
HAL Id: hal-03196830
https://hal.science/hal-03196830v1

Submitted on 13 Apr 2021 (v1), last revised 7 Oct 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finding the k Shortest Simple Paths: Time and Space
trade-offs

Ali Al Zoobi, David Coudert, Nicolas Nisse

To cite this version:
Ali Al Zoobi, David Coudert, Nicolas Nisse. Finding the k Shortest Simple Paths: Time and Space
trade-offs. [Research Report] Inria; I3S, Université Côte d’Azur. 2021. �hal-03196830v1�

https://hal.science/hal-03196830v1
https://hal.archives-ouvertes.fr

Finding the k Shortest Simple Paths: Time and Space trade-offs∗

Ali Al Zoobi and David Coudert and Nicolas Nisse

Université Côte d’Azur, Inria, CNRS, I3S, France

April 13, 2021

Abstract

The k shortest simple path problem (kSSP) asks to compute a set of top-k shortest
simple paths from a source to a sink in a digraph. Yen (1971) proposed an algorithm with
the best known polynomial time complexity for this problem. Since then, the problem
has been widely studied from an algorithm engineering perspective. The most noticeable
proposals are the node-classification (NC) algorithm (Feng, 2014) and the sidetracks-based
(SB) algorithm (Kurz, Mutzel, 2016). The latest offers the best running time at the price
of a significant working memory.

We first show how to speed up the SB algorithm using dynamic updates of shortest path
trees resulting in a faster algorithm (SB*) with same working memory. We then propose the
parsimonious SB (PSB) algorithm that significantly reduces the working memory of SB at
the cost of a small increase of the running time. Furthermore, we propose the postponed node-
classification (PNC) algorithm that combines the best of NC and SB. It offers a significant
speed up compared to NC while using the same amount of working memory of NC.

Our experimental results on complex networks show that all of the considered algorithms
have low working memory, and that the PSB algorithm is the fastest. On road networks,
the SB* algorithm is the fastest (on median) among the considered algorithms, but it suffers
from a large working memory. The PNC algorithm has comparable running time to SB* on
road networks while using the same working memory as NC.

Keywords: k shortest simple paths; graph algorithm; space-time trade-off.

1 Introduction

The classical k shortest paths problem (kSP) aims at finding the top-k shortest paths between
a pair of source and destination nodes in a graph. This problem has numerous applications in
various kinds of networks (road and transportation networks, communications networks, social
networks, etc.) and is also used as a building block for solving optimization problems. Let5

D = (V,A) be a digraph, an s-t path is a sequence (s = v0, v1, · · · , vl = t) of vertices starting
with s and ending with t, such that (vi, vi+1) ∈ A for all 0 ≤ i < l. It is called simple if it has
no repeated vertices, i.e., vi 6= vj for all 0 ≤ i < j ≤ l. The weight of a path is the sum of the
weights of its arcs and the top-k shortest paths is therefore a set containing a shortest s-t path,
a second shortest s-t paths, etc. until a kth shortest s-t path.10

∗This work has been supported by the French government, through the UCAjedi Investments in the Future
project managed by the National Research Agency (ANR) with the reference number ANR-15-IDEX-01, the
ANR project MULTIMOD with the reference number ANR-17-CE22-0016, the ANR project Digraphs with the
reference number ANR-19-CE48-0013, and by Région Sud PACA.

1

Several algorithms for solving kSP have been proposed. In particular, Eppstein [8] proposed
an exact algorithm that computes k shortest paths (not necessarily simple) in O(m+n log n+k)-
time, where m is the number of arcs and n the number of vertices of the graph. An important
variant of this problem is the k shortest simple paths problem (kSSP) introduced in 1963 by
Clarke et al. [6] which adds the constraint that reported paths must be simple. This variant15

of the problem has various applications in transportation network when paths with repeated
vertices are not desired by the user. It is also a subproblem of other important problems like
constrained shortest path problem, vehicle and transportation routing [16, 19, 35]. It can be
applied successfully in bio-informatics [2], especially in biological sequence alignment [30] and
in natural language processing [4]. For more applications, see Eppstein’s recent comprehensive20

survey on k-best enumeration [9].
The most famous algorithm for solving the kSSP problem has been proposed by Yen [36]

and has time complexity in O(kn(m + n log n)). It has been proved that the kSSP prob-
lem can be solved in O(k) iterations of APSP (All Pairs Shortest Paths) [15]. This means
that the kSSP problem can be solved in O(kn(m + n log logn))-time on sparse digraphs and25

O(kn3(log log n)/ log2 n)-time on dense digraphs using the fastest APSP algorithms [17, 28].
Vassilevska Williams and Williams [33] show that a subcubic kSSP algorithm would also result
in a subcubic algorithm for APSP, which seems unlikely at the moment. Recently, Eppstein and
Kurz [10] proved that on digraphs with bounded treewidth, the kSSP problem can be solved in
time O(n+ k log n).30

On the other hand, several works have been proposed to improve the efficiency of the algo-
rithm in practice [11,14,16,18,21–23,31]; they all feature the same worst-case running time as
Yen’s algorithm i.e, O(kn(m+ n log n)).

In particular, Feng [11] proposed an improvement of Yen’s algorithm called Node Classifi-
cation (NC) algorithm. With the help of a precomputed shortest path tree of the digraph, NC35

algorithm classifies the vertices of the digraph with respect to their validity. Thus, computing
a shortest simple detour will be restricted to the non-valid sub-digraph that is smaller than the
original one. By this restriction, the running time of computing a shortest path remarkably de-
creases. An interesting fact about the NC algorithm is that its memory consumption is almost
the same as Yen’s algorithm (only a shortest path tree is kept in the memory).40

Recently, Kurz and Mutzel [22, 23] obtained a tremendous improvement of the practical
running time, designing an algorithm called Sidetrack Based (SB) with the same flavor as
Eppstein’s algorithm. The key ideas are to define a path using a sequence of shortest path trees
and deviations, and to postpone as much as possible the computation of shortest path trees.
With this new algorithm, they were able to compute hundreds of paths in graphs with million45

nodes in about one second, while previous algorithms required an order of tens of seconds on
the same instances. For instance, Kurz and Mutzel’s algorithm computed k = 1000 shortest
paths in 50 (ms) for the DC network [7] while it required about 5 (s) with Yen’s algorithm and
about 0.3 (s) by the improvement proposed by Feng [11]. The drawback of the SB algorithm is
the need for storing all computed shortest path trees, thus leading to a large usage of working50

memory.
To conclude, the fastest algorithm with low working memory consumption (i.e, the same

working memory as Yen’s algorithm) is the Node Classification (NC) algorithm, proposed inde-
pendently by [11] and [14]. With larger memory consumption, the Sidetrack Based algorithm
(SB) [23] can achieve a tremendous speed up.55

Our contributions. We propose a new algorithm with low working memory consumption,
called Postponed Node Classification (PNC), that is much faster than the NC algorithm while
using the same working memory. Our experimental results show that the PNC algorithm is the
fastest kSSP algorithm with low working memory among all considered algorithms. Further-

2

more, it competes with the algorithms with large memory consumption on road networks.60

Considering large working memory, we show how to speed up the SB algorithm using dy-
namic updates of shortest path trees resulting with the SB* algorithm, that is, the fastest kSSP
algorithm (on median) with large memory consumption among the considered algorithms on
road networks. Moreover, we propose a new algorithm called Parsimonious Sidetrack Based
(PSB), that is based on the SB algorithm. The PSB algorithm gives, on road network, a space65

time trade off between SB and NC algorithms. That is, it enables to significantly reduce the
working memory of SB at the cost of an increase of the running time. Nonetheless, on complex
networks, the PSB algorithm gives the best running time among all the considered algorithms.
We further propose parameterized variants of PSB (called PSB-v2 and PSB-v3) that improve
its performances, both in terms of working memory consumption and of running time, on road70

networks.
We analyse the behavior of all of the aforementioned algorithms on different types of net-

works (road, biological, Internet and social networks). We have also investigated the relation-
ships between the performances of the algorithms and some properties of the queries, such as
the number of hops and the stretch from the center. Finally, we end up with a first empirical75

framework for selecting the most suitable kSSP algorithm for a given use case.
This paper is organized as follows. We start recalling the Yen and NC algorithms in Section 2.

Then, we present in Section 3 the SB algorithm with our improvement SB*. In Section 4, we
present the PSB algorithm and its two variants PSB-v2 and PSB-v3. Section 5 is devoted to
the presentation of the PNC algorithm. We present our experimental evaluation of all these80

algorithms on various networks in Section 6. Finally, we conclude this paper in Section 7.

2 Preliminaries

2.1 Definition and Notation

Let D = (V,A) be a directed graph (digraph for short) with vertex set V and arc set A. Let
n = |V | be the number of vertices and m = |A| be the number of arcs of D. Given a vertex85

v ∈ V , N+(v) = {w ∈ V | vw ∈ A} denotes the out-neighbors of v in D. Let wD : A→ R+ be a
weight function over the arcs. For every u, v ∈ V , a (directed) path from u to v in D is a sequence
P = (u = v0, v1, · · · , vr = v) of vertices with vi, vi+1 ∈ A for all 0 ≤ i < r. Note that vertices
may be repeated, i.e., paths are not necessarily simple. A path is simple if, moreover, vi 6= vj
for all 0 ≤ i < j ≤ r. The length of the path P equals wD(P) =

∑
0≤i<r wD(vi, vi+1) (we will90

omit D when there is no ambiguity). The distance dD(u, v) between two vertices u, v ∈ V is the
smallest length of a u-v path in D (if any). Given two paths P = (v0, · · · , vr), Q = (w0, · · · , wp)
and vrw0 ∈ A, we denote by P.Q the v0-wp path obtained by the concatenation of P and Q.
i.e, P.Q = (v0, · · · , vr, w0, · · · , wp) = (v0, · · · , vr, Q) = (P,w1, · · · , wp).

Given s, t ∈ V , a top-k set of shortest s-t paths is any set S of (pairwise distinct) simple s-t95

paths such that |S| = k and w(P) ≤ w(P ′) for every s-t path P ∈ S and s-t path P ′ /∈ S. The
k shortest simple paths problem takes as input a weighted digraph D = (V,A), wD : A → R+

and a pair of vertices (s, t) ∈ V 2 and asks to find a top-k set of shortest s-t paths (if they exist).
Let t ∈ V . An in-branching T rooted at t is any sub-digraph of D that induces a (not

necessarily spanning) tree containing t, such that every u ∈ V (T) \ {t} has exactly one out-100

neighbor (that is, all paths go toward t). An in-branching T is called a shortest path (SP)
in-branching rooted at t if, for every u ∈ V (T), the length of the (unique) u-t path P T

ut in T
equals dD(u, t). Note that an SP in-branching is sometimes called reversed shortest path tree.
Similarly, A shortest path (SP) out-branching T rooted at s is any sub-digraph of D inducing
a tree containing s, such that every u ∈ V (T) \ {s} has exactly one in-neighbor and the length105

3

of the (unique) s-u path P T
su in T equals dD(s, u). Any algorithm able to compute an SP in-

branching (or an SP out-branching) is called an SP algorithm. As we consider directed weighted
digraphs, we use Dijkstra’s algorithm. However, it is possible to use any suitable shortest path
algorithm instead.

In the forthcoming algorithms, the following procedure will often be used (and the key point110

when designing the algorithms is to limit the number of such calls and to optimize each of
them). Given a sub-digraph H of D and u, t ∈ V (H), we use an SP algorithm to compute an
SP in-branching rooted in t that contains a shortest u-t path in H. Note that, the execution
of an SP algorithm may be stopped as soon as a shortest u-t path has been computed (when
u is reached), i.e., the in-branching may only be partial (not necessairly spanning H). The key115

point will be that this way to proceed not necessarily only returns a shortest u-t path in H (if
any) but an SP in-branching rooted in t, containing u. Recall that any such call has worst-case
time complexity O(m+ n log n).

Let P = (v0, v1, · · · , vr) be any path in D and i < r. Any arc a = viv
′ 6= vivi+1 is called a

deviation of P at vi. Moreover, any path P ′ = (v0, · · · , vi, v′, v′1, · · · , v′` = vr) is called a detour120

of P at a (or at vi). Note that neither P nor P ′ is required to be simple. However, if P ′ is
simple, it will be called a simple detour of P at a (or at vi). In addition, P ′ is called a shortest
(simple) detour at vi (or at a) if and only if P ′ is a detour with minimum length among all
(simple) detours of P at vi (or at a).

2.2 Yen’s algorithm125

We start by describing Yen’s algorithm [36] trying to give its main properties and drawbacks.
All of the algorithms described below start by computing a shortest s-t path P0 = (s =

v0, v1, · · · , vr = t), and assume that there is always at least one such path. This is done by
applying an SP algorithm from s. Note that P0 is simple since weights are non-negative. A
second shortest s-t simple path must be a shortest simple detour of P0 at one of its vertices.130

Yen’s algorithm computes a shortest simple detour of P0 at vi for every vertex vi in P0 as
follows. For every 0 ≤ i < r, let Di(P0) be the graph obtained from D by removing the
vertices v0, · · · , vi−1 (this is to avoid non simple detours) and the arc vivi+1 (to ensure that the
computed path is a new one, i.e., different from P0). For every 0 ≤ i < r, an SP out-branching
in Di(P0) rooted at vi is computed using an SP algorithm until it reaches t and therefore returns135

a shortest path Qi from vi to t. For every 0 ≤ i < r, the detour (v0, · · · , vi−1, Qi) of P0 at vi is
added to a set Candidate (initially empty). Note that the index i (called below deviation-index)
where the path (v0, · · · , vi−1, Qi) deviates from P0 is kept explicit1, i.e, the path is stored with
its deviation index. Once (v0, · · · , vi−1, Qi) has been added to Candidate for all 0 ≤ i < r, by
remark above, a path with minimum weight in Candidate is a second shortest s-t simple path.140

More generally, by induction on 0 < k′ < k, let us assume that a top-k′ set S of shortest s-t
paths has been computed and the set Candidate contains a set of simple s-t paths such that
there exists a shortest path Q ∈ Candidate with S∪{Q} a top-(k′+1) set of shortest s-t paths.
Moreover, let us assume by induction that, for every path R in Candidate, with deviation index
j, all detours of R = (v0, · · · , v|R|) at vertices vi for 0 ≤ i < j have already been computed and145

added to Candidate. Yen’s algorithm pursues as follows. Let Q = (v0 = s, · · · , vr = t) be any
shortest path in Candidate2 and let 0 ≤ j < r be its deviation-index. First, Q is extracted from
Candidate and it is added to S (as the (k′+1)th shortest s-t path). Then, for each vertex v in Q,
a shortest simple detour of Q at v is added to Candidate (since potentially one of these detours

1The deviation-index is not kept explicitly in Yen’s algorithm. But, since it is a trivial improvement already
existing in the literature [24], we mention it here.

2Actually Candidate is implemented, using a heap, in such a way that extracting a shortest path in it takes
logarithmic time and insertions are done in constant time.

4

is a next shortest s-t path). For this purpose, for every j ≤ i < r, let πi = (v0, · · · , vi−1) (πi = ∅150

if i = 0) and let Di(Q) be a subdigraph of D containing a shortest vi-t path Qi in D such that
Qi ∩ πi = ∅ and the path πi.Qi is new (πi.Qi /∈ S). After the construction of Di(Q) (described
below), an SP out-branching of Di(Q) rooted at vi is computed using an SP algorithm until it
reaches t and therefore returns a shortest path Qi from vi to t in Di(Q). For every 0 ≤ i < r,
the shortest simple detour πi.Qi of Q at vi (together with its deviation index i) is added to155

the set Candidate. This process is repeated until k paths have been found, i.e., when k′ = k.
Indeed, the computed detours of Q are distinct from every previously computed paths as they
have different prefixes (this is the reason to keep explicitly the deviation-index).

The procedure of constructing Di(Q) is the following. First, to avoid non simple detours,
i.e, any intersection between Qi and πi, the vertices v0, · · · , vi−1 (if i > 0) are removed from D.160

Second, to ensure that the computed path (πi.Qi) is new (different from those in S), each arc
viv
′ such that S already contains a path with prefix (v0, · · · , vi, v′) is removed from Di(Q).
Therefore, for each path Q that is extracted from Candidate, O(|V (Q)|) calls of an SP

algorithm are done. This gives an overall time-complexity of O(kn(m + n log n)) which is the
best theoretical (worst-case) time-complexity currently known (and of all algorithms described165

in this paper) to solve the kSSP problem.

2.3 A Node Classification algorithm

In this section, we present the Node Classification (NC) algorithm, an improvement of Yen’s
algorithm proposed independently by Feng [11] and Gao et al. [14].

The most expensive part of Yen’s algorithm is its large number of calls to an SP algorithm.170

The NC algorithm aims at reducing the computing time of each of these calls, and possibly to
avoid some of them. Precisely, during the process of finding a detour, the search area of an
SP algorithm is restricted to a digraph that is smaller than D with the help of a precomputed
shortest path in-branching. The NC algorithm starts by computing a shortest path in-branching
T of D rooted at t (used to extract a first shortest path P0). Then, when a path Q = (v0, · · · , vr)175

with deviation-index j is extracted, its detours are computed from i = j to r − 1. The NC
algorithm classifies the vertices as red, yellow, and green: a vertex on the prefix (i.e., the
path (v0, · · · , vi−1)) is colored red, a vertex u that can reach t through T without visiting a red

vertex (i.e, P T
ut ∩ (v0, · · · , vi−1) = ∅) is colored green, and all other vertices are colored yellow.

This coloring can be computed in linear time using a DFS in T . Moreover, the coloring used to180

compute the detour at vi+1 can be obtained faster by updating the coloring for the detour at
vi.

Another important ingredient of the NC algorithm is the notion of residual weight. For each
arc e = uv not in T , the residual weight of e is the cost of deviating from T at e. Precisely,
it is the weight of the path u.P T

vt minus the weight of the path in P T
ut. Formally, the residual185

weight of arc uv is δ(u, v) = w(u, v) + w(P T
vt) − w(P T

ut). The residual weight is computed only
once (after computing T) and remains valid till the end of the execution of the algorithm. Note
that an arc in T has residual weight equals 0, and so the residual weight of the path P T

ut from
any green vertex u to t in T equals 0.

Recall that to compute a detour of Q at vi, Yen’s algorithm execute an SP algorithm to190

compute a shortest path from vi to t in Di(Q). In the case of NC algorithm, Feng proved that
it is sufficient to execute an SP algorithm using the residual weights and to stop its execution as
soon as a green vertex is reached. This result in restricting the execution of the SP algorithm
to the yellow subgraph that is expected to be smaller than Di(Q), and so to speed up the
computation of the detours.195

In Section 5, we propose an adaptation of the NC algorithm (using ideas of SB algorithm

5

presented in the next section) that allows us to speed it up.

3 Sidetrack Based (SB) algorithm

We now present the Sidetrack Based (SB) algorithm, proposed by Kurz and Mutzel [23]. We
start by describing the data structure used in the SB algorithm. Then, we explain it and provide200

a pseudo code (Algorithm 1). Finally we analyse few aspect of it. Note that our contributions
in Section 4 strongly rely on this algorithm and that is why we describe it in detail.

3.1 Compact representation of a path

The SB algorithm is based on a data structure generalizing the representation of a path proposed
by Eppstein [8]. Such compact representation uses sequences of in-branchings T0, T1, · · · , Th and205

deviations e0, e1, · · · , eh (recall that a deviation of a path P is any arc not in P but with tail in
P).

Precisely, the sequence ε = (T0, e0, T1, e1, · · · , Th, eh, Th+1) with ei = viwi for all 0 ≤ i ≤ h,
represents the path P starting at s, following T0 until the tail v0 of e0, then the deviation e0,
then T1 from the head w0 of e0 until it reaches the tail v1 of e1, etc. until it reaches the head210

wh of eh, plus (possibly) the path from wh to t in Th+1. That is, P is the sequence of vertices

of the paths P T0
sv0 , P

T1
w0v1 , · · · , P

Th
wh−1vh

followed by the vertices of P
Th+1

wht
if this latter path exists.

Two consecutive in-branchings Ti and Ti+1 are not necessarily distinct. SB algorithm ensures

that, if P is an s-t path (i.e., if P
Th+1

wht
exists), then the subpath π of P going from s to wh

(v0, · · · , wh) is always simple and P is not simple only if P
Th+1

wht
intersects π.215

3.2 The SB algorithm

We are now ready to present the SB algorithm, whose pseudocode is presented in Algorithm 1.
Roughly, the SB algorithm uses a set Candidate to manage candidate paths that are encoded
using the above data structure. Sequentially, it extracts a shortest element ε from Candidate.
If ε represents a simple path, this path is added to the output and the representations of its220

detours (that will be found using the last tree in the representation of ε) are added to Candidate.
Otherwise, the SB algorithm attempts to modify ε by instantiating its last in-branching (see
below). If this computation leads to a representation of a simple path, then it is added to
Candidate. Otherwise, ε is discarded. The SB algorithm goes on iteratively until it has found
k paths. The initialization consists in computing a first in-branching T0 rooted at t in D (using225

an SP algorithm) and so a shortest s-t (simple) path P T0
st and adding its representation to

Candidate.
More precisely, the set Candidate is a min-heap in which the weight (the key) of an element

is a lower bound on the weight of the path it represents. Each element µ in Candidate has the
form µ = (ε = (T0, e0, · · · , eh = (vh, wh), Th+1), lb, ζ) where each in-branching Th′ (with h′ ≤ h)230

is already computed and lb is a lower bound of the weight of the path represented by ε. The
value ζ is a boolean indicating whether the path represented by ε is known to be simple. If so,
it will follow from the construction that Th+1 has already been computed. Else Th+1 must be
first computed to know if ε represents a simple path. For the initialization, the in-branching T0
is computed and the element ((T0), ω(P T0

st), ζ = 1) is inserted in Candidate.235

The SB algorithm iteratively extracts elements from Candidate by minimum weight (with a
priority to representation of simple paths to break ties) until k paths are obtained or Candidate
is empty. When an element µ = (ε = (T0, e0, · · · , eh = (vh, wh), Th+1), lb, ζ) is extracted from

6

Candidate, two cases are distinguished. Let i be the index of wh in the path P represented by
ε (note that i plays the same role as the deviation-index in the Yen’s algorithm).240

Case ζ = 1. Then, ε represents a simple path P = (v0 = s, · · · , vi = wh, · · · , vr = t) and all of
its in-branchings have already been computed. In this case, the path P is added to the
output. Then, for every deviation tailing at the suffix, i.e, for every deviation e = (vj , w) at

vj with i ≤ j < r (i.e, e is tailing at the suffix (vi, · · · , t) of P), let P
Th+1

wt be a shortest path

from w to t in Th+1 (if any) and let Q(vj , e) = (v0, · · · , vj , P
Th+1

wt). If Q(vj , e) is simple,245

the representation µ′ = ((T0, e0, · · · , eh, Th+1, e = (vj , w), Th+1), lb(e), ζ = 1) is added to
Candidate with lb(e) = ω(Q(vj , e)) as a key (note that the computation of lb(e) is done in
constant time since, in particular, Th+1 is already computed). Otherwise; Q(vj , e) is not
simple, the representation µ′′ = (ε′′ = (T0, e0, · · · , eh, Th+1, e = (vj , w), T ′), lb(e), ζ = 0) is
added to Candidate, where T ′ is the name of the in-branching of D \ {v0, · · · , vj} whose250

actual computation is postponed, and lb(e) = ω(Q(vj , e)) is a lower bound on the weight
of the path represented by ε′′.

Case ζ = 0. In this case, the algorithm checks for the existence of a wh-t path P
Th+1

wt . To do
so, the in-branching Th+1 (whose computation had been postponed) is computed. Note

that Th+1 is an in-branching in D \ {v0, · · · , vh}, which ensures that, if P
Th+1

wt is found,255

the path Pnew = (s = v0, · · · , vh, P
Th+1

wt) is guaranteed to be simple. Moreover, Pnew

has weight ω(Pnew) = ω((s = v0, · · · , vh, wh)) + ω(P
Th+1

wt). Then, the representation
µ′ = (ε′ = (T0, e0, · · · , eh = (vh, wh), Th+1), ω(Pnew), ζ = 1) is added to Candidate.
Finally, if no wh-t path can be found in Th+1, µ is discarded.

Analysis. In the a worst case scenario, each first extraction of a path from Candidate leads to260

a non simple detour, and then a call of an SP algorithm. Note that no more than one call to an
SP algorithm is done per vertex on a path, thanks to the checks of line 18. So, the complexity
of the SB algorithm is bounded by O(kn(m + n log n)) as the number of vertices of a simple
path is bounded by n and the algorithm stops once k paths are added to Output.

There are two key improvements for which the SB algorithm has, in practice, out-performed265

all other algorithms for solving the kSSP problem so far. First, it saves an SP algorithm call if
the detour is simple. Second, if the detour is not simple it is inserted with a lower bound on
its weight and the corresponding call to an SP algorithm is postponed. This way, if this detour
leads to a long path (path with weight larger than the kth shortest path), the call to an SP
algorithm will never be performed.270

However, as the SB algorithm stores complete in-branchings into memory, it has the draw-
back to possibly have an important consumption of working memory (much more than the
NC algorithm that stores a single in-branching, while keeping the whole description of paths it
computes).

3.3 The SB* algorithm275

Here, we propose the SB* algorithm, a variant of the SB algorithm that is a tiny modification
of the SB algorithm but leading to a significant speed up (see Section 6.2).

In fact, each time a representation (T0, e0, T1 · · · , eh−1 = (uh−1, vh−1), Th, eh = (uh, vh), Th+1)
is extracted from Candidate with ζ = 0 and that Th+1 has not been computed yet (i.e., it is
only a pointer), our algorithm does not compute Th+1 from scratch as the SB algorithm does.280

Instead, the SB* algorithm creates a copy T of Th, discards vertices of the path from vh−1 to

7

Algorithm 1 Sidetrack Based (SB) algorithm for the kSSP [23]

Require: A digraph D = (V,A), a source s ∈ V , a sink t ∈ V , and an integer k
Ensure: k shortest simple s-t paths

1: Let Candidate← ∅, T ← ∅ and Output← ∅
2: T0 ← an SP in-branching of D rooted at t containing s
3: Add ((T0), w(Pst(T0)), ζ = 1) to Candidate
4: while Candidate 6= ∅ and |Output| < k do
5: µ = (ε = ((T0, e0, · · · , Th, eh = (uh, vh), Th+1), lb, ζ)← a shortest element in Candidate
6: if ζ = 1 then
7: Extract µ from Candidate and add ε to Output

8: for every deviation e = vjv
′ with vj ∈ P

Th+1

vht
do

9: ε′ ← (T0, e0, · · · , Th, eh, Th+1, e, Th+1)

10: lb′ ← lb− w(P
Th+1

vjt
) + w(e) + w(P

Th+1

v′t)

11: if ε′ represents a simple path then
12: Add µ′ = (ε′, lb′, ζ = 1) to Candidate
13: else
14: T ′ ← the name of an SP in-branching of Dh(P) // T ′ is not computed yet
15: Add T ′ to T
16: Add µ′′ = (ε′′ = (T0, e0, · · · , Th, eh, Th+1, e, T

′), lb′, ζ = 0) to Candidate

17: else
18: if Th+1 has not been computed yet then
19: Compute Th+1, an SP in-branching of Dh(P) and add it to T
20: Let µ′ = (ε′ = (T0, e0, · · · , Th, eh, Th+1), lb+ w(P

Th+1

v′t)− w(P Th
v′t), ζ = 1)

21: Add µ′ to Candidate

22: return Output

uh in Th, and updates the SP in-branching T using standard methods for updating a shortest
path tree [13]. Then, the pointer Th+1 is associated with the new in-branching T .

It is clear that the SB* algorithm computes (and stores) exactly the same number of in-
branchings as the SB algorithm. The computational results presented in Section 6.2 show that285

this update procedure gives an average speed up by a factor of 1.5 to 2 on road networks.

4 Space - time tradeoffs

4.1 The Parsimonious Sidetrack Based algorithm

Here, we present the Parsimonious Sidetrack Based (PSB) algorithm, which is an adaptation
of the SB algorithm allowing to reduce the memory consumption due to the storage of all in-290

branchings computed by the SB algorithm. Here, we only focus on the differences between the
SB and the PSB algorithm.

The main difference is that PSB algorithm stores two types of elements in Candidate. The
first type, of the form (ε = (T0, e0, T1, e1, · · · , Th, eh = (vh, wh), Th+1), lb), represents a simple s-
t path P of weight lb. Contrary to the SB algorithm, the in-branching Th+1 has not necessarily295

been computed yet. The second type, of the form (ε,Dev, lb), contains an extra field Dev
(explained below) and, in this case, all of the in-branchings T1, · · · , Th+1 are already computed.

Let us start considering a step of PSB algorithm when an element µ = (ε = (T0, e0, T1, e1, · · · ,
Th, eh = (vh, wh), Th+1), lb) representing a simple path P is extracted from Candidate. Th+1

8

is computed at this step (if not already done) which allows to get P explicitly. Then, PSB300

algorithm adds P = (s = v0, · · · , vi = wh, · · · , vr = t) to Output and (as the SB algorithm),
for every v ∈ {vi, · · · , vr}, and every deviation e with tail v, the detour Q(v, e) of P at e is
considered. If Q(v, e) is simple, then µ′ = ((T0, e0, T1, e1, · · · , Th, eh, Th+1, e, Th+1), ω(Q(v, e)))
is added to Candidate. Otherwise, the deviation e is added to a set Dev (initially empty). Once
all deviations have been considered, the (unique) element (ε,Dev, lb′) is added to Candidate,305

where lb′ = minfj=(uj ,u′j)∈Dev ω(Q(uj , fj)). That is, Dev is the set of all “non simple deviations”

of P at the vertices between wh and t, ordered with respect to the index of their tail on P , i.e,
for two deviations fi = (ui, u

′
i), fj = (uj , u

′
j) ∈ Dev, fi ≤ fj if and only if i ≤ j. Finally, let lb′

be a lower bound on the weight of the detours at a deviation in Dev. The important difference
between SB and PSB algorithms comes from the fact that non simple detours are considered as310

a unique object by PSB algorithm.
Now, let us consider a step when PSB algorithm extracts an element µ = (ε = (T0, e0, T1,

e1, · · · , Th, eh, Th+1), Dev = {f1, · · · , fj = (uj , u
′
j), · · · , fl}, lb) from Candidate. As mentioned

above, in this case, ε encodes a simple s-t path (v0, · · · , vr). Let 1 ≤ min ≤ l be the smallest
integer such that lb = ω(Q(umin, fmin)).315

Then, PSB algorithm proceeds as follows. For j decreasing from l to min, an in-branching

T ′j in D\{v0, · · · , vij = uj} is computed (but not stored!) until a path P
T ′j
u′jt

from u′j to t is discov-

ered (if no such path exists, j is decreased by one). If P
T ′j
u′jt

exists, then εj = (T0, e0, T1, e1, · · · ,

Th, eh, Th+1, fj , T
′
j) represents a simple s-t path of weight lbj = ω((v0, · · · , vij))+ω(fj)+ω(P

T ′j
u′jt

).

Then, the element µj = (εj , lbj) is added to Candidate, but T ′j is not stored (PSB algorithm320

might have to recompute it later). A second key improvement is that to speed up the computa-
tion, T ′j is actually computed by updating T ′j+1. which is done using standard tools from [13].
Then, only when j = min, the in-branching T ′min is stored and µmin = (εmin, lbmin) is added
to Candidate. The reason why T ′min is stored (while other T ′j are not) is that µmin is ex-
pected to be extracted soon from Candidate (because the path represented by εmin is ex-325

pected to be short) and we want to avoid the recomputation of T ′min. Finally, the element
µ′ = (ε,Dev′ = {f1, · · · , fmin−1}, lb′) is added to Candidate, where lb′ is the minimum weight
over the non simple detours in Dev′.

The correctness follows from the one of the SB algorithm. Moreover, since most of the
computed in-branchings are not stored, the working memory used by PSB is significantly smaller330

than for SB algorithm.

4.2 Special variants of PSB

A better space and time trade-off than PSB can be achieved if, each computed and stored in-
branching is going to be used in the future steps, i.e, it is used to extract a simple candidate path
that is going to be extracted from Candidate (before the kth shortest path). Unfortunately, such335

information cannot be afforded as the weight of the kth path is not previously known. However,
if computing an in-branching leads to constructing a path with length relatively short, say
less than a threshold value time the current outputted path, then storing such in-branching is
meaningful as the extraction of its corresponding element form Candidate is expected soon and
saving it leads to save its redundant computation. Here, we present two variants of the PSB;340

PSB-v2 and PSB-v3. PSB-v2 is a tiny improvement of PSB leading to consume less memory
by storing less in-branching while PSB-v3 gives an adaptable trade off depending on the value
of the threshold.

Let us consider, again, a step when PSB algorithm extracts an element µ = (ε,Dev =

9

{f1, · · · , fj = (uj , u
′
j), · · · , fl}, lb) from Candidate with 1 ≤ min ≤ l the smallest integer such345

that lb = ω(Q(umin, fmin)). The PSB algorithm algorithm iterates on j, decreasing from l
to min as explained above, a corresponding in-branching T ′j is computed for each j (but not
stored). Then, only when j = min, the in-branching T ′min is stored.

The PSB-v2 algorithm does not naively store T ′min. Instead, T ′min is stored only if the weight
of its corresponding detour is less than a threshold value θ, times the weight of the shortest350

simple path in Candidate. That is, lbmin = ω((v0, · · · , vimin))+ω(P
T ′min
umint

) ≤ θ ∗ω(Pnext), where
Pnext is the shortest simple path in Candidate. As a result, if the in-branching T ′min leads to a
(relatively) long path that is not expected to be extracted very soon from Candidate, then it
is freed from the memory.

PSB-v3 behaves on every deviation in Dev between min and l the same way PSB-v2 behaves355

with fmin. Precisely, for each deviation fj withmin ≤ j ≤ l, PSB-v3 computes its corresponding
in-branching T ′j . This in-branching (T ′j) is stored only if the weight of its corresponding detour
is less than a threshold θ, times the weight of the shortest simple path in Candidate.

The value of the threshold θ could change dynamically during the execution. For instance, it
could be related to the ratio between the two upcoming paths i.e, the two elements in Candidate360

with minimum weight.

5 Postponing the detours’s computation

In this section, we present the Postponed Node Classification (PNC) algorithm. The PNC
algorithm have a O(kn(m + n log n)) time complexity with a similar working memory as the
NC algorithm. However, it is faster in practice than the NC algorithm.365

Even though the NC algorithm consumes less time during each SP algorithm call than
Yen’s algorithm, the total number of calls remains equal to Yen’s algorithm. Here, with the
help of a lower bound on the weight of a simple detour, we propose (using a similar idea as
the SB algorithm) to postpone the calls in order to avoid some of them. We prove that such
postponement does not hurt the correctness of the algorithm.370

Let us describe our algorithm PNC.
As in the NC algorithm, our algorithm starts by computing an SP in-branching T0 rooted

at t that will be used throughout the execution of the algorithm. Then, as the NC algorithm,
the PNC algorithm proceeds by phases where a new path is added to the output and its detours
are computed and added in the set Candidate. Our algorithm differs from the NC algorithm375

in how and when it computes the detours of the paths but also in the structure of the elements
in the heap Candidate.

Let us consider a phase when a s-t path P = (s = u0, u1, · · · , ui, · · · , ur−1, ur = t) is
extracted from Candidate. Let 0 ≤ i < r and consider the step when a shortest simple detour
of P at ui is computed. Let N be the set of neighbors v of ui such that paths with prefix380

(u0, · · · , ui, v) have already been added to Output. Let D′ = D \ {(ui, v) | v ∈ N} and let
Di(P) = D′ \ (u0, · · · , ui−1).

Let us describe how the PNC algorithm finds a new shortest simple detour P ′ of P at ui.
Recall that a detour P ′ is said new if P ′ has not been added to the Output yet. Let vLB ∈ Di(P)
be the neighbor of ui (neither in N nor in the prefix of P) such that the residual weight of385

(ui, vLB) is minimum, i.e., δ(ui, vLB) ≤ δ(ui, v′) for every v′ ∈ N+
Di(P)(ui) (recall that δ(u, v) =

w(u, v)+w(P T0
vt)−w(P T0

ut) denotes the residual weight of arc uv as defined in Section 2.3). Note
that, by definition of the residual weight, the path PLB = (s, u1, · · · , ui, P T

vLBt) is a shortest new
detour (not necessarily simple) of P at ui, so in particular:

Claim 1. w(PLB) ≤ w(P ′) for any new simple detour P ′ of P at ui390

10

Similarly to the SB algorithm (and in contrast to the NC algorithm), PNC algorithm may
add non-simple paths to the set Candidate. Precisely, each element in Candidate has the form
(P = (s = u0, · · · , ur = t), w(P), i, ζ) where i is its deviation index and ζ is a boolean flag
indicating whether the path P is simple or not.

The main idea of the PNC algorithm (Algorithm 2) is the following. Instead of computing395

naively all of the shortest simple detours of P , i.e, a shortest simple detour at ui for all i ≤ j < r,
the following procedure is used. For each vertex ui ∈ P , the SP in-branching T0 is colored
(yellow, red, green, as in the NC algorithm) with respect to P and ui. If the color of vLB is
green, it implies that the path PLB is simple, and a shortest simple detour is found (by the
remark above). In this case, (PLB, w(PLB), i, ζ = 1) is added to the set Candidate. Otherwise,400

i.e., if vLB is yellow, the detour PLB is added to the set Candidate (even though it is not
simple) with its weight w(PLB) as a key, i.e, the element (PLB, w(PLB), i, ζ = 0) is added to
Candidate. The idea is that, in the latter case, the non simple path added to Candidate may
never be extracted from Candidate and so a call to an SP algorithm is saved.

When an element (P,w(P), i, ζ) is extracted from Candidate. If ζ = 1, the simple path P405

is added to the Output and its detours are added to Candidate as explained above. If not,
i.e., P is not simple, it will be “repaired” into a simple path and re-added to Candidate. More
precisely, after the extraction of P from Candidate, an SP algorithm is called to find a shortest
(simple) path Q from ui to t in Di(P) and P is replaced by P ′ = (s, u1, · · · , ui−1, Q). Claim 1
ensures that the order of extraction of the simple paths from Candidate remains valid. And410

finally, such postponement of this SP algorithm call may end up by skipping it.

Algorithm 2 Postponed Node Classification (PNC)

1: Input A digraph D = (V,A), source s ∈ V , sink t ∈ V and an integer k
2: Output k shortest simple s-t paths
3: Let Candidate← ∅ and Output← ∅
4: T ← an SP in-branching of D rooted at t
5: Add (Pst(T), w(Pst(T)), 0, 1) to Candidate
6: while Candidate 6= ∅ and |Output| < k do
7: (P = (s, u1, · · · , t), w(P), i, ζ)← extract a shortest element from Candidate
8: Color the vertices yellow, red, green with respect to P and ui
9: π ← (s, u1, · · · , ui−1)

10: Devold = {e = (ui, v) s.t there is a path in Output having π.e as prefix}
11: if ζ = 1 (P is simple) then
12: add P to Output
13: for each vertex uj in (ui, · · · , t) do
14: (uj , vLB)← an arc in A \Devold with minimum δ among those tailing at uj
15: PLB ← (s, · · · , uj , vLB, P T

vLBt)
16: ζ ′ ← 0
17: if vLB is green then
18: ζ ′ ← 1

19: add (PLB, w(PLB), j, ζ ′) to Candidate

20: else
21: Compute a shortest ui-t path Q in D′ = (V \ π,A \Devold)
22: if Q exists then
23: Add (P ′ = π.Q,w(P ′), i, 1) to Candidate

24: return Output

11

6 Experimental evaluation

In this section we describe our experimental evaluation. First, we start by describing our
implementation and settings (Section 6.1), then we discuss our experimental results on road
and complex networks (Section 6.2). Finally, Section 6.3 contains an experimental study to415

some parameters related to the queries.

6.1 Experimental settings

Here we specify the details of the implementation and the setting used in our experiments.
We have implemented3 all the algorithms presented in this paper (Yen, NC [11], PNC,

SB [23], SB* and PSB) in C++ and our code is publicly available [1]. Following [23], we have420

implemented a pairing heap data structure [12] supporting the decrease key operation, and we
use it for Dijkstra’s shortest path algorithm. Our implementation of the Dijkstra shortest path
tree algorithm is lazy, that is, it stops computation as soon as the distance from query node
v to t is proved to be the shortest one. Further computations might be performed later for
another node v′ at larger distance from t starting from this partial shortest path tree already425

computed. Our implementation of Dijkstra’s algorithm supports an update operation when a
node or an arc is added to the graph. Moreover, we have implemented a special copy operation
that enables to update the in-branching when a set of nodes is removed from the graph. This
corresponds to the operations performed when creating an in-branching Th+1 from Th in SB*.

Observe that in our implementations the parameter k is not part of the input, and so the430

sets of candidates are simply implemented using pairing heaps. This choice enables to use
these methods as iterators able to return the next shortest path as long as one exists. Note
that, if k is part of the input, the data structure used to store candidates could be changed
in order to contain only the k best candidates, but the algorithm would only return exactly k
paths even if more exist. Moreover, for the SB, SB*, PSB, PSB-v2 and PSB-v3 algorithms,435

following [23], we store the candidates into two heaps, the first one to store the simple candidates
(Candidatesimple) and the second one to store the non-simple candidates (Candidatenot−simple).
Then, we extract candidates from Candidatesimple as long as the length of the shortest simple
path is smaller or equal to the length of the shortest non-simple path in Candidatenot−simple.
This way, we prioritize the extraction of simple paths.440

Concerning the PSB-v2 and PSB-v3 algorithms, based on preliminary experiments, we
choose to update the value of θ dynamically with respect to the ratio between the pair of
the upcoming paths. Recall that when looking for the ith path, a corresponding in-branching
will be stored only if the length of that path is at most θ times the length of the (i− 1)th path.

Precisely, let `s be the length of the smallest element in Candidatesimple and let `ns be the445

length of the smallest non simple element in Candidatenot−simple. These values are both set to
1 if any of the corresponding sets is empty. Let also c = max(`s

`ns
, `ns

`s
) and ρ = c− 1. The value

of θ is set to 1+αρ, for some constant α > 0. The intuition is to store an in-branching only if it
is expected to be used soon, that is, while extracting one of the upcoming paths. The choice of
these values (`s and `ns) gives us a meaningful indication and the value of θ is easy to compute.450

Observe that in our experiments we have set the factor α in the formula for computing θ to
α = 11, based on preliminary experiments.

Besides, a special implementation of the PNC algorithm is proposed and referred to as PNC*.
As shown in Algorithm 2, the PNC algorithm computes a shortest simple detour (line 21) with
an SP algorithm call that may visit the whole sub-digraph. The PNC* algorithm tries to reduce455

the size of this sub-digraph in order to speed up these calls. For this purpose, it proceeds the

3Despite several queries, we have not been granted access to the code used for experiments in [11,23].

12

network n m D 〈d〉 −α 〈cc〉 Description

ROME 3 353 8 870 57 5.2 - 0.025 Road network of Rome [7]

DC 9 559 29 682 140 6.2 - 0.039 Road network of Washington DC [7]

DE 49 109 119 520 573 4.8 - 0.024 Road network of Delware [7]

NY 264 346 733 846 664 5.5 - 0.02 Road network of New York [7]

BAY 321 270 800 172 791 4.9 - 0.016 Road network of San Francisco Bay area [7]

COL 435 666 1 057 066 1219 4.8 - 0.017 Road network of Colorado area [7]

BIOGRID 2 318 12 580 7 21.7 1.96 0.20 Mutation/deletion of genes resulting in cell lethality [27]

FB 3 698 85 963 6 93 - 0.61 Social circles from Facebook [26]

P2P 5 606 23 510 8 16.7 - 0.014 Peer-to-peer network of the Gnutella file sharing network [25]

DIP 13 969 60 621 17 17.4 2.38 0.11 Protein-protein interaction network [29]

CAIDA 29 432 143 000 9 19.4 2.06 0.42 Relationships between Autonomous Systems of the Internet [32]

LOC 33 187 188 577 11 22.7 2.25 0.29 Brightkite location-based social networking service provider [25]

Table 1: Characteristics of the graphs used in kSSP experiments: number of nodes (n), num-
ber of edges (m), diameter (D), average degree (〈d〉), exponent −α of the power-law degree
distribution, and average clustering coefficient (〈cc〉).

same way as the NC algorithm. That is, it gives a color to each node (vertex) with respect to its
end in the first pre-computed in-branching and call an SP algorithm visiting only the yellow

vertices.

Networks setting We have evaluated the performances of our algorithms on some road460

networks from the 9th DIMACS implementation challenge [7] and on several complex networks.
A road network of a city is the digraph modelizing its roads, i.e, a vertex is associated to

each crossroad, and there is an arc of length w between two vertices if and only if there is a
road of physical length w (in km) between their corresponding crossroads. Road networks are
known to be sparse, almost planar and to have a bounded degree [34]. We denote by small road465

networks the road network of ROME, DC and DE while big road networks denote NY, BAY
and COL. The characteristics of these graphs are reported in Table 1.

On the other side, complex networks modelize different types of networks. Generally, they
are characterized by being small-world, i.e, they have a logarithmic diameter, by a power-
law degree distributions and a high clustering coefficient [5]. For instance, BIOGRID system470

synthetic lethality represents mutation/deletion of genes resulting in lethality when combined in
a same cell [27]. DIP represents protein to protein interactions [29]. The FB network represents
social circles from Facebook [26]. Likewise, LOC is a graph provided from Brightkite location-
based social networking [25]. Finally, P2P is the peer-to-peer network of the Gnutella file sharing
network [25] and CAIDA (2013.11.01) is the graph of the relationships between the autonomous475

system of the Internet [32]. As these networks are unweighted, we only consider the number of
hops as the length of a path. We consider for each network its largest biconnected component.
The characteristics of these graphs are depicted in Table 1

In our experiments, we have randomly chosen 1000 queries (source-destination pairs of
vertices) for each network, and we have run each algorithm for each of these pairs for k = 1, 000480

on road networks and k = 10, 000 on complex networks. Because of the excessive running time
of Yen’s algorithm, we have chosen to run it only on small road networks.

We have measured the execution time and the number of stored SP in-branchings. Note
that the number of stored in-branchings gives an indication of the memory consumption that
is independent from the implementation and the architecture of the machine [20].485

We also attempt in Section 6.2 to explain the performance of the algorithms with respect
to the structure of the network and / or some properties of the queries (e.g., the hop distance
between the source and the destination, their stretch from the “center” of the graph...).

13

All reported computations have been performed on computers equipped with 2 quad-core
3.20GHz Intel Xeon W5580 processors and 64GB of RAM.490

6.2 Experimental results

In this section, we first describe and analyze our experimental results on road networks and
then on complex networks. We will see that the behavior of the algorithms’ differ from one type
of network to the other.

First, we have measured the average and the median of the algorithms’ running time in495

all considered networks. The results on road networks are reported in Table 2 and the ones
on complex networks are in Table 4. The data in Tables 2 to 4 corresponds to the biggest
experienced value of k (k = 1, 000 for road networks and 10, 000 for complex network).

Then, we have measured the number of stored trees for all networks. As we will discuss
below, in the case of complex networks, there are very few differences in the number of in-500

branchings. The results on road networks are described in Table 3. Moreover, in Figures 3
and 4, we report the evolution of the average and median running times of the algorithms when
the number k of reported paths increases. For the latter figures, the results we obtained differ
depending on the class (road or complex) of the networks but among a same class, they do not
differ much depending on the considered networks, so we only report them in the case of the505

networks COL, DC (see Figures 1 and 2), BIOGRID and CAIDA (see Figure 4).
We have then performed a refined comparison of the algorithms on the road networks. The

results we obtained does not differ much depending on the considered networks, so we only
report the comparison of the algorithms on the DC and COL networks in Figures 1 and 2.
More precisely, we have plot pairwise comparisons of the running times and number of stored510

trees for each source-destination pairs on DC and COL network.
Finally, some statistics about the queries’ properties and their impact on the algorithms’

performances are depicted in Figures 5 and 6.

Road Networks. Note that the algorithms can be classified as three sets: Algorithms with
low memory consumption i.e, the ones storing no more than a single in-branching, that are515

Yen’s, NC, PNC and PNC*. Algorithms storing big number of in-branchings (SB and SB*).
And algorithms establishing a space - time tradeoff (PSB and its two variants). We first compare
the experimental results of the first class together, then we do the same with the second class. We
finally compare the PSB algorithm with the others and we give a conclusion on our experiments
on road networks.520

• We first observe, based on Table 2 and Figures 3a and 3b , that all algorithms are faster
than Yen’s algorithm on small road networks (the average speed up is between one and
two orders of magnitude). Similar experiments described in [11, 23] leads to the same
conclusion on big road networks.

Let us now compare NC, PNC and PNC* algorithms together, as they all store no more525

than a single in-branching in the memory. The average and median running times reported
in Table 2 show that the PNC algorithm is significantly faster than the NC algorithm for
all road networks (up to 5 times faster on average). Moreover, a refined comparison of
the NC and PNC algorithms on DC and COL networks (Figures 1b and 2b) show that
this is true for all queries.530

Surprisingly, PNC* algorithm is slower than PNC (based on Table 2, Figures 1d and 2d)
even though its was expected to be faster (see Section 6.1). This is due to the extra time

14

consumed during the coloring procedure that is computed from scratch each time (unlike
to PNC where no such operation is needed).

• The simulation results reported in Table 2 and Figure 3 confirm that the use of shortest535

path tree update procedures in SB* helps to significantly reduce the running time com-
pared to SB. More precisely, the average and median running times of the SB* algorithm
are significantly smaller than for the SB algorithm on all road networks (SB* is up to
twice faster than SB). A more refined comparison on DC and COL network (Figures 1a
and 2a) show that SB* is faster than SB for almost all queries (more than 90% of the540

queries). The same behavior was observed on all road networks. Finally, we recall that
by design, the number of stored in-branchings is the same in both algorithms.

• Concerning the PSB algorithm, as shown in Table 2 and Figures 1e, 1f, 2e and 2f, PSB
gives a space time tradeoff between SB and NC i.e, it is faster than NC and consumes less
memory than SB. However, PSB algorithm is, sometimes, beaten by the PNC algorithm545

as it is faster while consuming less memory (only on in-branching is stored). As a result,
PSB algorithm could give a space time tradeoff only on DC and BAY. Note that, the
special two variants of PSB (PSB-v2 and PSB-v3) lead to a small improvement of the
running time (up to 5% time reduction) but to a significant reduction of the memory
consumption (up to 30% memory reduction), see Tables 2 and 3.550

An unexpected observation (in Table 2) is the gap between the average and the median
running time of the SB like algorithms (SB, SB*, PSB, PSB-v2 and PSB-v3). That is,
the median could be up to 5 times smaller than the average while it is not the case with
the remaining algorithm. We discuss this observation further in Section 6.3.

Among the considered algorithms, none of them clearly outperforms all the others on555

road network. As shown in Table 2 and Figure 3, on most of the road networks (Rome,
DE, BAY and COL), PNC algorithm is the fastest on average (slightly faster than SB*).
However, SB* is, by far, the fastest on median on DC, NY, BAY and COL. This is
justifiable by the big difference between the average and the median running time of SB*
algorithm and by the fact that, on a small number of queries, SB* algorithm is extremely560

slow, as shown in Figures 1c and 2c where a small number of points are very far from the
majority of the other points. Note that the results may change with respect to the value
of k (Figure 3).

To conclude, among the considered algorithms, PNC and SB* algorithms are the fastest on
road networks. SB* has a better average running time while PNC algorithm has a running time565

that is more stable.

Complex Networks. Here we analyse and we try to explain the behavior of the algorithms on
complex networks, except for Yen’s algorithm because of its excessive running time (as already
mentioned above).

On complex networks, the PSB algorithm is the fastest kSSP algorithm among the consid-570

ered algorithms (Table 4 and Figure 4). Considering the space consumption, all of the kSSP
algorithm have a tiny memory consumption (for k = 10, 000, the number of stored in-branchings
does not exceed 50). It is also shown in Table 4 that the running time of PSB and its two variants
(PSB-v1 and PSB-v2) is similar.

In what follows, we give some qualitative arguments that may explain the fact that the PSB575

algorithm is the fastest among all considered algorithms on complex networks.

15

(a) Running time of SB and SB* (b) Running time of NC and PNC

(c) Running time of SB* and PNC (d) Running time of PNC and PNC*

(e) Running time of SB and PSB (f) Number of trees of SB and PSB

Figure 1: Comparison of the running time and the number of stores trees on DC. Each dot
corresponds to one pair source/destination (k = 1, 000).

16

(a) Running time of SB and SB* (b) Running time of NC and PNC

(c) Running time of SB* and PNC (d) Running time of PNC and PNC*

(e) Running time of PSB and SB (f) Number of trees of SB and PSB

Figure 2: Comparison of the running time and the number of stores trees on COL. Each dot
corresponds to one pair source/destination (k = 1, 000).

17

Rome DC DE NY BAY COL

Yen
avg 3389 11316 159785 - - -

med 1439 4945 59463 - - -

NC
avg 407 823 10620 99521 94149 146025

med 178 404 6129 64465 56136 99540

PNC
avg 181 326 1972 41923 24970 35265

med 155 299 1644 39389 24064 35039

PNC*
avg 203 336 2434 69913 28481 40045

med 173 305 1997 58446 26552 38952

SB
avg 451 184 8469 53423 38390 68077

med 356 75 4321 30300 8783 20535

SB*
avg 282 117 5428 33704 28693 49859

med 199 43 2139 18659 4977 11060

PSB
avg 447 269 7939 106040 53286 81321

med 340 117 6148 81927 23574 40640

PSB-v2
avg 447 265 7513 100377 49683 76766

med 347 117 5849 75914 21812 38732

PSB-v3
avg 446 265 7471 100390 49653 77185

med 346 115 5785 75681 21770 38709

Table 2: Running time (ms) of the algorithms on road networks, (k = 1, 000)

Rome DC DE NY BAY COL

NC, PNC and PNC* 1 1 1 1 1 1

SB and SB* 1135 243 948 1669 541 585

PSB 694 160 335 536 246 249

PSB-v2 580 138 274 373 194 208

PSB-v3 588 147 290 380 200 212

Table 3: Average number of stored trees using some kSSP algorithms on road networks, (k =
1, 000)

18

BIOGRID FB P2P DIP CAIDA LOC

NC
avg 1905 1493 3247 8325 25367 26659

med 1458 1442 3014 7590 18583 23846

PNC
avg 1336 1523 2475 6361 22459 21474

med 1303 1492 2386 6354 21824 21065

PNC*
avg 1302 1478 2479 6148 21869 18910

med 1281 1449 2396 6087 21122 18332

SB
avg 993 2986 596 870 8637 2524

med 821 2472 575 771 6724 2200

SB*
avg 980 3070 481 802 8506 2508

med 810 2507 476 725 6661 2173

PSB
avg 431 1062 293 456 3644 1237

med 394 971 282 422 3666 1190

PSB-v2
avg 421 1082 294 439 3541 1163

med 387 988 282 410 3574 1122

PSB-v3
avg 431 1081 292 437 3654 1210

med 399 991 280 410 3664 1167

Table 4: Running time (ms) of the algorithms on Complex networks, (k = 10, 000)

(a) Average running time of DC (b) Median running time on DC

(c) Average running time of COL (d) Median running time on COL

Figure 3: The running time of the kSSP algorithms on road network with respect to the values
of k

19

Suppose P is a shortest path from s to t. On complex networks, it is likely to have a vertex v
on P with high degree. Let us study the behavior of the different variants of the PSB algorithm
when they compute the detours of P at v, in contrast with the other algorithms.

First, Yen’s, NC, PY and PNC algorithms may compute, independently, for each vertex580

v′ ∈ N+(v) neighbor of v a shortest path from v′ to t resulting with |N+(v)| shortest path
algorithm calls to find the shortest simple detours at the neighbors of v. On the other hand,
SB* and PSB algorithms compute at most one shortest path in-branching T at v, that works for
each neighbor v′ of v. In another word, SB* and PSB are favorable to iterate on v. Moreover, as
v has a high degree, it is supposed that a large number of the neighbors v′ of v leads to simple585

candidates, i.e, P T
v′t ∩ (s, · · · , v) = ∅. So, the number of shortest path in-branchings computed

and/or stored using SB* and PSB algorithms is expected to be small.
In addition, as the number of hops of a shortest path is “small” (remember that complex

network are small-worlds). The number of calls of the shortest path in-branching update is
expected to be small for PSB. As this procedure is faster in PSB than SB* and the number of590

calls is similar, PSB algorithm is faster than SB* on complex networks. This is not valid on
road network because the number of hops of a shortest path may be big and the shortest path
in-branching update is called many more times.

To conclude, on complex networks, the PSB algorithm is the fastest among the considered
algorithms, it has a feasible working memory and this seems to be related to structural properties595

of complex networks.

(a) Average running time of BIOGRID (b) Median running time on BIOGRID

(c) Average running time of CAIDA (d) Median running time on CAIDA

Figure 4: The running time of the kSSP algorithms on complex network with respect to the
values of k

20

6.3 Impact of the properties of the queries

Here we study the impact of other parameters (related to the properties of the queries) on the
running time of the algorithms. In particular, the number of hops of a shortest path and the
stretch of a shortest path from the “center” (defined below).600

As noticed in Section 6.2, some algorithms have different behaviors with respect to the
structure of the network and the query’s properties. In this section, we are investigating whether
some properties of an s-t query may explain the variations of the running time of the algorithms.
For this purpose, we have considered two criteria of each s-t query, the number of hops between
s and t of a shortest s-t path and the stretch of a shortest s-t path from the “center” of the605

graph.
A similar indicator to the number of hops of a shortest path is the maximum number of

hops, that is the number of hops of a path with maximum number of hops among the k shortest
paths given by an algorithm. Formally, the maximum number of hops of a kSSP query from s
to t using an algorithm A is M if and only if for each path P given by A, |P | ≤M . We studied610

this parameter and the obtained results are almost the same as those obtained while studying
the number of hops. Therefore, we only describe the results corresponding to the number of
hops.

The number of hops of the shortest path (the one given by an SP algorithm) is a meaningful
criterion to be studied, as each of the algorithms has the common routine of iterating and615

eventually calling an SP algorithm for each vertex on the first shortest path. As the obtained
results are similar on different road networks, we only add and discuss the results of NC, PNC,
SB* and PSB algorithm on NY road network.

As shown in Figure 5, no clear pattern can lead to a establish a concrete relationship between
the running time for one of these algorithms and the number of hops. For instance, the SB*620

algorithms Figure 5c has big running time for queries with relatively small number of hops.
However, this is not flagrant and it does not hold on the remaining algorithms (Figures 5a, 5b
and 5d).

Another interesting parameter to be studied in road networks is the stretch from the center
(by center we mean a vertex of minimum eccentricity in the network). So, the stretch of an625

s-t path P from the center c is defined as the ratio between the length of a shortest s-t path
passing through c and the length of P . This gives an indicator on how far a path can be from
the center. In order to establish a relation between the running time and the stretch of the
center, we plotted (Figure 6) the running time with respect to the stretch value. Clearly, no
flagrant pattern related to the stretch value is found. Then, no concrete relation between the630

running time of these algorithms and the stretch from the center can be established based on
our experiments.

To conclude, no clear relationship between the running time of an algorithm and the number
of hops, neither the stretch from the center is experimentally found. However, it seems that
not all queries perform the same. For instance, in Figures 1b, 2b, 5a and 6a, it can be observed635

two distinct clouds of points. It would be interesting to understand whether these two clouds
correspond to some specific properties of the queries. This could help us to design improvements
of our algorithms.

7 Conclusion

In this paper, we have presented several algorithms for the kSSP problem. In particular, we640

have proposed several new algorithms for this problem with the aim of reducing the running
time and / or the working memory consumption of the algorithms.

21

(a) Running time of NC (b) Running time of PNC

(c) Running time of SB* (d) Running time of PSB

Figure 5: The running time with respect to the number of hops of the shortest path of some
kSSP algorithms on NY. Each dot corresponds to one pair source/destination (k = 1, 000).

22

(a) Running time of NC (b) Running time of PNC

(c) Running time of SB* (d) Running time of PSB

Figure 6: The running time with respect to the stretch from the center of some kSSP algorithms
on NY. Each dot corresponds to one pair source/destination (k = 1, 000).

23

Our simulation results show that the best algorithm to be chosen for solving the kSSP
problem depends on the use case. For instance, on the considered complex networks, the PSB
algorithm achieves the best results. Indeed, it is the fastest among the considered algorithms,645

and, similarly to the other algorithms, it has low memory consumption. Besides, on road
networks, if large memory consumption is allowed, the SB* algorithm is the fastest among the
considered algorithms on most of the queries. However, the PNC algorithm has a running time
that is more stable and it has low working memory. Therefore, the PNC algorithm seems to
offer a better space time trade-off than the other considered algorithms on road networks.650

An empirical framework for the selection of the most appropriate kSSP algorithm with
respect to the use case is suggested in Figure 7.

An open problem is how to handle the kSSP problem on networks with arbitrarily arc
weights (including negative weights). Another interesting question is how to design a data
structure enabling to quickly answer kSSP queries similarly to the data structures used by the655

hub labelling and contraction hierarchy schemes to answer distance queries [3]. A probably
more difficult question would be to address dynamic networks, i.e., where the weights of the
arcs evolve along time (e.g., in road networks where the traversal time of an arc may vary).
Would it be possible to quickly update the solutions after a modification in the network?

kSSP

PSB large
working

memory?

SB* PNC

complex network road network

Yes No

Figure 7: A framework of the appropriate kSSP algorithm with respect to the use case

References660

[1] A. Al Zoobi, D. Coudert, and N. Nisse. k shortest simple paths (Version 2.0), 2021.
https://gitlab.inria.fr/dcoudert/k-shortest-simple-paths.

[2] M. Arita. Metabolic reconstruction using shortest paths. Simulation Practice and Theory,
8(1-2):109–125, 2000.

[3] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders, D. Wagner,665

and R. F. Werneck. Route planning in transportation networks. In Algorithm engineering,
pages 19–80. Springer, 2016.

[4] M. Betz and H. Hild. Language models for a spelled letter recognizer. In 1995 International
Conference on Acoustics, Speech, and Signal Processing, volume 1, pages 856–859. IEEE,
1995.670

[5] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex networks:
Structure and dynamics. Physics reports, 424(4-5):175–308, 2006.

24

https://gitlab.inria.fr/dcoudert/k-shortest-simple-paths

[6] S. Clarke, A. Krikorian, and J. Rausen. Computing the n best loopless paths in a network.
Journal of the Society for Industrial and Applied Mathematics, 11(4):1096–1102, 1963.

[7] C. Demetrescu, A. V. Goldberg, and D. S. Johnson. 9th DIMACS implementation challenge675

- shortest paths, 2006.

[8] D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing, 28(2):652–673,
1998.

[9] D. Eppstein. Encyclopedia of Algorithms, chapter k-Best Enumeration, pages 1003–1006.
Springer New York, 2016.680

[10] D. Eppstein and D. Kurz. K-best solutions of MSO problems on tree-decomposable graphs.
In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017),
volume 89, pages 16:1–16:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[11] G. Feng. Finding k shortest simple paths in directed graphs: A node classification algo-
rithm. Networks, 64(1):6–17, 2014.685

[12] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan. The pairing heap: A new
form of self-adjusting heap. Algorithmica, 1(1):111–129, 1986.

[13] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic algorithms for main-
taining shortest paths trees. Journal of Algorithms, 34(2):251–281, 2000.

[14] J. Gao, H. Qiu, X. Jiang, T. Wang, and D. Yang. Fast top-k simple shortest paths discovery690

in graphs. In Proceedings of the 19th ACM international conference on Information and
knowledge management, pages 509–518, 2010.

[15] Z. Gotthilf and M. Lewenstein. Improved algorithms for the k simple shortest paths and
the replacement paths problems. Information Processing Letters, 109(7):352–355, 2009.

[16] E. Hadjiconstantinou and N. Christofides. An efficient implementation of an algorithm for695

finding k shortest simple paths. Networks, 34(2):88–101, 1999.

[17] Y. Han and T. Takaoka. An O(n3 log logn/ log2 n) time algorithm for all pairs shortest
paths. Journal of Discrete Algorithms, 38:9–19, 2016.

[18] J. Hershberger, M. Maxel, and S. Suri. Finding the k shortest simple paths: A new
algorithm and its implementation. ACM Transactions on Algorithms, 3(4):45, 2007.700

[19] W. Jin, S. Chen, and H. Jiang. Finding the k shortest paths in a time-schedule network
with constraints on arcs. Computers & operations research, 40(12):2975–2982, 2013.

[20] D. S. Johnson. A theoretician’s guide to the experimental analysis of algorithms. Data
structures, near neighbor searches, and methodology: fifth and sixth DIMACS implementa-
tion challenges, 59:215–250, 2002.705

[21] N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for k shortest simple paths.
Networks, 12(4):411–427, 1982.

[22] D. Kurz. k-best enumeration - theory and application. Theses, Technischen Universität
Dortmund, Mar. 2018.

25

[23] D. Kurz and P. Mutzel. A sidetrack-based algorithm for finding the k shortest simple paths710

in a directed graph. In Int. Symp. on Algorithms and Computation (ISAAC), volume 64
of LIPIcs, pages 49:1–49:13. Schloss Dagstuhl, 2016.

[24] E. L. Lawler. A procedure for computing the k best solutions to discrete optimization
problems and its application to the shortest path problem. Management science, 18(7):401–
405, 1972.715

[25] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking
diameters. ACM transactions on Knowledge Discovery from Data (TKDD), 1(1):2–42,
2007.

[26] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.720

[27] R. Oughtred, C. Stark, B.-J. Breitkreutz, J. Rust, L. Boucher, C. Chang, N. Kolas,
L. O’Donnell, G. Leung, R. McAdam, et al. The biogrid interaction database: 2019 update.
Nucleic acids research, 47(D1):D529–D541, 2019.

[28] S. Pettie. A new approach to all-pairs shortest paths on real-weighted graphs. Theoretical
Computer Science, 312(1):47–74, 2004.725

[29] L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie, and D. Eisenberg. The
database of interacting proteins: 2004 update. Nucleic acids research, 32(suppl 1):D449–
D451, 2004.

[30] T. Shibuya and H. Imai. New flexible approaches for multiple sequence alignment. Journal
of Computational Biology, 4(3):385–413, 1997.730

[31] D. R. Shier. On algorithms for finding the k shortest paths in a network. Networks,
9(3):195–214, 1979.

[32] The Cooperative Association for Internet Data Analysis (CAIDA). The CAIDA AS rela-
tionships dataset. http://www.caida.org/data/active/as-relationships/, 2013.

[33] V. Vassilevska Williams and R. Williams. Subcubic equivalences between path, matrix and735

triangle problems. In IEEE 51st Annual Symposium on Foundations of Computer Science
(FOCS), pages 645–654. IEEE, 2010.

[34] F. Xie and D. Levinson. Measuring the structure of road networks. Geographical analysis,
39(3):336–356, 2007.

[35] W. Xu, S. He, R. Song, and S. S. Chaudhry. Finding the k shortest paths in a schedule-740

based transit network. Computers & Operations Research, 39(8):1812–1826, 2012.

[36] J. Y. Yen. Finding the k shortest loopless paths in a network. Management Science,
17(11):712–716, 1971.

26

http://snap.stanford.edu/data
http://www.caida.org/data/active/as-relationships/

	Introduction
	Preliminaries
	 Definition and Notation
	Yen's algorithm
	A Node Classification algorithm

	Sidetrack Based (SB) algorithm
	Compact representation of a path
	The SB algorithm
	The SB* algorithm

	Space - time tradeoffs
	The Parsimonious Sidetrack Based algorithm
	Special variants of PSB

	Postponing the detours's computation
	Experimental evaluation
	Experimental settings
	Experimental results
	Impact of the properties of the queries

	Conclusion

