 3.1), non-
differentiable points (cf. Def. 3.3), or isolated multiple points (cf. Def.
3.5). In other words, bifurcation (cf. Def. 3.4) points, non-isolated discon-
tinuous multiple points (cf. Def. 3.6), and irregular accumulation points
(cf. Def. 3.7) cannot appear.

(ii) Otherwise, the trajectory can be comprised of points of all six types de-
scribed above.

Previous Work

Following the pioneering contribution of Goldfarb and Scheinberg (1999), who
first studied the properties of the optimum as a function of a varying parameter
and extended the concept of the optimal partition from LP to SDP, a number
of important papers appeared recently. In decreasing order of generality of the
dependence of problem data (coefficients) on the parameter (time):

• Al-Salih and Bohner (2018) studied LP on time scales, which allows for the
mixing of difference and differential operators in a broad class of extensions of
LP models. While very elegant, mathematically, it seems non-trivial to extend
this approach to TV-SDP;

•Wang et al. (2009) studied a broad family of parametric optimization prob-
lems, which are known as separated continuous conic programming (SCCP).
They developed a strong duality theory for SCCP and proposed a polynomial-
time approximation algorithm that solves an SCCP to any required accuracy.
This algorithm does not, however, seem easy to extend to TV-SDP;

•Mohammad-Nezhad (2019), Hauenstein et al. (2019) andMohammad-Nezhad and Terlaky
(2020) are perhaps the closest to our work, in spirit. Their dependence of the
problem on the data is assumed to be linear, which is a more restrictive as-
sumption than the one we use. Moreover, they do not provide a complete
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characterization of the possible behaviors of the trajectory of the solutions. In
part, we build upon their theoretical results, but instead of building upon the
concepts of non-linearity intervals, invariancy intervals, and transition points,
we use a purely set-valued analysis approach;

• El Khadir (2020) and Ahmadi and Khadir (2021) are perhaps the closest
to our work, in name. They studied the setting where the data vary with known
polynomials of the parameter and showed that under a strict feasibility assump-
tion, restricting the solutions to be polynomial functions of the parameter does
not change the optimal value of the TV-SDP. They also provided a sequence
of SDP problems that give upper bounds on the optimal value of a TV-SDP
converging to the optimal value. In contrast, we use a more general setting,
where we only assume continuity of the map from the parameter to the prob-
lem data. Moreover, we provide a complete geometric characterization of the
solutions trajectory.

2 Preliminaries

In this section, we expose the tools needed to state and prove our main result.
In Subsection 2.1 we first review geometric properties of SDP. In Subsection
2.2 we survey continuity properties of the optimal and feasible sets of TV-SDP,
considered as set-valued maps, in terms of inner and outer semicontinuity and
Painlevé-Kuratowski continuity, to adopt the notions of Rockafellar and Wets
(2009). Then, in Subsection 2.3 we show that the existence of a unique pair of
strictly complementary primal and dual solutions at a value of the time param-
eter t̂ implies that there is a neighbourhood of t̂ where both the primal and dual
optimal trajectory have a regular behavior. Finally, we observe that under fairly
weak assumptions, among which the existence of a non-singular point in the pa-
rameterization interval, the number of points where strict complementarity or
uniqueness is lost is finite.

2.1 SDP optimality conditions and properties

In this section, we assume for notational simplicity that the data b, C are not
parameter-dependent. Let us review geometric properties of SDP in primal form

min
X∈Sn

C •X

s.t. A(X) = b

X � 0

(P)

and dual form
max

y∈Rm, Z∈Sn
bT y

s.t. A∗(y) + Z = C

Z � 0.

(D)
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Remark 2.1. Without any loss of generality we assume that the linear operator
A is surjective (see Assum. 1). Then, given a matrix Z ∈ Sn satisfying the dual
constraint A∗(y) + Z = C for some y ∈ Rm, y can be uniquely determined by
solving the linear system (AA∗)y = A(C − Z). We exploit this fact and when
discussing a dual point (y, Z) we omit y and refer to a dual point simply as a
matrix Z ∈ Sn.

We call a matrix X satisfying the constraints of (P ) a primal feasible point,
a matrix Z satisfying the constraints of (D) a dual feasible point, a pair of
matrices (X,Z) satisfying the constraints of (P,D) a primal-dual feasible point.
We call a solution X∗ to (P ) a primal optimal point, a solution Z∗ to (D) a
dual optimal point, a solution (X∗, Z∗) to (P,D) a primal-dual optimal point.
First, we recall that for the primal-dual pair of TV-SDPs (P,D) a set of first
order optimality sufficient conditions is available. Given two matrices X and Z
of Sn, their scalar product is denoted by X •Z = trace(XZ) =

∑n

i,j=1 Xi,jZi,j .

Definition 2.2 (KKT conditions). A primal-dual feasible point (X,Z) ∈ Sn ×
Sn satifies the Karush-Kuhn-Tucker conditions (KKT) for (P,D) if

A(X) = b
A∗(y) + Z = C
X,Z � 0
X • Z = 0

(KKT)

for some y ∈ Rm.

It is well-known that for a convex optimization problem, KKT conditions
are sufficient for optimality.

Proposition 2.3. Any primal-dual feasible point (X,Z) satisfying the KKT
conditions is optimal for (P,D).

Definition 2.4 (Strict feasibility). We say that strict feasibility holds for (P )
(or that (P ) is strictly feasible) if there exists an interior point of the primal
feasible region. That is, there exists a matrix X ≻ 0 satisfying A(X) = b.
Similarly, strict feasibility holds for (D) (or (D) is strictly feasible) if there
exists an interior point of the dual feasible region. That is, there exist y ∈ Rm

and a matrix Z ≻ 0 satisfying A∗(y) + Z = C.

Under strict feasibility, the KKT conditions are also necessary.

Theorem 2.5 (See Theorem 2.3.1 in (Drusvyatskiy et al. 2017) or Theorem 2.2
in (De Klerk 2006)). If strict feasibility holds for both (P ) and (D), then for any
primal-dual optimal point (X,Z), the duality gap is zero, i.e. X • Z = 0 and
(P ) and (D) have the same optimal value. That is, strong duality is a necessary
condition for optimality.

From X • Z = 0 and X,Z � 0 it follows that XZ = ZX = 0. In par-
ticular, X,Z � 0 commute and they are therefore simultaneously digonaliz-
able, i.e., they share a basis of orthonormal eigenvectors: X = QΛQT , Λ =
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diag(λ1, . . . , λn), Z = QΩQT , Ω = diag(ω1, . . . , ωn), QQT = In, where λ1, . . . , λn

are the eigenvalues of X , ω1, . . . , ωn the eigenvalues of Z and the columns of Q
are the common eigenvectors of X,Z. Since XZ = 0, it follows that λiωi = 0
for all i = 1, . . . , n. This latter equation expresses complementary slackness
in terms of the eigenvalues of X and Z. Let r = rank(X) and s = rank(Z),
then complementarity implies r + s ≤ n. We can order the common basis
of eigenvectors so that X = Q diag(λ1, . . . , λr , 0, . . . , 0)Q

T = QPΛPQ
T
P , Z =

Q diag(0, . . . , 0, ωn−s+1, . . . , ωn)Q
T = QDΩDQT

D, where ΛP = diag(λ1, . . . , λr),
ΩD = diag(ωn−s+1, . . . , ωn), λ1, . . . , λr are the strictly positive eigenvalues of X
and the columns of QP are the eigenvectors relative to λ1, . . . , λr. Analogously,
ωn−s+1, . . . , ωn are the strictly positive eigenvalues of Z and the columns of
QD are the eigenvectors relative to ωn−s+1, . . . , ωn. Defining QN as the matrix
formed by the columns of Q that are not in QP nor in QD, we get a partition
of the columns of Q so that

Q = [QP , QN , QD]. (1)

Definition 2.6 (Strict complementarity). A primal-dual optimal point (X,Z)
is said to be strictly complementary if rank(X)+ rank(Z) = r+ s = n. In terms
of the eigenvalues of X and Z, this is equivalent to the following condition:

λiωi = 0,
λi > 0 ⇐⇒ ωi = 0,

for all i = 1, . . . , n. (2)

A primal-dual problem (P,D) satisfies strict complementarity if there exists a
strictly complementary primal-dual optimal point (X,Z).

We now introduce the definitions of primal and dual non-degeneracy. These
conditions guarantee both primal and dual uniqueness of the solution, see Alizadeh et al.
(1997).

Definition 2.7 (Primal non-degeneracy). We say that a primal feasible point
X is primal non-degenerate if

N (A) + TX = S
n,

where N (A) = {Y ∈ Sn|Ai • Y = 0 for all i = 1, . . . ,m} and

TX =

{

Q

(

U V
V T 0

)

QT
∣

∣

∣ U ∈ S
r, V ∈ R

r×(n−r)

}

is the tangent space at X in Sn+ with r = rank(X).

Definition 2.8 (Dual non-degeneracy). We say that a dual feasible point Z is
dual non-degenerate if

R(A) + TZ = S
n,

where R(A) = span(A1, . . . , Am) and

TZ =

{

Q

(

0 V
V T W

)

QT
∣

∣

∣ W ∈ S
s, V ∈ R

(n−s)×s

}

is the tangent space at Z in Sn+, s = rank(Z).
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Proposition 2.9 (Theorem 6 in Alizadeh et al. (1997)). Let X be a primal
feasible point with rank(X) = r and let QP ∈ Rn×r, QND = [QN , QD] ∈
Rn×(n−r) as defined in (1). Then X is primal non-degenerate if and only if the
following matrices are linearly independent in Sn:

(

QT
PAkQP QT

PAkQND

QT
NDAkQP 0

)

, for k = 1, . . . ,m. (3)

Proposition 2.10 (Theorem 9 in Alizadeh et al. (1997)). Let Z be a dual fea-
sible point with rank(Z) = s and let QPN = [QP , QN ] ∈ Rn×(n−s), QD ∈ Rn×s

as defined in (1). Then Z is dual non-degenerate if and only if the following
matrices span Sn−s:

QT
PNAkQPN , for k = 1, . . . ,m. (4)

Our interest in non-degeneracy is motivated by the following results.

Theorem 2.11 (Theorems 7 and 10 in Alizadeh et al. (1997)). If there exists
a primal non-degenerate optimal point, then there exists a unique dual optimal
point. Conversely, if there exists a dual non-degenerate optimal point, then there
exists a unique primal optimal point.

Definition 2.12 (Non-degeneracy). We say that a primal-dual feasible point
(X,Z) is non-degenerate if X is primal non-degenerate and Z is dual non-
degenerate.

Corollary 2.13. If (X∗, Z∗) is a primal-dual non-degenerate optimal point then
(X∗, Z∗) is the unique primal-dual optimal point for (P,D).

Under strict complementarity, the converse of Theorem 2.11 holds true:

Theorem 2.14 (Theorem 11 in Alizadeh et al. (1997)). Let (P,D) have a
strictly complementary primal-dual optimal point (X∗, Z∗). Then X∗ is a unique
primal optimal solution if and only if Z∗ is dual non-degenerate. Conversely,
Z∗ is a unique dual optimal solution if and only if X∗ is primal non-degenerate.

In other words, under strict complementarity the non-degeneracy of the dual
(primal) problem is equivalent to the uniqueness of the primal (dual) problem.

2.2 Set-valued analysis for TV-SDP

We are interested in studying the trajectories of solutions to the primal TV-SDP

min
X∈Sn

C(t) •X

s.t. A(X) = b(t)

X � 0

(Pt)

8



with time parameter t ∈ T = (ti, tf ) ⊂ R. For a given value of t the dual
TV-SDP is

max
y∈Rm, Z∈Sn

b(t)T y

s.t. A∗(y) + Z = C(t)

Z � 0.

(Dt)

Definition 2.15 (Set-valued maps). A set-valued map F from a set T to another
set X maps a point t ∈ T to a non-empty subset of F (t) ⊆ X . In symbols:

F : T ⇒ X

t 7→ F (t) ⊆ X.

We say that F is single-valued at t ∈ T if F (t) is a singleton. We say that F is
multi-valued at t ∈ T if F (t) is neither empty nor a singleton.

Given a primal-dual pair of TV-SDPs (Pt, Dt), we can now define the primal
and dual feasible set maps :

P(t) = {X ∈ S
n
∣

∣ A(X) = b(t), X � 0},
D(t) = {Z ∈ S

n
∣

∣ A∗(y) + Z = C(t), y ∈ R
m, Z � 0}.

The primal and dual optimal value functions are defined as

p∗(t) = min
X∈Sn

{C(t) •X
∣

∣ A(X) = b(t), X � 0},

d∗(t) = max
Z∈Sn

{b(t)T y
∣

∣ A∗(y) + Z = C(t), y ∈ R
m, Z � 0}.

Finally, the primal and dual optimal set maps are

P∗(t) = {X ∈ P(t)
∣

∣ C(t) •X = p∗(t)},
D∗(t) = {Z ∈ D(t)

∣

∣ b(t)T y = d∗(t), A∗(y) + Z = C(t), y ∈ R
m}.

Continuity properties of set-valued maps can be defined in terms of outer and
inner limits, leading to the notion of Painlevé-Kuratowski continuity. First, we
introduce the notion of inner and outer limits of a set-valued map:

Definition 2.16 (Inner and outer limits). Given a set-valued mapping F : T ⇒

X , its inner limit at t̂ ∈ T is denoted by lim inf t→t̂ F (t) and defined as
{

x̂
∣

∣ ∀{tk}∞k=1 ⊆ T such that tk → t̂, ∃{xk}∞k=1 ⊆ X, xk → x̂ and xk ∈ F (tk)
}

,

while its outer limit at t̂ ∈ T is denoted by lim supt→t̂ F (t) and is defined as
{

x̂
∣

∣ ∃{tk}∞k=1 ⊆ T such that tk → t̂, ∃{xk}∞k=1 ⊆ X, xk → x̂ and xk ∈ F (tk)
}

.

Definition 2.17 (Painlevé-Kuratowski continuity). Let F : T ⇒ X be a set-
valued map. We say that F is outer semicontinuous at t̂ ∈ T if

lim sup
t→t̂

F (t) ⊆ F (t̂).
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We say that F is inner semicontinuous at t̂ ∈ T if

lim inf
t→t̂

F (t) ⊇ F (t̂).

Finally, we say that F is Painlevé-Kuratowski continuous at t̂ if it is both outer
and inner semicontinuous at t̂.

Remark 2.18 (Continuity). Note that a single-valued map F : T → X is contin-
uous in the usual sense at a point x ∈ X if and only if it is Painlevé-Kuratowski
continuous at x ∈ X as a multi-valued map F : T ⇒ X . Thus, without ambi-
guity, we will refer to Painlevé-Kuratowski continuity simply as continuity.

First, we list some continuity results on the feasible and optimal set maps.
The proof of Theorem 2.21 in the primal version is an original contribution of
this paper.

Theorem 2.19 (Example 5.8 in (Rockafellar and Wets 2009)). If b(t) and C(t)
are continuous functions of t, then the feasible set maps P(t) and D(t) are outer
semicontinuous at any t ∈ T .

Theorem 2.20 (Theorem 8 in (Hogan 1973)). If b(t) and C(t) are continuous
functions of t, then the optimal set maps P∗(t) and D∗(t) are outer semicon-
tinuous at any t ∈ T .

Naturally, we now investigate the inner continuity of the feasible and optimal
set maps. This property turns out to always hold for the primal and dual feasible
set maps P(t) and D(t) which are then continuous. We have:

Theorem 2.21. Assume that strict feasibility holds at any t ∈ T , that the linear
operator A is surjective, and that b(t) and C(t) are continuous functions of t.
Then the set-valued maps P(t) and D(t) are continuous for every t ∈ T .

Proof. For the dual case, we refer to Lemma 1 in (Hauenstein et al. 2019). We
prove the primal case, in the more general case where the right hand side b(t)
is continuous. Fix t̂ ∈ T and X̂ ∈ P(t̂). Given a sequence of times {tk}∞k=1 with

tk → t̂, we will construct a convergent sequence Xk → X̂ so that Xk ∈ P(tk)
for all sufficiently large values of k. If X̂ ≻ 0 we define

Xk := X̂ +A∗(AA∗)−1
(

b(tk)− b(t̂)
)

.

The definition is well posed because under the assumptions of the theorem
the operator A has full rank, thus AA∗ is invertible. Clearly, A(Xk) = b(tk).
Furthermore, ‖Xk−X̂‖F = ‖A∗(AA∗)−1

(

b(tk)− b(t̂)
)

‖ ≤ CA‖b(tk)−b(t̂)‖ → 0

for some constant CA and by continuity of b(t), so that Xk → X̂ and Xk � 0
for sufficiently large k. If X̂ � 0 and its smallest eigenvalue λmin(X̂) is zero, we
define

Xk := (1 − αk)X̂ + αkX̄ +A∗(AA∗)−1
(

b(tk)− b(t̂)
)

for a fixed X̄ ∈ P(t̂) such that X̄ ≻ 0, which exists by the strict feasibility
assumption, and for a sequence {αk}∞k=1 ⊆ [0, 1] which we shall conveniently
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define in the following. Clearly, A(Xk) = b(tk) and hence we only need to prove
that Xk � 0 or, equivalently, that

λmin

(

(1− αk)X̂ + αkX̄ +A∗(AA∗)−1
(

b(tk)− b(t̂)
)

)

≥ 0,

which holds if

αkλmin(X̄) + λmin

(

A∗(AA∗)−1
(

b(tk)− b(t̂)
))

≥ 0.

Rearranging:

αk ≥ −λmin

(

A∗(AA∗)−1
(

b(tk)− b(t̂)
))

λmin(X̄)
.

We then define αk := max{0, βk}, where

βk := −λmin

(

A∗(AA∗)−1
(

b(tk)− b(t̂)
))

λmin(X̄)
.

For sufficiently large k, βk ≤ 1, so that {αk}∞k=1 ⊆ [0, 1] and thus Xk ∈ P(tk),

since βk → 0, αk → 0 and Xk → X̂.

However, in general, it is not true that the optimal set maps P∗(t) and D∗(t)
are inner semicontinuous. Still, the set of t ∈ T such that P∗(t) or D∗(t) fails to
be inner semicontinuous, is of first category, i.e., countable and nowhere dense.

Theorem 2.22 (Theorem 1 in (Hauenstein et al. 2019)). The subset of points
t ∈ T at which P∗(t) or D∗(t) fails to be continuous is the union of countably
many sets that are nowhere dense in T , in particular, it has empty interior.

However, if the optimal set is single-valued, then it is continuous everywhere:

Proposition 2.23 (Corollary 8.1 in (Hogan 1973)). Assume that strict feasi-
bility holds at any t ∈ T and that b(t) and C(t) are continuous functions of t. If
P∗(t) is single-valued at some t̂, then P∗(t) is continuous at t̂. The same holds
for D∗(t).

2.3 Regularity properties of the TV-SDP optimal set map

Given a primal-dual pair of TV-SDPs (Pt, Dt), we denote a primal-dual point
by (X,Z, t). If at a fixed value of the parameter t̂ ∈ T there exists a primal-dual
non-degenerate optimal point (X∗, Z∗), then, by Proposition 2.11 (X∗, Z∗) is a
unique primal-dual optimal point, and by Proposition 2.23, around t̂ the primal
and dual optimal set maps are continuous single-valued functions. Under strict
complementarity, these functions are analytic. In the following, we provide de-
tails of this fact.
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The optimality conditions (KKT) for (X,Z, t) to be a solution of (Pt, Dt) at
a fixed value of the parameter t ∈ T can be equivalently written as

F (X, y, Z, t) :=





Ã vec(X)− b(t),

ÃT y + vec(Z)− vec(C(t))
1
2 vec (XZ + ZX)



 = 0, (5)

X,Z � 0 (6)

for some y ∈ Rm, where Ã := (vec(A1), . . . . vec(Am))
T

and vec(X) denotes
a linear map stacking the upper triangular part of X , where the off-diagonal
entries are multiplied by

√
2:

vec(X) :=
(

X11,
√
2X12, . . . ,

√
2X1n, X22,

√
2X23, . . . ,

√
2X2n, . . . , Xnn

)T

so that X •X = vec(X)T vec(X).

Definition 2.24 (Singular points). We say that a point (X,Z, t) is singular if
the Jacobian w.r.t (X, y, Z) of F at (X,Z, t)

JF (X, y, Z, t) =





Ã 0 0

0 ÃT Iτ(n)
Z ⊗s In 0 In ⊗s X



 (7)

is not invertible. Otherwise, we say that (X,Z, t) is non-singular.

The following lemma gives equivalent conditions for a primal-dual point
(X,Z, t) to be non-singular.

Lemma 2.25 (Theorem 3.1. in (Alizadeh et al. 1998)). A primal-dual optimal
point (X,Z, t) is non-singular if and only if strict complementarity holds and
(X,Z, t) is non-degenerate.

Note that under strict complementarity Theorem 2.14 holds. Therefore, the
Jacobian of F is non-singular at (X,Z, t) if and only if (X,Z) is a unique primal-
dual optimal point satisfying strict complementarity. We use this result in the
following theorem.

Theorem 2.26. Let (Pt, Dt) be a primal-dual pair of TV-SDPs parametrized
over a time interval T and t̂ ∈ T a fixed value of the time parameter. Suppose
that (X∗, Z∗) is a unique primal-dual optimal and strictly complementary point
for (Pt̂, Dt̂). Then there exists ε > 0 and a unique continuously differentiable
curve (X∗(·), Z∗(·)) defined on (t̂− ε, t̂+ ε) such that (X∗(t), Z∗(t)) is a unique
and strictly complementary primal-dual optimal point to (Pt, Dt) for all t ∈
(t̂− ε, t̂+ ε).

Proof. By Lemma 2.25, we are under the hypothesis of the Implicit Function
Theorem, so that there exists ε′ > 0 and a unique continuously differentiable
curve (X∗(·), y∗(·), Z∗(·)) on (t̂−ε′, t̂+ε′) such that F (X∗(t), y∗(t), Z∗(t), t) = 0

12



for all t ∈ (t̂ − ε′, t̂ + ε′). In order to show that (X∗(t), Z∗(t)) is a primal-
dual optimal point for (Pt, Dt) we also need to prove that X∗(t), Z∗(t) � 0
for all t ∈ (t̂ − ε′, t̂ + ε′). If this was not true, then at least one between
the primal and dual problem would be infeasible, as it would violate the KKT
conditions, which under Assumption 2 are necessary conditions for optimality.
This would contradict Assumption 2, which ensures that both Pt andDt must be
feasible. Thus, (X∗(t), Z∗(t)) is a primal-dual optimal point for (Pt, Dt) for all
t ∈ (t̂− ε′, t̂+ ε′). Finally, by continuity, for small enough ε ≤ ε′, (X∗(t), Z∗(t))
is a unique strictly complementary primal-dual solution for (Pt, Dt) for all t ∈
(t̂− ε, t̂+ ε).

Under weak assumptions, one can improve upon Theorem 2.22 so that the
number of singular points of (5) is finite.

Theorem 2.27. For the primal-dual TV-SDPs (Pt, Dt), assume that there ex-
ists a value of the parameter t̂ ∈ T at which strict complementarity and non-
degeneracy of the primal-dual optimal point hold. Then the set of values of the
time parameter t at which the primal-dual optimal point is either not unique or
not strictly complementary is finite.

Proof. Let us elaborate upon the proof techniques that (Hauenstein et al. 2019)
use to prove their Theorem 2. We first define the algebraic set

C := {(X, y, Z, t) ∈ C
τ(n)×C

m×C
τ(n)×C

∣

∣ F (X, y, Z, t) = 0, det(JF (X, y, Z, t)) = 0}.

An algebraic set is a set defined by a finite number of polynomial equations on
an algebraically closed field. Note that the equations defining C are considered
in C, which is the algebraic closure of R. In particular, C is a constructible set.
A constructible set is a member of the smallest family of sets which contains
the algebraic sets and is also closed under complementation, finite unions, and
finite intersections. Furthermore, the projection of a constructible set is a con-
structible set itself (Theorem 1.32 in (Basu 2017)), so that the projection of C
on the t coordinate

CP =
{

t ∈ C
∣

∣ ∃(X, y, Z, t) ∈ C
}

is a constructible set in C. At this point, we exploit the fact that any con-
structible set of C is either a finite set or the complement of a finite set (Ex-
ercise 1.3 in (Basu 2017)). By the hypothesis and Theorem 2.26 the comple-
ment of CP contains an open neighborhood of t̂ where F (X, y, Z, t) = 0 and
det(JF (X, y, Z, t)) 6= 0. This neighborhood is contained in the complement of
CP and it is not finite (it is a open interval with positive measure). Hence CP

is a finite set. Since

{t ∈ T
∣

∣ ∃(X, y, Z) ∈ S
n×S

n s.t. F (X, y, Z, t) = 0, det(JF (X, y, Z, t)) = 0} ⊆ CP ,

the set of values of the parameter at which there exists a singular point for
the Jacobian of F is also finite. Application of Lemma 2.25 yields the final
result.
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Thus, under the assumption of Theorem 2.27, the values of t at which strict
complementarity or uniqueness of the primal-dual solution is lost is finite. In
particular, the values of t at which P∗(t) orD∗(t) fails to be inner semicontinuous
(and hence fails to be continuous) are finite. It also implies that wherever P∗(t)
defines a continuous curve of unique optima, the values of t at which P∗(t) fails
to be differentiable are finite. The same holds for D∗(t).

3 A complete classification of optimal points

The focus of our study is first put on values t∗ of the time parametrization inter-
val T at which strict complementarity or uniqueness of the primal-dual optimal
point is lost. In other words, these are singular points preceded by non-singular
points. By Theorem 2.27 such points are finite. There, the trajectory described
by the primal and dual optimal sets can exhibit a restricted number of irregu-
lar behaviors. If, instead, all primal-dual optimal points (X,Z, t) are singular
for every t ∈ T , the number of possible types of irregular behaviors grows. In
our main Theorem 3.11, we provide a complete classification of these behaviors
under both cases. The object of our study is the trajectory of solutions to the
primal TV-SDP (Pt), that is, the primal optimal set map. Every result that we
propose can be clearly transposed to the dual case.

We first adopt the following standard assumptions:

Assumption 1 (LICQ). The m matrices {Ai}i=1,...,m are linearly independent
in S

n, so that the linear operator A is surjective. This condition is known as
the linear independence constraint qualification (LICQ).

This assumption can be made without any loss of generality at the cost of
Gaussian elimination of the redundant constraints and it allows us to describe
the dual solution just in terms of matrix Z (see Remark 2.1).

Assumption 2 (Slater’s condition). For every t ∈ T , problem (Pt) and its dual
(Dt) are strictly feasible.

It is otherwise possible to project the primal and dual problems and their fea-
sible sets onto a smaller subspace, so that this property holds on T (Goldfarb and Scheinberg
1999). This assumption is standard in the SDP literature (Goldfarb and Scheinberg
(1999), Ahmadi and Khadir (2021), Hauenstein et al. (2019)). Slater’s condi-
tion guarantees that the primal and dual optimal sets P∗(t) and D∗(t) are
non-empty and bounded for any t ∈ T .

Assumption 3 (Data continuity). Data b(t) and C(t) depend continuously on
the time parameter t.

This assumption is quite general compared to those usually found in the TV-
SDP literature, where the data are often assumed to vary linearly with respect
to the time parameter. This linearity assumption is standard when one studies
sensitivity properties, so that the perturbation can be assumed to be linear.
Instead, our purpose is to give a geometric characterization of the points of the
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trajectory of solutions, in which case we can keep a high degree of generality
by just assuming continuity of the data, without any further differentiability
requirement.

Assumptions 1, 2, and 3 ensure that:

(a) There is no duality gap: p∗(t) = d∗(t) for all t ∈ T .

(b) The primal and dual optimal faces P∗(t), D∗(t) are non-empty and uni-
formly bounded for all t ∈ T . In other words, (Pt) and (Dt) are both
feasible and bounded.

(c) The optimal set maps are outer semicontinuous at any t ∈ T .

(d) The subset of T where the optimal set map fails to be inner semicontinuous
has empty interior and it is the union of countably many sets that are
nowhere dense in T .

Equipped with the results of the previous section, we introduce a classifica-
tion into six different types of primal optimal points according to the behavior
of the optimal set map at these points. Our purpose is to study irregularities
arising after an interval where the optimal set map has regular behavior. We
hence classify points for which the optimal set map on a left neighborhood is
unique and thus continuous.

Let (Pt, Dt) be a primal-dual pair of TV-SDPs parametrized by t ∈ T . For
a fixed t∗ ∈ T , we consider a primal optimal point (X∗, t∗) for (Pt∗). Based
on the behavior of the primal optimal set map P∗(t) at t∗, we can distinguish
between six different cases. According to this cases we classify the primal point
(X∗, t∗) into six different types. This can be done analogously for the dual case.

Definition 3.1 (Regular point). At a regular point (X∗, t∗), P∗(t∗) = {X∗}
and there exists ε > 0 such that

• P∗(t) is single-valued and continuous for every t ∈ (t∗−ε, t∗+ε), for some
ε > 0,

• P∗(t) is Fréchet differentiable at t∗.

Remark 3.2. Note that a primal optimal point (X∗, t∗) for (Pt∗) for which there
exists a dual optimal point (Z∗, t∗) for (Dt∗) such that (X∗, Z∗, t∗) is a non-
singular point for (Pt∗ , Dt∗), is necessarily a regular point. This follows directly
from Theorem 2.26 and Lemma 2.25. The converse does not hold in general.

Definition 3.3 (Non-differentiable point). At a non-differentiable point (X∗, t∗),
P∗(t∗) = {X∗} and there exists ε > 0 such that

• P∗(t) is single-valued and continuous for every t ∈ (t∗ − ε, t∗ + ε),

• P∗(t) is not Fréchet differentiable at t∗.
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Definition 3.4 (Continuous bifurcation point). At a continuous bifurcation
point (X∗, t∗), P∗(t∗) = {X∗} and there exists ε > 0 such that

• P∗(t) is continuous at any t ∈ (t∗ − ε, t∗ + ε),

• P∗(t) is single-valued for every t ∈ (t∗ − ε, t∗],

• P∗(t) is multi-valued for every t ∈ (t∗, t∗ + ε).

In particular, there exist at least two distinct continuous curves

X1 : (t∗, t∗ + ε) → Sn

t 7→ X1(t)
X2 : (t∗, t∗ + ε) → Sn

t 7→ X2(t)

such that X1(t) and X2(t) are two distinct points of P∗(t) for every t ∈ (t∗, t∗+
ε) and limt→t∗+ X1(t) = limt→t∗+ X2(t) = X∗. In this sense, a continuous
bifurcation point can be thought as a continuous loss of uniqueness from a
single branch into two or more branches.

Definition 3.5 (Discontinuous isolated multiple point). At a discontinuous
isolated multiple point (X∗, t∗), X∗ ∈ P∗(t∗) and there exists ε > 0 such that

• P∗(t) is single-valued and continuous for every t ∈ (t∗−ε, t∗)∪ (t∗, t∗+ε),

• P∗(t) is multi-valued at t∗.

In particular, a loss of inner semicontinuity and uniqueness of P∗(t) occurs at
t∗, but it is isolated and, relatively to (t̂− ε, t̂+ ε), it is a measure-zero set.

Definition 3.6 (Discontinuous non-isolated multiple point). At a discontinuous
non-isolated multiple point (X∗, t∗), X∗ ∈ P∗(t∗) and there exists ε > 0 such
that

• P∗(t) is continuous at any t ∈ (t∗ − ε, t∗) ∪ (t∗, t∗ + ε),

• P∗(t) is single-valued for every t ∈ (t∗ − ε, t∗),

• P∗(t) is multi-valued for every t ∈ [t∗, t∗ + ε).

In particular, a loss of inner continuity of P∗(t) occurs at t∗. This is not an
isolated point, but rather an element of a positive-dimensional set of points at
which the solution is not unique.

Definition 3.7 (Irregular accumulation point). At an irregular accumulation
point (X∗, t∗), X∗ ∈ P∗(t∗) and there exists ε > 0 such that

• P∗(t) is single-valued and continuous for every t ∈ (t∗ − ε, t∗)

and for any δ > 0 at least one of the following is true:

• there exists a sequence of times {tk}∞k=1 ⊆ (t∗, t∗ + δ) at which a loss of
inner semicontinuity occurs and limk→∞ tk = t∗. At these times, either
a discontinuous isolated multiple point or a discontinuous non-isolated
multiple point appears.
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• there exists a sequence of times {tk}∞k=1 ⊆ (t∗, t∗+δ) at which a continuous
bifurcation occurs and limk→∞ tk = t∗.

Remark 3.8. The above definitions consider points whose sufficiently small left
time neighborhood consists of all regular points. By a change of sign of the
parameter, the definition clearly extends to points whose sufficiently small right
time neighborhood consists of all regular points.

Remark 3.9 (Existence of a continuous selection). The optimal set map is con-
tinuous in a neighborhood of a regular, non-differentiable, or a continuous bifur-
cation point. Instead, at a discontinuous isolated or non-isolated multiple point
(Definitions 3.5 and 3.6), a loss of inner semicontinuity occurs. For such points
(X∗, t∗) it holds lim inf t→t∗− P∗(t) 6= P∗(t∗). However, in both cases, clearly
only one of the following is true:

(A) lim
t→t∗+

P∗(t) = P∗(t∗),

(B) lim inf
t→t∗+

P∗(t) 6= P∗(t∗).

In case (A), one can select a continuous curve (t∗ − ε, t∗ + ε) ∋ t 7→ X(t) ∈ S
n

such that X(t) ∈ P∗(t) for every t ∈ (t∗ − ε, t∗ + ε), while in case (B) such a
curve does not exist. Furthermore, for a discontinuous isolated multiple point
under case (A), such a curve is unique. Also note that in case (A) it might be
impossible to select a curve that is differentiable at t∗.

Remark 3.10 (Comparison with Guddat et al. (1990)). The definition of the six
different types of points was inspired by (Guddat et al. 1990, Chapter 2), where
a classification of solutions to univariate parametric non-linear constrained op-
timization problems was proposed. There, critical primal-dual points satisfying
first-order optimality (or KKT) conditions are considered. These points are
defined as non-degenerate if strict complementarity holds as well as the invert-
ibility of the Hessian of the Lagrangian restricted to the tangent space at the
point. We remark that this notion of non-degeneracy does not coincide with that
of primal and dual non-degeneracy defined in Definitions 2.7 and 2.8. However,
one can still identify an algebraic resemblance between primal non-degeneracy
as defined in 2.7 and the non-singularity of the Hessian of the Lagrangian.

In the terminology that we used, the notion of non-degeneracy adopted by
Jongen in Guddat et al. (1990) is analogous to non-singularity, as defined in
Definition 2.24, as they both guarantee the applicability of the implicit function
theorem, hence ensuring a regular behavior (Theorem 2.4.2 in Guddat et al.
(1990)). Around these points the optimal set can be parametrized by means of
a single parameter and the parameterization is a diffeomorphism. If a critical
point is instead degenerate then, according to which algebraic condition is not
satisfied by such points, these are classified in four different types. Instead, we
classified irregular points according to the behavior of the trajectory of solutions
at the point considered, focusing at the possible local topological structure of
points
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Theorem 3.11 (Main result). For a primal-dual pair of TV-SDPs (Pt, Dt), let
Assumptions 1, 2, and 3 hold. Then, there are two exhaustive scenarios:

(i) Suppose that at some time in T there exists a non-singular (cf. Def. 2.24)
primal-dual optimal point. Then, along the parametrization interval T the
number of points in times at which there is a non-differentiable point (cf.
Def. 3.3) or a discontinuous isolated multiple point (cf. Def. 3.5) for
P∗(t) or D∗(t) is finite. All the other points are regular points (cf. Def.
3.1) for both P∗(t) and D∗(t).

(ii) Suppose that for every time t ∈ T , every primal-dual optimal point (X,Z, t)
for (Pt, Dt) is singular (cf. Def. 2.24). This happens only when at any
t ∈ T either the solution to (Pt, Dt) is not unique or the solution is unique
but X and Z are not strictly complementary. Let t∗ ∈ T . If P∗(t) is
unique for every t ∈ (t∗ − ε′, t∗) for some ε′ > 0 and X∗ ∈ P∗(t∗), then
(X∗, t∗) must be a point of a type defined in Definitions 3.1, 3.3, 3.4, 3.5,
3.6, or 3.7. The same holds for D∗(t)

Proof.

case (i) By Theorem 2.27, the hypothesis implies that the number of values of
t ∈ T at which there exists an optimal primal-dual singular point for (5)
is finite. Let S denote the set of such values. First, let t∗ns ∈ T \ S. Then
there exists an optimal primal-dual non-singular point (X∗

ns, Z
∗
ns, t

∗
ns). By

Theorem 2.26, both (X∗
ns, t

∗
ns) and (Z∗

ns, t
∗
ns) are regular points (cf. Def.

3.1 and Rem. 3.2). Now consider t∗s ∈ S. Then there exists an optimal
primal-dual singular point (X∗

s , Z
∗
s , t

∗
s). If at t∗s a loss of inner semiconti-

nuity for P∗ occurs then P∗(t∗s) is multi-valued, hence (X∗
s , t

∗
s) is a discon-

tinuous isolated multiple point (cf. Def. 3.5). The same holds in the dual
version for D∗ and (Z∗

s , t
∗
s). If instead at t∗s continuity of P∗ is preserved,

then P∗(t∗s) is a singleton. According to whether P∗ is differentiable at
t∗s or not, (X∗

s , t
∗
s) is a regular point or a non-differentiable point (cf. Def.

3.3). Since P∗(t∗s) is a singleton, a loss of differentiability only happens
when t∗s is in S; that is, when either D∗(t∗s) is multi-valued or strict com-
plementarity between X∗

s and Z∗
s fails (this follows from Lemma 2.25).

The same holds in the dual version for D∗ and (Z∗
s , t

∗
s).

case (ii) First, let t∗ ∈ T and X∗ ∈ P∗(t∗). By hypothesis, there exists ε′ > 0
such that P∗(t) is single-valued and continuous for every t ∈ (t∗ − ε′, t∗).
Let us perform a first binary case partition:

A P∗(t∗) is a single-valued (and thus equal to {X∗}).
B P∗(t∗) is multi-valued.

Then, we also define a three-way case partition, independent from the
previous one:
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1 there exists ε′′ > 0 such that P∗(t) is single-valued for every t ∈ (t∗, t∗+
ε′′).

2 there exists ε′′ > 0 P∗(t) is multi-valued for every t ∈ (t∗, t∗ + ε′′).

3 for every δ > 0 there exists t′, t′′ ∈ (t∗, t∗+ δ) such that P∗(t′) is single-
valued and P∗(t′′) is multi-valued.

Combining the two partitions, we obtain one consisting of six cases:

A1 in this case P∗(t) is a single-valued function defined in (t∗− ε, t∗+ ε),
where ε := min{ε′, ε′′}, which is hence continuous by Proposition
2.23. According to whether P∗(t) is differentiable at t∗ or not,
(X∗, t∗) is a regular point or a non-differentiable point.

A2 if there exists ε′′ > 0 such that P∗(t) is continuous at any t ∈ (t∗ −
ε′, t∗+ε′′) then by definition (X∗, t∗) is a continuous bifurcation point
(Definition 3.4). Otherwise, for every k ∈ N there must exist a point
tk ∈ (t∗, t∗ + 1

k
) such that a loss of inner semicontinuity occurs a tk.

Hence, (X∗, t∗) is an irregular accumulation point (Definition 3.7).

A3 if there exists ε′′ > 0 such that P∗(t) is continuous at any t ∈ (t∗ −
ε′, t∗ + ε′′) then, as for any δ > 0 a continuous switch from unique
to non-unique solutions must occur, we can construct a sequence of
times {tk}∞k=1 at which a continuous bifurcation occurs converging to
t∗. Otherwise, we can proceed as in caseA2 and construct a sequence
of times at which a loss of inner semicontinuity occurs converging to
t∗. Hence, (X∗, t∗) is an irregular accumulation point.

B1 in this case, simply by definition, (X∗, t∗) is a discontinuous isolated
multiple point (Definition 3.5).

B2 if there exists ε′′ > 0 such that P∗(t) is continuous at any t ∈ (t∗+ε′′),
by definition (X∗, t∗) is a discontinuous non-isolated multiple point
(type 3.5). Otherwise, for every k ∈ N there exists a point tk ∈
(t∗, t∗+ 1

k
) such that a loss of inner semicontinuity occurs a tk. Hence,

(X∗, t∗) is an irregular accumulation point.

B3 the same discussion as in A3, (X∗, t∗) is hence an irregular accumu-
lation point.

To prove that any type of point that we defined can actually appear, in the
following section we exhibit an example of each type.
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4 Examples

Regular, non-differentiable and discontinuous isolated mul-

tiple points

For t ∈ T = (−2, 3), consider the primal TV-SDP

min tx+ ty + z

s.t.





1 x y
x 1 z
y z 1



 � 0. (P 1
t )

The feasible region is known as Cayley’s spectrahedron. We have:

P∗(t) =





























































































1 −t/2 −t/2

−t/2 1 t2

2 − 1

−t/2 t2

2 − 1 1






for t ∈ (−2, 2) \ {0},

















1 a b

a 1 −1

b −1 1







∣

∣

∣

∣

∣

a+ b = 0

a, b ∈ [−1, 1]











at t = 0,







1 −1 −1

−1 1 1

−1 1 1






for t ∈ [2, 3).

In both intervals (−2, 0) and (0, 2), the solution to (P 1
t ) is unique and the trajec-

tory describes a parabolic differentiable curve. All points are hence regular (Def.
3.1). In [2, 3), the trajectory is constant and hence all its points are also regular.

At t = 0 instead there is a loss of uniqueness, as P∗(0) is a one-dimensional
face of Cayley’s spectrahedron. Thus, t = 0 is a discontinuous isolated multiple
point (Def. 3.5), as uniqueness is holding before for t ∈ (−2, 0) and after for
t ∈ (0, 3).

Moreover, t = 2 is a non-differentiable point (Def. 3.3). Indeed:

d

dt
P∗(t)|t=2− =





0 −0.5 −0.5
−0.5 0 2
−0.5 2 0



 6=





0 0 0
0 0 0
0 0 0



 =
d

dt
P∗(t)|t=2+ .

Note that this example covers part (i) of Theorem 3.11, as for all points in t ∈
(−2, 0) there exists a unique solution (X, y, Z) to (Pt, Dt) such that (X, y, Z, t)
is non-singular (Def. 2.24).

20



Let us show this in more details. Consider the TV-SDP dual to (P 1
t )

max x+ y + z

s.t.





−x t/2 t/2
t/2 −y 1/2
t/2 1/2 −z



 � 0. (D1
t )

The optimal set map for (D1
t ) is

D∗(t) =





















































t2/2 −t/2 −t/2

−t/2 0.5 0.5

−t/2 0.5 0.5






for t ∈ (−2, 2),







t t/2 t/2

t/2 (t− 1)/2 0.5

t/2 0.5 (t− 1)/2






for t ∈ [2, 3).

For t ∈ (−2, 0) the primal-dual pair of solutions is strictly complementary, as
the rank of the primal solution is 2 and the rank of the dual solution is 1. Being
both unique solutions for every t ∈ (−2, 0), we conclude by Lemma 2.25.

Notice that the singular points for the parameterization interval T = (−2, 3)
are 0 and 2. Indeed, at t = 0 there is a loss of uniqueness, while at t = 2 there
is a loss of strict complementarity (the rank of both primal and dual solution is
1).

Continuous bifurcation point

For t ∈ T = (−1, 1), consider the primal TV-SDP

min x11

s.t. x44 − x33 = 0

x22 = 1

2x12 + x33 + x44 = t

X � 0

(P 2
t )

21



for which

P∗(t) =













































































t2/4 t/2 0 0

t/2 1 0 0

0 0 0 0

0 0 0 0











for t ∈ (−1, 0],





























0 0 0 0

0 1 a b

0 a t/2 c

0 b c t/2











∣

∣

∣

∣

∣

a2 + b2 + c2 ≤ t2

4 + t
t
2 (a

2 + b2) + c2 − 2abc ≤ t2

4



















for t ∈ (0, 1).

P∗(t) is continuous for every t ∈ (−1, 1), it is single-valued for every t ∈ (−1, 0],
and it is multi-valued for every t ∈ (0, 1), being there a 3-dimensional face.
Hence t = 0 is a continuous bifurcation point for (P 2

t ) according to Def. 3.4.

Recall that when there exists a continuous bifurcation point it is necessary that
all the points of the parameterization interval are singular according to Def.
2.24. In other words, at any point t ∈ (−1, 1) either the primal solution is not
unique, or the dual solution is not unique, or both primal and dual solutions
are unique but not strictly complementary. Indeed, the dual TV-SDP to (P 2

t )
is

max y + tz

s.t.









1 −z 0 0
−z −y 0 0
0 0 −x− z 0
0 0 0 x− z









� 0, (D2
t )

which is equivalent to max{y + tz | y + z2 ≤ 0, −z ≤ x ≤ z} and for which

D∗(t) =































































































1 −t/2 0 0

−t/2 t2/4 0 0

0 0 −a 0

0 0 0 a− t











∣

∣

∣

∣

∣

a ∈ [t, 0]



















for t ∈ (−1, 0),











1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0











for t ∈ [0, 1).

D∗(t) is continuous for every t ∈ (−1, 1), multi-valued for every t ∈ (−1, 0), and
it is single-valued for every t ∈ [0, 1), being there a 1-dimensional face. Thus,
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t = 0 is a continuous bifurcation point for (D2
t ), according to Def. 3.4.

In particular, a pair of primal-dual solutions for (P 2
t , D

2
t ) is not unique for every

t ∈ (−1, 1) \ {0}; for t = 0, there is a unique pair of primal-dual solutions for
which however strict complementarity does not hold.

Discontinuous non-isolated multiple points

For t ∈ T = (−1, 1), consider the TV-SDP

min tx+ ty + z

s.t.









1 x y 0
x 1 z 0
y z 1 0
0 0 0 1 + x+ y + z









� 0 (P 3
t )

for which

P∗(t) =













































































1 −t/2 −t/2 0

−t/2 1 t2

2 − 1 0

−t/2 t2

2 − 1 1 0

0 0 0 t2

2 − t











for t ∈ (−1, 0),





























1 a b 0

a 1 −1 0

b −1 1 0

0 0 0 0











∣

∣

∣

a+ b = 0

a, b ∈ [−1, 1]



















for t ∈ [0, 1).

P∗(t) is continuous for every t ∈ (−1, 1) \ {0}, it is single-valued for every
t ∈ (−1, 0], and it is multi-valued for every t ∈ [0, 1), as for every t ∈ [0, 1) the
optimal face at t is 2-dimensional. A loss of inner semincontinuity occurs at
t = 0. Hence, t = 0 is a discontinuous non-isolated multiple point, according to
Def. 3.6.

Irregular accumulation points

For t ∈ T = (−1, 1), consider the TV-SDP

min f(t)(x − y) + z

s.t.













1 x y 0 0
x 1 z 0 0
y z 1 0 0
0 0 0 g(t) x− y
0 0 0 x− y g(t)













� 0 (P 4
t )
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where

f(t) :=

{

t sin π
t

if t > 0,

0 otherwise,
and g(t) :=

{

2t if t > 0,

0 otherwise.

For t ≤ 0 the feasible region is the intersection between Cayley’s spectrahedron
and the plane x−y = 0. For t > 0 the feasible region is the intersection between
Cayley’s spectrahedron and the region x−y ∈ [−2t, 2t]. Expressing the solutions
of (P 4

t ) in terms of the variables x(t), y(t), z(t), we have:

(x(t), y(t), z(t)) =























(0, 0,−1) for t ∈ (−1, 0],

(t,−t,−1) for t ∈
(

1
2k−1 ,

1
2k

)

, k = 1, 2, . . .

{(α,−α,−1) | α ∈ [−t, t]} for t = 1
k
, k = 1, 2, . . .

(−t, t,−1) for t ∈
(

1
2k ,

1
2k+1

)

, k = 1, 2, . . .

For every t ∈ (−1, 0], P∗(t) is continuous and single-valued. The parameter
sequence {tk}∞k=1 ⊆ (0, 1] defined by tk := 1

k
is such that limk→∞ tk = 0 and

at each tk a loss of inner semicontinuity occurs. Hence, t = 0 is an irregular
accumulation point, according to Def. 3.7

In the following, we also provide an example of an accumulation point for a
sequence of continuous bifurcation points. For t ∈ (−1, 1), consider the TV-
SDP

min z

s.t.













1 x y 0 0
x 1 z 0 0
y z 1 0 0
0 0 0 2h(t) x− y
0 0 0 x− y 2h(t)













� 0, (P 5
t )

where

h(t) :=

{

t sin2 π
t

if t > 0,

0 otherwise.

For t ≤ 0 and for t = 1/k, k = 1, 2, . . . the feasible region is the inter-
section between Cayley’s spectrahedron and the plane x − y = 0, while for
t ∈ (1/k, 1/(k + 1)) , k = 1, 2, . . . the feasible region is the intersection between
Cayley’s spectrahedron and the region x − y ∈ [−2h(t), 2h(t)]. Writing the
solutions of (P 5

t ) in terms of the variables x(t), y(t), z(t), we have:

(x(t), y(t), z(t)) =















(0, 0,−1) for t ∈ (−1, 0],

{(α,−α,−1) | α ∈ [−h(t), h(t)]} for t ∈
(

1
k
, 1
k+1

)

, k = 1, 2, . . .

(0, 0,−1) for t = 1
k
, k = 1, 2, . . .

For every t ∈ (−1, 1), P∗(t) is continuous. The parameter sequence {tk}∞k=1 ⊆
(0, 1] defined by tk := 1

k
is such that limk→∞ tk = 0 and each tk is a continuous
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bifurcation point. Hence, t = 0 is an irregular accumulation point, according to
Def. 3.7.

5 Discussion

Our approach draws upon a long history of work in parametric optimization.
In particular, the pioneering work of (Guddat et al. 1990, Chapter 2) outlined
a classification of solutions to univariate parametric non-linear constrained op-
timization problems. There, precise algebraic conditions are shown for points
satisfying first-order optimality conditions to be non-degenerate (see Remark
3.10). These points exhibit a regular behavior. For degenerate points, four dif-
ferent types are defined according to which subset of non-degeneracy conditions
is violated. Analogously, our approach also starts by considering algebraic con-
ditions that ensure a regular behavior, but our classification of irregular points
was made according to the local topological behavior of the trajectory of solu-
tions at the point considered, rather than according to different sets of algebraic
conditions.

We notice that regular points and discontinuous isolated multiple points, de-
fined as in Definitions 3.1 and 3.5 respectively, were first identified by Hauenstein et al.
(2019) within the optimal partition approach to parametric analysis for linearly
parametrized SDP. Furthermore, non-differentiable points (Definition 3.3) can
be easily derived from their results. Our work can hence be seen as a comple-
tion of the effort of Hauenstein et al. (2019). Likewise, in our analysis, part (i)
of Theorem 3.11 relies on Theorem 2.27 and Theorem 2.26. There, the proof
of Theorem 2.27 uses the technique of Hauenstein et al. (2019), while Theorem
2.26 uses the implicit function theorem. Theorem 3.11 part (ii) essentially sug-
gests that the implicit function theorem does not hold anywhere, which allows
for a broader range of possible behaviors.

From the point of view of formulating a TV-SDP, the key insight of Hauenstein et al.
(2019) and ours is that even seemingly strong and standard assumptions such as
the continuity of the data and primal-dual Slater’s condition are not sufficient
to prevent pathological behavior. We presented a complete characterization
of such behaviors. Thereby, we showed that guaranteeing the existence of a
non-singular point along the trajectory suffices to prevent highly pathological
behaviors. However, this does not prevent from a finite number of losses of
differentiability or isolated losses of uniqueness to occur.

From the point of view of algorithm design, two insights can be given: if
one can guarantee that the conditions of Theorem 4.4 part (i) are satisfied,
algorithms for time-varying optimization need not consider the less obvious be-
haviors corresponding to Definitions 3.4, 3.6, and 3.7. If, however, we would
like to develop a solver for the case where only LICQ (Assumption 1), Slater’s
condition (Assumption 2), and data continuity (Assumption 3) are satisfied,
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we need to consider some rather pathological behaviors, such as irregular ac-
cumulation points (Definition 3.7). We very much hope that his leads to the
development of practical algorithms for time-varying semidefinite programming.

6 Conclusion

We used set-valued analysis to describe and study the trajectory of solutions to
TV-SDP. The analysis we carried out brought us to define six different types of
points, according to the local structure of the solutions trajectory. Our main
result consists in proving that under standard assumptions, there are no other
types of points.

One could extend our research by weakening our assumptions: continuity of
the data dependence on the parameter, and Slater’s primal and dual condition
throughout the parameterization interval. These requirements avoid highly de-
generate situations. In particular, without continuity of the data, one can expect
the trajectory to potentially present a lot of irregularities, e.g., it may fail to be
both inner and outer semicontinuous, while, as Theorem 2.20 shows, under the
continuity of the data outer semicontinuity is ensured. When Slater’s condition
is lost, two additional forms of degenerate behavior might occur: the optimal
value may not be attained at any feasible point, or there may be a strictly pos-
itive duality gap between the primal and dual optimal values. It is not clear
whether there could be other types too, perhaps akin to irregular accumulation
points. Finally, the properties of specific classes of trajectories of solutions in
specific applications may be of considerable interest.
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