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Time-Varying Semidefinite Programming:

Geometry of the Trajectory of Solutions

Antonio Bellon∗, Didier Henrion†,∗, Vyacheslav Kungurtsev ∗, Jakub Mareček ∗

March 17, 2022

Abstract

In many applications, solutions of convex optimization problems must be updated on-line,
as functions of time. In this paper, we consider time-varying semidefinite programs (TV-SDP),
which are linear optimization problems in the semidefinite cone whose coefficients (input data)
depend on time. We are interested in the geometry of the solution (output data) trajectory,
defined as the set of solutions depending on time.We propose an exhaustive description of the
geometry of the solution trajectory. As our main result, we show that only 6 distinct behaviors
can be observed at a neighborhood of a given point along the solution trajectory. Each possible
behavior is then illustrated by an example.

1 Introduction

A semidefinite program (SDP) is a convex constrained optimization problem wherein one wants
to optimize a linear objective function over the intersection of the cone of positive semidefinite
matrices with an affine space. In this paper, a time-varying semidefinite program (TV-SDP) is an
SDP

min
X∈Sn

〈C(t), X〉

s.t. A(t)[X] = b(t)

X � 0

(Pt)

whose coefficients depend on a time parameter t belonging to a given open interval T = (ti, tf ) ⊆ R.

The goal of (Pt) is to optimize a time-varying linear objective over a non-linear time-varying
feasible region, whose dependence is restricted to the right-hand side of the equality constraints.
The objective is to minimize the scalar product 〈C(t), X〉 between two matrices of Sn, the vector
space of symmetric matrices of size n with real entries. The time-varying feasible region is an
intersection of the semidefinite cone Sn+ = {X ∈ Sn | vTXv ≥ 0, ∀v ∈ Rn} with a time-varying
affine subspace described by linear equations. The notation X � 0 is a shortcut for X ∈ Sn+. The
notation A(t)[X] = b(t) models linear equations that X must also satisfy: 〈Ai(t), X〉 = bi(t) for
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i = 1, . . . ,m, where Ai(t) ∈ Sn are given matrices and bi(t) are given time-varying scalars. Thus,
problem (Pt) is convex and its feasible region at any value of parameter t ∈ T is an affine section
of the semidefinite cone, often referred to as a spectrahedron.

TV-SDP appears in numerous applications. For example, in power systems, semidefinite pro-
gramming relaxations of the so-called alternating-current optimal power flow (ACOPF) are very
successful, cf. Lavaei and Low (2011). Tracking of a trajectory of solutions to ACOPF with supply
and demand varying over time is crucial for a transmission system operator, who decides on the
activation of ancillary services to balance the transmission system, cf. Liu et al. (2018).

In general, our goal is to understand certain properties of such solution trajectories, which would
make it possible to design algorithms for TV-SDP with guarantees on their performance.

Background and Contribution

SDP can be thought of as a generalization of linear programming (LP) with a number of applications
in data science. Anjos and Lasserre (2011) offered a snapshot of the state of the art in the areas
of SDP, conic optimization, and polynomial optimization. Polynomial optimization problems can
be approximated via a hierarchy of SDP problems of increasing size, developed by Lasserre (2001),
also known as the moments - sum of squares (SOS) hierarchy. Many problems in control theory
can be reduced to solving polynomial equations, polynomial inequalities, or polynomial differential
equations, and they can hence be often solved approximately by the moment-SOS hierarchy, see
Henrion et al. (2020) for a recent overview. Applications in theoretical computer science include
approximation algorithms for fundamental problems like the Max-Cut problem or coloring prob-
lems, quantum information theory, robust learning, and estimation.

The geometry of SDP, that is, the geometry of the feasible region of an SDP problem, is well
understood. We refer to Wolkowicz et al. (2012, Chapter 3 by Pataki) for an excellent overview.
Likewise, solution regularity (duality, strict feasibility, uniqueness of the solution, strict complemen-
tarity, non-degeneracy) and its prerequisites are well understood; see for example Alizadeh et al.
(1997) where the relation between uniqueness of the solution, non-degeneracy of the solutions and
strict complementarity is discussed.

Here, our purpose is to study the behavior of the trajectory of the solutions to TV-SDP. Around
points of the trajectory satisfying strict complementarity and uniqueness, by means of the implicit
function theorem, one can show that the trajectory defines a smooth curve (Theorem 2.19). When
this fails to happen, a number of irregular behaviors may arise. The main result of this paper (The-
orem 3.10) consists of a complete classification of such points. So far, to the best of our knowledge,
a complete classification of types of behavior of points making up the trajectory of solutions has
not been proposed. Here, we suggest one based on a purely logical construction, whose definitions
use set-valued analysis. In particular, we use the Painlevé-Kuratowski extension of the notion of
continuity to the case of set-valued functions, so as to reason about continuity properties at val-
ues of the parameter, when there are multiple solutions. Informally, we now define the types of
points that our classification comprises. This is based on the geometry of the trajectory of so-
lutions parametrized over a time interval. Before a given time, we assume that the trajectory is
a continuous curve. Then at the time of interest, we can distinguish between the following situations:
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• Regular point: the trajectory is single-valued and differentiable;

• Non-differentiable point: the trajectory is single-valued but not differentiable;

• Discontinuous isolated multiple point: a loss of continuity causes a loss of uniqueness
of the solution, implying a multiple-valued solution. After the point, uniqueness is restored,
and hence the loss of uniqueness is isolated;

• Discontinuous non-isolated multiple point: a loss of continuity causes a loss of unique-
ness of the solution, implying a multiple-valued solution. After the point, uniqueness is not
restored hence the loss of uniqueness is not isolated;

• Continuous bifurcation point: the trajectory splits into several distinct branches. This
results in a loss of uniqueness which still preserves continuity;

• Irregular accumulation point: accumulation point of a set made of either bifurcation
points or discontinuous isolated multiple points.

The formal definitions of the point types can be found in Def. 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9

We believe that a first contribution of this paper is precisely the definition of these types of
points. In this respect, our approach was deeply inspired by (Guddat et al., 1990, Chapter 2) where
a classification of solutions to univariate parametric nonlinear constrained optimization problems
(NLPs) is proposed. There, critical points satisfying first-order optimality (or KKT) conditions
are considered. Under precise algebraic conditions, these points are “non-degenerate” (see Rem.
8). The local behavior of such points is then shown to be regular. If a critical point is instead
“degenerate” then, according to which algebraic condition is satisfied, the point is classified into
four different types. Our approach is the same in spirit, in that we also start by considering algebraic
conditions ensuring a regular behavior. As a main difference, we classify irregular points according
to the behavior of the trajectory of solutions at the point considered rather than according to
different sets of algebraic conditions (see Rem. 8). The main results that we present in this paper
are Theorem 3.10 and Theorem 3.11, which we informally state here.

Theorem 1.1 (Informal statement of Theorem 3.10). Under assumptions of Linear Independence
Constraint Qualification (LICQ, cf. Assum. 3.1), existence of a strictly feasibile point (cf. Assum.
3.2) and continuity of the data with respect to time (cf. Assum. 3.3), the trajectory can only be
comprised of points of the six types described above.

Theorem 1.2 (Informal statement of Theorem 3.11). Under the same assumptions of Theorem
1.1, suppose that the problem data are polynomial functions of time and that there exists a non-
singular time (see Def. 2.17). Then the trajectory is comprised of only regular points (cf. Def.
3.4), non-differentiable points (cf. Def. 3.5), or isolated multiple points (cf. Def. 3.6). In other
words, non-isolated discontinuous multiple points (cf. Def. 3.7), bifurcation (cf. Def. 3.8) points,
and irregular accumulation points (cf. Def. 3.9) cannot appear.

Other than interesting for a purely theoretical study, we believe that these results could be useful
for algorithmic design as follows. If one can guarantee that the conditions of Theorem 3.11 are
satisfied, algorithms for time-varying optimization need not consider the behaviors corresponding
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to Definitions 3.8, 3.7, and 3.9. If, however, one would like to develop a solver for the case where
only Assumptions 3.1, 3.2, and 3.3 are satisfied, some rather pathological behaviors, such as non-
isolated discontinuous multiple points (Def. 3.7) or bifurcation points (Def. 3.8), need to be to
considered. In this respect, we believe that our work has the merit of clarifying and making explicit
the nature of the irregularities of the trajectories to TV-SDP. Even though the precise algorithmic
consequences will clearly be strongly dependent on the type and the properties of the algorithm
in use, hence lying beyond the boundaries of our discussion, we very much hope that our study
leads to the development and the improvement of practical algorithms for time-varying semidefinite
programming.

Previous Work

Following the pioneering contribution of Goldfarb and Scheinberg (1999), who first studied the
properties of the optimum as a function of a varying parameter and extended the concept of the
optimal partition from LP to SDP, a number of important papers appeared recently. In decreasing
order of generality of the dependence of problem data (coefficients) on the parameter (time):
• Al-Salih and Bohner (2018) studied LP on time scales, which allows for the mixing of differ-

ence and differential operators in a broad class of extensions of LP models. While very elegant,
mathematically, it seems non-trivial to extend this approach to TV-SDP;
• Wang et al. (2009) studied a broad family of parametric optimization problems, which are

known as separated continuous conic programming (SCCP). They developed a strong duality theory
for SCCP and proposed a polynomial-time approximation algorithm that solves an SCCP to any
required accuracy. This algorithm does not, however, seem easy to extend to TV-SDP;
• Mohammad-Nezhad (2019), Hauenstein et al. (2019) and Mohammad-Nezhad and Terlaky

(2020) are perhaps the closest to our work, in spirit. Their dependence of the problem on the data
is assumed to be linear, which is a more restrictive assumption than the one we use. Moreover,
they do not provide a complete characterization of the possible behaviors of the trajectory of the
solutions. In part, we build upon their theoretical results, but instead of building upon the concepts
of non-linearity intervals, invariancy intervals, and transition points, we use a purely set-valued
analysis approach;
• El Khadir (2020) and Ahmadi and El Khadir (2021) are perhaps the closest to our work, in

name. They studied the setting where the data vary with known polynomials of the parameter
and showed that under a strict feasibility assumption, restricting the solutions to be polynomial
functions of the parameter does not change the optimal value of the TV-SDP. They also provided
a sequence of SDP problems that give upper bounds on the optimal value of a TV-SDP converging
to the optimal value. In contrast, we use a more general setting, where we only assume continuity
of the map from the parameter to the problem data. Moreover, we provide a complete geometric
characterization of the solutions trajectory.

2 Preliminaries

In this section, we expose the tools needed to state and prove our main result. In Subsection 2.1
we first review geometric properties of SDP. In Subsection 2.2 we survey continuity properties of
the optimal and feasible sets of TV-SDP, considered as set-valued maps, in terms of inner and
outer semi-continuity and Painlevé-Kuratowski continuity, to adopt the notions of Rockafellar and
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Wets (2009). Then, in Subsection 2.3 we show that the existence of a unique pair of strictly
complementary primal and dual solutions at a value of the time parameter t̂ implies that there is
a neighbourhood of t̂ where both the primal and dual optimal trajectory have a regular behavior.
Finally, we observe that under fairly weak assumptions, among which the existence of a non-
singular point in the parameterization interval, the number of points where strict complementarity
or uniqueness is lost is finite.

2.1 SDP optimality conditions and properties

In this section, we assume for notational simplicity that the data b, C are not parameter-dependent.
Let us review geometric properties of SDP in primal form

tagP

min
X∈Sn

〈C,X〉

s.t. A[X] = b

X � 0

and dual form
max

y∈Rm, Z∈Sn
〈b, y〉

s.t. A∗[y] + Z = C

Z � 0.

(D)

The linear operator A maps X ∈ Sn to (〈A1, X〉, . . . , 〈Am, X〉) ∈ Rm where Ai ∈ Sn are given
matrices for i = 1, . . . ,m and b ∈ Rm. A∗[y] =

∑m
i=1Aiyi is the linear operator adjoint to A.

Remark 1. Throughout this paper, we assume that the linear operator A is surjective (see Assum.
3.1). Then, given a matrix Z ∈ Sn satisfying the dual constraint A∗[y] + Z = C for some y ∈ Rm,
y can be uniquely determined by solving the linear system (AA∗)[y] = A(C − Z). We exploit this
fact and when discussing a dual point (y, Z) we will often omit y and refer to a dual point simply
as a matrix Z ∈ Sn.

We call a matrix X satisfying the constraints of (P ) a primal feasible point, a matrix Z satisfying
the constraints of (D) a dual feasible point, a pair of matrices (X,Z) satisfying the constraints of
(P,D) a primal-dual feasible point. We call a solution X∗ to (P ) a primal optimal point, a solution
Z∗ to (D) a dual optimal point, a solution (X∗, Z∗) to (P,D) a primal-dual optimal point. First,
we recall that for the primal-dual pair of TV-SDPs (P,D) a set of first order optimality sufficient
conditions is available. Given two matrices X and Z of Sn, their scalar product is denoted by
〈X,Z〉 = trace(XZ) =

∑n
i,j=1Xi,jZi,j .

Definition 2.1 (KKT conditions). A primal-dual feasible point (X,Z) ∈ Sn × Sn satifies the
Karush-Kuhn-Tucker conditions (KKT) for (P,D) if

A[X] = b

A∗[y] + Z = C

X,Z � 0

〈X,Z〉 = 0

(KKT)

5



for some y ∈ Rm.

It is well-known that for a convex optimization problem, conditions (KKT) are sufficient for
optimality. Under strict feasibility, the KKT conditions are also necessary.

Definition 2.2 (Strict feasibility). We say that strict feasibility holds for (P ) (or that (P ) is strictly
feasible) if there exists an interior point of the primal feasible region. That is, there exists a matrix
X � 0 satisfying A[X] = b. Similarly, strict feasibility holds for (D) (or (D) is strictly feasible) if
there exists an interior point of the dual feasible region. That is, there exist y ∈ Rm and a matrix
Z � 0 satisfying A∗[y] + Z = C.

Definition 2.3 (Strict complementarity). A primal-dual optimal point (X,Z) is said to be strictly
complementary if rank(X) + rank(Z) = r + s = n. A primal-dual problem (P,D) satisfies strict
complementarity if there exists a strictly complementary primal-dual optimal point (X,Z).

We now introduce the definitions of primal and dual non-degeneracy. All the definitions and
results exposed below until the end of the subsection are due to Alizadeh et al. (1997).

Definition 2.4 (Primal non-degeneracy). We say that a primal feasible point X is primal non-
degenerate if

N (A) + TX = Sn,

where N (A) = {Y ∈ Sn|〈Ai, Y 〉 = 0 for all i = 1, . . . ,m},

TX =

{
Q

(
U V

V T 0

)
QT

∣∣∣ U ∈ Sr, V ∈ Rr×(n−r)
}

is the tangent space at X in Sn+ with r = rank(X), Q = QT ∈ Rn×n is an orthogonal matrix such
that its columns form a basis of eigenvectors relative to the eigenvalues λi of X:

X = Q diag(λ1, . . . , λr, 0, . . . , 0)QT . (1)

Definition 2.5 (Dual non-degeneracy). We say that a dual feasible point Z is dual non-degenerate
if

R(A) + TZ = Sn,

where R(A) = span(A1, . . . , Am) and

TZ =

{
Q̃

(
0 V

V T W

)
Q̃T

∣∣∣ W ∈ Ss, V ∈ R(n−s)×s

}

is the tangent space at Z in Sn+, s = rank(Z), Q̃ = Q̃T ∈ Rn×n is an orthogonal matrix such that
its columns form a basis of eigenvectors relative to the eigenvalues ωi of Z:

Z = Q̃diag(0, . . . , 0, ωn−s+1, . . . , ωn)Q̃T . (2)
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Definition 2.6 (Non-degeneracy). We say that a primal-dual feasible point (X,Z) is non-degenerate
if X is primal non-degenerate and Z is dual non-degenerate.

Our interest in non-degeneracy is motivated by the following result:

Proposition 2.7. 1. If (X∗, Z∗) is a primal-dual non-degenerate optimal point then (X∗, Z∗)
is the unique

primal-dual optimal point for (P,D).

2. Under strict complementarity, if (X∗, Z∗) is a primal-dual unique optimal point then
(X∗, Z∗) is a non-degenerate primal-dual optimal point for (P,D).

Remark 2. For a given point (X,Z), there exist linear algebraic conditions to check whether it is
non-degenerate or not (see Theorems 6 and 9 in Alizadeh et al. (1997)).

2.2 Set-valued analysis for TV-SDP

We are interested in studying the trajectories of solutions to the primal TV-SDP

min
X∈Sn

〈C(t), X〉

s.t. A(t)[X] = b(t)

X � 0

(Pt)

with time parameter t ∈ T = (ti, tf ) ⊂ R. For a given value of t the dual TV-SDP is

max
y∈Rm, Z∈Sn

〈b(t), y〉

s.t. A∗(t)[y] + Z = C(t)

Z � 0.

(Dt)

Definition 2.8 (Set-valued maps). A set-valued map F from a set T to another set X maps a
point t ∈ T to a non-empty subset of F (t) ⊆ X. In symbols:

F : T ⇒ X

t 7→ F (t) ⊆ X.

We say that F is single-valued at t ∈ T if F (t) is a singleton. We say that F is multi-valued at
t ∈ T if F (t) is neither empty nor a singleton.

Given a primal-dual pair of TV-SDPs (Pt, Dt), we can now define the primal and dual feasible
set-valued maps:

P(t) = {X ∈ Sn | A(t)[X] = b(t), X � 0},
D(t) = {Z ∈ Sn | A∗(t)[X] + Z = C(t), y ∈ Rm, Z � 0}.
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The primal and dual optimal value functions are defined as

p∗(t) = min
X∈Sn

{〈C(t), X〉 | A(t)[X] = b(t), X � 0},

d∗(t) = max
Z∈Sn

{〈b(t), y〉 | A∗(t)[y] + Z = C(t), y ∈ Rm, Z � 0}.

Finally, the primal and dual optimal set-valued maps are

P∗(t) = {X ∈ P(t) | 〈C(t), X〉 = p∗(t)},
D∗(t) = {Z ∈ D(t) | 〈b(t), y〉 = d∗(t), A∗(t)[y] + Z = C(t), y ∈ Rm}.

Continuity properties of set-valued maps can be defined in terms of outer and inner limits, leading
to the notion of Painlevé-Kuratowski continuity. First, we introduce the notion of inner and outer
limits of a set-valued map.

Definition 2.9 (Inner and outer limits). Given a set-valued map F : T ⇒ X, its inner limit at
t̂ ∈ T is defined as

lim inf
t→t̂

F (t) :=
{
x̂
∣∣ ∀{tk}∞k=1 ⊆ T such that tk → t̂, ∃{xk}∞k=1 ⊆ X, xk → x̂ and xk ∈ F (tk)

}
,

while its outer limit at t̂ ∈ T is defined as

lim sup
t→t̂

F (t) :=
{
x̂
∣∣ ∃{tk}∞k=1 ⊆ T such that tk → t̂, ∃{xk}∞k=1 ⊆ X, xk → x̂ and xk ∈ F (tk)

}
.

Definition 2.10 (Painlevé-Kuratowski continuity). Let F : T ⇒ X be a set-valued map. We say
that F is outer semi-continuous at t̂ ∈ T if

lim sup
t→t̂

F (t) ⊆ F (t̂).

We say that F is inner semi-continuous at t̂ ∈ T if

lim inf
t→t̂

F (t) ⊇ F (t̂).

Finally, we say that F is Painlevé-Kuratowski continuous at t̂ if it is both outer and inner semi-
continuous at t̂.

Remark 3 (Continuity). Note that a single-valued map F : T → X is continuous in the usual sense
at a point x ∈ X if and only if it is Painlevé-Kuratowski continuous at x ∈ X as a multi-valued
map F : T ⇒ X. Thus, without ambiguity, we will refer to Painlevé-Kuratowski continuity simply
as continuity.

In the following, we list some continuity results on the feasible and optimal set-valued maps.
The proof of Theorem 2.12 in the primal version is an original contribution of this paper.

Theorem 2.11 (Example 5.8 in Rockafellar and Wets (2009)). If A(t), b(t) and C(t) are continuous
functions of t (see Assum. 3.3 in Section 3), then the feasible set-valued maps P(t) and D(t) are
outer semi-continuous at any t ∈ T .
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Theorem 2.12. Assume that strict feasibility holds at any t ∈ T (see Assum. 3.2 in Section 3),
that the linear operator A(t) is surjective for every t ∈ T , that the norm of A(t) and the norm of

its pseudo-inverse A∗(t)
(
A(t)A∗(t)

)−1
are uniformly bounded in t (see Assum. 3.1 in Section 3),

and that A(t), b(t) and C(t) are continuous functions of t (see Assum. 3.3 in Section 3). Then the
set-valued maps P(t) and D(t) are inner semi-continuous for every t ∈ T .

Proof. Proof. For the dual case, we refer to Lemma 1 in Hauenstein et al. (2019) for a version of
this theorem where only the matrix C depends on the parameter and this dependence is linear. We
prove the primal case in the more general case where the left hand side A(t) is time-dependent and
continuous and the right hand side b(t) is continuous. The dual case can be proven in an analogous
way. Fix t̂ ∈ T and X̂ ∈ P(t̂). Given a sequence of times {tk}∞k=1 with tk → t̂, we will construct a

convergent sequence Xk → X̂ so that Xk ∈ P(tk) for all sufficiently large values of k. If X̂ � 0 we
define

Xk := X̂ +A∗(tk)
(
A(tk)A∗(tk)

)−1 (
b(tk)− b(t̂)

)
.

The definition is well posed because under the assumptions of the theorem the operator A(tk) has
full rank, thus A(tk)A∗(tk) is invertible. Clearly, A(tk)[Xk] = b(tk). Furthermore, we have that

‖Xk − X̂‖F = ‖A∗(tk)
(
A(tk)A∗(tk)

)−1 (
b(tk)− b(t̂)

)
‖F ≤ CA‖b(tk)− b(t̂)‖ → 0 for some constant

CA (which exists by the hypothesis of uniform boundedness) and by continuity of b(t), so that
Xk → X̂ and Xk � 0 for sufficiently large k. If X̂ � 0 and its smallest eigenvalue λmin(X̂) is zero,
we define

Xk := (1− αk)X̂ + αkX̄ +A∗(tk)
(
A(tk)A∗(tk)

)−1 (
b(tk)− b(t̂)

)
for a fixed X̄ ∈ P(t̂) such that X̄ � 0, which exists by the strict feasibility assumption, and for a
sequence {αk}∞k=1 ⊆ [0, 1] which we shall conveniently define in the following. Clearly, A(tk)[Xk] =
b(tk) and hence we only need to prove that Xk � 0 or, equivalently, that

λmin

(
(1− αk)X̂ + αkX̄ +A∗(tk)

(
A(tk)A∗(tk)

)−1 (
b(tk)− b(t̂)

))
≥ 0,

which, thanks to Weyl’s inequality (see e.g Theorem 1 in Franklin (2012), Section 6.7) holds if

αkλmin(X̄) + λmin

(
A∗(tk)

(
A(tk)A∗(tk)

)−1 (
b(tk)− b(t̂)

))
≥ 0.

Rearranging:

αk ≥ −
λmin

(
A∗(tk)

(
A(tk)A∗(tk)

)−1 (
b(tk)− b(t̂)

))
λmin(X̄)

.

We then define αk := max{0, βk}, where

βk := −
λmin

(
A∗(tk)

(
A(tk)A∗(tk)

)−1 (
b(tk)− b(t̂)

))
λmin(X̄)

.

For sufficiently large k, βk ≤ 1, so that {αk}∞k=1 ⊆ [0, 1] and thus Xk ∈ P(tk), since βk → 0, αk → 0

and Xk → X̂. �
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Theorems 2.11 and 2.12 show that the primal and dual feasible set-valued maps P(t) and D(t)
are always continuous, under the assumptions of Theorem 2.12. Naturally, we now investigate the
inner and outer semi-continuity of the optimal set-valued maps. We have:

Theorem 2.13 (Theorem 8 in Hogan (1973)). If A(t), b(t) and C(t) are continuous functions of
t (see Assum. 3.3 in Section 3) and the primal and dual feasible set-valued maps are continuous,
then the optimal set-valued maps P∗(t) and D∗(t) are outer semi-continuous at any t ∈ T .

However, in general, it is not true that the optimal set-valued maps P∗(t) and D∗(t) are inner
semi-continuous. Still, the set of t ∈ T such that P∗(t) or D∗(t) fails to be inner semi-continuous,
is of first category, i.e., countable and nowhere dense.

Theorem 2.14 (Theorem 5.55 in Rockafellar and Wets (2009)). The subset of points t ∈ T at which
P∗(t) or D∗(t) fails to be inner semi-continuous (and hence continuous) is the union of countably
many sets that are nowhere dense in T . In particular, it has empty interior.

However, if the optimal set is single-valued, then it is continuous everywhere:

Proposition 2.15 (Corollary 8.1 in Hogan (1973)). Assume that strict feasibility holds at any
t ∈ T see Assum. 3.2 in Section 3) and that A(t), b(t) and C(t) are continuous functions of t (see
Assum. 3.3 in Section 3). If P∗(t) is single-valued at some t̂, then P∗(t) is continuous at t̂. The
same holds for D∗(t).

2.3 Regularity properties of the TV-SDP optimal set-valued map

Given a primal-dual pair of TV-SDPs (Pt, Dt), we denote a primal-dual point by (X,Z, t). If at a
fixed value of the parameter t̂ ∈ T there exists a primal-dual non-degenerate optimal point (X∗, Z∗),
then, by Proposition 2.7 (X∗, Z∗) is a unique primal-dual optimal point, and by Proposition 2.15,
around t̂ the primal and dual optimal set-valued maps are continuous single-valued functions. Under
strict complementarity, these functions are analytic. In the following, we provide details of this fact.

The optimality conditions (KKT) for (X,Z, t) to be a solution of (Pt, Dt) at a fixed value of the
parameter t ∈ T can be equivalently written as

F (X, y, Z, t) :=

 Ã(t) svec(X)− b(t),
Ã(t)T y + svec(Z)− svec(C(t))

1
2 svec (XZ + ZX)

 = 0, (3)

X,Z � 0 (4)

for some y ∈ Rm, where Ã(t) := (svec(A1(t)), . . . . svec(Am(t)))
T

and svec(X) denotes a linear map
stacking the upper triangular part of X, where the off-diagonal entries are multiplied by

√
2:

svec(X) :=
(
X11,

√
2X12, . . . ,

√
2X1n, X22,

√
2X23, . . . ,

√
2X2n, . . . , Xnn

)T
so that 〈X,X〉 = svec(X)T svec(X).
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Definition 2.16 (Singular points). We say that a point (X, y, Z) is singular at t if the Jacobian
w.r.t (X, y, Z) of F at (X, y, Z, t)

JF (X, y, Z, t) =

 Ã(t) 0 0

0 ÃT (t) Iτ(n)

Z ⊗s In 0 In ⊗s X

 (5)

is not invertible, where ⊗s denotes the symmetric Kronecker product between two n× n matrices
A and B and is defined by

(A⊗s B) svec(H) =
1

2
(AHBT +BHAT ) for any H ∈ Sn.

Otherwise, we say that (X, y, Z) is non-singular at t.

Definition 2.17 (Singular times). We say that a time t̂ is singular if there exists a singular point
(X, y, Z) at t̂ such that F (X, y, Z, t̂) = 0. Otherwise, we say that t̂ is non-singular.

Note that if t̂ is non-singular, every point (X, y, Z) such that F (X, y, Z, t̂) = 0 must be non-
singular at t̂.

The following lemma gives equivalent conditions for a primal-dual optimal point (X,Z) to be
non-singular at t.

Lemma 2.18 (Theorem 3.1. in Alizadeh et al. (1998)). A primal-dual optimal point (X,Z) is non-
singular if and only if (X,Z) is a strictly complementary and non-degenerate primal dual optimal
solution.

In general, however, strict complementarity and non-degeneracy are only sufficient conditions for
non-singularity. Note that under strict complementarity part 2. of Proposition 2.7 holds. Therefore,
the Jacobian of F is non-singular at an optimal primal-dual solution (X,Z, t) if and only if (X,Z)
is a unique primal-dual optimal point satisfying strict complementarity. We use this result in the
following theorem.

Theorem 2.19. Let (Pt, Dt) be a primal-dual pair of TV-SDPs parametrized over a time interval
T such that primal-dual strict feasibility holds for any t ∈ T (see Assum. 3.2 in Section 3) and
assume that the data A(t), b(t), C(t) are continuously differentiable functions of t. Let t̂ ∈ T be
a fixed value of the time parameter and suppose that (X∗, Z∗) is a unique primal-dual optimal
and strictly complementary point for (Pt̂, Dt̂). Then there exists ε > 0 and a unique continuously
differentiable mapping (X∗(·), Z∗(·)) defined on (t̂ − ε, t̂ + ε) such that (X∗(t), Z∗(t)) is a unique
and strictly complementary primal-dual optimal point to (Pt, Dt) for all t ∈ (t̂− ε, t̂+ ε).

Proof. Proof. By Lemma 2.18, we are under the hypothesis of the Implicit Function Theorem (see
e.g. Theorem 3.3.1 in Krantz and Parks (2002)), so that there exists ε′ > 0 and a unique continu-
ously differentiable curve (X∗(·), y∗(·), Z∗(·)) on (t̂−ε′, t̂+ε′) such that F (X∗(t), y∗(t), Z∗(t), t) = 0
for all t ∈ (t̂ − ε′, t̂ + ε′). In order to show that (X∗(t), Z∗(t)) is a primal-dual optimal point for
(Pt, Dt) we also need to prove that X∗(t), Z∗(t) � 0 for all t ∈ (t̂− ε′, t̂+ ε′). If this was not true,
then at least one between the primal and dual problem would be infeasible, as it would violate
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the KKT conditions, which under Assumption 3.2 are necessary conditions for optimality. This
would contradict Assumption 3.1, which ensures that both Pt and Dt must be feasible. Thus,
(X∗(t), Z∗(t)) is a primal-dual optimal point for (Pt, Dt) for all t ∈ (t̂ − ε′, t̂ + ε′). Finally, by
continuity, for small enough ε ≤ ε′, (X∗(t), Z∗(t)) is a unique strictly complementary primal-dual
solution for (Pt, Dt) for all t ∈ (t̂− ε, t̂+ ε). �

By adding further assumptions, one can improve the information given by Theorem 2.14 on the
cardinality of the singular points set and prove that the number of singular points of (3) is finite.

Theorem 2.20 (Proposition 5 in Hauenstein et al. (2019)). For the primal-dual TV-SDPs (Pt, Dt),
assume that there exists a non-singular time (see Def. 2.17). Furthermore, assume that the data
A(t), b(t), C(t) are polynomial functions of t. Then the set of values of the time parameter t at
which the primal-dual optimal point is either not unique or not strictly complementary is finite.

Proof. Proof. Let us elaborate on the proof given by Hauenstein et al. (2019) to prove their
Proposition 5. We first define the algebraic set

C := {(X, y, Z, t) ∈ Cτ(n) × Cm × Cτ(n) × C
∣∣ F (X, y, Z, t) = 0, det(JF (X, y, Z, t)) = 0}.

An algebraic set is a set defined by a finite number of polynomial equations on an algebraically
closed field. Note that the equations defining C are considered in C, which is the algebraic closure
of R. In particular, C is a constructible set (Section 1.1 in Basu (2017)). A constructible set
is a member of the smallest family of sets which contains the algebraic sets and is also closed
under complementation, finite unions, and finite intersections. Furthermore, the projection of a
constructible set is a constructible set itself (Theorem 1.32 in Basu (2017)), so that the projection
of C on the t coordinate

CP =
{
t ∈ C

∣∣ ∃(X, y, Z, t) ∈ C}
is a constructible set in C. At this point, we exploit the fact that any constructible set of C is either
a finite set or the complement of a finite set (Exercise 1.3 in Basu (2017)). By the hypothesis that
there exists a non-singular time t̂ it follows that the complement of CP contains t̂ and thus, from
the implicit function theorem, F (X, y, Z, t) = 0 and det(JF (X, y, Z, t)) 6= 0 for all t in an open
neighborhood of t̂. This neighborhood is contained in the complement of CP and it is not finite (it
is a open interval with non-empty interior). Hence CP is a finite set. Since

{t ∈ T
∣∣ ∃(X, y, Z) ∈ Sn × Sn s.t. F (X, y, Z, t) = 0, det(JF (X, y, Z, t)) = 0} ⊆ CP ,

the set of values of the parameter at which there exists a singular point for the Jacobian of F is
also finite. Application of Lemma 2.18 yields the final result. �

Thus, under the assumption of Theorem 2.20, the values of t at which strict complementarity
or uniqueness of the primal-dual solution is lost is finite. In particular, the values of t at which
P∗(t) or D∗(t) fails to be inner semi-continuous (and hence fails to be continuous) are finite. It also
implies that wherever P∗(t) defines a continuous curve of unique optima, the values of t at which
P∗(t) fails to be differentiable are finite. The same holds for D∗(t).
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3 A complete classification of optimal points

The focus of our study is first put on values t∗ of the time parametrization interval T at which strict
complementarity or uniqueness of the primal-dual optimal point is lost. In other words, these are
singular points preceded by non-singular points. By Theorem 2.20 such points are finite. There, the
trajectory described by the primal and dual optimal sets can exhibit a restricted number of irregular
behaviors. By an irregular behavior we mean any situation that differs from the solution following
a uniquely well-defined smooth curve. Describing these situations is the goal of this Section. If,
instead, all primal-dual optimal points (X,Z, t) are singular for every t ∈ T , the number of possible
types of irregular behaviors grows. In our main Theorem 3.10, we provide a complete classification
of these behaviors under both cases. The object of our study is the trajectory of solutions to the
primal TV-SDP (Pt), that is, the primal optimal set-valued map. Every result that we propose can
be clearly transposed to the dual case.

We first adopt the following standard assumptions:

Assumption 3.1 (LICQ and uniform boundedness of A). The m matrices {Ai(t)}i=1,...,m are
linearly independent in Sn for every t ∈ T , so that the linear operator A(t) is surjective for every t ∈
T . This condition is known as the linear independence constraint qualification (LICQ). Furthermore

the operator A(t) and its pseudo-inverse A∗(t)
(
A(t)A∗(t)

)−1
have a uniformly bounded norm.

The LICQ assumption allows us to describe the dual solution just in terms of matrix Z (see
Rem. 1). The assumption of uniform boundedness is needed to ensure the inner semi-continuity of
the feasible set-valued maps, see Theorem 2.12.

Assumption 3.2 (Strict feasibility). For every t ∈ T , problem (Pt) and its dual (Dt) are strictly
feasible.

This assumption is standard in the SDP literature (Goldfarb and Scheinberg (1999), Ahmadi
and El Khadir (2021), Hauenstein et al. (2019)). Strict feasibility guarantees that the primal and
dual optimal sets P∗(t) and D∗(t) are non-empty and bounded for any t ∈ T (Lemma 3.2 in
Goldfarb and Scheinberg (1998)). Checking strict feasibility of a given SDP can be done by solving
another SDP and checking whether its optimal value is positive or not (see for example Hauenstein
et al. (2021), Theorem 3.1 and 3.5).

Assumption 3.3 (Data continuity). Data A(t), b(t) and C(t) depend continuously on the time
parameter t.

This assumption is quite general compared to those usually found in the TV-SDP literature,
where the data are often assumed to vary linearly with respect to the time parameter. This linear-
ity assumption is standard when one studies sensitivity properties, so that the perturbation can be
assumed to be linear. Instead, our purpose is to give a geometric characterization of the points of
the trajectory of solutions, in which case we can keep a high degree of generality by just assuming
continuity of the data, without any further differentiability requirement.

Summarizing, Assumptions 3.1, 3.2, and 3.3 ensure that:

• There is no duality gap: p∗(t) = d∗(t) for all t ∈ T .
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• The primal and dual optimal faces P∗(t), D∗(t) are non-empty and bounded for all t ∈ T . In
other words, (Pt) and (Dt) are both feasible and bounded.

• The optimal set-valued maps are outer semi-continuous at any t ∈ T .

• The subset of T where the optimal set-valued map fails to be inner semi-continuous has empty
interior and it is the union of countably many sets that are nowhere dense in T .

Equipped with the results of the previous section, we introduce a classification into six different
types of primal optimal points according to the behavior of the optimal set-valued map at these
points. Our purpose is to study irregularities arising after an interval where the optimal set-valued
map has regular behavior. We hence classify points for which the optimal set-valued map on a left
neighborhood is unique and thus continuous.

Let (Pt, Dt) be a primal-dual pair of TV-SDPs parametrized by t ∈ T . For a fixed t∗ ∈ T , we
consider a primal optimal point (X∗, t∗) for (Pt∗). Based on the behavior of the primal optimal
set-valued map P∗(t) at t∗, we can distinguish between six different cases. According to these cases
we classify the primal point (X∗, t∗) into six different types. This can be done analogously for the
dual case.

Definition 3.4 (Regular point). At a regular point (X∗, t∗), P∗(t∗) = {X∗} and there exists ε > 0
such that

• P∗(t) is single-valued and continuous for every t ∈ (t∗ − ε, t∗ + ε), for some ε > 0,

• P∗(t) is differentiable at t∗.

Remark 4. Note that a primal optimal point (X∗, t∗) for (Pt∗) for which there exists a dual optimal
point (Z∗, t∗) for (Dt∗) such that (X∗, Z∗, t∗) is a non-singular point for (Pt∗ , Dt∗), is necessarily
a regular point. This follows directly from Theorem 2.19 and Lemma 2.18. The converse does not
hold in general.

Definition 3.5 (Non-differentiable point). At a non-differentiable point (X∗, t∗), P∗(t∗) = {X∗}
and there exists ε > 0 such that

• P∗(t) is single-valued and continuous for every t ∈ (t∗ − ε, t∗ + ε),

• P∗(t) is not differentiable at t∗.

Definition 3.6 (Discontinuous isolated multiple point). At a discontinuous isolated multiple point
(X∗, t∗), X∗ ∈ P∗(t∗) and there exists ε > 0 such that

• P∗(t) is single-valued and continuous for every t ∈ (t∗ − ε, t∗) ∪ (t∗, t∗ + ε),

• P∗(t) is multi-valued at t∗.
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Definition 3.7 (Discontinuous non-isolated multiple point). At a discontinuous non-isolated mul-
tiple point (X∗, t∗), X∗ ∈ P∗(t∗) and there exists ε > 0 such that

• P∗(t) is continuous at any t ∈ (t∗ − ε, t∗) ∪ (t∗, t∗ + ε),

• P∗(t) is single-valued for every t ∈ (t∗ − ε, t∗),

• P∗(t) is multi-valued for every t ∈ [t∗, t∗ + ε).

Remark 5. Let (X∗1 , t
∗
1) be a discontinuous isolated multiple point and (X∗2 , t

∗
2) a discontinuous

non-isolated multiple point. Then by definition the optimal solution is not unique neither at t∗1 nor
at t∗2. Thus, a loss of inner semi-continuity of the optimal set-valued map P∗(t) must occur both
at t∗1 and at t∗2. However, while for any ε > 0 the set of points t ∈ (t∗2 − ε, t∗2 + ε) where the optimal
set P∗(t) is multi-valued has a non-empty interior, there always exists a ε̄ > 0 such that the set
of points t ∈ (t∗1 − ε̄, t∗1 + ε̄) where the optimal set P∗(t) is multi-valued has empty interior. This
observation suggests the choice of the terms “isolated” and “non-isolated”.

Definition 3.8 (Continuous bifurcation point). At a continuous bifurcation point (X∗, t∗), P∗(t∗) =
{X∗} and there exists ε > 0 such that

• P∗(t) is continuous at any t ∈ (t∗ − ε, t∗ + ε),

• P∗(t) is single-valued for every t ∈ (t∗ − ε, t∗],

• P∗(t) is multi-valued for every t ∈ (t∗, t∗ + ε).

In particular, there exist at least two distinct continuous curves

X1 : (t∗, t∗ + ε) → Sn

t 7→ X1(t)

X2 : (t∗, t∗ + ε) → Sn

t 7→ X2(t)

such thatX1(t) andX2(t) are two distinct points of P∗(t) for every t ∈ (t∗, t∗+ε) and limt→t∗+ X1(t) =
limt→t∗+ X2(t) = X∗. In this sense, a continuous bifurcation point can be thought as a continuous
loss of uniqueness from a single branch into two or more branches.

Definition 3.9 (Irregular accumulation point). At an irregular accumulation point (X∗, t∗), X∗ ∈
P∗(t∗) and there exists ε > 0 such that

• P∗(t) is single-valued and continuous for every t ∈ (t∗ − ε, t∗)

and for any δ > 0 at least one of the following is true:

• there exists a sequence of times {tk}∞k=1 ⊆ (t∗, t∗+ δ) at which a loss of inner semi-continuity
occurs and limk→∞ tk = t∗. At these times, either a discontinuous isolated multiple point or
a discontinuous non-isolated multiple point appears.

• there exists a sequence of times {tk}∞k=1 ⊆ (t∗, t∗+δ) at which a continuous bifurcation occurs
and limk→∞ tk = t∗.
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When convenient, instead of saying that (X∗, t∗) is a regular point, we will say that X∗ is a
regular point at t∗. The same applies to all the other types of points that we defined.

Remark 6. The above definitions consider points whose sufficiently small left time neighborhood
consists of all regular points. By a change of sign of the parameter, the definition clearly extends
to points whose sufficiently small right time neighborhood consists of all regular points.

Remark 7 (Existence of a continuous selection). The optimal set-valued map is continuous in a
neighborhood of a regular, non-differentiable, or a continuous bifurcation point. Instead, at a
discontinuous isolated or non-isolated multiple point (Definitions 3.6 and 3.7), a loss of inner semi-
continuity occurs. For such points (X∗, t∗) it holds lim inft→t∗− P∗(t) 6= P∗(t∗). However, in both
cases, clearly only one of the following is true:

(A) lim
t→t∗+

P∗(t) = P∗(t∗),

(B) lim inf
t→t∗+

P∗(t) 6= P∗(t∗).

In case (A), one can select a continuous curve (t∗−ε, t∗+ε) 3 t 7→ X(t) ∈ Sn such that X(t) ∈ P∗(t)
for every t ∈ (t∗ − ε, t∗ + ε), while in case (B) such a curve does not exist. Furthermore, for a dis-
continuous isolated multiple point under case (A), such a curve is unique. Also note that in case
(A) it might be impossible to select a curve that is differentiable at t∗.

Remark 8 (Comparison with Guddat et al. (1990)). The definition of the six different types of
points was inspired by Guddat et al. (1990, Chapter 2), where a classification of solutions to
univariate parametric non-linear constrained optimization problems was proposed. There, critical
primal-dual points satisfying first-order optimality (or KKT) conditions for a given parametric
non-linear optimization problem are classified. These points are defined as non-degenerate if strict
complementarity holds as well as the invertibility of the Hessian of the Lagrangian of the considered
problem restricted to the tangent space at the point. We remark that this notion of non-degeneracy
does not coincide with that of primal and dual non-degeneracy defined in Definitions 2.4 and 2.5.
However, one can still identify an algebraic resemblance between primal non-degeneracy as defined
in 2.4 and the non-singularity of the Hessian of the Lagrangian.

In the terminology that we used, the notion of non-degeneracy adopted by Jongen in Guddat
et al. (1990) is analogous to non-singularity, as defined in Definition 2.16, as they both guarantee
the applicability of the implicit function theorem, hence ensuring a regular behavior (Theorem 2.4.2
in Guddat et al. (1990)). Around these points the optimal set can be parametrized by means of
a single parameter and the parameterization is a differentiable map. If a critical point is instead
degenerate then, according to which algebraic condition is not satisfied by such points, these are
classified in four different types. Instead, we classified irregular points according to the behavior
of the trajectory of solutions at the point considered, focusing at the possible local topological
structure of points

Theorem 3.10 (Main result). For a primal-dual pair of TV-SDPs (Pt, Dt), let Assumptions 3.1,
3.2, and 3.3 hold and consider a time t∗ ∈ T , X∗ ∈ P∗(t∗). If P∗(t) is unique for every t ∈
(t∗ − ε′, t∗) for some ε′ > 0, then (X∗, t∗) must be a point of a type defined in Definitions 3.4, 3.5,
3.6, 3.7, 3.8, or 3.9. The same holds for D∗(t)
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Proof. Proof. First, let t∗ ∈ T and X∗ ∈ P∗(t∗). By hypothesis, there exists ε′ > 0 such that P∗(t)
is single-valued and continuous for every t ∈ (t∗−ε′, t∗). Let us perform a first binary case partition:

A P∗(t∗) is a single-valued (and thus equal to {X∗}).

B P∗(t∗) is multi-valued.

Then, we also define a three-way case partition, independent from the previous one:

1 there exists ε′′ > 0 such that P∗(t) is single-valued for every t ∈ (t∗, t∗ + ε′′).

2 there exists ε′′ > 0 P∗(t) is multi-valued for every t ∈ (t∗, t∗ + ε′′).

3 for every δ > 0 there exists t′, t′′ ∈ (t∗, t∗ + δ) such that P∗(t′) is single-valued and P∗(t′′) is
multi-valued.

Combining the two partitions, we obtain one consisting of six cases:

A1 in this case P∗(t) is a single-valued function defined in (t∗ − ε, t∗ + ε), where ε := min{ε′, ε′′},
which is hence continuous by Proposition 2.15. According to whether P∗(t) is differentiable
at t∗ or not, (X∗, t∗) is a regular point or a non-differentiable point.

A2 if there exists ε′′ > 0 such that P∗(t) is continuous at any t ∈ (t∗−ε′, t∗+ε′′) then by definition
(X∗, t∗) is a continuous bifurcation point (Definition 3.8). Otherwise, for every k ∈ N there
must exist a point tk ∈ (t∗, t∗+ 1

k ) such that a loss of inner semi-continuity occurs a tk. Hence,
(X∗, t∗) is an irregular accumulation point (Definition 3.9).

A3 if there exists ε′′ > 0 such that P∗(t) is continuous at any t ∈ (t∗ − ε′, t∗ + ε′′) then, as
for any δ > 0 a continuous switch from unique to non-unique solutions must occur, we can
construct a sequence of times {tk}∞k=1 at which a continuous bifurcation occurs converging to
t∗. Otherwise, we can proceed as in case A2 and construct a sequence of times at which a loss
of inner semi-continuity occurs converging to t∗. Hence, (X∗, t∗) is an irregular accumulation
point.

B1 in this case, simply by definition, (X∗, t∗) is a discontinuous isolated multiple point (Definition
3.6).
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B2 if there exists ε′′ > 0 such that P∗(t) is continuous at any t ∈ (t∗ + ε′′), by definition (X∗, t∗)
is a discontinuous non-isolated multiple point (type 3.6). Otherwise, for every k ∈ N there
exists a point tk ∈ (t∗, t∗ + 1

k ) such that a loss of inner semi-continuity occurs a tk. Hence,
(X∗, t∗) is an irregular accumulation point.

B3 the same discussion as in A3, (X∗, t∗) is hence an irregular accumulation point. �

Theorem 3.11. For a primal-dual pair of TV-SDPs (Pt, Dt), let Assumptions 3.1, 3.2, and 3.3
hold. Suppose that there exists a non-singular time (cf. Def. 2.17) and that the data of (Pt, Dt)
are polynomial functions of t. Then, along the parametrization interval T the number of points in
times at which there is a non-differentiable point (cf. Def. 3.5) or a discontinuous isolated multiple
point (cf. Def. 3.6) for P∗(t) or D∗(t) is finite. All the other points are regular points (cf. Def.
3.4) for both P∗(t) and D∗(t). Furthermore, the number of regular points where P∗(t) or D∗(t) is
not continuously differentiable is finite.

Proof. Proof. By Theorem 2.20, the hypothesis implies that the number of values of t ∈ T at
which there exists an optimal primal-dual singular point for (3) is finite. Let S denote the set of
such values. First, let t∗ns ∈ T \ S. Then there exists an optimal primal-dual non-singular point
(X∗ns, Z

∗
ns, t

∗
ns). By Theorem 2.19, both (X∗ns, t

∗
ns) and (Z∗ns, t

∗
ns) are regular points (cf. Def. 3.4 and

Rem. 4) where both P∗(t) and D∗(t) are continuously differentiable. Now consider t∗s ∈ S. Then
there exists an optimal primal-dual singular point (X∗s , Z

∗
s , t
∗
s). If at t∗s a loss of inner semi-continuity

for P∗ occurs then P∗(t∗s) is multi-valued, hence (X∗s , t
∗
s) is a discontinuous isolated multiple point

(cf. Def. 3.6). The same holds in the dual version for D∗ and (Z∗s , t
∗
s). If instead at t∗s continuity

of P∗ is preserved, then P∗(t∗s) is a singleton. According to whether P∗ is differentiable at t∗s or
not, (X∗s , t

∗
s) is a regular point or a non-differentiable point (cf. Def. 3.5). At regular points in S

that are differentiable, the derivative of P∗(t) and D∗(t) might yet fail to be continuous. Being in
S, such points are in a finite number, hence proving the last sentence of the theorem. Since P∗(t∗s)
is a singleton, a loss of differentiability only happens when t∗s is in S; that is, when either D∗(t∗s) is
multi-valued or strict complementarity between X∗s and Z∗s fails (this follows from Lemma 2.18).
The same holds in the dual version for D∗ and (Z∗s , t

∗
s). �

To prove that any type of point that we defined can actually appear, in the following section
we exhibit an example of each type.

4 Examples
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4.1 Regular, non-differentiable and discontinuous isolated multiple points

For t ∈ T = (−3, 2), consider the primal TV-SDP

min tx+ ty + z

s.t.

1 x y

x 1 z

y z 1

 � 0.
(P 1
t )

The feasible region is known as Cayley spectrahedron. We have:

P∗(t) =



1 1 1

1 1 1

1 1 1

 for t ∈ (−3,−2],

 1 −t/2 −t/2
−t/2 1 t2

2 − 1

−t/2 t2

2 − 1 1

 for t ∈ (−2, 2) \ {0},


1 a b

a 1 −1

b −1 1

∣∣∣∣∣ a+ b = 0

a, b ∈ [−1, 1]

 at t = 0.

In (−3,−2), the trajectory is constant. All points are hence regular (Def. 3.4). In both intervals
(−2, 0) and (0, 2), the solution to (P 1

t ) is unique and the trajectory describes a parabolic differen-
tiable curve and hence all its points are also regular.

Instead, t = −2 is a non-differentiable point (Def. 3.5). Indeed:

d

dt
P∗(t)|t=−2− =

0 0 0

0 0 0

0 0 0

 6=
 0 −0.5 −0.5

−0.5 0 −2

−0.5 −2 0

 =
d

dt
P∗(t)|t=−2+ .

Moreover, at t = 0 there is a loss of uniqueness, as P∗(0) is a one-dimensional face of Cayley
spectrahedron. Thus, t = 0 is a discontinuous isolated multiple point (Def. 3.6), as uniqueness is
holding before for t ∈ (−2, 0) and after for t ∈ (0, 3). Consider now the TV-SDP dual to (P 1

t )

max α+ β + γ

s.t.

−α t/2 t/2

t/2 −β 1/2

t/2 1/2 −γ

 � 0. (D1
t )
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Figure 1: Trajectory of solutions of (P 1
t ). Its feasible set is time-invariant and it is the Cayley

spectrahedron (orange). Its optimal set-valued map coincides with the red dot at (1, 1, 1) for
t ∈ (−3,−2], moves along the blue curve (−t/2,−t/2, t2/2− 1) for t ∈ (−2, 2) \ {0}, and covers the
whole red top edge {(x, y,−1)|x+ y = 0} at t = 0.

The optimal set-valued map for (D1
t ) is

D∗(t) =



−t t/2 t/2

t/2 −(t+ 1)/2 1/2

t/2 1/2 −(t+ 1)/2

 for t ∈ (−3,−2),

t2/2 t/2 t/2

t/2 1/2 1/2

t/2 1/2 1/2

 for t ∈ [−2, 2).

At t = −2,D∗(t) has a non-differentiable point (Def. 3.5) too. Indeed:

d

dt
D∗(t)|t=−2− =

−1 0.5 0.5

0.5 −0.5 0

0.5 0 −0.5

 6=
−2 0.5 0.5

0.5 0 0

0.5 0 0

 =
d

dt
D∗(t)|t=−2+ .

For t ∈ (−3, 2) \ {−2} the primal-dual pair of solutions is strictly complementary. Being both
unique solutions for every t ∈ (−3, 2) \ {0}, we conclude by Lemma 2.18 and Theorem 2.19 that for
t ∈ (−3, 2) \ {−2, 0} the primal-dual trajectory of solutions consists of regular points.

Notice that −2 and 0 are singular times for the parameterization interval T = (−3, 2). Indeed, at
t = −2 there is a loss of strict complementarity (the rank of both primal and dual solution is 1),
while at t = 0 there is a loss of primal uniqueness, hence a dual degenerate solution.
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Note that this example illustrates Theorem 3.11, as there exists a non-singular time t̂ ∈ (−3, 2)
(Def. 2.17). Take for example t̂ = 1: equation (3) has a finite set of 8 solutions, which can be
described as the intersections in R6 of 3 sets, each of which is the union of 2 hyperplanes, with 3
hyperplanes. If we set

(X,Z) =


1 x y

x 1 z

y z 1

 ,

−α 1/2 1/2

1/2 −β 1/2

1/2 1/2 −γ


 ,

then equation (3) can be rewritten as:

x = α+ β − γ
y = α− β + γ

z = −α+ β + γ

(1 + α− β − γ)(1 + β + γ) = 0

(1− α+ β − γ)(1 + α+ γ) = 0

(1− α− β + γ)(1 + α+ β) = 0.

(6)

The solutions of this system are:

(− 1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ), (1, 1, 1, 1, 1, 1),

(1, 1,−2, 1,− 1
2 ,−

1
2 ), (−1,−1, 1,−1, 0, 0),

(1,−2, 1,− 1
2 , 1,−

1
2 ), (−1, 1,−1, 0,−1, 0),

(−2, 1, 1,− 1
2 ,−

1
2 , 1), (1,−1,−1, 0, 0,−1).

It is then possible to check that each of these 8 points makes the Jacobian (5) invertible, hence
guaranteeing that t̂ = 1 is a non-singular time, so that the hypothesis of Theorem 3.11 are satisfied.
Notice that the first solution above corresponds to the optimal primal-dual solution at t̂ = 1.

4.2 Discontinuous non-isolated multiple points

For t ∈ T = (−2, 1), consider the TV-SDP

min tx+ ty + z

s.t.


1 x y 0

x 1 z 0

y z 1 0

0 0 0 1 + x+ y + z

 � 0 (P 2
t )
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for which

P∗(t) =




1 −t/2 −t/2 0

−t/2 1 t2

2 − 1 0

−t/2 t2

2 − 1 1 0

0 0 0 t2

2 − t

 for t ∈ (−2, 0),




1 a b 0

a 1 −1 0

b −1 1 0

0 0 0 0

∣∣∣ a+ b = 0

a, b ∈ [−1, 1]

 for t ∈ [0, 1).

The optimal set-valued map P∗(t) is continuous for every t ∈ (−2, 1) \ {0}, it is single-valued for

Figure 2: Trajectory of solutions of (P 2
t ). Its feasible set is time-invariant and it is the Cayley

spectrahedron (orange) intersected with half space {(x, y, z)|1 +x+ y+ z ≥ 0} (green). Its optimal
set-valued map moves along the blue curve (−t/2,−t/2, t2/2 − 1) for t ∈ (−1, 0), and covers the
whole red top edge {(x, y, z)|x+ y = 0, z = −1} for t ∈ [0, 1).

every t ∈ (−2, 0), and it is multi-valued for every t ∈ [0, 1), as for every t ∈ [0, 1) the optimal face at
t is 1-dimensional. A loss of inner semincontinuity occurs at t = 0. Hence, t = 0 is a discontinuous
non-isolated multiple point, according to Def. 3.7.
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4.3 Continuous bifurcation point

For t ∈ T = (−1, 1), consider the primal TV-SDP

min x11

s.t. x44 − x33 = 0

x22 = 1

2x12 + x33 + x44 = −t
X � 0

(P 3
t )

for which

P∗(t) =






0 0 0 0

0 1 a b

0 a −t/2 c

0 b c −t/2


∣∣∣∣∣ a2 + b2 + c2 ≤ t2

4 − t
− t

2 (a2 + b2) + c2 − 2abc ≤ t2

4

 for t ∈ (−1, 0),


t2/4 −t/2 0 0

−t/2 1 0 0

0 0 0 0

0 0 0 0

 for t ∈ [0, 1).

The optimal set-valued map P∗(t) is continuous for every t ∈ (−1, 1), it is multi-valued for every
t ∈ (−1, 0), being there a 3-dimensional face, and it is single-valued for every t ∈ [0, 1) Hence t = 0
is a continuous bifurcation point for (P 3

t ) according to Def. 3.8 (with reversed time, see Rem. 6).

When there exists a continuous bifurcation point it is necessary that all the times of the param-
eterization interval are singular according to Def. 2.17. In other words, at any time t ∈ (−1, 1)
there exists a primal-dual point which is either degenerate or not strictly complementary. Indeed,
the dual TV-SDP to (P 3

t ) is

max y − tz

s.t.


1 −z 0 0

−z −y 0 0

0 0 −x− z 0

0 0 0 x− z

 � 0, (D3
t )
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which is equivalent to max{y + tz | y + z2 ≤ 0, −z ≤ x ≤ z} and for which

D∗(t) =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 for t ∈ (−1, 0],




1 t/2 0 0

t/2 t2/4 0 0

0 0 −a 0

0 0 0 a+ t


∣∣∣∣∣ a ∈ [−t, 0]

 for t ∈ (0, 1).

Figure 3: Trajectory of solutions of (D3
t ). Its feasible set is time-invariant and it is the set

{(x, y, z)|y+z2 ≤ 0, −z ≤ x ≤ z} (orange). Its optimal set-valued map coincides with the red dot at
(0, 0, 0) for t ∈ (−1, 0]. At t = 0, (0, 0, 0) is a continuous bifurcation point, as for every t ∈ (0, 1) the
solution is multi-valued and equal to the set {(x, y, z)|x ∈ [−t/2, t/2], y = −t2/4, z = −t/2}. In the
picture, the blue segments illustrate the optimal multiple-valued solution for t = {0.1, 0.2, . . . , 0.9, 1}

The dual optimal set-valued map D∗(t) is continuous for every t ∈ (−1, 1), single-valued for every
t ∈ (−1, 0], and it is multi-valued for every t ∈ (0, 1), being there a 1-dimensional face. Thus, t = 0
is a continuous bifurcation point for (D3

t ), according to Def. 3.8.

In particular, a pair of primal-dual solutions for (P 3
t , D

3
t ) is not unique, hence degenerate, for every

t ∈ (−1, 1) \ {0}; for t = 0, there is a unique pair of primal-dual solutions for which however strict
complementarity does not hold. This implies that all t ∈ (−1, 1) are singular times.
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4.4 Irregular accumulation points

For t ∈ T = (−1, 1), consider the TV-SDP

min f(t)(x− y) + z

s.t.


1 x y 0 0

x 1 z 0 0

y z 1 0 0

0 0 0 g(t) x− y
0 0 0 x− y g(t)

 � 0 (P 4
t )

where

f(t) :=

{
t sin π

t if t > 0,

0 otherwise,
and g(t) :=

{
2t if t > 0,

0 otherwise.

For t ≤ 0 the feasible region is the intersection between Cayley spectrahedron and the plane
x − y = 0. For t > 0 the feasible region is the intersection between Cayley spectrahedron and the
region x − y ∈ [−2t, 2t]. Expressing the solutions of (P 4

t ) in terms of the variables x(t), y(t), z(t),
we have:

(x(t), y(t), z(t)) =


(0, 0,−1) for t ∈ (−1, 0],

(t,−t,−1) for t ∈
(

1
2k−1 ,

1
2k

)
, k = 1, 2, . . .

{(α,−α,−1) | α ∈ [−t, t]} for t = 1
k , k = 1, 2, . . .

(−t, t,−1) for t ∈
(

1
2k ,

1
2k+1

)
, k = 1, 2, . . .

Figure 4: Graph of the x coordinate of the optimal set of (P 4
t ) as a function of time t. The blue

segments correspond to regular points, the red dot corresponds to an irregular accumulation point,
and the orange vertical segments correspond to discontinuous isolated multiple-points, where the
solution is multiple valued.

For every t ∈ (−1, 0], P∗(t) is continuous and single-valued. The parameter sequence {tk}∞k=1 ⊆
(0, 1] defined by tk := 1

k is such that limk→∞ tk = 0 and at each tk a loss of inner semi-continuity

25



occurs. Hence, t = 0 is an irregular accumulation point, according to Def. 3.9

In the following, we also provide an example of an accumulation point for a sequence of continuous
bifurcation points. For t ∈ (−1, 1), consider the TV-SDP

min z

s.t.


1 x y 0 0

x 1 z 0 0

y z 1 0 0

0 0 0 2h(t) x− y
0 0 0 x− y 2h(t)

 � 0, (P 5
t )

where

h(t) :=

{
t sin2 π

t if t > 0,

0 otherwise.

For t ≤ 0 and for t = 1/k, k = 1, 2, . . . the feasible region is the intersection between Cayley
spectrahedron and the plane x − y = 0, while for t ∈ (1/k, 1/(k + 1)) , k = 1, 2, . . . the feasible
region is the intersection between Cayley spectrahedron and the region x − y ∈ [−2h(t), 2h(t)].
Writing the solutions of (P 5

t ) in terms of the variables x(t), y(t), z(t), we have:

(x(t), y(t), z(t)) =


(0, 0,−1) for t ∈ (−1, 0],

{(α,−α,−1) | α ∈ [−h(t), h(t)]} for t ∈
(

1
k ,

1
k+1

)
, k = 1, 2, . . .

(0, 0,−1) for t = 1
k , k = 1, 2, . . .

Figure 5: Graph of the x coordinate of the optimal set of (P 5
t ) as a function of time t. The blue

segment consists of regular points, the red dot corresponds to an irregular accumulation point, and
the orange dots correspond to continuous bifurcation points. The gray region corresponds to times
intervals where the optimal solution is multi-valued.

For every t ∈ (−1, 1), P∗(t) is continuous. The parameter sequence {tk}∞k=1 ⊆ (0, 1] defined by
tk := 1

k is such that limk→∞ tk = 0 and each tk is a continuous bifurcation point. Hence, t = 0 is
an irregular accumulation point, according to Def. 3.9.
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5 Discussion

Our approach draws upon a long history of work in parametric optimization. In particular, the
pioneering work of Guddat et al. (1990, Chapter 2) outlined a classification of solutions to univari-
ate parametric non-linear constrained optimization problems. There, precise algebraic conditions
are shown for points satisfying first-order optimality conditions to be non-degenerate (see Rem.
8). These points exhibit a regular behavior. For degenerate points, four different types are defined
according to which subset of non-degeneracy conditions is violated. Analogously, our approach also
starts by considering algebraic conditions that ensure a regular behavior, but our classification of
irregular points was made according to the local behavior of the trajectory of solutions at the point
considered, rather than according to different sets of algebraic conditions.

We notice that regular points and discontinuous isolated multiple points, defined as in Definitions
3.4 and 3.6 respectively, were first identified by Hauenstein et al. (2019) (see e.g. Example 1
there) within the optimal partition approach to parametric analysis for linearly parametrized SDP.
Furthermore, non-differentiable points (Definition 3.5) can be easily derived from their results.

Our work can hence be seen as a completion of the effort of Hauenstein et al. (2019). Likewise, in
our analysis, Theorem 3.11 relies on Theorem 2.20 and Theorem 2.19. There, the proof of Theorem
2.20 uses the technique of Hauenstein et al. (2019), while Theorem 2.19 is essentially an application
of the implicit function theorem, implying that this can be applied almost everywhere. Theorem
3.10 suggests that when, instead, the assumptions for implicit function theorem do not hold almost
everywhere, this allows for a broader range of possible behaviors, listed in the last row of Table 1.

Problem assumptions Type of points

TV-SDP with LICQ, continuous data, Regular points

strict feasibility, and a non-singular time Non-differentiable points

Discontinuous isolated multiple points

TV-SDP with LICQ, continuous data, Regular points

strict feasibility, without a non-singular time Non-differentiable points

Discontinuous isolated multiple points

Discontinuous non-isolated multiple points

Continuous bifurcation points

Irregular accumulation points

Table 1: Assumptions on TV-SDP and associated possible type of points

From the point of view of formulating a TV-SDP, the key insight of Hauenstein et al. (2019)
and ours is that even seemingly strong and standard assumptions such as the continuity of the data
and primal-dual strict feasibility are not sufficient to prevent pathological behavior. We presented
a complete characterization of such behaviors. Thereby, we showed that guaranteeing the existence
of a non-singular point along the trajectory suffices to prevent highly pathological behaviors. How-
ever, this does not prevent from a finite number of losses of differentiability or isolated losses of
uniqueness to occur.

One may also be interested in understanding how the main result of this paper specializes to
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restricted classes of TV-SDP, such as time-varying linear programming (TV-LP) and time-varying
second order cone programming (TV-SOCP). In the first case, if the data are assumed to be con-
tinuous functions, one can easily construct an example of each type of behaviors of the trajectory
of solutions described in Definitions 12-17. For example, for t ∈ (−1, 1) consider:

1. min{x : x ≥ 1 + t}.

2. min{x : x ≥ |t|}.

3. min{tx : −1 ≤ x ≤ 1}.

4. min{f(t)x : −1 ≤ x ≤ 1}, with f(t) = t if t ≤ 0, otherwise f(t) = 0.

5. min{0x : −g(t) ≤ x ≤ g(t)}, with g(t) = 0 if t ≤ 0, otherwise g(t) = t.

6. min{0x : −h(t) ≤ x ≤ h(t)}, with h(t) = 0 if t > 0, otherwise h(t) = t sin2 π
t .

At t∗ = 0, x∗ = 0 is 1. a regular point, 2. a non-differentiable point, 3. an isolated discontinuous
multiple point, 4. a non-isolated discontinuous multiple point, 5 a continuous bifurcation point,
6 an irregular accumulation point. Hence, restricting to the class of TV-LP does not exclude any
type of point. It follows that also in the case of TV-SOCP, a class that generalize TV-LP, all the
type of points can possibly appear. From this point of view, it is surprising that the trajectories of
solution to TV-SDP, a class of optimization problems much wider than TV-LP, does not present,
in the general framework that we adopted, any behavior which does not already show up in TV-LP.
However, we believe that under a set of assumptions more specific than the one that we adopted in
Theorem 3.10, some type of behaviors may be ruled out in TV-LP, but not in TV-SDP. Take as an
example non-differentiable points (see Def. 3.5). If one assumes that the time dependence of the
data is smooth, e.g. polynomial, non differentiable points can still appear in TV-SDP (see the first
example of Section 4). This is due to the facial geometry of SDP, where positively curved surfaces
appear, which must then entirely consist of extreme points (0-dimensional faces). Instead, in TV-
LP, extreme points are always isolated, so that when the solution is unique, this must coincide with
a fixed extreme point. If the time dependence is smooth, this should imply that the feasible set,
hence its extreme points, should also move smoothly, preventing non-differentiable points to show
up. The investigation of such distinctions between TV-LP and TV-SDP may be an interesting
direction for future research.

6 Conclusion

We used set-valued analysis to describe and study the trajectory of solutions to TV-SDP. The anal-
ysis we carried out brought us to define six different types of points, according to the local structure
of the solutions trajectory. Our main result consists in proving that under standard assumptions,
there are no other types of points.

One could extend our research by weakening our assumptions: continuity of the data dependence
on the parameter, and primal and dual strict feasibility throughout the parameterization interval.
These requirements avoid highly degenerate situations. In particular, without continuity of the
data, one can expect the trajectory to potentially present a lot of irregularities, e.g., it may fail to
be both inner and outer semi-continuous, while, as Theorem 2.13 shows, under the continuity of
the data outer semi-continuity is ensured.
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When strict feasibility is lost, two additional forms of degenerate behavior might occur: the
optimal value may not be attained at any feasible point, or there may be a strictly positive duality
gap between the primal and dual optimal values. It is not clear whether there could be other types
too, perhaps akin to irregular accumulation points.

Finally, the properties of specific classes of trajectories of solutions in specific applications may
be of considerable interest.
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CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics”.

References

A. A. Ahmadi and B. El Khadir. Time-varying semidefinite programs. Mathematics of Operations
Research, 46(3):1054–1080, 2021.

R. Al-Salih and M. Bohner. Linear programming problems on time scales. Applicable Analysis and
Discrete Mathematics, 12(1):192–204, 2018.

F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton. Complementarity and nondegeneracy in semidef-
inite programming. Mathematical Programming, 77(1):111–128, 1997.

F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton. Primal-dual interior-point methods for semidef-
inite programming: convergence rates, stability and numerical results. SIAM Journal on Opti-
mization, 8(3):746–768, 1998.

M. F. Anjos and J. B. Lasserre. Handbook on Semidefinite, Conic and Polynomial Optimization,
volume 166. Springer, 2011.

S. Basu. Algorithms in real algebraic geometry: a survey. Panoramas et Synthèses, 51:107–153,
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