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Abstract

Due to its integro-differential nature, deriving schemes for numerically solving the radiative transfer equa-
tion (RTE) is challenging. Most solvers are efficient in specific scenarios: structured grids, simulations with
low-scattering materials... In this paper, a full solver, from the discretization of the steady-state monochromatic
RTE to the solution of the resulting system, is derived.

Using a mixed matrix-ready/matrix-free approach, our solver is able to discretize and solve a 45.7 billion
unknown problem on 27 thousand processes in three minutes for a full physics involving scattering, absorption,
and reflection. Because of the high dimensionality of the continuous equation, the linear system would have
had more than 6× 1015 nonzero entries if assembled explicitly. Our approach allows for large memory gains by
only storing lower dimension reference matrices.

The finite element-based solver is wrapped around open-source software, FreeFEM for discretization, PETSc
for linear algebra, and hypre for the algebraic multigrid infrastructure. Overall, deterministic results are pre-
sented on arbitrarily-decomposed unstructured grids for radiative transfer problems with scattering, absorbing,
and reflecting heterogeneities on up to 27 thousand processes.

Keywords: radiative transfer, matrix-free solver, algebraic multigrid

1. Introduction1

Radiative transfer is the phenomenon of energy transfer in the form of electromagnetic radiation, often char-2

acterized by its radiative intensity I. This intensity within any participating medium is affected by absorption,3

emission, reflection, and scattering processes. The radiative transfer equation (RTE) models such processes at4

the continuous level. The RTE is commonly used in the fields of thermal radiation [1, 2], neutronics [3, 4],5

astrophysics [5, 6], and optical imaging [7, 8], to name a few. This equation, in its steady-state monochromatic6

form, is stated as the following integro-differential equation:7

(~s · ∇+ β(~x)) I(~x,~s) = σ(~x)

∮

S

I(~x,~s ′)φ(~s,~s ′)d~s ′ + κ(~x)Ib(~x), (1)

where ~x = (x, y, z) ∈ Ω ⊂ R3 and d~s is the differential solid angle around the direction ~s = [cosϕ sin θ, sinϕ sin θ, cos θ]T ,8

(ϕ, θ) ∈ [0, 2π] × [0, π] being the azimuthal and the zenith angles, respectively. β is the extinction coefficient9

computed as the sum κ + σ, where κ (resp. σ) is the absorption (resp. scattering) coefficient. These three10

coefficients are piecewise constant in Ω and their values depend on the various participating media in the do-11

main. φ is a scattering phase function that quantifies the probability of a photon traveling in ~s ′ being scattered12

towards ~s. Finally, Ib is the radiation from a black body specified by Planck’s law.13

Efficient solution strategy for the monochromatic steady-state RTE is still an active area of research for cases14

that involve scattering and reflections in complex geometries [9, 10]. The main challenge, for methods presented15

in this article, is the presence of in-scattering from the surface integral in eq. (1), which leads to coupled16

systems that are difficult to solve due to memory and convergence issues. Associated with the multigroup17

approximation [11, 12] or spectral models [13, 14], monochromatic RTE solvers are a stepping stone for designing18

multi-frequency RTE solvers in different scientific communities, e.g., combustion [15, 16].19

In most of this paper, the boundary ∂Ω is assumed to be nonreflective. If ~n is the outward normal vector20

at a given point of ∂Ω, the following inflow boundary condition is used to provide closure to eq. (1):21

I = Iinflow ∀(~x,~s) ∈ Γ− = {(~x,~s) : ~x ∈ ∂Ω, ~s · ~n < 0}. (2)
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(a) Spatial mesh. (b) Angular mesh (Nd = 320).

Figure 1: DOM and FEM coupling strategy, each spatial unknown is associated with a set of Nd angular unknowns.

One needs two schemes for discretizing eq. (1) both in space ~x and angles ~s. In this work, we couple the22

finite element method (FEM) for the spatial discretization with the discrete ordinates method (DOM) based23

on the sphere triangulation for the angular discretization [17, 18]. The terminology DOM is used throughout24

the paper.25

Angular discretization. The DOM, here performed according to the unit sphere triangulation, either based on26

Thurgood’s method [19] or icosahedron refinements [5], cf. fig. 1b, provides a set of directions and weights27

{(~sk, ωk)}
Nd

k=1. Such a scheme is second-order accurate when combined with piecewise linear finite elements in28

space [20]. The continuous intensity is now approximated by a set of discrete intensities {Ik}
Nd

k=1. The surface29

integral in eq. (1) is thus evaluated as, for all discrete directions k ∈ J1;NdK:30

∮

S

I(~x,~s)φ(~sk, ~s)d~s ≈

Nd∑

j=1

ωjIj(~x)φk,j .

The integro-differential eq. (1) may now be stated as a set of Nd continuous partial differential equations:31

∀k ∈ J1;NdK, (~sk · ∇+ β(~x))Ik(~x) = σ(~x)

Nd∑

j=1

ωjIj(~x)φk,j + κ(~x)Ib(~x). (3)

In a similar fashion the inflow boundary condition from eq. (2) has to be rewritten in discrete angular form.32

In this paper, collimated beams of intensity Iinflow impinge the boundary along prescribed entrant directions in33

L ⊂ J1;NdK. Hence, ∀k ∈ J1;NdK:34

Ik =

{

Iinflow ∀~x ∈ ∂Ω : ~sk · ~n < 0, if k ∈ L,

0 otherwise.
(4)

35

Spatial discretization. With the FEM, given a spatial mesh Ωh, cf. fig. 1a, and a set of appropriate functional36

spaces
{
Vh
k

}Nd

k=1
, the following variational equations may be defined using the Galerkin method. The finite37

element trial functions for the discrete radiative intensities {Ihk ∈ Vh
k }

Nd

k=1 have to satisfy for all test functions38

{Jh
k ∈ Vh

k }
Nd

k=1:39

∀k ∈ J1;NdK,

∫

Ωh

(

(~sk · ∇+ β(~x))Ihk (~x)− σ(~x)

Nd∑

j=1

ωjI
h
j (~x)φk,j

)

Jh
k (~x)d~x =

∫

Ωh

κ(~x)Ib(~x)J
h
k (~x)d~x,

with the boundary conditions defined in eq. (4). In this paper, it is assumed that for all directions, the same40

functional space Vh is used to search for all the discrete radiative intensities, i.e., for all k in J1;NdK, V
h
k = Vh.41

In particular, Vh is the space of piecewise linear functions throughout the paper. Because of the convection-42

dominant term in eq. (1), an artificial diffusivity is introduced, and the following test functions derived from43

the SUPG method [21] are used: Jh
k + γ~sk · ∇J

h
k . An effective piecewise constant value of γ was determined in44

prior works [22]: γ(~x) =
(

4
h2 + β(~x)2 + 4σ(~x)

hNd

)−1/2

, where h is the size of each spatial element. By integrating45
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by parts, the system of variational formulations becomes: ∀k ∈ J1;NdK,46

∫

Ωh

((

β(~x)Ihk (~x)− σ(~x)

Nd∑

j=1

ωjI
h
j (~x)φk,j

) (
Jh
k (~x) + γ(~x)~sk · ∇Jh

k (~x)
)

−
(
~sk · ∇Jh

k (~x)
)
Ihk (~x) + γ(~x)

(
~sk · ∇Ihk (~x)

) (
~sk · ∇Jh

k (~x)
)
)

d~x

=

∫

Ωh

κ(~x)Ib(~x)
(
Jh
k (~x) + γ(~x)~sk · ∇Jh

k (~x)
)
d~x

−

∫

Γ−

~sk · ~n Jh
k (~x)Iinflow(~x)d~x−

∫

∂Ωh\Γ−

~sk · ~n Ihk (~x)J
h
k (~x)d~x.

(5)

Now that the RTE has been discretized both in space and angles, it is possible to highlight the major47

contributions of this paper. Indeed, we present:48

❼ an efficient way to assemble linear systems arising from the discretization of eq. (5),49

❼ a scalable approach for solving such linear systems using a mixed matrix-ready/matrix-free approach,50

❼ how to handle physics involving specular reflections.51

The paper is organized as follows. In section 2, related work and limitations of current implementations of52

radiative transfer equation solvers are presented. In section 3, the flexibility of modern finite element domain53

specific languages is leveraged to efficiently discretize eq. (5) numerically. In section 4, methods to iteratively54

solve the large systems generated in the previous section on thousands of processes are presented. Validation55

and scaling analysis of our solver is presented in section 5. The capabilities of our solver when dealing with56

specular reflections are shown in section 6.57

2. Related work58

Most RTE solvers are either physics-based (stochastic) or deterministic. Concerning the former, Monte59

Carlo [23] or ray-tracing methods [24] are well-suited to parallel computing [25]. However, computations in-60

volving optically thick media are numerically challenging for such methods [26]. Moreover, coupling these with61

other physics, e.g., fluid mechanics, is also demanding [27].62

For deterministic solvers, historically, the surface integral from eq. (1) was dealt with by the introduction63

of the DOM [28]. Though new approaches for discretizing in angles exist [29], it is still nowadays the most64

used technique for semi-discretizing the integro-differential RTE into a set of coupled PDEs on which standard65

spatial discretization schemes are applicable. In the field of radiative transfer, the DOM is often combined with66

the finite volume method (FVM) [1].67

As an alternative, one may also use the FEM. Many recent works in the radiative transfer community support68

its use together with the DOM to improve the efficiency of radiative transport equation solvers [5, 30, 31, 9], or69

to deal with complex geometries [32, 33] or coupled physics [2].70

Regardless of the spatial discretization, the fully discrete set of linear equations is commonly solved by a71

direction-by-direction iterative scheme known as source iteration [34, 35, 36]. It provides a memory-efficient72

strategy needed to handle the high-dimensionality of RTE in its discrete form eq. (5). Then, an optimal73

sweeping sequence is performed to compute solution of linear systems. Source iteration is widely popular in74

parallel deterministic solvers: Uintah [37] from University of Utah, Denvo [38] from ORNL, Ardra [39] from75

LLNL, PDT [40] from TAMU. However, they are most often optimized for regular geometries that have to be76

(semi-)structurally meshed to facilitate optimal marching (sweeping sequence) [41], which is also sensitive to77

boundary conditions, unless, e.g., orthogonality conditions between reflective surfaces hold [42]. These schemes78

may be extended to unstructured grids [43, 44, 45, 46, 47] but with understandably lower parallel efficiencies.79

Krylov methods have been often used with source iteration. They are particularly suited to situations80

where there is a tight coupling between the discrete directions, e.g., strongly scattering or reflecting media [48].81

Currently, there are different ways to leverage Krylov methods for solving the discrete RTE, e.g.:82

❼ direct application on the full linear system yielded by the spatial and DOM discretizations [49];83

❼ in conjunction with sweep-based iterative schemes recasted as preconditioned operators [50].84

The latter choice is often less memory-demanding since the workload can be implemented direction-by-direction.85

Contrary to direction-by-direction schemes, all the discrete radiative intensities are considered simultaneously86

in the present work. Consequently, RTE solvers based on direct application of Krylov methods are most often87

limited by the high dimensionality of eq. (5) and thus require a large amount of memory to store the according88
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linear system. As such, these solvers usually tackle small-scale problems [51, 49] (up to 512 MPI processes on89

a regularly-decomposed Cartesian grid of 262 thousand elements with up to 120 directions) [52] (up to four90

directions in 2D) or have to rely on tools such as adaptive mesh refinement in space [53] or in angles [54], which91

may complexify a distributed solver due to the need of proper load balance. To deal with larger problems, at92

least two modern ways to solve the RTE have emerged. First, the use of reduced order models [55] or sparse93

grids may be used to deal efficiently with the “curse of dimensionality” [56, 57] (up to 3 · 106 unknowns solved94

sequentially). Second, Jacobian-free Newton–Krylov methods [58] have been extended to the RTE [59] (up95

to 512 MPI processes and 8 threads per MPI process on a Cartesian grid of 65 thousand elements with up96

to 120 directions). These two methods are based on simplifications of the RTE by approximating either the97

interactions between the unknowns in space and in angles for the latter, or the global operator for the former.98

3. Efficient assembly99

Nowadays, the finite element method is available in a large number of professional or academic domain100

specific (embedded) languages: deal.II [60], FEniCS [61], FreeFEM [62], etc. The goal of the next section is to101

show that these software typically cannot cope with the dimension complexity of the RTE if the corresponding102

linear system is assembled explicitly. However, we will use one of them, FreeFEM, to discretize auxiliary103

problems and show how this relates to the original PDE.104

3.1. Vectorial finite elements105

Naively, Nd linear systems need to be assembled corresponding to the Nd variational formulations of eq. (5).106

However, by introducing the vectorial finite element space Vh defined as the Cartesian product of Nd finite107

element spaces Vh, eq. (5) may be formulated in terms of a single vectorial unknown Ih and a single vectorial108

test function Jh. Let Ih = [Ih1 · · · IhNd
]T , Jh = [Jh

1 · · · Jh
Nd

]T , S = [~s1 · · ·~sNd
]T , and {Φi,j = ωjφi,j}

Nd

i,j=1. If we109

denote by ⊗ (resp. ⊙) the entrywise product (resp. scalar product) of two vectorial functions, and by ⋄ the110

product of a matrix by a vectorial function, then, the bilinear part of eq. (5) becomes, for all Jh ∈ Vh:111

a(Ih, Jh) =

∫

Ωh

((
β(~x)Ih(~x)− σ(~x)Φ ⋄ I

h(~x)
)
⊗

(
J
h(~x) + γ(~x)S⊙∇J

h(~x)
)

(6)

+ γ(~x)
(
S⊙∇I

h(~x)
)
⊗
(
S⊙∇J

h(~x)
)
−
(
S⊙∇J

h(~x)
)
⊗ I

h(~x)
)

d~x

+

∫

∂Ωh\Γ−

((
S⊙ ~n

)
⊗ J

h(~x)
)

⊗ I
h(~x)d~x.

The same goes for the linear part of eq. (5) such that one may write for all Jh ∈ Vh: a(Ih, Jh) = l(Jh).112

3.2. Matrix-ready assembly113

Let the linear system yielded by the discretization of the previous equation be written as:114

AX = B. (7)

If the number of degrees of freedom in Vh is n, since the number of components in the vectorial finite element115

space Vh is equal to the number of directions Nd in the angular mesh, A is of order Nd · n. Furthermore, if it116

is assumed that each component of Vh is interleaved in A, X, and B, then:117

❼ the sparse matrix A is made of dense Nd ×Nd blocks,118

❼ B = [b1,1, . . . , bNd,1, b1,2, . . . , bNd,2, . . . , b1,n, . . . , bNd,n]
T .119

Increasing the number of directions for the DOM means that the number of nonzero coefficients in A will120

increase as well. In practice, the efficiency of two traditional finite element languages, FEniCS and FreeFEM,121

is assessed in fig. 2. For this test case, the RTE is discretized in a unit two-dimensional square using a fixed122

unstructured spatial mesh made of 6,768 triangles. The resulting finite element space Vh has 3,487 degrees of123

freedom. The time spent to assemble the corresponding linear systems, while increasing the number of directions124

Nd, is displayed. The results have been averaged over five consecutive runs, performed after cache warming.125

With FEniCS, prior to any computations, a first run to JIT compile the solver is also performed. This is done126

in sequential, on a single core of an Intel Core i7-6567U. Clearly, these timings are not satisfactory since both127

the spatial and angular meshes are tiny. They could not be used to resolve any nontrivial physics.128
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3.3. Semi-matrix-free assembly129

The two previous general-purpose languages do not succeed at exploiting the structure of eq. (6). Instead,130

they assemble the matrix from eq. (7) coefficient by coefficient, which has thus a cost proportional to the131

order of the linear system Nd · n. If it is assumed that the sparse matrix A does not have to be assembled132

explicitly, this cost may be greatly reduced. Indeed, if one looks for example at the following term from the133

bilinear form eq. (6):

∫

Ωh

β(~x)Ih(~x) ⊗ J
h(~x)d~x, assembled as A1, one can instead discretize this bilinear form134

∫

Ωh

β(~x)Ih(~x)Jh(~x)d~x, assembled as A1, where both I
h and Jh are in the finite element space Vh (of dimension135

n), and not in Vh (of dimension Nd · n). The action of A1 on a vector X of order Nd · n, is nothing else than136

the action of A1 on all Nd components of order n of X: ∀(k, i) ∈ J1;NdK × J1;nK,137

(A1X)k+Nd·(i−1) =
(
A1[xk,1 · · ·xk,n]

T
)

i
.

Now, looking at:138

a2(I
h, Jh) =

∫

Ωh

((
β(~x)Ih(~x)

)
⊗
(
γ(~x)S⊙∇J

h(~x)
)
−

(
S⊙∇J

h(~x)
)
⊗ I

h(~x)
)

d~x

=

∫

Ωh

(
(γ(~x)β(~x)− 1)Ih(~x)

)
⊗
(
S⊙∇J

h(~x)
)
d~x,

assembled as A2, it is instead possible to assemble the operators A2a,A2b, and A2c, corresponding to the139

discretization of the following bilinear forms:140

a2a(I
h, Jh) =

∫

Ωh

(γ(~x)β(~x)− 1)Ih(~x)
∂Jh(~x)

∂x
d~x

a2b(I
h, Jh) =

∫

Ωh

(γ(~x)β(~x)− 1)Ih(~x)
∂Jh(~x)

∂y
d~x

a2c(I
h, Jh) =

∫

Ωh

(γ(~x)β(~x)− 1)Ih(~x)
∂Jh(~x)

∂z
d~x.

The action of A2 on a vector X of order Nd · n may be computed as: ∀(k, i) ∈ J1;NdK × J1;nK,141

(A2X)k+Nd·(i−1) =
((
~sk,1A2a + ~sk,2A2b + ~sk,3A2c

)
[xk,1 · · ·xk,n]

T
)

i
,

where ~sk,j is the jth coordinate of the discrete direction ~sk, for j ∈ J1; 3K. Another part of the bilinear form is:142

a3(I
h, Jh) =

∫

Ωh

γ(~x)
(
S⊙∇I

h(~x)
)
⊗
(
S⊙∇J

h(~x)
)
d~x,

assembled as A3. It is instead possible to assemble the operators A3a,A3b,A3c,A3d,A3e, and A3f , corresponding143

to the discretization of the following bilinear forms:144

a3a(I
h, Jh) =

∫

Ωh

γ(~x)
∂Ih(~x)

∂x

∂Jh(~x)

∂x
d~x

a3b(I
h, Jh) =

∫

Ωh

γ(~x)
∂Ih(~x)

∂y

∂Jh(~x)

∂y
d~x

a3c(I
h, Jh) =

∫

Ωh

γ(~x)
∂Ih(~x)

∂z

∂Jh(~x)

∂z
d~x

a3d(I
h, Jh) =

∫

Ωh

γ(~x)

(
∂Ih(~x)

∂x

∂Jh(~x)

∂y
+
∂Ih

∂y

∂Jh

∂x

)

d~x

a3e(I
h, Jh) =

∫

Ωh

γ(~x)

(
∂Ih(~x)

∂x

∂Jh(~x)

∂z
+
∂Ih

∂z

∂Jh

∂x

)

d~x

a3f (I
h, Jh) =

∫

Ωh

γ(~x)

(
∂Ih(~x)

∂y

∂Jh(~x)

∂z
+
∂Ih

∂z

∂Jh

∂y

)

d~x.

The action of A3 on a vector X of order Nd · n may be computed as: ∀(k, i) ∈ J1;NdK × J1;nK,145

(A3X)k+Nd·(i−1) =
((
~s 2
k,1A3a + ~s 2

k,2A3b + ~s 2
k,3A3c + ~sk,1~sk,2A3d + ~sk,1~sk,3A3e +~sk,2~sk,3A3f

)
[xk,1 · · ·xk,n]

T
)

i
.
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Figure 2: time spent assembling A from eq. (7) for a two-dimensional domain with P1 finite elements either explicitly or using our
semi-matrix-free approach.

Eventually, the last part of eq. (6) with a volume integral assembled as A4 to deal with is:146

a4(I
h, Jh) =

∫

Ωh

(σ(~x)Φ ⋄ I
h(~x))⊗ (Jh(~x) + γ(~x)S⊙∇J

h(~x))d~x,

for which we instead assemble the operators A4a,A4b,A4c, and A4d, corresponding to the discretization of the147

following bilinear forms:148

a4a(I
h, Jh) =

∫

Ωh

σ(~x)Ih(~x)Jh(~x)d~x

a4b(I
h, Jh) =

∫

Ωh

σ(~x)γ(~x)Ih(~x)
∂Jh(~x)

∂x
d~x

a4c(I
h, Jh) =

∫

Ωh

σ(~x)γ(~x)Ih(~x)
∂Jh(~x)

∂y
d~x

a4d(I
h, Jh) =

∫

Ωh

σ(~x)γ(~x)Ih(~x)
∂Jh(~x)

∂z
d~x.

Now, one can formally view the column vector X of dimension Nd ·n as a column-major matrix X of dimensions149

Nd × n. Let Y = ΦX be of dimensions Nd × n as well. The action of A4 on a vector X of order Nd · n may be150

computed as:151

∀(k, i) ∈ J1;NdK × J1;nK, (A4X)k+Nd·(i−1) =
((
~sk,1A4b + ~sk,2A4c + ~sk,3A4d +A4a

)
[Yk,1 · · ·Yk,n]

T
)

i
.

Additional work is needed to take into account the surface integral from eq. (6). It cannot be easily decomposed,152

neither with FreeFEM nor with FEniCS, in a tensor form, like for the other parts of the variational formulation,153

because of the Boolean expression in the definition of Γ− in eq. (2). Thus, for the last line of eq. (6), the154

operators {Sk}
Nd

k=1 associated with the following bilinear forms have to be evaluated:155

∀k ∈ J1;NdK, ζk(I
h, Jh) =

∫

∂Ωh\Γ−

~sk · ~n Ihk (~x)J
h
k (~x)d~x. (10)

Once again, this would require a number of finite element assemblies that grows linearly with Nd. Hence, it is156

not tractable for large number of directions. To keep a low number of finite element assemblies, we color the157

Nbe boundary elements of ∂Ωh \Γ− into subsets {Fk}
χ
k=1 such that two boundary elements, i.e., faces in 3D or158

edges in 2D, of Fk, ∀k ∈ J1;χK, do not share a single vertex. This coloring is computed using a simple greedy159

algorithm. The following bilinear forms are then assembled into matrices {S ′
k}

χ
k=1:160

∀k ∈ J1;χK, ζ ′k(I
h, Jh) =

∫

Fk

Ih(~x)Jh(~x)d~x. (11)

Furthermore, given a direction k ∈ J1;NdK, the integrand ~sk · ~n is constant per boundary element, so these161

scalar products can be precomputed and stored in ψ ∈ RNd×Nbe . For a spatial degree of freedom i ∈ J1;nK, π(i)162

returns the subset of boundary elements to which i is associated. For a boundary element j ∈ J1;NbeK, π
′(j)163

returns the color of the given face. The assembled operators {Sk}
Nd

k=1 which are the discretized counterparts164

of eq. (10) are thus computed as follows:165

∀(k, i, j) ∈ J1;NdK × J1;nK2,Ski,j =

Nd∑

k=1

∑

m∈π(i)∩π(j)

ψk,mS ′
π′(m)i,j

. (12)
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Nd gemm (ms) CSR (ms) GFLOPMF (/s) GFLOPMR

80 26 115 2 (12) 8
128 48 125 3 (17) 21
320 184 262 10 (22) 129
512 383 395 21 (26) 330

1,280 1,960 1,000 95 (32) 2,060
2,048 4,579 1,574 222 (36) 5,274
5,120 27,281 4,116 1,250 (39) 32,964

Table 1: single-thread performance of the matrix–vector product with an increasing number of directions, for a fixed spatial domain.
n = 44,204, m = 6.29 · 105, and mS = 89,483.

Keep in mind that the matrices {S ′
k}

χ
k=1 are very sparse since they correspond to the discretization of a surface166

variational formulation. As a consequence, the matrices {Sk}
Nd

k=1 are also sparse, even though eq. (12) uses167

dense notations for the row and column indices.168

For realistic geometries, it is expected that the number of unknowns associated with degrees of freedom on169

the surface ∂Ωh \ Γ− will be lower than those associated with degrees of freedom in the volume Ωh. The cost170

of evaluating these surface integrals is thus expected to be much lower than the cost of evaluating the fixed171

number of reference matrices with volume integrals. Using the same test case as for matrix-ready assemblies172

in section 3.2, FreeFEM is now used to assemble the reference matrices A1,A2a,2b,A3a,3b,3c,3d, and A4a,4b,4c,173

as well as {S ′
k}

χ
k=1. Note that for two-dimensional test cases, the matrices A2c,A3c,3e,3f , and A4d do not174

exist (only nine reference matrices). As displayed in fig. 2, the semi-matrix-free approach is clearly faster than175

matrix-ready assemblies by multiple orders of magnitude. Moreover, the cost of this part of the solver is now176

only loosely dependent on Nd because of the surface integrals. If the coefficient matrix of order Nd · n from177

eq. (7) is not needed explicitly, we have derived a way to compute implicitly its action on a vector by assembling178

only reference matrices of order n.179

4. Iterative scheme/preconditioning180

In the previous paragraph, it was shown how one may assemble auxiliary matrices of a much lower dimension181

than the original coefficient matrix from eq. (7), to discretize the RTE using the DOM coupled with the FEM.182

The resulting system, however, still needs to be solved. This is the focus of this section.183

4.1. Matrix–vector products184

Because the coefficient matrix from eq. (7) is not known explicitly, it seems natural to use for the solution185

phase methods that only require the action of the matrix on vectors. Krylov methods [63] which are widely186

used in conjunction with the FEM seem like good candidates. Because they iterate by computing matrix–vector187

products, it is of paramount importance to design an efficient routine for our semi-matrix-free approach. To188

do so, a key observation is that, thanks to the compact support of finite element basis functions, the sparsity189

pattern of all fourteen reference matrices is the same. Thus, no matter the format used to store these sparse190

matrices, their pattern may be traversed only once. In the case of FreeFEM (and FEniCS), sparse matrices191

may be stored using the compressed sparse row (CSR) format, which is also widely used in common linear192

algebra backends such as PETSc [64]. Hence, if all reference matrices have m nonzero coefficients, we will193

assume that two arrays I (of size n + 1) and J (of size m) are used to traverse the matrices. We also denote194

by A⋆(i) the ith nonzero coefficient of the reference matrix ⋆. The same strategy and notations are used for195

the matrices associated with eq. (10) (mS , IS ,JS , and S⋆(i)). All the previous operations from section 3.3 may196

now be implemented as in fig. 3. If A from eq. (7) would have been explicitly assembled, its action on a vector197

would require 2 ·m ·N2
d double-precision floating-point operations. Our semi-matrix-free matrix–vector product198

performs the following number of FLOP:199

Nd · n · (Nd − 1)
︸ ︷︷ ︸

line 2 of fig. 3

+28 ·m ·Nd
︸ ︷︷ ︸

lines 4–11

+2 ·mS ·Nd
︸ ︷︷ ︸

lines 12–16

. (13)

200

Its efficiency is assessed in table 1. This time, a cube meshed with 235 thousand tetrahedra is used. The201

corresponding finite element space has 44 thousand degrees of freedom. It is assumed that the matrices A⋆ and202

S⋆ have already been assembled. The following results have been averaged over five consecutive runs, performed203

after cache warming. The time spent in the dense matrix–matrix product (line 2) as well as in the CSR traversal204

(lines 3–17) are reported in the second and third column respectively, with increasing number of directions Nd,205

reported in the first column. The number of FLOP performed in our product is reported in the fourth column.206

The numbers in parentheses are the actual throughputs in GFLOP/s of the matrix–vector product. In the fifth207
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1: function y = MatMultAdd(x, Φ, I, J , A⋆, IS , JS , S⋆, ~s)
2: gemm(“N”, “N”, Nd, n, Nd, 1, Φ, Nd, x, Nd, 0, Y , Nd)
3: do i = 0, n ⊲ row indices
4: do j = I(i), I(i+ 1) ⊲ column indices of the volume reference matrix
5: do k = 0, Nd ⊲ direction indices
6: b1 = (A2a(j) + ~sk,1A3a(j) + ~sk,2A3d(j) + ~sk,3A3e(j))~sk,1
7: b2 = (A2b(j) + ~sk,2A3b(j) + ~sk,3A3f (j))~sk,2
8: b3 = (A2c(j) + ~sk,3A3c(j))~sk,3
9: y(i · Nd + k) = y(i · Nd + k) +

(
A1(j) + b1 + b2 + b3

)
x(J (j) · Nd + k) +

(
~sk,1A4b(k) + ~sk,2A4c(k) +

~sk,3A4d(k) +A4a(k)
)
Y (J (j) ·Nd + k)

10: end do
11: end do
12: do j = IS(i), IS(i+ 1) ⊲ column indices of the surface reference matrix
13: do k = 0, Nd ⊲ direction indices
14: y(i ·Nd + k) = y(i ·Nd + k) + Sk(j)x(JS(j) ·Nd + k)
15: end do
16: end do
17: end do
18: end function ⊲ return y = y + Ax

Figure 3: matrix–vector product using the semi-matrix-free discretization.

column, knowing that the number of nonzero entries m in each reference matrix is 6.29 · 105, the number of208

double-precision floating-point operations that would have required a matrix-ready matrix–vector product is209

reported. For small number of directions (Nd 6 320), the performance of our algorithm is constrained by the210

single traversal of the sparsity pattern of the reference matrices, lines 3–17. With the CSR format, this is known211

to be an inefficient operation for discretizations on unstructured meshes [65]. When the number of directions212

becomes greater, the performance is driven by the one of the matrix–matrix product, line 2. Moreover, the213

vectorization of the inner loops lines 5 and 13 is most efficient for large values of Nd. In general, one may214

notice that our approach is one order of magnitude more efficient, needing fewer operations, for a wide range of215

directions. Note that for the case with Nd = 5,120, if A were to be assembled explicitly using double-precision216

floating-point numbers, it would require 6.29 · 105 · 5,1202 · 8 ≈ 132 TB of memory (not accounting for integers217

used to represent the sparsity pattern of A). With the semi-matrix-free approach, this operator is assembled on218

an ordinary desktop computer. Though the Intel MKL (with AVX-512) is used to perform the matrix–matrix219

product, we are focused here once again on the single-thread performance of our algorithm on an Intel Xeon220

Platinum 8168.221

4.2. Semi-matrix-free preconditioning222

Krylov methods usually require a preconditioner so that they converge in a timely manner to an accurate223

solution. Because the coefficient matrix from eq. (7) is not assembled explicitly, standard preconditioners such224

as the restricted additive Schwarz method [66], or algebraic multigrid methods [67], are not usable. Matrix-free225

solvers typically rely on either: a) basic preconditioners such as the Jacobi method, or b) more sophisticated226

tools like geometric multigrid methods [68] or element-wise preconditioning [69]. In the case of the RTE, the227

former certainly makes a Krylov method such as the GMRES [70] converge, but with an insufficient convergence228

rate. When using different high-level languages, the latter is not easily interoperable since it requires a tight229

link with the language data structures, e.g., hierarchical meshes. In the next paragraph, an auxiliary operator230

will be explicitly assembled so that it can be used to precondition eq. (7) using standard techniques.231

The diffusion synthetic acceleration (DSA) is a common tool in the radiative transfer community [71, 72] to232

improve the convergence of iterative schemes when dealing with scattering media with large optical depths. It233

is based on a simplification of eq. (1) using the diffusion approximation. To build an efficient preconditioner,234

we use another approximation by assuming that the phase function matrix φ in eq. (3) is now diagonal:235

∀k ∈ J1;NdK, (~sk · ∇+ β(~x))Ik(~x) = σ(~x)ωkIk(~x)φk,k.

The following physical phenomena are encompassed in these pruned PDEs: transport ~sk ·∇Ik(~x), absorption236

κ(~x)Ik(~x), out-scattering σ(~x)Ik(~x), and unidirectional in-scattering σ(~x)ωkIk(~x)φk,k. This construction makes237

the preconditioner able to handle a wide range of radiative transfer problems with absorbing, scattering, trans-238

parent, or semi-transparent media, as displayed in the following numerical experiments.239

Assembling explicitly the pruned coefficient matrix B from the approximated RTE becomes much cheaper240

than assembling A, since the dense Nd ×Nd blocks now become diagonal Nd ×Nd blocks. Indeed, the various241
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1: function M = PrunedPC(x, Φ, I, J , A⋆, ~s)
2: allocate IB to store Nd · n+ 1 integers
3: allocate JB to store Nd ·m integers
4: allocate B to store Nd ·m scalars
5: do i = 0, n ⊲ row indices
6: mrow = I(i+ 1)− I(i); jshifted = Nd · I(i)
7: do k = 0, Nd ⊲ direction indices
8: IB(Nd · i+ k) = jshifted + k ·mrow ⊲ number of nonzeros of this row
9: do j = I(i), I(i+ 1) ⊲ column indices of the volume reference matrix

10: idx = jshifted + k ·mrow + (j − I(i))
11: JB(idx) = J (j) ·Nd + k ⊲ column index of the pruned preconditioner
12: b1 = (A2a(j) + ~sk,1A3a(j) + ~sk,2A3d(j) + ~sk,3A3e(j))~sk,1
13: b2 = (A2b(j) + ~sk,2A3b(j) + ~sk,3A3f (j))~sk,2
14: b3 = (A2c(j) + ~sk,3A3c(j))~sk,3

15: B(idx) = B(idx) +A1(j) + b1 + b2 + b3 +
(

~sk,1A4b(k) + ~sk,2A4c(k) + ~sk,3A3d(k) +A4a(k)
)

Φk,k

16: end do
17: end do
18: end do
19: IB(Nd · n) = Nd ·m ⊲ total number of nonzeros
20: end function ⊲ return B = CSR(IB ,JB ,B)

Figure 4: explicit assembly of the pruned preconditioner.

Nd Assembly (s) nB mB Setup (s)

80 1.9 4 · 106 5 · 107 9.1
128 2.9 6 · 106 8 · 107 15.4
320 7.5 1 · 107 2 · 108 42.5
512 12.1 2 · 107 3 · 108 72.7

1,280 31.0 6 · 107 8 · 108 198.2
2,048 53.0 9 · 107 1 · 109 317.5
5,120 102.1 2 · 108 3 · 109 1,181.7

Table 2: time spent assembling the pruned preconditioner. nB and mB represent the order and the number of nonzero entries
respectively in B.

components of Ih in eq. (6) are only coupled through Φ. The assembly cost is thus divided by Nd. Zero off-242

diagonal coefficients from the dense blocks of B are obviously not stored. Thus, there is no block structure in243

B and it is assumed that it is stored in a standard sparse matrix using the CSR format. Its arrays are noted244

IB ,JB , and B. In fig. 4, the procedure used to allocate and assemble the pruned preconditioner is displayed.245

For the same test case as in table 1 and on the same hardware, the time spent in this routine is shown in the246

second column of table 2, averaged over two runs. In the third (resp. fourth) column, the order of the system247

(resp. number of nonzero entries) is displayed. Choosing an efficient preconditioner to approximate the action248

of B−1 is not trivial. In our experiments, we used hypre algebraic multigrid solver BoomerAMG [73] with the249

following parameters: ext+i interpolation, HMIS coarsening, two sweeps of l1 Gauss–Seidel smoothing per level,250

and aggressive coarsening on all levels. Similar parameters are used in the neutron transport community [74].251

In the fifth column of table 2, the time spent in BoomerAMG for constructing the preconditioner is reported.252

Obviously, with a fixed spatial mesh but a refined angular mesh, a steady increase in setup time is observed.253

In the following section, a strategy to mitigate this issue will be presented, based on a hybrid multigrid in254

space–domain decomposition in angles preconditioner.255

5. Large-scale numerical results256

Both the matrix–vector product and the preconditioner have been defined in the previous paragraphs. In257

this section, the performance of the complete solver will be assessed for large-scale simulations. One application258

of the solver is its use to improve the design of heterogeneous participating media for material science. Thus,259

for a given geometry, multiple problems have to be solved, for example because of changing physical properties.260

In [75], this solver is used to study the response of open-cell foams made of SiC or Al2O3 to radiations, which261

represent two different classes of materials (opaque or semi-transparent). We will thus focus on the strong262

scaling of the solver. However, since the transport community is heavily focused on weak scaling, there is also263
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such an analysis in section 6.4. Before presenting any scaling tests of the solver, it is first validated in the next264

paragraph.265

5.1. Validation266

Problems 3i and 3ii from Kobayashi benchmarks [76] are used to validate the solver. These test cases267

correspond to monochromatic emitting source radiation problems within heterogeneous materials with purely268

reflecting walls. They have already been used to validate radiation transport solvers in the literature [77, 78, 79].269

x

z

y

0

60100

(a) Geometry. (b) Density profile of problem 3i. (c) Density profile of problem 3ii.

Figure 5: Kobayashi benchmark.
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The material geometry for both problems 3i and 3ii is a 60 × 100 × 60 cm3 rectangular cuboid which con-270

sists of three regions: source, void, and shield. They are respectively highlighted in blue, red, and transparent271

in fig. 5a. The radiative exchange in both of these problems is driven by the source region, a 10× 10× 10 cm3
272

cube located at the origin of the coordinate system. It emits a black-body radiation of unit strength. The273

xz-plane for y = 0, xy-plane for z = 0, and yz-plane for x = 0, i.e., front, bottom, and left planes, are specularly274

reflecting, while the three other planes are vacuum walls. Problem 3i involves absorption, emission, and reflec-275

tion but neglects scattering. The coefficients (κ, σ) are constant per region: (0.1 cm−1, 0 cm−1) in the source,276

(10−4 cm−1, 0 cm−1) in the void, and (0.1 cm−1, 0 cm−1) in the shield region. Problem 3ii involves all modes277

of radiation: absorption, emission, scattering, and reflection. The coefficients are now: (0.05 cm−1, 0.05 cm−1),278

(5 · 10−5 cm−1, 5 · 10−5 cm−1), and (0.05 cm−1, 0.05 cm−1), respectively.279

Problems 3i and 3ii are prone to ray effects and not trivial to solve with the DOM [78]. As such, these280

benchmarks require a fine spatial and angular meshes, cf. fig. 1. This mitigates errors due to ray effects. Two281

sets of meshes were used with our solver to further quantify ray effects and validate our results. A coarse set282

made of a spatial mesh with 1.41 · 105 nodes and 8.15 · 105 elements and an angular mesh with 320 directions.283

And a fine set made of a spatial mesh with 7.88 · 105 nodes and 4.71 · 106 elements and an angular mesh with284

5,120 directions. As suggested in Kobayashi benchmark document [76], densities are extracted at certain point285

locations within the materials. Table 3 provides these specific densities obtained with four different approaches:286

1. numerical evaluation of an exact expression only available for problem 3i [76], column “reference”,287

2. Monte Carlo solver [80], column “MC”,288

3. spherical harmonics P21 solver [77], column “P21”,289

4. our solver with both sets of meshes, column “DOMc” and “DOMf” for the coarse and the fine set,290

respectively.291

The data provided in the table suggests that the density computed by our solver when using the fine set of292

meshes are in close agreement with the ones provided by other approaches. Moreover for both problems 3i and293

3ii, the accuracy of the results improves significantly when switching from the coarse to the fine set of meshes.294

Contours of the density in logscale are presented in fig. 5b (resp. fig. 5c) for problem 3i (resp. 3ii).295

5.2. Parallelism296

Workload distribution. The finite element method is most often parallelized on distributed-memory systems297

using a coarse-grained approach such as domain decomposition. One of the many linear algebra backends that298

does support this workload distribution is PETSc, that will be used in all the following tests. Considering299

that an input mesh is split into P domains using a mesh partitioner such as Metis [81], FreeFEM is in charge300

of generating a global unknown numbering of Vh. This numbering is such that all P processes will own a301

contiguous chunk of rows of all reference matrices A⋆ (one-dimensional row-wise distribution).302
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Table 3: density (W cm−2) of Kobayashi problems 3i and 3ii computed with: an exact expression [76], GMVP [80], Ardra [77] or
our solver, for x = z = 5 cm.

Problem 3i Problem 3ii

y Reference MC P21 DOMc DOMf MC P21 DOMc DOMf

5 5.96 · 100 5.94 · 100 5.96 · 100 6.1 · 100 5.96 · 100 8.62 · 100 8.61 · 100 8.8 · 100 8.63 · 100

15 1.37 · 100 1.37 · 100 1.34 · 100 1.4 · 100 1.37 · 100 2.16 · 100 2.13 · 100 2.2 · 100 2.16 · 100

25 5.01 · 10−1 5.01 · 10−1 4.95 · 10−1 5.1 · 10−1 5.00 · 10−1 8.94 · 10−1 8.84 · 10−1 9.0 · 10−1 8.93 · 10−1

35 2.52 · 10−1 2.53 · 10−1 2.49 · 10−1 2.6 · 10−1 2.50 · 10−1 4.78 · 10−1 4.72 · 10−1 4.8 · 10−1 4.74 · 10−1

45 1.50 · 10−1 1.50 · 10−1 1.56 · 10−1 1.4 · 10−1 1.48 · 10−1 2.89 · 10−1 2.99 · 10−1 2.8 · 10−1 2.87 · 10−1

55 9.92 · 10−2 9.92 · 10−2 1.20 · 10−1 8.3 · 10−2 9.84 · 10−2 1.93 · 10−1 2.24 · 10−1 1.7 · 10−1 1.91 · 10−1

65 4.23 · 10−2 4.23 · 10−2 5.10 · 10−2 3.9 · 10−2 4.20 · 10−2 1.05 · 10−1 1.19 · 10−1 9.9 · 10−2 1.04 · 10−1

75 1.15 · 10−2 1.15 · 10−2 8.91 · 10−3 1.2 · 10−2 1.14 · 10−2 3.38 · 10−2 3.02 · 10−2 3.4 · 10−2 3.35 · 10−2

85 3.25 · 10−3 3.25 · 10−3 1.95 · 10−3 3.4 · 10−3 3.33 · 10−3 1.08 · 10−2 8.54 · 10−3 1.1 · 10−2 1.08 · 10−2

95 9.48 · 10−4 9.49 · 10−4 6.82 · 10−4 7.7 · 10−4 9.69 · 10−4 3.40 · 10−3 2.83 · 10−3 3.0 · 10−3 3.40 · 10−3

Matrix–vector product. As it is the case with standard matrix types from PETSc (and other backends like303

hypre [82]), it is furthermore assumed that the local representation of each matrix A⋆ is split into two matrices304

{Di}
P
i=1 and {Oi}

P
i=1, where the unknowns associated with the {Di}

P
i=1 are purely local to each domain, whereas305

those associated with the {Oi}
P
i=1 involve interprocess communication for computing matrix–vector products,306

cf. [83]. By using a matrix of type “shell”, one can wrap the matrix–vector product from fig. 3 so that PETSc307

will use it in its Krylov solvers. If the reference matrices are split using the previous decomposition, it is trivial to308

extend the algorithm so that it overlaps communication due to interprocess unknowns shared with neighboring309

domains with local computation.310

Pruned preconditioner. In the previous paragraphs, matrix-free system eq. (7) is solved by using an assembled311

preconditioner B defined in section 4.2. The strategy used to assemble B was to prune all off-diagonal nonzeros312

in the Nd × Nd dense blocks of A. The pruned operator B of dimension Nd · n thus still remains structured,313

with blocks of dimension Nd, but they are now diagonal instead of dense. As displayed in the previous section314

in table 2, setting up BoomerAMG on the complete pruned operator B becomes costly for large numbers315

of directions. To decrease the setup cost, we propose to modify the preconditioner by first using a domain316

decomposition-like approach in angles, and then using multigrid in space. Instead of using a single instance of317

BoomerAMG with the single operator B, each structured diagonal block of dimension Nd will be decomposed318

into q subblocks, where q is a common divisor of the number of directions Nd and the number of processing319

elements P . This may be interpreted as nonoverlapping domain decomposition according to the angles. Then,320

q instances of BoomerAMG are created for each subsystem of dimension Nd

q · n. This is standard multigrid in321

space. Suitable restriction and interpolation operators will be defined later on to go from the full space to a322

single subsystem and vice versa. This is somehow similar to the anglesets strategy from [40]. From an algebraic323

point of view, the modified pruned preconditioner is now written as:324

B−1 =

q
∑

k=1

RT
k (RkBR

T
k )

−1Rk,

where q is a common divisor of the number of directions Nd and the number of processing elements P , and Rk325

is the restriction on the kth angleset. Formally, for each spatial unknown, Rk selects from all Nd directions only326

the Mq = Nd/q ones from the appropriate angleset. In matrix form, Rk is a full-rank diagonal Boolean matrix327

written as:328

∀k ∈ J1; qK, Rk =






Jk
. . .

Jk




 ∈ {0, 1}n·Mq×n·Nd ,

with Jk =
[
✵Mq×(k−1)·Mq

✶Mq
✵Mq×(q−k)·Mq

]
∈ {0, 1}Mq×Nd . Within the PETSc framework, this construc-329

tion of B−1 could be performed using an additive fieldsplit preconditioner (with as many fields as anglesets),330

but this would have two main bottlenecks:331

❼ the operator B would have to be assembled explicitly first,332

❼ q would need to be low for the preconditioner assembly to be efficient.333

Instead, as it is standard when doing domain decomposition in space, the respective
{
RkBR

T
k

}q

k=1
are directly334

assembled on q different MPI communicators of size P/q. This can be done by looping on the appropriate335

directions from a given angleset line 7 from fig. 4, instead of looping on all Nd directions. For better memory336

efficiency, we use PETSc matrices of type “hypre” to store these operators, so that there is no copy or conversion337
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from the default PETSc type “aij” to “hypre”. Once the problem has been decomposed in angles, q instances of338

BoomerAMG are called concurrently to approximate the action of each
{
(RkBR

T
k )

−1
}q

k=1
(multigrid in space),339

using the same parameters as in section 3.3.340

5.3. Test case and scaling341

Hardware and software settings. Results were obtained on a partition of Irène composed of 1,656 nodes with342

two 24-core Intel Skylake clocked at 2.7GHz. The interconnect is an InfiniBand EDR full fat tree and the MPI343

implementation exploited was IntelMPI version 2019.0.5.281. All binaries and shared libraries were compiled344

with Intel compilers and Math Kernel Library support (for dense linear algebra computations) version 19.0.5.281.345

PETSc version 3.12.4 with hypre version 2.18.2 were used.346

Geometry and physics. For the spatial domain, a three-dimensional centimetric rectangular cuboid of dimension347

[0; 1] × [0; 1] × [0; 3] is used. In the rectangular cuboid lies a collection of multiple small spheres with varying348

physical parameters, cf. fig. 6. The resulting mesh generated by Gmsh [84] is made of 1.9 million tetrahedra,349

which are uniformly refined once, for a total of 8 × 1.9 = 15 million tetrahedra. Before the refinement step,350

the unstructured mesh is partitioned in parallel using ParMETIS [85]. The background coefficients used in the351

rectangular cuboid are: κ = 10−6 cm−1 and σ = 10−6 cm−1, i.e., a nearly transparent medium. In the spheres,352

the values of this pair of coefficients vary between:
{
{10−6, 10}, {10, 10−6}, {0.1, 0.1}, {10, 10}

}
. These values353

represent a mix of highly scattering, highly absorbing, and semi-transparent materials. They are considered354

homogenized with φ modeled using the Henyey–Greenstein phase function [86], with the anisotropy factor355

g = 0.5. As inflow boundary conditions, the rectangular cuboid is impinged with a collimated external radiative356

source Iinflow on its left face:357

Iinflow = I0✶(~x,~s)∈{0}×[0.25;0.75]×[0.25;0.75]×{[1,0,0]T },

where I0 = 1Wcm−2 sr−1. ✶ represents the vectorial characteristic function of a set. Since emission is neglected358

and the condition on angles reads ~s ∈ {[1, 0, 0]T }, the right-hand side B of eq. (7) is nonzero for a single359

component Ih associated with this direction. In total, Nd = 5,120 directions are used to discretize the unit360

sphere, cf. fig. 1b. This is an extremely fine angular mesh. Such a resolution will be necessary in a following test361

when dealing with specular reflections on spheres in order to solve the physics accurately [32]. These directions362

are grouped in q = 32 anglesets of dimension Nd/q = 160. To the best of our knowledge, radiative transfer363

equation solvers using Krylov methods have never been able to deal with such an angular resolution, mostly due364

to memory limitations. After a simple post-processing step, it is easy to compute the spatial density profile D,365

i.e., at the continuous level, the integral over the complete solid angle of the radiative intensity, by computing366

for each spatial degree of freedom: ∀j ∈ J1;nK,Dj ≈
∑Nd

i=1 ωixi,j , assuming x is the solution vector from eq. (7).367

For this test, the density is shown in fig. 7. Notice the jumps in the density due to the presence of spheres with368

nonzero extinction coefficients along the collimated radiation.369

Figure 6: Gmsh geometry for the large-scale experiments.

0

0.6

1.2

D (W cm−2)

Figure 7: density profile D. The rectangular cuboid is
impinged on the front face and the radiation
travels up to the back face, while being par-
tially absorbed in the spheres.

370
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(a) Time to solution. Each color represents the fraction of the total
time spent in the respective tasks. In parenthesis, number of itera-
tions.

P Setup (s) Solve (s) # of iterations Speedup

1,536 549.6 309.1 51 −
3,072 155.1 206.2 54 2.4
6,144 58.3 122.5 51 4.7

12,288 33.5 94.4 54 6.7
24,576 24.5 73.8 52 8.7

(b) Timings of the setup and the solution phases.

Figure 8: strong scaling analysis of the complete solver for a system of thirteen billion unknowns (without reflection).

Performance. In the following numerical experiments and as standard in the radiative transfer community [49,371

57, 87], convergence is assumed to be reached when the relative residual norm is lower than 10−6. Such a stopping372

criterion provided accurate final residuals1. Since the global operator is ill-conditioned, the long-recurrence373

Krylov method GMRES(30)2 using double-precision floating-point numbers is preferred over short-recurrence374

methods such as BiCGSTAB, cf. [17] for a comparison with radiative transfer operators.375

The performance of the complete solver is assessed in the strong scaling regime on 1,536 up to 24,576 MPI376

processes in fig. 8. The following steps of our method are timed, and averaged over two consecutive runs (same377

node distribution): assembly of the reference matrices A⋆ and of the surface integrals (section 3.3), of the378

preconditioner B (section 4.2), and preconditioner setup (all three steps are summed and referenced to as the379

“setup” phase), and solution phase. In fig. 8a, each color represents the fraction of the total time spent in380

these two phases. For example, with 1,536 MPI processes, the height of the red bar is 549.6
549.6+309.1 = 64% of381

the height of the complete bar (figures taken from table 8b). These two colors are used to differentiate at a382

glance both phases, in order to estimate the setup time to solve time ratio. This may be useful to infer how to383

amortize setup costs when doing successive linear solves. For the exact timings, interested readers are referred384

to the right-hand side table. Overall, even with a rather high number of anglesets and aggressive multigrid385

parameters, the preconditioner remains very robust in terms of iterations on a wide range of MPI process386

counts. The test case was chosen so that it saturates the node memory when running on 1,536 MPI processes.387

For moderate number of MPI processes, computations (and thus cache effects) prevail over communications,388

which explains ideal speedups. At scale, the total time starts to be dominated by the solution phase. Indeed,389

on 24,576 processes, the average number of tetrahedra per process is a mere 610, so that the communication390

cost in the matrix–vector product cannot be fully overlapped and is no more negligible compared to the highly391

efficient computation, cf. table 1. For this largest configuration, the average grid and operator complexities of392

{
(RkBR

T
k )

−1
}32

k=1
, as returned by hypre, are 1.09 and 1.17 respectively. These low numbers imply that most393

of the communications take place in the matrix–vector products. Note that their volume of communication is394

proportional to Nd, while their computational cost is proportional to N2
d , cf. eq. (13).395

6. Specular reflections396

In the previous sections, a solver for the radiative transfer equation was derived using a mixed matrix-397

ready/matrix-free approach. The goal of the following paragraphs is to show how this solver may be extended398

to deal with specular reflections. Such phenomena appear when radiations reach surfaces with different reflective399

indices. The radiative intensity is thus modified since a portion of the incident radiations is reflected back into400

the domain, according to Fresnel equations.401

6.1. Assembly402

To take into account these reflections, the bilinear form from eq. (6) has to be modified. Indeed, it is now403

assumed that the inflow boundary condition for all {Ihk }
Nd

k=1 is given, for all (~x,~sk) ∈ Γ−, by:404

Ihk = Ik,inflow +
∑

j∈J1;NdK
~sj ·~n>0

ρ~n,k,jI
h
j . (14)

1checked with the PETSc option -ksp view final residual
2the default restart value of PETSc
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Describing precisely how the coefficients ρ are computed is beyond the scope of this paper. There are various405

ways to do so, for example using the 1-DP (used in this paper), 3-DP, or the partition methods [88]. Their406

values depend on the reflective index of the surface material, the direction of the normal ~n at the point of407

reflection, as well as the incident and reflected directions ~sk and ~sj . It is assumed that the reflective surface Γ−
408

may be decomposed into a union of surfaces with p different normals, i.e., Γ− = ∪p
r=1Γ

−
r . For example, if Ωh is409

a hexahedron, p is equal to six. With the new inflow boundary condition, for all components of Ih, the bilinear410

form a of eq. (6) has to be augmented by the following surface integral, for each component:411

a(Ih, Jh) +=

p
∑

r=1

∫

Γ−

r

(Pr ⋄ I
h(~x))⊗ J

h(~x)d~x, (15)

with the matrices {Pr}
p
r=1 being defined as:412

∀r ∈ J1; pK,Pr =






ρ~n,1,1 · · · ρ~n,1,Nd

...
. . .

...
ρ~n,Nd,1 · · · ρ~n,Nd,Nd




 .

For all (~x,~sk) ∈ Γ−, ~sk · ~n < 0, cf. the definition of Γ− given eq. (2). To take into account the conditional sum413

from eq. (14), ~sj · ~n > 0, the diagonals of {Pr}
p
r=1 are set to zero. Moreover, since a large number of directions414

are used, these matrices are relatively sparse. In practice, they are stored using the coordinate list format. As415

in section 3.3, instead of assembling the vectorial bilinear form (15), the following variational formulations are416

assembled:417

∀r ∈ J1; pK, qr(I
h, Jh) =

∫

Γ−

r

Ih(~x)Jh(~x)d~x.

Let nΓ− (resp. {nΓ−

r
}pr=1) be the number of unknowns from Vh associated with elements of Γ− (resp. {Γ−

r }
p
r=1).418

The assembly cost of eq. (15) is proportional to Nd ·nΓ− , while the total assembly cost of all reference matrices419

from the previous equation is proportional to
∑p

r=1 nΓ−

r
.420

6.2. Matrix–vector products421

The initial algorithm from fig. 3 has to be extended to take into account the reference matrices from422

the previous paragraph. It is assumed that the bilinear forms {qr}
p
r=1 are assembled using the CSR format423

{Iqr ,Jqr ,Qr}
p
r=1. This time, the sparsity pattern of the reference matrices corresponding to the surface integral424

may be different. For a surface r ∈ J1; pK, and for all unknown indices i ∈ J1;nΓ−

r
K, we assume that nΓ−

r
(i)425

returns the unknown index in the finite element space Vh. The extended matrix–vector algorithm is presented426

in fig. 9. For each reflective surface, it involves first gathering the relevant values from the input vector of427

size Nd · n, then computing a sparse matrix–dense matrix product, and eventually, scattering back the result428

into the output vector. When dealing with meshes with a large amount of different reflective surfaces (large p),429

this algorithm may not scale well. However, it is important to keep in mind that for realistic three-dimensional430

geometries, the number of unknowns associated with surface elements nΓ− is expected to be much lower than431

the global number of unknowns n. Thus, the most time-consuming part of the matrix–vector procedure should432

still be the algorithm from fig. 3.433

434

Because of the definition of {Pr}
p
r=1, eq. (15) would not introduce any diagonal values in the dense Nd×Nd435

blocks of A from eq. (7) if it were to be assembled explicitly. Thus, the definition of the preconditioning matrix436

B from section 4.2 will remain the same for the numerical experiments.437

6.3. Test case and scaling438

The same geometry with the same background coefficients from section 5.3 will be used. The main difference439

now is that all the spheres inside the rectangular cuboid model reflecting materials with no transmissivity. As440

such, their insides are not meshed anymore, and their reflective indices are picked from the following set: {1.8,441

2.0, 2.2, 2.5}. The number of directions is still set to Nd = 5,120, and with a mesh of 14.5 million tetrahedra,442

the discrete system is of order 14× 109. The outer surface of the rectangular cuboid is nonreflective (reflective443

index set to one). The same preconditioner as before is used: hybrid multigrid in space–domain decomposition444

in angles with the same BoomerAMG parameters and q = 32 anglesets. In the density now displayed in fig. 10,445

one can see that at the surface of the spheres in the rectangular cuboid, part of the radiative intensity is446

reflected back into the spatial domain. The impact of reflections that cause more variations in the density447

profile compared to fig. 7 may also be observed. Notice that for this test case, the total number of reflective448

surfaces p is equal to 407. Depending on how the global domain is decomposed, each process has a different449

number of local reflective surfaces {pi}
P
i=1. Accordingly, they only load the corresponding matrices {Pr}

pi

r=1 that450

are generated in a pre-processing step. As these numbers decrease, so does the local cost of the matrix–vector451

product (outer loop line 2 from fig. 9). For this configuration, the performance of the solver, cf. fig. 11, delivers452

similar speedups as in the previous section (without reflective surface).453
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1: function y = MatMultAdd(x, {Pr, Iqr ,Jqr ,Qr}
p
r=1)

2: do r = 1, p
3: allocate Y to store Nd · nΓ−

r
scalars

4: allocate tmp to store Nd · nΓ−

r
scalars

5: do i = 0, nΓ−

r

6: do k = 0, Nd

7: Y (Nd · i+ k) = x(Nd · nΓ−

r
(i) + k)

8: end do
9: end do

10: tmp = PrY
11: do i = 0, nΓ−

r

12: do j = Iqr (i), Iqr (i+ 1)
13: do k = 0, Nd

14: idx = Nd · nΓ−

r
(i) + k

15: y(idx) = y(idx) + tmp(Nd · i+ k)Qr(j)
16: end do
17: end do
18: end do
19: end do
20: end function

Figure 9: matrix–vector product for taking reflections into account.
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Figure 10: density profile D when dealing with reflective surfaces. The rectangular cuboid is impinged on the front face and the
radiation travels up to the back face, while being reflected on the surface of the spheres.
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(a) Time to solution. Each color represents the fraction of the total
time spent in the respective tasks. In parenthesis, number of itera-
tions.

P Setup (s) Solve (s) # of iterations max{pi}
P

i=1

1,536 649.5 136.4 43 156
3,072 243.6 127.3 44 89
6,144 148.1 133.1 45 79

12,288 32.4 81.0 48 53
24,576 24.6 61.2 48 37

(b) Timings of the setup and the solution phases. The last column
provides the maximum number of local reflective surfaces (which
depends on the domain decomposition).

Figure 11: strong scaling analysis of the complete solver for a system of fourteen billion unknowns (with reflections).
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(a) Efficiency and number of unknowns with an increasing number
of uniform mesh refinements. In parenthesis, number of iterations.

P Setup + solve (s) # of iterations q

128 133.0 31 2
1,024 140.4 32 8
3,456 145.5 34 16
8,192 143.8 34 32

16,000 149.6 37 64
27,648 157.1 39 128

(b) Timings of the solver. The last column provides the number of
anglesets, equal to the number of hypre instances working concur-
rently.

Figure 12: weak scaling analysis of the complete solver for a system of 1.7 million unknowns per MPI process (with six reflective
surfaces).

6.4. Spatial mesh refinement and weak scaling454

Results were obtained on a partition of Irène composed of 2,292 nodes with two 64-core AMD Rome clocked455

at 2.6GHz. The interconnect is an InfiniBand HDR full fat tree. A simple three-dimensional unstructured456

cube being impinged with a collimated radiative beam is now considered. It is again generated by Gmsh, with457

approximately 750k tetrahedra. The reflective index on the six faces of the cube is 1.5. The number of directions458

is now set to Nd = 1,280. This saturates the memory available on one node of Irène, so it will be used next to459

perform a weak scaling analysis. Inside the cube, the following coefficients are used: (κ, σ) = (0.085, 20.10), as460

suggested in the literature [89]. After using ParMETIS to decompose this initial mesh in 128× i3 for i ∈ J1, 6K,461

and assigning one subdomain per MPI rank, uniform spatial mesh refinement is performed concurrently on462

all processes. Each tetrahedron is split into i3 elements, by splitting all edges of the initial elements in i.463

No refinement is performed for i = 1. The smallest problem generated for i = 1 has a total of 216 million464

unknowns, while the largest problem, running on 216 compute nodes for i = 6, has 45.7 billion unknowns.465

While the number of iterations to solve the global problem slightly increases, from 31 to 39, see third column466

in fig. 12b, one can notice that the overall efficiency remains above 80%, see fig. 12a. The same steps as in467

the previous strong scaling experiments are timed: assembly of the reference matrices A⋆ and of the surface468

integrals (section 3.3), of the preconditioner B (section 4.2), preconditioner setup, and solution phase. To keep469

the preconditioner setup tractable, the number of anglesets q is increased with the global number of processes470

as shown in the rightmost column of fig. 12b. On this range of process numbers, the global preconditioner471

remains numerically efficient, and it converges in fewer iterates than in our previous strong scaling experiments472

with spherical inclusions and internal reflections, see figs. 8b and 11b for a comparison.473

7. Conclusion474

The radiative transfer equation is a high-dimensional integro-differential equation. In this paper, a dis-475

cretization in both space and angles was used to solve it numerically. Our solver is able to discretize the RTE476

efficiently by using a high-level finite element language, FreeFEM. By using such a language, most of the burden477

inherent of the finite element method, e.g., mesh data structure, is hidden from the user. Unfortunately, these478

languages do not exploit the structure of the RTE and cannot be used out of the box to directly discretize it.479

The mixed matrix-ready/matrix-free approach introduced in this paper has the two following important480

properties. First, it relies on a low number of reference matrices of a much lower dimension than the original481

system. These may be assembled fast using almost any domain specific language at a relatively low memory482

and computational cost. Second, the matrix–vector product uses a dense matrix–matrix product, which may483

be highly optimized, and it is possible to assemble explicitly a preconditioner to reduce the number of iterations484

needed by Krylov methods to converge.485

By using a hybrid multigrid in space–domain decomposition in angles preconditioner, we are able to discretize486

and solve a 45.7 billion unknown system in less than three minutes on 27,648 MPI processes. Moreover, we show487

how our solver may be extended to deal with physics involving specular reflections on both exterior or interior488

surfaces with no orthogonality condition. Thanks to the flexibility of modern domain specific languages and489
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of PETSc, it would be easy to couple our solver with other fields, e.g., through a “fieldsplit” preconditioner3.490

Overall, we exhibit large-scale deterministic results on fine unstructured and arbitrarily-decomposed spatial491

meshes and large numbers of directions, with a mix of heterogeneous scattering, absorbing, and reflecting492

materials.493
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Université de Nantes, 2018.673

[76] K. Kobayashi, N. Sugimura, Y. Nagaya, 3D radiation transport benchmark problems and results for simple674

geometries with void region, Progress in Nuclear Energy 39 (2001) 119–144.675

20



[77] P. N. Brown, B. Chang, U. R. Hanebutte, Spherical harmonic solutions to the 3D Kobayashi benchmark676

suite, Technical Report, Lawrence Livermore National Laboratory, 1999.677

[78] I. Zmijarevic, R. Sanchez, Deterministic solutions for 3D Kobayashi benchmarks, Progress in Nuclear678

Energy 39 (2001) 207–221.679

[79] Y. Y. Azmy, F. X. Gallmeier, D. A. Lillie, TORT solutions for the 3D radiation transport benchmarks for680

simple geometries with void region, Progress in Nuclear Energy 39 (2001) 155–166.681

[80] Y. Nagaya, K. Okumura, T. Mori, M. Nakagawa, MVP/GMVP 2: general purpose Monte Carlo codes for682

neutron and photon transport calculations based on continuous energy and multigroup methods, Technical683

Report, Japan Atomic Energy Research Institute, 2005.684

[81] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM685

Journal on Scientific Computing 20 (1998) 359–392.686

[82] R. Falgout, U. M. Yang, hypre: a library of high performance preconditioners, Computational Science—687

ICCS 2002 (2002) 632–641.688

[83] A. Bienz, J. Calhoun, L. Olson, M. Snir, W. D. Gropp, Analyzing the performance of a sparse matrix vector689

multiply for extreme scale computers, in: The International Conference for High Performance Computing690

Networking, Storage, and Analysis, 2015.691

[84] C. Geuzaine, J.-F. Remacle, Gmsh: a 3-D finite element mesh generator with built-in pre- and post-692

processing facilities, International Journal for Numerical Methods in Engineering 79 (2009) 1309–1331.693

[85] G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for irregular graphs, Journal of Parallel and694

Distributed computing 48 (1998) 96–129.695

[86] L. G. Henyey, J. L. Greenstein, Diffuse radiation in the galaxy, The Astrophysical Journal 93 (1941) 70–83.696

[87] G. Krishnamoorthy, R. Rawat, P. J. Smith, Parallel computations of radiative heat transfer using the697

discrete ordinates method, Numerical Heat Transfer 47 (2004) 19–38.698

[88] D. Le Hardy, Y. Favennec, B. Rousseau, F. Hecht, Specular reflection treatment for the 3D radiative699

transfer equation solved with the discrete ordinates method, Journal of Computational Physics 334 (2017)700

541–572.701

[89] P. Yang, Q. Cheng, Z. Zhang, Radiative Properties of Ceramic Al2O3, AlN and Si3N4—II: Modeling,702

International Journal of Thermophysics 38 (2017) 1–18.703

21




