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The high northern latitudes (>50°) experienced a pronounced sur-
face stilling (i.e., decline in winds) with climate change. As a drying
factor, the influences of changes in winds on the date of autumn
foliar senescence (DFS) remain largely unknown and are potentially
important as a mechanism explaining the interannual variability of
autumn phenology. Using 183,448 phenological observations at
2,405 sites, long-term site-scale water vapor and carbon dioxide flux
measurements, and 34 y of satellite greenness data, here we show
that the decline in winds is significantly associated with extended
DFS and could have a relative importance comparable with temper-
ature and precipitation effects in contributing to the DFS trends. We
further demonstrate that decline in winds reduces evapotranspira-
tion, which results in less soil water losses and consequently more
favorable growth conditions in late autumn. In addition, declining
winds also lead to less leaf abscission damage which could delay
leaf senescence and to a decreased cooling effect and therefore less
frost damage. Our results are potentially useful for carbon fluxmod-
eling because an improved algorithm based on these findings pro-
jected overall widespread earlier DFS than currently expected by the
end of this century, contributing potentially to a positive feedback
to climate.

climate change | foliar senescence | high latitudes

Understanding the responses of the date of autumn foliar
senescence (DFS) to climate change has recently received

increased focus for a better interpretation of carbon uptake, but
accurately predicting DFS globally using models remains chal-
lenging (1). Nonurbanized lands in the high northern latitudes
(>50°) are currently a large carbon sink but have experienced the
greatest increase in air temperature (2–6). In those ecosystems,
the annual net ecosystem productivity (NEP) has increased for
years with an earlier start of spring leaf unfolding (7–11). A delay
of DFS has been reported for middle to high latitudes from both
eddy covariance (FLUXNET) measurements and remotely
sensed observations of vegetation reflectance (8, 12–15). Such a
trend of DFS was found to contribute to an overall increase of
annual NEP for temperate forests (16, 17) but may potentially
offset carbon uptake due to extended ecosystem respiration for
higher latitude ecosystems (3).
Climate change over the last few decades has had substantial

effects on vegetation phenology (18, 19). Global increases in au-
tumn temperature could delay DFS (14, 20), yet there are also
studies showing either earlier or relatively stable DFS, with a
possible explanation from opposite changes in DFS in response to
daytime and nighttime warming (21). Decreases in precipitation
and associated drought may have more complicated influences on
DFS, depending on the severity of drought and on regional char-
acteristics of plant functional types (22). In addition to changes in
temperature and precipitation, wind speed over the last three
decades shows widespread decreasing trends in the northern

hemisphere (23, 24) with possible impacts on plant growth,
chemical composition, structure, and morphology (25–28). The
drying effect of wind affects foliar gas and heat exchange and
could increase water stress by reducing the thickness of foliar
boundary layers (27), so the responses of DFS to wind may de-
pend on water stress. We therefore ask 1) what are the physical
and physiological impacts of declined winds on plant growth and
2) how these changes affect DFS accordingly at high northern
latitudes where a pronounced decline in winds was observed. To
this end, we used gridded meteorological data (temperature,
precipitation, cloud cover, and wind speed) together with DFS
data from three independent data sets: 1) 183,448 phenological
observations at 2,405 ground sites since the 1980s, 2) 267 site-years
of data from the FLUXNET eddy covariance network, across
18 long-term sites over 1994 to 2014 (SI Appendix, Fig. S1), and 3)
latest Normalized Difference Vegetation Index data (NDVI,
GIMMS3g.v1) for 1982 to 2015.

Results
Climate forcing over the preseason, defined as the period during
which a given climate variable is most correlated with ensuing
leaf senescence, has a better predictive strength on DFS than
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Decline in winds over past decades were observed over high
northern latitudes (>50°), yet its influence on the date of au-
tumn leaf senescence (DFS) remains unknown. Using ground
observations, flux measurements, and remote sensing imagery,
here we show that decline in winds significantly extended DFS
over high latitudes at a magnitude comparable with the tem-
perature and precipitation effects. We found that decline in
winds reduces evapotranspiration, causes fewer damaging ef-
fects, and also results in decreased cooling effect. Our results
therefore are of great significance for carbon cycle modeling
because an improved algorithm based on these findings pro-
jected overall widespread earlier DFS by the end of this cen-
tury, contributing potentially to a positive feedback to climate.
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forcing over autumn months (21), so we used these preseason
variables (e.g., temperature, precipitation, etc.) in our analysis
(Materials and Methods). Meteorological variables have been
reported to be autocorrelated, so we used partial correlation to
remove the effects of temperature, precipitation, and solar radi-
ation for investigating the response of DFS to variations in wind
speed, as similarly conducted in previous analyses (7). We found
dominantly decreasing trends of wind speed for both climatic re-
search unit (CRU) (69.6% versus 30.4%, Fig. 1A) and European
Centre for Medium-Range Weather Forecasts (ECMWF) Re-
Analysis (ERA) (70.1% versus 29.9%, Fig. 1B) climate datasets
in the high latitudes, against increasing trends at lower latitudes at
higher elevations (Fig. 1 D and E). The two datasets were highly
consistent in terms of temporal trends (Fig. 1C). Wind trends over
tundra and temperate coniferous forests were negligible compar-
ing to (negative) trends over boreal forest, temperate broadleaf
forests, and temperate grasslands (Fig. 1F).
Analyses for site-level phenological observations found that

wind speed was significantly correlated with DFS for 29.3% of
the sites (Fig. 2A). In particular, more than two-thirds (67.9%) of
the sites’ time series showed significant negative correlations
(R < 0, P < 0.05). Grouping into species yielded similar results
(Fig. 2D). Overall, wind speeds becoming lower (stilling) were
correlated with a delayed DFS and vice versa. We also looked at
the distributions of the correlation along mean wind speed gra-
dients (Fig. 2G) and found a large fraction (82.4%) of significant
positive correlations at wind speeds <4 m/s, which decreased to
17.6% for speeds >4 m/s.
The analysis of flux measurements (267 time series at 18 sites)

showed broadly similar results yet from few sites overall with five
sites having significant (P < 0.05) partial correlation between
wind speed and DFS, among which four having negative partial

correlation values (Fig. 2B), three being forests and one non-
forest (Fig. 2E). At the flux measurement sites, the DFS was
defined as the local extrema in the rate of change of daily Gross
Primary Productivity (GPP) in autumn. The median of wind
speed for positively correlated sites was ∼2.3 m/s, 24.2% lower
than that of negatively correlated sites (Fig. 2H).
The analysis of long-term NDVI data gives results generally

consistent with site-level data, with 21.1% of the pixels having
wind speeds significantly correlated with DFS, among which
73.4% pixels were negatively partially correlated (Fig. 2C). Site-
and satellite-level observations showed good agreement for the
fractions of data with significant association between wind speed
and DFS (SI Appendix, Fig. S2). Classification of NDVI data into
different plant functional types showed that boreal forests (3.9%
of 60.8%) and tundra ecosystems (1.5% of 26.4%) had domi-
nantly negative partial correlations (Fig. 2F). The most signifi-
cantly positive correlations (88.7%) for satellite observations
were found for low wind speeds <4 m/s, and only 11.3% of the
correlations were positive when the wind speed reached above
4 m/s (Fig. 2I). We also found that pixels with positive correla-
tions between DFS and winds were mainly located in regions
experiencing a low level of climate warming but with sufficient
precipitation increase (SI Appendix, Fig. S3).
Multiple linear regressions were used to calculate the sensi-

tivities of DFS to meteorological variables, and the Theil–Sen
slope estimator was applied to calculate the temporal trend of
DFS and meteorological variables. For pixels with a statistically
significant F-value (P < 0.05) in the regression model, we cal-
culated the contribution coefficients (Materials and Methods) of
preseason temperature, precipitation, solar radiation, and wind
speed to the interannual variations of DFS (Fig. 3). Overall, the
regression model explains a significant amount of variance in the

Fig. 1. Interannual trend of wind speed at high northern latitudes (>50°). A, B, and C represent temporal trend of wind speed from (A) CRU datasets and (B)
ERA datasets and (C) the difference between CRU- and ERA-based wind speed trend, respectively. The gray color represents pixels with nonsignificant trends.
(D and E) Variations of wind speed trend along elevation and latitude gradients for (D) CRU datasets and (E) ERA datasets, respectively. (F) Wind speed trend
for different vegetation types for CRU and ERA datasets.
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DFS for only 31% of pixels. Preseason wind can explain on av-
erage 33% of the variation of DFS, which is higher than tem-
perature (24%), precipitation (9%), and solar radiation (14%).
The decline in winds could have multiple beneficial effects

sustaining a longer growth, including alleviated drying conditions
and reduced risk from frost damage lengthening the senescence
date of leaves (Fig. 4). Using flux measurements, we found a
significantly positive correlation between wind speed anomaly
and reference evapotranspiration (ET0) anomaly (P < 0.001),
with an increase of ET0 by 1.2 ± 0.4 mm day−1 per unit increase
(m · s−1) in wind (Fig. 4A). Combined with the negative rela-
tionship between ET0 and soil water content (SWC, Fig. 4B), we
showed that stronger winds increase ET0 and further deplete soil
water. Satellite observations further confirmed an alleviated
drying effect under lower winds, given that more than two-thirds
of the pixels with a significant correlation between wind speed
and DFS showing a negative correlation between wind speed and
Soil Moisture Saturation (SMS, Fig. 4C) and Volumetric Surface

Soil Moisture (SMV, Fig. 4D), respectively. Similar patterns were
also found between wind speed and three additional indepen-
dent water stress indicators, including the Standardized Precip-
itation Evapotranspiration Index (SPEI), the Palmer Drought
Severity Index (PDSI), and the Vegetation Optical Depth
(VOD) (SI Appendix, Fig. S4). A later senescence of leaves un-
der lower winds is supported by distributions of the difference
between the DFS of the year with the lowest wind speed and
the year with the highest wind speed for each pixel (Fig. 4E). We
found that more than 65% of pixels showed positive values for
this difference. An interesting result was that about 32.4% of the
pixels showed that stronger winds could be significantly associ-
ated with a decrease in the dew point temperature (Tdew, Fig. 4F)
and consequently increase vegetation exposure to frost damage.
Therefore, the decline in winds would reduce the cooling effect,
providing better leaf survival conditions for longer growth.
We built a model for predicting DFS by incorporating changes

in wind speed into the traditional cooling degree day (CDD)

Fig. 2. Associations (partial correlations) between wind speed and the DFS north of 50°N. (A, D, and G) Fractions of ground phenological observation sites
with partial correlations of distinct sign/significance for all the data, grouped per species, and grouped per mean wind speed categories. (B, E, and H) Same for
eddy covariance observations. (C, F, and I) Same for satellite NDVI data. The gray pixels in C represent nonsignificant correlation. Significance was set at
P < 0.05.
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model used in many ecosystem models (the model is called
CDDWS,Materials and Methods). We compared the predictions of
the CDD and CDDWS models using site-level and remotely sensed
observations (Fig. 5 A–I). Using CDDWS for site-level observa-
tions was more accurate in terms of the percentage of significant
pixels with observations, correlation coefficient (R), and the root
mean square error (RMSE) between observed and modeled DFS,
the corrected Akaike information criterion (AICc) (Fig. 5 A, D,
and G). Only 8.1% of the modeled DFS time series were signifi-
cantly correlated with observed values using the traditional CDD
approach, and this percentage increased to 30.2% using the
CDDWS approach. RMSE and AICc were reduced by ∼15% and
∼7%, respectively. Similar improvements were observed using the
CDDWS model for explaining the observed DFS at the flux
measurement sites, with seven sites having significant model–data
correlations against only one for the CCD model and the CDDWS
model having ∼13% and ∼10% lower of RMSE and AICc

(Fig. 5 B, E, and H). Comparison with satellite data produced
better results than ground observations as indicated by nearly
three times more pixels having significant model–data correlations
with the CDDWS model and ∼12% and ∼10% lower values of
RMSE and AICc (Fig. 5 C, F, and I). More detailed results for
species, flux site, and plant functional types are provided in SI
Appendix, Figs. S5–S7. Give that the CDDWS model had a better
predictive power for the variations of DFSs, we applied it to
predict future DFS under two climate scenarios, the Represen-
tative Concentration Pathway (RCP) 4.5 and RCP 8.5 ones. With
projected temperature and wind speed changes SI Appendix, Fig.
S8), DFS was predicted to come earlier with the CDDWS model
than with the CDD model under the RCP 4.5 scenario, across
96% of the pixels (Fig. 5J). The average difference of the pre-
dicted DFS between CDDWS and CDD was about 2.7 d. Inter-
estingly, the DFS from the CDDWS model is projected to occur
later at lower latitudes and earlier for most regions under the RCP

Fig. 3. Contribution coefficients of meteorological variables to interannual variations of DFS. (A–D) Degree to which (Materials and Methods) interannual
variations of DFS can be explained by preseason temperature, precipitation, solar radiation, and wind speed, respectively. Left shows spatial distribution of
contribution coefficients. Right shows contribution coefficients latitudinal distributions. The gray color represents nonsignificant correlation. Significance was
set at P < 0.05.
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Fig. 4. Relationships between wind speed and hydroclimatic variables affecting autumn DFS. (A) Relationship between wind speed anomaly and reference
evapotranspiration (ET0, Materials and Methods) anomaly and the change in ET0 for a unit increase of wind speed in different wind speed categories. (B)
Relationship between ET0 anomaly and soil water content (SWC, %) anomaly. C and D represent the partial correlation between wind speed and SMS (C) and
SMV (D), respectively. (E) Difference of DFS between the year with the lowest wind speed and the highest wind speed. (F) Partial correlation between wind
speed and Tdew. The gray color in C, D, and F represents nonsignificant correlation. Significance was set at P < 0.05.
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8.5 scenario (Fig. 5K). In addition, the DFS from the CDDWS

model is projected to occur earlier under the RCP 8.5 scenario, by
on average 11.8 d, compared with the RCP 4.5 scenario (Fig. 5L).

Discussion
Efforts have been made to explore the responses of DFS to
changes in climate (29, 30). We here provided suggestive evi-
dence that changes in wind speed over the last three decades
could have contributed an overall negative effect on DFS at high
latitudes where site-level and remotely sensed observations in-
dicate that DFS has been extended (10, 14). Wind speed varied

substantially due to changes in the roughness of terrestrial sur-
faces (e.g., land cover change) and increased levels of atmo-
spheric aerosols (23, 24). The site-level and remotely sensed
observations suggest that increased wind speed was associated
with an earlier DFS and vice versa.
The alleviated drying effect from declined winds is the most

probable explanation for the observed negative relationships
between wind speed and DFS at about one-third of the locations/
regions. Lower winds reduce ecosystem-level drought through
decreased ET and thus enhanced water availability, as suggested
from statistical analysis of flux measurements and remote sensing

Fig. 5. Comparison between the traditional CDD model for predicting DFS and the CDD model modified to include wind speed (CDDWS). (A, D, and G)
Frequency of significant observations, RMSE (days), and the AICc using ground data, respectively. (B, E, and H) Frequency of significant observations, RMSE,
and AICc using flux data, respectively. (C, F, and I) Frequency of significant observations, RMSE, and AICc for the NDVI3g data, respectively. (J and K) Dif-
ferences between projected DFS using CDD and CDDWS under scenarios of RCP 4.5 (J) and RCP 8.5 (K), respectively. (L) Difference between projected DFS using
CDDWS under the RCP 4.5 and the RCP 8.5. Significance was set at P < 0.05.
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observations (Fig. 4 and SI Appendix, Fig. S4). Advanced DFS
and leaf loss are also a mechanism for the adaption of drought
because earlier DFS reduces the water demand and risks of xy-
lem embolism and plant desiccation (31, 32). In addition, under
water stress conditions, the increase in abscisic acid and the
decline in cytokinins may induce senescence, causing a decline in
photosynthesis and phloem loading (33). An earlier detachment
of leaves under high winds is the result of physical damage from
higher winds (e.g., by indirect abrasion due to soil or ice particles
or direct damage leading to foliar tearing or branch loss). This
process could aggravate the drying effect because the physical
damage could lead to an unexpected faster loss of water that is
associated with leaf folding and even wilting (25, 28, 34). The
reduced risk from frost damage with declined winds may be par-
ticularly important for cold regions. Previous studies reported that
windbreak or lower winds can increase plant environment tem-
perature and thus extend growing season length for cold regions
(35). Similarly, our results revealed that lower wind speed could
decrease vegetation exposure to frost by rising Tdew in autumn,
potentially further shifting to later leaf senescence (36).
Nearly one-third of satellite and ground site data with signif-

icant partial correlations between wind speeds and DFS has
positive partial correlation values, suggesting that at those lo-
cations, a lower wind speed could lead to an earlier DFS. Eco-
logical processes may be more important than physiological
effects of water stress in explaining this response. Plants can
resist to some types of wind damage as herbaceous plants can
recover from wind damage, and woody plants may partially re-
cover if sufficient supplies of water and nutrients are available
(25). Plants, though, are also adapted to specific environments
and develop several approaches of acclimation with attributes of
reorientation and reconfiguration subject to wind variations (37).
They can therefore survive if the winds are not too strong and
can even grow better, because these species adaptations can lead
to intrinsic differences in their timing of foliar senescence that
are optimized to maximize carbon gain and minimize the loss of
water (21). We suggest that the balance between the effects of
climate warming and water supply on plant growth could explain
these positive correlations. Precipitation has been reported to have
a dominant positive role in extending DFS (13), especially in arid
or semiarid regions. Our results also found that most positive
wind–DFS correlations were distributed in regions with increasing
precipitation (SI Appendix, Fig. S3 A and B), indicating that pro-
viding sufficient water supply could offset the drying effect of
strong winds and delay DFS accordingly. In comparison, negative
correlations dominated in regions with higher-rate temperature
increases (SI Appendix, Fig. S3 A and C) because too much higher
temperature would accelerate water loss from the surface of soil
and canopy through ET processes even when precipitation is in-
creasing, further triggering drought-induced DFS for environ-
mental adaptation (38).

Conclusion
Future climate may be more variable, with larger changes in
temperature and precipitation. Predicting how wind speeds will
change with a changing climate remains challenging, but evi-
dence suggests that wind speeds will be more extreme in several
regions, even if the mean annual speed continues to decrease
(39). The combination of extreme and chronic winds would have
significant impacts on plant growth, and these consequences for
regional and global carbon uptake may also be as important as
that from variations in temperature and precipitation. While
there are limitations on the gridded meteorological products
over high latitudes, the overall findings of our analyses are reli-
able because the interannual variability of these variables was
used instead of the absolute values. We found that DFS would be
earlier than currently expected for most regions under two RCP
scenarios and that this average gap would be even larger for a

scenario with higher emissions of CO2. Given that the DFS has
been tightly connected with annual carbon uptake, an earlier
DFS projected would cause a positive feedback to the climate
and consequently needs our attention and should be correctly
represented in future ecosystem models.

Materials and Methods
Site-Level Phenological Data. Two independent site-level phenological
datasets were used in our study. The first phenological observations were
obtained from the Pan European Phenology Project (PEP725), which has
maintained long-term phenological records since 1868 for multiple growth
stages and plant species. We used eight typical woody species with long-
term records at all available sites (totally 2,405 sites and 183,448 records)
from PEP725 at high northern latitudes (>50°) for 1982 to 2015 (40) (SI
Appendix, Fig. S1 and Table S2). The region determination was based on the
pronounced decline in winds (SI Appendix, Fig. E1). The foliar senescence
date (DFS) was defined as the date when >50% of tree leaves changed color
in autumn (green to red or yellow) (41). Records with fewer than 10 y of
continuous time series were removed from the analysis due to their high
uncertainty, which is required to statistically calculate the partial correlation
coefficient between wind speed and DFS (42).

The second site-level phenological data were derived from flux-measured
daily GPP, based on the eddy covariance technique. In this study, we used all
available 18 flux sites with at least 10 y of continuous measurement at high
northern latitudes (>50°, SI Appendix, Table S3), with totally 267 site-year
records of GPP from FLUXNET (https://fluxnet.fluxdata.org/). All flux sites in
our study were classified into different biome types by the International
Geosphere–Biosphere Program classifications. Here, we applied the double
logistic function to determine carbon flux DFS (43). We first smoothed the
curve of daily GPP using Savitzky–Golay filter. Daily GPP time series were
divided into two parts by the maximum GPP that often occurred in summer,
then a piecewise logistic function was applied to fit each part:

y(t) = a1 + (a2 − a7t)[ 1
1 + e(a3−t)=a4

−  
1

1 + e(a5−t)=a6
], [1]

where t is the day of year (DOY), y(t) is the observed GPP or NDVI value at
time, t.a1 is the background GPP or NDVI, and a2 is the difference between the
background and the amplitude of the late summer and autumn plateau both
in GPP or NDVI units. a3 and a5 are the midpoints in DOYs of the transitions for
green‐up and senescence/abscission, respectively. a4 and a6 are the transitions
curvature parameters (normalized slope coefficients). a7 is the summer
greendown parameter. DFS was then determined as the local extrema in the
rate of change of the GPP or NDVI curve for the second part of the data.

Satellite-Derived DFS. We used GIMMS3g NDVI data derived from the Ad-
vanced Very High Resolution Radiometer (41), with a spatial resolution of 1/
12° and a 15-d interval to estimate DFS for 1982 to 2015 at high northern
latitudes (>50°) (44, 45).

We eliminated the impact of agricultural ecosystems, in which DFS is af-
fected by human activity, by using the MCD12Q1 MODIS Version 6 land cover
product to exclude cropland (46). All analyses in this study were investigated
for vegetation types using a global map of terrestrial ecoregions (47). We
also removed areas with sparse vegetation by eliminating pixels with mean
annual NDVI < 0.1. The NDVI time series were smoothed using a modified
Savitzky–Golay filter to remove abnormal data and especially to remove the
noise from the snow at high latitudes (48). We then used two methods to
estimate NDVI3g-based DFS.

The first method was a midpoint threshold approach based on locally
tuned NDVI and an annually defined threshold of the NDVI ratio (49). The
NDVI ratio was calculated as:

NDVIratio = NDVI − NDVImin

NDVImax − NDVImin
, [2]

where NDVI is the daily NDVI from the NDVI3g data and NDVImin and
NDVImax are the annual maximum and minimum of the NDVI curve, re-
spectively. DFS is defined as the day of the year when NDVIratio decreased
to 0.5.

The second method was based on the double logistic function (Eq. 1) (50).
In this study, we used average DFS from midpoint threshold approach and
double logistic function as satellite-derived DFS.

Climatic Data. For the analysis of site-level phenological and remotely sensed
observations, we used two monthly 10 m wind speed products for 1982 to
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2015. The first wind speed product is obtained from TerraClimate, a dataset
of monthly climate for global terrestrial surfaces at a spatial resolution of 1/
24°. The 10 m wind speed of TerraClimate is extracted from Climatic Re-
search Unit Time Series (CRU-TS 4.00), which is interpolated by massive cli-
matic stations (51). The second wind speed product is extracted from ERA5,
the fifth generation European Centre for Medium-Range Weather Forecasts
(ECMWF) Re-Analysis for the global climate and weather, monthly averaged
reanalysis data at a spatial resolution of 0.25° (52). These two datasets showed
similar spatial and temporal patterns (Fig. 1). We applied the average of wind
speed from TerraClimate and ERA5 as final wind speed to reduce the uncer-
tainty from using a single dataset in this study. The monthly temperature,
precipitation, and cloud cover (a proxy of solar radiation) for 1982 to 2015 at
resolutions of 0.5° were extracted from CRU-TS 4.00 (53). These climatic
datasets were widely used to analyze the impact of meteorological variables
on observational and satellite-derived phenology (7, 13, 21). Given the un-
certainty of gridded climate factors (e.g., CRU products often provide under-
estimated predictions due to the limited distribution of weather stations) in
high latitudes (SI Appendix, Figs. E2 and E3), cautions are needed when
interpreting the partial correlations (Fig. 1) and temperature-based modeling
results (Fig. 5 and SI Appendix, Figs. S5–S7). However, these limitations could
be acceptable because our analyses mainly focused on the interannual vari-
ability of these data rather than on the absolute differences. For flux-based
analysis, we used site measurements of ancillary physical variables (e.g., wind
speed, air temperature, precipitation, and solar radiation). To determine the
effect of wind speed on evapotranspiration (ET), we applied the FAO56
Penman–Monteith method to calculate the reference ET (ET0, mm · day−1),
defined as the rate at which readily available soil water is vaporized from
specified vegetated surfaces (54),

ET0 = 0.408Δ(Rn − G) + γ(900=(T + 273))u2(es − ea)
Δ + γ(1 + 0.34u2) , [3]

in which Rn is the net radiation at the vegetation surface (MJ m−2 · day−1), G is
the soil heat flux density (MJ m−2 · day−1), T is the mean air temperature at 2 m
height (°C), u2 is the wind speed at 2 m height, es is the vapor pressure of the air
at saturation (kPa), ea is the actual vapor pressure (kPa), Δ is the slope of the
vapor pressure curve (kPa · °C−1), and γ is the psychrometric constant (kPa · °C−1).

As to traditional CDD and CDD with wind speed (CDDWS), we used daily
mean temperature acquired from the Physical Sciences Division of the Na-
tional Oceanic and Atmospheric Administration Earth System Research
Laboratory and daily mean wind speed from Global Land Data Assimilation
System (GLDAS-1) (55) to model the past DFS (1982 to 2015). We predicted
future DFS (2081 to 2100) using daily mean temperature and wind speed,
simulated using the Community Climate System Model under the RCP 4.5
and RCP 8.5 scenarios of climate change.

Water Indicators.We used six independent water indicators in total, including
the SMS, SMV, Tdew, PDSI, SPEI, and VOD to account for the response of DFS
to changes in wind speed at high latitudes. We provided a summary of the
data used in this study (SI Appendix, Table S1).

Monthly SMS (%) for 1992 to 2015 and Monthly SMV (m3/m3) for 1982 to
2015 at a spatial resolution of 0.25° were derived from Copernicus Climate
Change Service, providing estimates of soil moisture from numerous satellite
sensors, including SSMI, AMSRE, AMSR2, and SMOS. Monthly Tdew (°C) for 1982
to 2015 at a spatial resolution of 0.1° were obtained from the ERA5-Land
dataset, produced by replaying the land component of the ECMWF ERA5 cli-
mate reanalysis. Monthly PDSI for 1982 to 2015 were obtained from Terra-
Climate at a spatial resolution of 1/24°. The PDSI data set was generated by a
modified Thornthwaite–Mather climatic water balance model and extractable
soil water storage capacity data at a 0.5° grid (51). We acquired monthly SPEI
for 1982 to 2015 at a spatial resolution of 0.5°, calculated using the difference
between precipitation and potential ET from the SPEI base v. 2.5 at Consejo
Superior de Investigaciones Científicas (56). The SPEI data set consisted of
multiscalar monthly SPEI, so we selected 3-mo SPEI, given this time duration
representing the accumulated climatic water balance with the highest corre-
lation with DFS as the final water indicator (22). X-band (10.7 GHz) VOD was
obtained from the land parameter data record (LPDR version 2) developed by
the Numerical Terradynamic Simulation Group at the University of Montana
(57). The daily VOD data were generated from the Advanced Microwave
Scanning Radiometer for EOS (2002 to 2011) for both ascending and
descending orbits at a spatial resolution of 0.25°. We selected the descending
orbit retrievals and calculated average monthly VOD for 2002 to 2011.

Analyses.Weusedpartial correlation analysis to investigate the response ofDFS
to wind speed, controlling temperature, precipitation, and solar radiation.

Temperature and precipitation strongly affect DFS, so directly using linear
correlation between wind speed and DFS would bring uncertainties of factor-
combined effect. Statistical significance at the 0.05 level was used in this study,
with an R threshold of ±0.339 for an analysis of 34 y (1982 to 2015), ±0.404 for
an analysis of 24 y (1992 to 2015), and ±0.632 for an analysis of 10 y (2002 to
2011). We applied the nearest neighbor method to resample satellite-derived
DFS, water indicators, and climatic data into the same resolution, 1/12° for
partial correlation analysis and 0.5° for DFS projection.

The relevant periods for the effect of wind speed on autumn foliar se-
nescence differs among vegetation types, species, and locations. We deter-
mined the optimal length of the preseason based on wind speed (hereafter
preseason) as the period (with steps of 1 mo until June) before the mean DFS
for which the partial correlation coefficient betweenDFS andwind speedwas
highest during 1982 to 2015 for each pixel, controlling temperature, pre-
cipitation, and solar radiation (7, 21). We applied the same method to de-
termine the wind speed–based preseason for flux sites and phenological
sites. We used the Theil–Sen slope estimator, a nonparametric and median-
based slope estimator, to analyze the temporal trends of DFS and preseason
meteorological variables (i.e., average temperature and wind speed, accu-
mulated precipitation, and solar radiation) at high latitudes for 1982 to
2015. The trends for each pixel were evaluated using the Mann–Kendall test,
at a significance level of 0.05.

To quantitatively determine the impacts of different meteorological
variables on interannual variations of DFS, we first used multiple linear re-
gressions to estimate the sensitivity of DFS to meteorological variables (7)
with DFS as the dependent variable and preseason average temperature and
wind speed, accumulated precipitation, and solar radiation as independent
variables (all variables nondetrended). Only significant pixels were analyzed
for the further step (P < 0.05). We then calculated the contribution coeffi-
cients of different meteorological variables to interannual variations of DFS,
respectively. For example, the contribution coefficient of preseason average
temperature to interannual variations of DFS can be determined as

DFS = SenT ×   T   + SenP ×   P + SenR ×   R + SenWS ×  WS +   Resid [4]

ConT = (SenT ×   TrT )=TrDFS, [5]

where SenT , SenWS, SenP, and SenR represent the sensitivity of DFS to pre-
season average temperature (days · °C−1) and wind speed (days (m · s−1)−1),
accumulated precipitation (days ·mm−1), and solar radiation (days [w ·m−2]−1),
respectively. Resid is the residual of multiple linear regression. ConT is a con-
tribution coefficient of preseason average temperature to interannual varia-
tions of DFS, and TrT and TrDFS represent the temporal trend of preseason
average temperature (°C · year−1) and DFS (days · year−1) for 1982 to 2015,
respectively. More than 99% of contribution coefficients were between −2
and 2. A higher absolute value of contribution coefficients represents a
stronger impact of meteorological variables to interannual variations of DFS.

For the DFS model evaluation, we calculated the frequency of significant
sites (pixels), the correlation coefficient (R), the RMSE, and the AICc for CDD
and CDDWS, respectively. Given the sample size (time series for a site or pixel)
is small, we used AICc to address potential overfitting of AIC. The AICc value
of the model is the following:

AIC  =   2k  − 2L̂
n

[6]

L̂  =   − n
2

⎛⎜⎜⎜⎜⎜⎝1 + ln(2π) + ln

⎛⎜⎜⎜⎜⎜⎝∑n
i=1(yi − ŷi)2

n

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ [7]

AICc  =   AIC  +  
2k2 + 2k
n − k − 1

, [8]

where k is the number of parameters in the model, n is the sample size, L̂ is
the log of maximized value of the likelihood function for the model, yi is the
predicted DFS from the model in the ith year, and ŷ i is the estimated DFS
based on yi. The above analyses were performed on the Interactive Data
Language (version 8.3).

DFS Modeled from CDDWS.Our study indicated that DFS negatively responded
to wind speed at high latitudes at both the site and satellite levels, so we
developed a DFS model that incorporated wind speed into the traditional
CDD model, based solely on the accumulated chilling degree (58).

The traditional CDD was determined as
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CDDd = max(Tb − Tmean(d), 0) [9]

CDDthreshold = ∑DFS
d=d0

CDD(d), [10]

where CDDd is the chilling degree on date d, Tb is the base temperature, set
within 15 and 30 °C (with steps of 5 °C), Tmean(d) is the daily mean tem-
perature on date d, CDDthreshold is the accumulated chilling degree from d0 to
DFS required for foliar senescence, and d0 is the first day of accumulation, set
to July 1. We determined DFS as the yearly observation and derived DFS for
each site and pixel. Finally, CDD-based DFS was defined as the date that
CDDd first exceeded the multiyear average CDD threshold.

After incorporating wind speed into the traditional CDD model, our
CDDWS model was defined as

CDDws(d) = max(CDD(d) + k ×WSratio(d) × Tb, 0) [11]

WSratio(d) = WS(d)=WSmean, [12]

where k is a weighted factor ranging from −1 to 1 with a step of 1/Tb and
WSratio(d) is the ratio of WS(d), which is the daily mean wind speed in
the day of year of d, to WSmean, which is the mean wind speed during the
preseason of the study period. The effect of wind speed on DFS is jointly
controlled by WS(d), k, and Tb for each site or pixel. The traditional CDD
model can estimate average DFS with certain accuracy; however, it fails to
predict the temporal trend of DFS and leads to low R and high RMSE and
AICc. We assume that for each site or pixel, using the average value of
traditional CDDthreshold to conversely estimate DFS for each year would cause
a delay for earlier DFS and an advance of later DFS, since DFS is generally
positively related to CDDthreshold. Using CDDWS approach, for example, if k <
0, in the years with higher wind speed (WSratio(d) > 1), actual CDDthreshold

would be lower than the average value of CDDthreshold, leading to over-
estimated DFSs and vice versa. Thus, wind speed is positively correlated with

DFS. Similarly, if k > 0, in the years with lower wind speed (0 < WSratio(d) <
1), actual CDDthreshold would be lower than the average value of CDDthreshold,
leading to underestimated DFSs and vice versa. In this case, wind speed is
negatively correlated with DFS. We found nearly two-thirds of pixels with
positive k, confirming the dominance of a negative correlation between
wind speed and DFS. Therefore, CDDWS incorporated the generally negative
response of DFS to wind speed and improved the accuracy of estimating the
interannual variation of DFS, with higher R and lower RMSE and AICc.

In this study, the most optimal parameters of the models were determined
by comparing the RMSE between modeled and observed DFS. Tb and k with
the lowest RMSE were regarded as the final parameters for each site or
pixel. We also used the map of Tb, k and CDDthreshold generated in the CDDWS

for 1982 to 2015, as empirical input data, to predict projected DFS for 2,081
to 2,100.

Data Availability. All study data are included in the article and SI Appendix.
The specific links for data used in this study can be found in SI Appendix,
Table S1.
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