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Abstract
This work proposes a method to synthesize an electrical network which, when coupled to a complex periodic
or nearly-periodic structure through an array of piezoelectric transducers, provides multimodal vibration mit-
igation. The structure is decomposed into multiple substructures and a reduced-order model is built for each
of them. From these models, it is possible to synthesize a network with simple algebraic transformations.
The link between these transformations and electromechanical modal coupling is derived, and conditions are
given in order to guarantee the passivity of the electrical network. The proposed approach is illustrated on a
bladed rail, for which damping of one or multiple families of blade modes is demonstrated.

1 Introduction

In mechanical and aerospace engineering, periodic structures such as truss beam structures, wheels and
bladed disks are a frequent encounter. These structures tend to be light, mainly for performance requirements.
An undesirable consequence of such characteristic is that they are becoming flexible. There is also a growth
in the use of monolithic structures, but they often exhibit low structural damping. These issues combined with
mistuning can drastically reduce their lifespan because of high cycle fatigue. Enhanced damping processes
for such structures constitute an active field of research.

Among the existing solutions, there has been a growing interest for piezoelectric shunt damping [1], whereby
a piezoelectric transducer bonded to a vibrating structure converts part of its mechanical energy to electrical
energy, which is then dissipated in resistive elements, resulting in effective structural damping. Mokrani
and Preumont [2] investigated the performance of this approach applied to integrally bladed disks. Another
solution involving piezoelectric coupling is to use electrical networks interconnecting multiple piezoelectric
transducers, which generally allows to control multiple modes. Alessandroni et al [3] showed that effec-
tive vibration mitigation can be achieved provided these networks mimic the modal characteristics of the
structure. The efficiency of this kind of approach was experimentally demonstrated on structures such as
plates [4, 5]. It was also applied to a bladed disk using an equivalent spring-mass model [6], and was shown
to still be relatively effective in presence of mistuning or non-engine order excitation [7]. Because of the
simplifications made, this model is able to reproduce qualitatively but not quantitatively the dynamics of real
bladed disks. In this respect, a technique based on standard modeling techniques such as the finite element



method [8, 9] seems more attractive. Giorgio et al [10] proposed a general method to design an electrical
network connected to several piezoelectric transducers. Shortcomings of that method are that to damp n
modes this method requires n piezoelectric transducers, and it is also needed to solve a quadratic system of
n2 equations.

This work aims to derive a method to design a network based on a finite element model of a periodic (or
nearly-periodic) structure. Taking advantage of its nature, a reduced-order model (ROM) of the structure
is built from an assembly of ROMs of its substructures. These ROMs allow to synthesize subnetworks
with a few electrical degrees of freedom, which, when assembled, provide multimodal damping on the
overall structure. Section 2 briefly provides reminders on the salient features of resonant piezoelectric shunt
damping. In Section 3, a ROM of a structure is built from an assembly of ROMs of substructures. Section 4
then shows how the ROM can be used to synthesize an electrical subnetwork analogous to the mechanical
substructure. Upon assembling the mechanical substructures and electrical subnetworks to form the whole
electromechanical system, multimodal damping of the structure is achieved. This performance is illustrated
with a bladed rail in Section 5. The conclusions of this work are eventually drawn in Section 6.

2 Theoretical reminders: parallel RL shunt

m

k

f x

kp
Cε
p R L ψ̇

(a) 0.85 0.9 0.95 1 1.05 1.1 1.15

/
sc

 (-)

0

10

20

30

40

50

k
s
c
x
/f

 (
d

B
)

(b)

Figure 1: Schematic representation of the electromechanical system (a) and FRF of the structure (b) with
short-circuited patches (—) and with a parallel RL shunt circuit (—: Kc = 0.01, —: Kc = 0.05, —: Kc =
0.1).

Figure 1(a) depicts a single-degree-of-freedom oscillator to which is bonded a piezoelectric transducer con-
nected to a parallel RL shunt circuit. The structure is excited by an external forcing f and responds with a
displacement x. The direct piezoelectric effect also creates a flux linkage ψ =

∫
V dt (where V is the voltage

across the electrodes of the transducer). The electromechanical equations of the system read{
mẍ+ cẋ+ kscx+ γψ̇ = f

Cεpψ̈ +
1

R
ψ̇ +

1

L
ψ − γẋ = 0

, (1)

where m is the structural mass, ksc = k + kp is the structural stiffness with short-circuited transducer, γ is a
coupling constant, Cεp is the capacitance at constant strain, and R and L are the resistance and inductance of
the shunt circuit, respectively [10, 11]. From the parameters appearing in Equation (1), it is possible to define
a short-circuit resonance frequency ωsc and a dimensionless quantity called the effective electromechanical
coupling factor (EEMCF) [9] Kc as

ω2
sc =

ksc
m
, K2

c =
γ2

Cεpksc
. (2)

The EEMCF assesses the coupling between the mechanical and electrical dynamics. Knowing Cεp , ωsc



and Kc, the resistance and inductance of the shunt circuit may be tuned in order to reduce the maximum
amplitude of vibration of the mechanical oscillator under harmonic excitation. For instance, using the tuning
rules from Yamada et al [11],

L =
2

(2−K2
c )ω

2
scC

ε
p

, R =

√
2

3K2
c

1

ωscCεp
. (3)

Note that in general Kc � 1, so that LCεp ≈ ω−2
sc , i.e., the electrical resonance frequency is equal to the

short-circuit mechanical one. The amplitude of the frequency response function (FRF) of the structure with
this shunt circuit is shown in Figure 1(b) for various values of the EEMCF. Clearly, the stronger the coupling,
the better the performance in terms of vibration attenuation.

If multiple resonance frequencies are to be damped, the problem becomes more involved. Section 4 will
discuss one way to achieve this and will base itself on results presented in the present section as well as
results of the next section.

3 Reduced-order model

This work deals with structures which can be seen as an assembly of substructures, a category in which
periodic structures fall. A schematic representation of this situation is shown in Figure 2. It is considered
that each substructure may be connected to its neighboring peers through its left and right interfaces for
simplicity of the derivation, but the results can easily be generalized to more complex interfaces.

· · · Substructure (k − 1) Substructure (k) Substructure (k + 1) · · ·

Piezo (k − 1) Piezo (k) Piezo (k + 1)

Figure 2: Schematics of the piezoelectric structure.

The model of the structure may possess a large number of degrees of freedom (DOFs). ROMs are typically
used to reduce this number, while retaining an accurate description of the structure’s dynamics. Model-order
reduction can also be applied to each substructure. Adopting such approach will allow to design an electrical
network as an assembly of subnetworks built from the ROMs of substructures, as shall be shown in the next
section. The goal of this section is thus to give a procedure to build ROMs of substructures with a very few
number of DOFs.

3.1 Craig-Bampton reduction procedure for piezoelectric structures

A structure or substructure with bonded piezoelectric transducers is considered. The vector of generalized
mechanical DOFs x is partitioned into boundary and internal DOFs indicated by subscripts B and I , re-
spectively. The governing equations of this structure can be obtained through finite element modeling [8, 9].
They read  MBB MBI 0

MIB MII 0
0 0 0

 ẍB
ẍI
V̈

+

 KBB KBI ΓB
KIB KII ΓI
ΓTB ΓTI −Ke

 xB
xI
V

 =

 fB
fI
−q

 , (4)

where M and K denote structural mass and stiffness matrices, respectively, Γ is a piezoelectric coupling
matrix, Ke is a capacitance matrix, f is a vector of generalized mechanical loads and V and q are vectors of
voltages and charges associated with the electrodes of the piezoelectric transducers, respectively. Following
the classical Craig-Bampton reduction procedure [12, 13], the boundary and electrical DOFs are retained,
while the internal DOFs are assumed unforced (fI = 0) and are approximated by

xI ≈ ΦcxB + ΦeV + ΦIηI , (5)



where the constraint modes are given by

Φc = −K−1
II KIB, (6)

the piezoelectric constraint modes are given by

Φe = −K−1
II ΓI , (7)

and the retained mass-normalized component normal modes (CNM) are defined by

KIIΦI = MIIΦIΩ
2
I , ΦT

I MIIΦI = I, ΦT
I KIIΦI = Ω2

I , (8)

where I is the identity matrix, ΩI is a diagonal matrix containing the CNM angular frequencies, ηI is the
vector of associated modal coordinates and superscript T denotes matrix transposition. Equation (5) defines
a reduction matrix as  xB

xI
V

 =

 I 0 0
Φc ΦI Φe

0 0 I

 xB
ηI
V

 = RCB

 xB
ηI
V

 . (9)

The reduced mass and stiffness matrices are obtained as

MCB = RT
CBMRCB =

 M̃BB M̃BI M̃BE

M̃IB I M̃IE

M̃EB M̃EI M̃EE

 (10)

and

KCB = RT
CBKRCB =

 K̃BB 0 K̃BE

0 Ω2
I 0

K̃EB 0 K̃EE

 , (11)

respectively, where M and K are the full mass and stiffness matrices featured in Equation (4). The ex-
pressions of the submatrices are not given here for conciseness. Equation (10) indicates that piezoelectric
coupling is no longer represented with static coupling terms (as in Equation (4)), but also features non-trivial
inertial coupling terms in the reduced model. To retrieve a static coupling, the following transformation
matrix that modifies the CNM coordinates ηI to υI is introduced

RMCB =

 I 0 0

0 I −M̃IE

0 0 I

 ,
 xB
ηI
V

 = RMCB

 xB
υI
V

 (12)

and the modified Craig-Bampton (MCB) reduced mass and stiffness matrices are obtained as

MMCB = RT
MCBMCBRMCB, KMCB = RT

MCBKCBRMCB. (13)

It can be shown that these matrices contain the following entries

MMCB = M̃BB M̃BI (ΦT
c MII −MBI)

(
M−1

II −ΦIΦ
T
I

)
MIIΦe

M̃IB I 0
ΦT
e MII

(
M−1

II −ΦIΦ
T
I

)
(MIIΦc −MIB) 0 ΦT

e MII

(
M−1

II −ΦIΦ
T
I

)
MIIΦe


(14)



and

KMCB =

 K̃BB 0 ΓB + ΦT
c ΓI

0 Ω2
I ΦT

I ΓI

ΓTB + ΓTI Φc ΓTI ΦI −Ke − ΓTI
(
K−1
II −ΦIΩ

−2
I ΦT

I

)
ΓI

 . (15)

Upon performing the transformation given by Equation (13), part of the inertial coupling terms have been
transformed back to static coupling terms. As shown by the mass matrix in Equation (14), there remains
non-zero entries associated with the electrical DOFs. To remove these terms, the following assumption is
made

M−1
II −ΦIΦ

T
I ≈ 0. (16)

It can be recognized (Equation (8)) that this equation consists in the mass matrix associated to the internal
DOFs minus its spectral expansion trucated to the set of retained CNMs [13], which justifies the approxima-
tion in the framework of a ROM. Thus, the approximation is made on the reduced mass matrix:

MMCB ≈

 M̃BB M̃BI 0

M̃IB I 0

0 0 0

 (17)

so that no generalized inertia load acts on the electric DOFs, as in Equation (4).

3.2 Characteristic constraint modes

In this subsection, the different substructures are discriminated by indexing their associated terms with brack-
eted superscripts. To accurately describe the dynamics of the substructures’ boundaries, each DOF in these
boundaries should be retained. This may lead to a large number of DOFs in the reduced model, especially if
the interfaces are complex. Since the goal of this section is to provide a ROM with as few DOFs as possible,
a reduction of the interface DOFs is sought. The characteristic constraint modes (CCMs) of the interfaces
can be used as reduction bases to simplify the description of these interfaces [14]. The boundary DOFs B
are now splitted into DOFs belonging to the left (L) and right (R) interface. The stiffness matrix of the
full structure can be obtained by assembling the stiffness matrices of all the substructures. Focusing on the
interface between substructure k and k + 1, this matrix reads

KStr =



. . . . . .

. . . K
(k)
II K

(k)
IR 0

K
(k)
RI K

(k)
RR + K

(k+1)
LL K

(k+1)
LI

0 K
(k+1)
LI K

(k+1)
II

. . .
. . . . . .


(18)

and the mass matrix of the full structure features a similar form. The CCMs are obtained by performing the
following modal analysis(

K
(k)
RR + K

(k+1)
LL

)
Ψ

(k)
CCM =

(
M

(k)
RR + M

(k+1)
LL

)
Ψ

(k)
CCMΩ2

CCM . (19)

Using a reduced subset of CCMs, the generalized DOFs at the interface may then be approximated by

x
(k)
R = x

(k+1)
L ≈ Ψ

(k)
CCMµ

(k)
R = Ψ

(k)
CCMµ

(k+1)
L , (20)



where µ(k) is the vector of modal coordinates of the CCMs. This relation can be used to define a reduction
matrix for each substructure

x
(k)
L

x
(k)
R

υ
(k)
I

V(k)

 =


Ψ

(k−1)
CCM 0 0 0

0 Ψ
(k)
CCM 0 0

0 0 I 0

0 0 0 I



µ
(k)
L

µ
(k)
R

υ
(k)
I

V(k)

 = R
(k)
CCM


µ
(k)
L

µ
(k)
R

υ
(k)
I

V(k)

 (21)

and to obtain the reduced mass and stiffness matrices of each substructure, respectively, as

M
(k)
MCB−CCM =

(
R

(k)
CCM

)T
M

(k)
MCBR

(k)
CCM =

[
M̂(k) 0

0 0

]
(22)

and

K
(k)
MCB−CCM =

(
R

(k)
CCM

)T
K

(k)
MCBR

(k)
CCM =

 K̂(k) Γ̂(k)(
Γ̂(k)

)T
−K̂

(k)
e

 . (23)

In the sequel, superscript (k) shall be dropped, being understood that one is working with a specific sub-
structure at a time. The left and right reduced interface DOFs shall also be gathered into boundary interface
DOFs for brevity, i.e., BT = [LT , RT ].

4 Electrical network

Vibration mitigation of a piezoelectric structure may be achieved by piezoelectric coupling with an electri-
cal network if the latter possesses identical modal characteristics to those of the former [3]. The goal of
this section is thus to design such network. It is considered in this work that each substructure has a single
transducer. Starting from the ROM of a substructure, a subnetwork is designed, which has the same resonant
frequencies and possess interface nodes which are analogous to the interfaces of its mechanical counterpart.
Since this ROM has been obtained from a Craig-Bampton reduction, the resonance frequencies of the (full
model of the) substructure and those of the subnetwork are identical when their interface DOFs are fixed.
The subnetwork also integrates the piezoelectric transducer in order to couple it with the substructure. As-
sembling the substructure and the subnetworks as depicted in Figure 3, an overall electromechanical system
is formed in which vibration mitigation of targeted modes is achieved.

· · · Substructure (k − 1) Substructure (k) Substructure (k + 1) · · ·

Piezo (k − 1) Piezo (k) Piezo (k + 1)

· · · Subnetwork (k − 1) Subnetwork (k) Subnetwork (k + 1) · · ·

Mechanical structure

Electrical network

Figure 3: Schematics of the electromechanical system.

4.1 Governing equations

A subsystem composed of an undamped substructure coupled to an electrical subnetwork is governed by the
equations {

M̂ẍ + K̂x + ΓEM ψ̇ = f

Cψ̈ + Sψ̇ + Bψ − ΓTEM ẋ = 0
, (24)



where x is the ROM’s vector of generalized mechanical degrees of freedom, f is the generalized load vector,
ψ is the flux linkage vector (whose time derivative gives the nodal voltages), C, S and B are electrical
capacitance, conductance (inverse of resistance) and reluctance (inverse of inductance) matrices, respectively,
and ΓEM is a piezoelectric coupling matrix.

The Laplace transform of the electrical equation in Equation (24) indicates that the electrical subnetwork’s
dynamics are governed by the nodal admittance matrix Y

Y(s)ψ = ΓTEMx, Y(s) = sC + S +
1

s
B. (25)

The matrices C and B will be built from the ROM using the indirect electromechanical analogy [15], whereas
S will be chosen to ensure optimal electrical damping.

4.2 Piezoelectric lumping transformation

It is now sought to derive an expression for the capacitance and reluctance matrices of a subnetwork from the
mechanical mass and stiffness matrices of its associated substructure with short-circuited patch. The subnet-
work is chosen to have the same number of DOFs as that of the ROM of the substructure. When assembled
into the network, the subnetwork should behave analogously to the substructure within the structure, thereby
securing a spatial similarity between the structure and the network. A simple way to ensure that is to use
interface electrical DOFs ψB which are analogous to interface DOFs µB . The remaining electrical DOFs
still need to be specified.

In order to couple the substructure and the subnetwork, the electrodes of the piezoelectric transducer hosted
by the substructure must be connected to the subnetwork. One port of the electrical network is thus chosen
as a host for this transducer. Now, the electrical DOFs ψB analogous to mechanical boundary DOFs must
remain unaltered in order to ensure compatibility when assembling the subnetworks. Hence, one of the DOFs
analogous to the CNMs is to be transformed to host the transducer. The analogous internal DOFs I are thus
splitted into this piezoelectric DOF (ψP ) and remaining electrical DOFs analogous to the remaining CNMs
(ψM ). A priori, ψP can be formed from any combination of the DOFs of the ROM. It is thus sought to find
a network satisfying the following relation between the mechanical and electrical variables ψB

ψM
ψP

 =

 DBµB
DMυM
WTx

 =

 DB 0 0
0 DM 0

WT
B WT

M WT
P

 µB
υM
υP

 = R−1

 µB
υM
υP

 , (26)

where WT = [WT
B,W

T
M ,W

T
P ] is a vector describing how each electrical DOF is coupled to the piezoelec-

tric transducer, and DB and DM are diagonal scaling matrices ensuring dimensional homogeneity. These
quantities are arbitrary for now, and their influence shall be discussed in the next sections. The matrix R−1

can readily be inverted to yield the transformation matrix R µB

υM

υP

 = R

 ψB

ψM

ψP

 , R =

 D−1
B 0 0

0 D−1
M 0

−W−T
P WT

B −W−T
P WT

M W−T
P

 . (27)

According to the indirect electromechanical analogy [15], the capacitance and reluctance matrices are formed
from the mass and stiffness matrices of the reduced-order model, respectively, after proper reordering of
either these matrices or the transformation matrix.

C = RTM̂R, B = RT K̂R. (28)

The matrices being transformed are the submatrices given by Equations (22) and (23). With the current
ordering of electrical DOFs, the electromechanical coupling matrix is built from Γ̂ (Equation (23)) as

ΓEM =
[
0,0, Γ̂

]
. (29)



4.3 Coupling assessment

Since matrix transformations defined in Equation (28) do not alter the generalized eigenvalues (as long as the
matrix R is non-singular), the resonance frequencies of the subnetwork are identical to those of the ROM. It
may then be assumed that the mechanical mode φm,i and its electrical counterpart φe,i are dominant in the
response of the system around the resonance frequency of a specific mode ωsc,i

x ≈ φm,iηm,i, ψ ≈ φe,iηe,i, (30)

where ηm,i and ηe,i are mechanical and electrical modal coordinates, respectively. If the mechanical modes
are mass-normalized,

φTm,iM̂φm,i = 1, φTm,iK̂φm,i = ω2
sc,i, (31)

and the electrical modes are capacitance-normalized,

φTe,iCφe,i = 1, φTe,iSφe,i = 2ζe,iωsc,i, φTsc,iBφe,i = ω2
sc,i, (32)

then, inserting Equation (30) into Equation (24) and projecting the mechanical (electrical) equation on the
mechanical (electrical) mode, the following modal coupled equations are obtained{

η̈m,i + ω2
sc,iηm,i + φ

T
mΓEMφe,iη̇e,i = φTmf

η̈e,i + 2ζe,iωe,iη̇e,i + ω2
e,iηe,i − φTe,iΓTEMφm,iη̇m,i = 0

. (33)

This system has the same form as that given by Equation (1): the mechanical oscillator has modal mass
and stiffness of 1 and ω2

sc, respectively, and the electrical oscillator has modal capacitance, conductance
and reluctance of 1, 2ζe,iωe,i and ω2

e,i, respectively. These two systems are coupled by a modal constant
φTe,iΓEMφm,i. An EEMCF is defined by analogy to Equation (2) as

K̂2
c,i ≈

(
φTe,iΓ

T
EMφm,i

)2
ω2
sc,i

. (34)

Since the electrical mode shapes are related to the mechanical ones by

φe,i = R−1φm,i, (35)

and, by virtue of Equations (26) and (29),

R−TΓTEM = WΓ̂T , (36)

Equation (34) may be rewritten as

K̂2
c,i ≈

(
φTm,iWΓ̂Tφm,i

)2
ω2
sc,i

=
w2
φi
γ2φi

ω2
sc,i

= w2
φi
CεpK

2
c,i, (37)

where

φTm,iW = wφi , Γ̂Tφm,i = γφi , K2
c,i =

γ2φi
Cεpω

2
sc,i

. (38)

Kc,i and K̂c,i are the EEMCFs of mode i without and with electrical subnetwork, respectively. Equation (37)
shows that in order to maximize the electromechanical modal coupling,wφi should have a magnitude as large
as possible. This magnitude is nonetheless limited by passivity constraints, as will be shown hereafter.



4.4 Passivity

According to Gannett and Chua [16], the nodal admittance matrix must fulfill the following conditions in
order to be the admittance matrix of a passive network (i.e., realizable using passive capacitors, resistors,
inductors and ideal transformers):

(i) Y(s) has no poles in {s ∈ C|<(s) > 0} (< denotes the real part operator).

(ii) Y(σ) is a real matrix for σ ∈ R+.

(iii) Y(s) +YH(s) is positive semidefinite in {s ∈ C|<(s) > 0} (superscript H denotes Hermitian trans-
position).

(iv) The network associated to Y is controllable.

According to Equation (25), Y(s) has one simple pole at s = 0 (for a nonzero reluctance matrix), so
Condition (i) is satisfied. Condition (ii) is satisfied since C, S and B are real matrices. Condition (iv) is also
verified. Now, since C, S and B are real symmetric matrices, using Equation (25), the matrix

Y(σ + jω) + YH(σ + jω) = 2σC + 2S +
2σ

σ2 + ω2
B (39)

is positive semidefinite for σ > 0 and ω ∈ R if C, S and B are positive semidefinite themselves, which
gives the criteria to satisfy Condition (iii). The matrices C and B are guaranteed to be positive semidefinite,
because they are obtained from a series of reductions and transformations that do not alter this character
originating from M and K. S can be chosen so as to respect this condition. Now, one must consider that the
piezoelectric transducer is integrated into the subnetwork associated with the matrix C. The subnetwork that
is to be connected to the transducer is obtained by removing the contribution of the piezoelectric capacitance
from C, yielding another capacitance matrix CN , which is algebraically expressed as

CN = C− CεpePeTP , (40)

where Cεp = K̂e (Equation (23) with a single transducer), and the localization vector eP is given by

eTP = [0B,0M , 1] . (41)

The matrix CN ceases to be positive definite when one of its eigenvalues becomes zero, or equivalently when
its determinant vanishes. The removal of the piezoelectric element from the subnetwork is represented by
a rank-one update of the capacitance matrix in Equation (40). Since the matrix C is assumed non-singular,
Lemma 1.1 from [17] may then be used to compute the updated determinant as

det (CN ) = det
(
C− CεpePeTP

)
=
(
1− CεpeTPC−1eP

)
det (C) , (42)

which vanishes if the first factor in the right hand side equals zero. Using Equations (26) and (28),

eTPC−1eP = eTPR−1M̂−1R−TeP = WTM̂−1W. (43)

Inserting Equation (43) into Equation (42) yields a passivity constraint

WTM̂−1W − 1

Cεp
≤ 0. (44)

Using the spectral expansion of the inverse mass matrix, Equation (44) can be rewritten as

WTΦΦTW =

N∑
i=1

w2
φi
≤ 1

Cεp
. (45)



Equations (37) and (45) show that passivity constrains the maximum modal electromechanical coupling
factor attainable by the network. This sets a practical limitation for the choice of W. Large wφi may result
in a negative determinant of CN , meaning that it is no longer positive semidefinite and thus that the network
cannot be realized with passive components. Going back to Equation (27), it is observed that the scaling
matrices DB and DM play no role in coupling or in passivity of the network. The associated variables are
purely electrical, internal to the network and not directly coupled to the structure. They are expected to be
of importance when the network has to be realized, but this issue is beyond the scope of the present work.
Presently, they are chosen arbitrarily, with the only constraint that matrices DB for two matching interfaces
must be identical in order to maintain compatibility. For simplicity, they are taken equal to identity matrices.

4.5 Network tuning procedure

A passive subnetwork can now be synthesized by choosing a set of N modal coefficients wφi respecting the
passivity constraint (Equation (45)) and then computing its physical form as

WT
φ = [wφ1 , · · · , wφN ] , W = Φ−TWφ. (46)

Matrices C and B can then be computed using the transformation matrix given by Equation (27) in Equa-
tion (28). The EEMCF can be computed with the modal coefficients wφi from Equation (37). From the
knowledge of this EEMCF, the equivalent capacitance (which is unitary in this case) and the resonance fre-
quency ωsc,i, the resistive elements of the networks can be tuned using e.g. the formula given in Yamada et
al [11]

φTe,iSφe,i =

√
3K̂2

c,i

2
ωsc,i = 2ζe,iωsc,i. (47)

Computing this quantity for all the modes to be controlled, the conductance matrix may then be found by

S = Φ−T
e

 2ζe,1ωsc,1
. . .

2ζe,Nωsc,N

Φ−1
e = RTΦ−T

 2ζe,1ωsc,1
. . .

2ζe,Nωsc,N

Φ−1R.

(48)
The conductance matrix built this way is thus positive semidefinite.

The procedure can be repeated for each substructure, and the capacitance, conductance and reluctance matri-
ces of the global electrical network can be obtained through standard assembly procedures identical to those
used for the mechanical structure.

5 Application to a bladed rail

The proposed approach is illustrated with the example of a monolithic bladed rail made of aluminum. The
blades of this structure have a rather complex geometry, requiring the use of finite element modeling. It
features qualitatively similar dynamics to those of bladed assemblies. Figure 4(a) shows the model of the
bladed rail and Figure 4(b) depicts its breakdown into five identical bladed substructures and two edge
substructures to apply the proposed method. Each bladed substructure is endowed with a piezoelectric patch
placed near the root of the blade, on the underside of the support. The five patches (PIC 255 - 15 mm × 10
mm × 0.5 mm) are visible on the bottom view of the structure in Figure 4(c).

The leftmost and rightmost edges of the rail in Figure 4(a) were clamped. Four finite element models were
built: one for each edge substructure retaining the interface DOFs, one for a bladed substructure retaining
the two interfaces’ DOFs, the patch voltage and twenty CNMs, and one for the full structure, retaining the
piezoelectric voltage of each patch, the blades’ tip displacement DOFs and fifty CNMs. The edges and bladed
substructure models were used to synthesize the electrical network, and the ROM of the full structure was
used to assess its performance. The finite element models were built using shell elements in the SAMCEF



software [8], and superelement matrices were exported to MATLAB. Modal damping of 0.01% was added
to the model, as can be encountered in bladed assemblies [2].

(a)

+ 5× +

(b) (c)

Figure 4: Bladed rail structure (a), decomposition of the structure (b) and bottom view of the structure
featuring the patches (in yellow) (c).

Figure 5 shows the natural frequencies of the bladed rail when the patches are short-circuited. Each frequency
given in this work has been normalized with the first resonance frequency. Qualitatively, the modes are
organized in two types. The first type is recognizable with the nearly-horizontal lines in the plot. Each line
correspond to a family of modes, where the blades vibrate according to one of their cantilever mode shapes.
This type of mode is termed blade mode. The modes outside these families features significant motion of the
support, and are therefore termed support modes. For illustration, the shapes of the third, eighth, eleventh
and fifteenth modes are shown in Figure 6.
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Figure 5: Natural frequencies of the bladed rail with short-circuited patches: family of first blade bending
modes (◦), family of first blade torsion modes (�), family of second blade bending modes (O) and support
modes (♦).

5.1 Reduced-order model

Figure 7(a) compares the natural frequencies of the full model with those of an assembled model where a
various number of CNMs of the bladed substructure are retained (and all the mechanical interface DOFs are
used). Figures 7(b) to (d) depict the first three CNMs. Clearly, each CNM is closely related to the cantilever
modes of the blade. Including a CNM in the model enables a correct representation of its associated family
of modes in the assembled structure.

The influence of the CCMs is now studied, by considering an assembled model with bladed substructures
having 20 CNMs, but a variable number of CCMs. Figure 8(a) shows the evolution of the relative error on
the natural frequencies for various number of retained CCMs (CCMs with lowest natural frequencies are
selected). A relatively good accuracy with less than 2% error is obtained for the blade modes with only one
CCM. However, support modes are missing when only one CCM is retained. In general, adding more CCM
can reduce the error on the last modes of the blade modes families quite efficiently. A rather large number of
CCMs is required to capture the support modes and to increase the accuracy of the first modes of the blade



(a) (b)

(c) (d)

Figure 6: Mode shapes of the third (a), eighth (b), eleventh (c) and fiftheenth (d) modes of the bladed rail.
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Figure 7: Natural frequencies of the bladed rail (a) (reference model (− • −) and assembled model with 1
(−×−), 2 (− ◦ −), 3 (−�−), 4 (−+−) and 20 (−♦−) CNMs), first (b), second (c) and third (d) CNM of
the bladed substructure (the color scale indicates amplitude of displacement).

modes families. Figure 8(b) shows a more detailed convergence study on specific modes. The fifth mode
is the last of the first family of blade modes, and is also the one which involves the least participation from
the support. The first mode is still a member of this family, but features more support participation. The
eleventh mode is the first support mode. Quite expectedly, modes involving support motion are generally
more affected by the CCM truncation.

5.2 Damping performance

An electrical network is now connected to the patches to reduce the vibratory amplitude of the resonant
modes at the blades. One CCM is used in the synthesis procedure in regards to the accuracy highlighted
previously. At first, a ROM with one CNM and one CCM is synthesized, in order to control the first family
of blade modes. The modal coefficients respecting the passivity constraint (Equation (45)) are chosen such
that w2

φ1
= 1/Cεp and wφ2 = wφ3 = 0. Emphasis on the first mode is maximized because it corresponds the

most to the first cantilever mode of the blade.

The performance of the network is also compared to the performance attainable when the patches are shunted
individually with a parallel RL circuit. Each of the five modes of the family is attributed to one patch based
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Figure 8: Relative error on the first twenty natural frequencies of the bladed rail (a) (assembled model with
1 (−×−), 2 (− ◦ −), 3 (−�−), 4 (−+−) and 25 (−♦−) CCMs; black dashed lines separate the different
families and grey zones indicate support modes) and relative error of the first (—), fifth (—) and eleventh (—)
mode as a function of the number of retained CCMs (b).

on the maximization their respective EEMCF. Table 1 details the mode-patch pairs. The resistance and
inductance were tuned using Equation (3).

Table 1: Patch number associated to each mode for individual RL shunting.

Mode 1 2 3 4 5
Patch 3 4 5 1 2

Figure 9 shows the FRF of the tip of the fourth blade along its flapwise direction, which is representative
of the FRFs of other blades’ tip (xst, the static response of the blade under unit force, is used to normalize
the amplitude). Appreciable vibration reduction is observed with both techniques, and their performance is
somewhat comparable.
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Figure 9: FRF of the fourth blade tip with short-circuited patches (—), with five independent parallel RL
shunts (—) and with an electrical network synthesized with one CNM and one CCM (—).

An advantage of the proposed method is that other families can be controlled in a pretty straightforward way.
To demonstrate this, a network is synthesized with three CNMs and one CCM, so as to control the three first
families of blade modes. Balanced modal coefficients are chosen as w2

φ1
= w2

φ2
= w2

φ3
= 1/(3Cεp) and

wφ4 = wφ5 = 0. Figure 10 shows that the proposed approach is effective to control these three families. The
support mode located at ω/ωsc,1 = 3.58 is not damped because it is not captured by the ROM, as discussed
earlier. It could be controlled using a rather large number of CCMs, but this would result in a complex
network with numerous electrical elements. By contrast, the second support mode located at ω/ωsc,1 = 4.38



is damped, probably because of the control action of the network on the third family, which is quite close in
frequency to that support mode.
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Figure 10: FRF of the fourth blade tip with short-circuited patches (—) and with an electrical network
synthesized with three CNMs and one CCM (—).

6 Conclusion

This work proposed to synthesize an electrical network from an assembly of ROMs of substructures in order
to provide multimodal vibration mitigation. ROMs were obtained with a classical Craig-Bampton reduction
technique followed by a CCM reduction of the interface DOFs. A transformation allowed to obtain ma-
trices describing the network’s dynamics from the reduced matrices, and conditions on this transformation
to optimize electromechanical coupling while preserving passivity were derived. In particular, it was high-
lighted that passivity plays the role of a performance limiter. The effectiveness of the proposed approach was
illustrated on a bladed rail.

The proposed approach is implementable with standard modeling and numerical techniques, and there is a
clear relation between the choices made at design step and the performance of the resulting network. Future
works will involve the possibility to include multiple piezoelectric transducers into each substructure. The
network realization from passive electrical elements has been left out in this work and shall also be tackled.
Finally, the experimental validation of the proposed approach shall be undertaken.
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