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Abstract

Understanding the interplay of different traits in a co-infection system with multiple strains has many
applications in ecology and epidemiology. Because of high dimensionality and complex feedbacks between
traits manifested in infection and co-infection, the study of such systems remains a challenge. In the case
where strains are similar (quasi-neutrality assumption), we can model trait variation as perturbations
in parameters, which simplifies analysis. Here, we apply singular perturbation theory to many strain
parameters simultaneously, and advance analytically to obtain their explicit collective dynamics. We con-
sider and study such a quasi-neutral model of susceptible-infected-susceptible (SIS) dynamics among N
strains which vary in 5 fitness dimensions: transmissibility, clearance rate of single - and co-infection,
transmission probability from mixed coinfection, and co-colonization vulnerability factors encompassing
cooperation and competition. This quasi-neutral system is analyzed with a singular perturbation method
through an appropriate slow-fast decomposition. The fast dynamics correspond to the embedded neutral
system, while the slow dynamics are governed by an N -dimensional replicator equation, describing the
time evolution of strain frequencies. The coefficients of this replicator system are pairwise invasion fit-
nesses between strains, which, in our model, are an explicit weighted sum of pairwise asymmetries along
all trait dimensions. Remarkably these weights depend only on the parameters of the neutral system. Such
model reduction highlights the centrality of the neutral system for dynamics at the edge of neutrality, and
exposes critical features for maintenance of diversity.

Keywords. quasi-neutrality, SIS multi-strain dynamics, co-colonization, singular perturbation, slow-fast
dynamics, Tikhonov’s Theorem, replicator equation, high-dimensional polymorphism, frequency dynamics

1 Introduction

Multiple infections are ubiquitous in nature [5]. They may occur between pathogen strains of the same
species or between different species [11, 6, 35], and have implications for virulence evolution and maintenance
of various polymorphisms among infectious agents [33, 28, 2, 3]. The importance of multiple infection for
antibiotic resistance and vaccination effects in multi-strain systems has also been increasingly highlighted
[23, 7]. Due to its inherent difficulties, multiple infection has only been tackled in a limited manner by
mathematical models so far. A majority of studies focus on coexistence and competitive exclusion criteria
for coinfection systems with N = 2 or N = 3 strains [10, 18, 16, 30]. A few studies, using arbitrary system
size, derive analytical results for any number of coinfecting strains N [1, 26]. But the vast majority of N -
strain coinfection models are entirely based on simulations [11, 12], with limited analytical insight and organic
syntheses for the mechanisms of emergent dynamics.

In this article, we uncover the subtle structure of coinfection model with N strains. We introduce a
general model to describe the population dynamics of multiple strains circulating in a host population with
the possibility of co-infection. In particular, we focus on modeling the host-to-host transmission of different
strains, using the SIS (susceptible - infected - susceptible) compartmental framework for endemic diseases.
There are two sources of complexity in the model: i) the number of strains, which increases quadratically the
dimensionality of the system, and ii) all the fitness dimensions in which the strains may vary. The latter is
the main novelty of our framework.

We present a method for approximating the solution of this SIS- N-strain co-infection system, under
a quasi-neutral assumption for the strain-defining parameters. To that end, we first analyze multi-strain
co-infection system with symmetric traits. Then, based on the theoretical results in [14, 22, 32] and their
applications to similar models in [15, 16, 26], we use the slow-fast dynamics approach and the method of
multiple timescales to approximate the solution of systems with non-symmetric traits.
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1 INTRODUCTION

Extending the foundational work in [15, 16, 26], this article studies a more general dynamic system, with
perturbations in many more dimensions of variation across strains, namely transmission, clearance rates and
within-host competitiveness, besides the co-colonization vulnerability parameters (Figure 1). The complexity
of this general problem is reduced by the quasi-neutral assumption, with each parameter constrained to be
close to its default value, allowing us to leverage the neutral system to approximate the quasi-neutral system.
The difficulty lies in reformulating the original system starting from a neutral component plus perturbations,
in terms of slow fast dynamics consisting of a fast sub-system and a slow sub-system. Thanks to the singular
perturbation theory in [34] and the Tikhonov’s Theorem, we expect to find explicitly the emergent system
which describes the slow dynamics.

More precisely, we find how to rewrite the original system in the form
dx

dt
= εf(x, y, t, ε) and

dy

dt
=

g(x, y, t, ε) where x describes the slow dynamics and y the fast dynamics. Taking ε = 0 we obtain the degen-

erate fast system
dx

dt
= 0 and

dy

dt
= g(x, y, t, 0). Under appropriate assumptions, this fast system admit a

(degenerate) attractor called the slow manifold of the form y = φ(x, t). Then, at the slow time scale τ =
t

ε

we obtain the slow dynamics on this slow manifold as
dx

dτ
= f(x, φ(x, t), τ, 0) that needs to be computed

explicitly. The singular perturbation theory makes the link between this slow dynamics and the dynamics of
the original system for 0 < ε� 1.

Even though we have an intuition for how the final model approximation in terms of fast-slow dynamics
should work, with the neutral model as the organizing centre [19], it is not at all obvious from the start which
should be the necessary mathematical steps when multiple perturbations occur and interact at the same time
between N strains. In this article we uncover these steps, which ultimately lead us to a similar replicator
equation to the one derived in [26] but now more complete because it involves variation among strains along
more fitness dimensions. Indeed, we obtain an N dimensional replicator equation for strain frequencies over
long time in terms of their pairwise invasion fitness matrix, and this connects our multi-strain coinfection
framework in an endemic setting with the work of [21] which extensively researches this well-known model,
and shows its contribution to evolution and game theory. With this simplifcation, qualitative and quantitative
aspects of the competitive dynamics between N strains, leading to regimes of exclusion, coexistence, multi-
stability, family of cycles or chaotic behavior can be investigated, and directly linked to their trait variations.

Figure 1: Schematic description of the spirit of our study. We study the full N -strain SIS model with coinfection
like in [26, 16], but here include variation in several parameters among strains, besides co-colonization interactions. For
this, we consider the neutral model as the organizing center of the dynamics, and the slow-fast form for each case of
trait variation. Finally, we combine all cases of singular perturbation in each parameter to obtain the general system.
Our result is the dynamics in the slow manifold, which corresponds to a replicator system for N strain frequencies,
governed by the pairwise invasion fitness matrix.

The paper is organized as follows. Section 2 outlines the general systems studied in this paper with
corresponding quasi-neutral and neutral models. Then it introduces Tikhonov’s theorem and the expansion
theorem used to approximate the target model. Section 3 presents the main framework used to decompose
the dynamics into fast and slow components, accompanied with lemmas and concrete steps. In this section,
we state the main result: the replicator system for strain frequencies, whose coefficients’ matrix is defined
by pairwise invasion fitnesses. Section 4 is devoted to the explicit computations for perturbations in each
trait, and ends with the proof for the error estimate between the original system and the slow-fast approxi-
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2 SYSTEM, METHODS AND RESULTS

mation. In Section 5 we provide illustration by numerical simulations about the different regimes of system
behaviour, including coexistence, competitive exclusion and more complex dynamics. This helps to contex-
tualize the competitive outcomes between strains as a function of parameters. Finally, in Section 6 we close
with conclusions and a discussion.

2 System, methods and results

This initial section aims to provide a general description of the dynamics followed by an outline of the
analytical framework applied. We first introduce the general structure, then subsequently present explicitly
the steps of our approach, consisting in the quasi-neutral model, neutral model and slow-fast model. We
then present the Tikhonov’s theorem, which is the key tool we use to approximate the singular perturbation
dynamics efficiently. The important lemmas and main results are also stated in this section.

2.1 The general SIS coinfection model with N strains and some initial analysis

The dynamics studied in this article groups the pathogen types in N subsets, indexed by i, 1 ≤ i ≤ N . With
a set of ordinary differential equations, we then track the proportion of hosts in 1 +N +N2 compartments:
susceptible: S, hosts colonized by strain-i: Ii, hosts co-colonized by strain-i then strain-j: Iij . Notice that
we include also same strain coinfection, as argued in [26]. We formulate the general model based on the
same structure as that in [26] but here allow for strains to vary in their transmission rates βi, clearance rates
of single infection γi (or duration of carriage 1/γi), clearance rates from mixed co-colonization γij , within-
host competition reflected in relative transmissibilities from mixed coinfected hosts (piij and piji), as well as
co-colonization vulnerabilities kij , already studied in [26].

dS

dt
=r(1− S) +

N∑
i=1

γiIi +

N∑
i,j=1

γijIij − S
N∑
i=1

βiJi,

dIi
dt

=βiJiS − (r + γi)Ii − Ii
N∑
j=1

kijβjJj , 1 ≤ i ≤ N,

dIij
dt

=kijIiβjJj − (r + γij)Iij , 1 ≤ i, j ≤ N

(2.1)

where Ji is proportion of all hosts transmitting strain i, including singly- and co-colonized hosts and has the
explicit formula

Ji = Ii +

N∑
j=1

(
piijIij + pijiIji

)
. (2.2)

Note that βiJi is the force of infection of strain i, for all i. All mixed coinfection hosts, harboring strain i
(and j), in any order, whether acquired first or second, can transmit strain i and the two probabilities of
transmission are denoted by piij and piji. The corresponding probabilities to transmit the other strain for

such hosts, is simply 1 − piij and 1 − piji respectively. Thus we allow for variation between strains in both
transmissibility from mixed coinfection, and in the benefit gained within-host for transmission when landed
there first (a precedence effect). In (2.1), for 1 ≤ i, j ≤ N , parameters are summarized in Table 1. Summing
up all the equations of (2.1) on both sides yields the equation for total mass

d

dt

S +

N∑
i=1

Ii +

N∑
i,j=1

Iij

 = r(1− S)− r

 N∑
i=1

Ii +

N∑
i,j=1

Iij

 , (2.3)

which leads to S +
∑N
i=1 Ii +

∑N
i,j=1 Iij = 1− e−rt. Hence, S +

∑N
i=1 Ii +

∑N
i,j=1 Iij tends to 1 as t→∞.

We want to study a system whose host population is invariant. Such an expectation leads to the assumption
that, (2.1) has the same recruitment rate of susceptibility host and mortality rate of strains. It is plausible
to from now on assume that the total population size is constant and rescaled to unit. We also take the
system (2.1) as given the initial conditions S(0) +

∑N
i=1 Ii(0) +

∑N
i,j=1 Iij(0) = 1, which implies that the

total population size is always one for any time. Thus our compartmental variables can be taken to reflect
proportions of host in different epidemiological states.
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2 SYSTEM, METHODS AND RESULTS

Table 1: Conventions and notations of parameters defining strains in our model, and host
turnover. Under strain similarity assumptions, we can write each trait using a common ref-
erence for all strains, and express the variation as a deviation from neutrality, with ε a small
number between 0 and 1.

Parameter Interpretation Strain similarity
1. βi Strain-specific transmission rates βi = β (1 + εbi)
2. γi Strain-specific clearance rates of single colonization γi = γ (1 + ενi)
3. γij Clearance rates of co-colonization with i and j γij = γ (1 + εuij)

4. psij Transmission probability of strain s ∈ {i, j} from a host co-

colonized by strain-i then strain-j,
(
piij + pjij = 1

) psij =
1

2
+ εωsij

5. kij Relative factor of altered susceptibility to co-colonization by
strain j when a host is already colonized by strain i

kij = k + εαij

r Susceptible recruitment rate (equal to natural mortality rate)

R0 Basic reproduction number R0 = β
γ+r

2.2 Quasi-neutral system and new variables

A straightforward understanding of (2.1) is not possible due to its complexity, high-dimensional parameter
space and number of equations. However, for indistinguishable strains, i.e. if all the parameters do not depend
on the strain i, we obtain the so-called neutral system which is analytically tractable (see [15, 16, 26]). In
this text, we make a quasi neutral assumption by assuming that the parameters are nearly equal, because
the strains are similar. Without loss of generality we can take the same epsilon in all parameters with the
perturbations written in the form presented in table 1. For the sake of simplicity, we denote the inverse
duration of a carriage episode by strain i with mi = r + γi, of a co-carriage episode by strains i and j with
mij = r+γij and the corresponding inverse duration of carriage if all strains were equivalent with m = r+γ.

To work on the neutral system, it’s useful to denote some new state variables, including the total ‘mass’
of singly-infected hosts I, the total ‘mass’ of doubly-infected hosts D, and the total ‘mass’ of infected hosts
T = I +D. According to these definitions of T, I, D, we have the formulae:

I =

N∑
i=1

Ii, D =

N∑
i,j=1

Iij , T = I +D. (2.4)

It can be easily deduced from (2.4) together with ωiij + ωjji = 0 that
∑N
i=1 Ji = T . Thanks to these new

variables, the original system (2.1) can be rewritten into the extensive new form

dS

dt
=r(1− S) + γT + εγ

 N∑
i=1

νiIi +

N∑
i,j=1

uijIij

− βST − εβS N∑
i=1

biJi

dT

dt
=βST −mT + εβS

N∑
i=1

biJi − εγ

 N∑
i=1

νiIi +

N∑
i,j=1

uijIij


dIi
dt

=βJiS + εβbiJiS − (m+ εγνi)Ii − βIi
N∑
j=1

(k + εαij) (1 + εbj) Jj

dJi
dt

=β(1 + εbi)JiS − βIi
N∑
j=1

(k + εαij)(1 + εbj)Jj − εγ

νiIi +

N∑
j=1

(
(
1

2
+ εωiij)uijIij + (

1

2
+ εωiji)ujiIji

)
−mJi + β

N∑
j=1

(
(
1

2
+ εωiij)(k + εαij)(1 + εbj)IiJj + (

1

2
+ εωiji) (k + εαji) (1 + εbi)IjJi

)
dI

dt
=βTS + εβS

N∑
i=1

biJi −mI − εγ
N∑
i=1

νiIi − β
N∑
i=1

Ii

 N∑
j=1

(k + εαij)(1 + εbj)Jj


dIij
dt

=β (k + εαij) (1 + εbj)IiJj − (m+ εγuij)Iij .

(2.5)
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2 SYSTEM, METHODS AND RESULTS

This system has the generic form
dX

dt
= F̃ (X, ε) where X = (X1, X2, . . . , Xñ) ∈ Rñ (for some integer ñ) and

is equivalent to
dX

dt
= F (X) +O(ε) after some algebraic transformations. In ours case, the part

dX

dt
= F (X)

is known as the neutral system, consistently stays unaltered and be investigated in the subsection 2.3. It
is important to note that this neutral system is structurally unstable. Then, the part O (ε) is a singular
perturbation of the neutral system. To treat such an emergence by Tikhonov’s theorem, it’s essential to

rewrite
dX

dt
= F (X) +O(ε) into an equivalent slow-fast form


dx

dt
= ε (f(x, y) +O(ε))

dy

dt
= g(x, y) +O(ε)

(2.6)

where y ∈ Rny is the fast variable and x ∈ Rnx is the slow variable (with nx+ny = ñ). In general, the finding
of this slow-fast reformulation is strongly dependent on the specific system. Here, it is achieved thanks to the
ansatz (2.25) which is yielded from the study of the neutral system.
Hence, we start to study the important neutral system which is obtained for ε = 0 in (2.5). This study yields
the definition of the appropriate slow and fast variables (vi, zi). These variables together with the ansatz
(2.25) are the key for the slow-fast study of the next section.

2.3 Neutral system, ε = 0

Taking ε = 0 in (2.5) leads to the so-called Neutral System1 for S, T, I, Ii, Ji, Iij which reads after some
simplifications: 

dS

dt
= r(1− S) + γT − SβT

dT

dt
= SβT −mT

dI

dt
= βTS − (m+ kβT )I

dIi
dt

= βJiS −mIi − kIiβT, 1 ≤ i ≤ N

dJi
dt

= (βS −m)Ji +
1

2
βkIJi −

1

2
βkIiT, 1 ≤ i ≤ N

dIij
dt

= kβIiJj −mIij , 1 ≤ i, j ≤ N.

(2.7)

Such a triangular structure of this system enables to successively consider the subsystems for (S, T ), I, (Ii, Ji)
and Iij .

• Firstly, we consider the neutral system for S, T as following
dS

dt
=m(1− S)− βST

dT

dt
=−mT + βST

(2.8)

This system is a classical. As in [25], we define the basic reproduction number as R0 =
β

m
. If R0 > 1 then it

admits a positive steady state (S∗, T ∗) where S∗ =
1

R0
and T ∗ = 1− S∗.

We now recall a crucial proposition, which follows the definition of S∗ and T ∗.

Proposition 1. Assume that S(0) > 0 and T (0) > 0. If R0 ≤ 1 then the solution S, T of system (2.8) tends
to (1, 0). Otherwise, it tends to (S∗, T ∗) asymptotically.

The proof for this Proposition can be found in [29].

1The name neutral system comes from the fact that if ε = 0 then the parameters do not depend on the strains as in the
neutral theory, and the model describes indistinguishable strains.
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2 SYSTEM, METHODS AND RESULTS

• Secondly, we prove that I(t)→ I∗ :=
mT ∗

m+ βkT ∗
.

Indeed, substitute (S, T ) by (S∗ + (S − S∗), T ∗ + (T − T ∗)) into the equation of I in (2.8) then make some
manipulations to obtain

dI

dt
= mT ∗ − (m+ βkT ∗)I + [βS∗ (T − T ∗) + βT ∗ (S − S∗) + β (T − T ∗) (S − S∗)] . (2.9)

Consider the equation
dĨ

dt
= mT ∗ − (m+ βkT ∗)Ĩ (2.10)

which has the explicit solution Ĩ(t) =
mT ∗

m+ βkT ∗

(
1− m+ βkT ∗

mT ∗
I(0) exp (−(m+ βkT ∗)t)

)
. We simultane-

ously have the equation for I − Ĩ as follows

d

dt

(
I − Ĩ

)
= −(m+ βkT ∗)

(
I − Ĩ

)
+ [βS∗ (T − T ∗) + βT ∗ (S − S∗) + β (T − T ∗) (S − S∗)] . (2.11)

Set f (t) = βS∗ (T − T ∗) + βT ∗ (S − S∗) + β (T − T ∗) (S − S∗) then f (t) → 0 asymptotically when t → ∞,

by Proposition 1. It’s easy to see
(
I − Ĩ

)
= exp (−(m+ βkT ∗)t)

(∫ t
0

exp ((m+ βkT ∗)s) f(s)ds+ C
)

, with

C is some suitable constant. Hence, I(t)− Ĩ(t)→ 0 when t→∞ then leads to I(t)→ I∗ as t→∞.

For later reference, we also write their equilibrium values in the neutral system

S∗ =
m

β
, T ∗ = 1− m

β
, I∗ =

mT ∗

m+ βkT ∗
, D∗ = T ∗ − I∗ =

βkT ∗2

m+ βkT ∗
. (2.12)

•Thirdly, from (2.7), we also have the neutral model for Ii, Ji for all 1 ≤ i ≤ N . This is the very important
part which gives crucial insight for 0 < ε� 1 in the next section. For now, ε = 0 and substitute (S, T, I) by
the limit (S∗, T ∗, I∗), we obtain the (degenerate) linear system

d

dt

(
Ii
Ji

)
=

(−(m+ βkT ∗) m

−βkT
∗

2

βkI∗

2

)(
Ii
Ji

)
. (2.13)

Set A =

(−(m+ βkT ∗) m

−βkT
∗

2

βkI∗

2

)
, D∗ = T ∗ − I∗ and

P =

(
2T ∗ I∗

D∗ T ∗

)
, P−1 =

1

|P |

(
T ∗ −I∗
−D∗ 2T ∗

)
and for i = 1, · · · , N

(
vi
zi

)
= P−1

(
Ii
Ji

)
(2.14)

We have A = P

(
0 0
0 −ξ

)
P−1 where ξ = m+βkT ∗− 1

2
βkI∗ > m+

1

2
βk(T ∗−I∗) > 0 and |P | = 2T ∗2−I∗D∗ >

0.

From (2.13) and (2.14), we infer an equation for

(
vi
zi

)
for each 1 ≤ i ≤ N :


dvi
dt

=− ξvi
dzi
dt

=0.

(2.15)

This step of changing to (vi, zi) plays an important role. Since under these new variables, we can rewrite into
the slow-fast form. It allows us to apply the Tikhonov’s Theorem introduced in the next subsection.
Let us remark that zi is exactly frequency of strain i in the total of infected, see the proof in [26].

• Fourthly, the N2 last equations for Iij in (2.7) yields 1 ≤ i ≤ N

dIij
dt

= βkIiJj −mIij . (2.16)
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2 SYSTEM, METHODS AND RESULTS

Whose dynamics is trivial once Ii and Ji are known. Indeed, assume that for each i, there exists
(
Ĩi, J̃i

)
such

that Ii(t)− Ĩi(t) = O (ε) and Ji(t)− J̃i(t) = O (ε), then we can rewrite (2.16) into

dIij
dt

= −mIij + βkĨiJ̃j + βk
[(
Ii − Ĩi

)
J̃j +

(
Jj − J̃j

)
Ĩi +

(
Ii − Ĩi

)(
Jj − J̃j

)]
. (2.17)

Consider the equation
dĨij
dt

= −mĨij + βkĨiJ̃j (2.18)

then we can obtain the differential equation for Iij − Ĩij

d

dt

(
Iij − Ĩij

)
= −m

(
Iij − Ĩij

)
+ βk

[(
Ii − Ĩi

)
J̃j +

(
Jj − J̃j

)
Īi +

(
Ii − Ĩi

)(
Jj − J̃j

)]
. (2.19)

By our assumption on Ĩi, J̃j and use the same arguments for I(t)→ I∗, we deduce that Iij(t)− Ĩij(t) = O (ε)
on each bounded interval of time.

2.4 Tikhonov’s Theorem and derivation of the non-neutral dynamics

Using the above idea, we transform the problem into an equivalent slow-fast form which is analyzed through
singular perturbations method. According to previous arguments, our slow-fast form includes variables

(X,Y,L,v, z). Using (2.14), we define

(
Ii
Ji

)
= P

(
vi
zi

)
. Proceeding like in (2.15), we obtain for ε > 0:

dvi
dt

=− ξvi +O(ε)

dzi
dt

=O(ε).

(2.20)

By setting τ = εt, (2.21) can be read as the slow time scale:
ε
dvi
dτ

=− ξvi +O (ε)

dzi
dτ

=O(1).

(2.21)

We need to compute explicitly the perturbation O(1) in (2.21). This computation is quite complex especially
when involving perturbation in each parameters, so it’s worthwhile dividing this progress into five sub-cases
wherein only one perturbation at a time occurs.

After that, we will treat the slow-fast form by the Tikhonov’s theorem, that is presented as follows.

Theorem 2 (Tikhonov, 1952, see [32]). Consider the initial value problem
dx

dτ
=f(x, y, τ) + ε . . . , x(0) = x0, x ∈ D ⊂ Rn,

ε
dy

dτ
=g(x, y, τ) + ε . . . , y(0) = y0, y ∈ G ⊂ Rn.

(2.22)

For f and g, we take sufficiently smooth vector functions in x, y and t; the dots represent (smooth) higher-
order terms in ε.

a. We assume that a unique solution of the initial value problem exists and suppose this holds also for the
reduced problem 

dx

dτ
=f(x, y, τ), x(0) = x0,

0 =g(x, y, τ),
(2.23)

with solution x̄(τ), ȳ(τ).

b. Suppose that 0 = g(x, y, τ) is solved by ȳ = φ(x, τ), where φ(x, τ) is a continuous function and an
isolated root, i.e. there exists a neighbor of φ(x, τ) such that there is no other solution for 0 = g(x, y, τ)
in this vicinity. Also, suppose that ȳ = φ(x, t) is an asymptotically stable solution 2 of the equation

2Recall that the solution ȳ = φ(x, τ) is asymptotically stable if for each τ0 > 0, a δ(τ0) can be found such that: ‖y0−φ(x, τ0)‖ ≤
δ(τ0) yields lim

τ→∞
‖y(τ ; τ0, x0)− φ(x, τ)‖ = 0.
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3 INTEGRATING MANY PERTURBATIONS IN THE SLOW-FAST APPROXIMATION

dy

dt
= g(x, y, τ), where τ = εt, that is uniform in the parameters x ∈ D and t ∈ R+.

c. y(0) is contained in an interior subset of the domain of attraction of ȳ = φ(x, τ) in the case of the
parameter values x = x(0), τ = 0.

Then, we have
lim
ε→0

xε(τ) =x̄(τ), 0 ≤ τ ≤ T,

lim
ε→0

yε(τ) =ȳ(τ), 0 < τ0 ≤ τ ≤ T,
(2.24)

with τ0 and T are constants independent of ε.

Beside, it needs to use another result that allows us to approximate the original system by the slow-fast
form. The following error estimate gives a more precise description of these limits. (theorem 9.1, [34] adapted
here for the simple case m = 0).

Theorem 3. [see [34]] Consider the initial value problem

dx

dt
= f0(t, x) + εR(t, x, ε) (2.25)

with x(t0) = η and |t− t0| ≤ h, x ∈ D ⊂ Rn, 0 ≤ ε ≤ ε0. Assume that in this domain we have

a. f(t, x) continuous in t and x, 2 times continuously differentiable in x;

b. R(t, x, ε) continuous in t, x and ε, Lipschitz-continuous in x.

Let x0(t) be the solution of
dx

dt
= f0(t, x) (2.26)

with x0(t0) = η Let T > 0 and assume that both x and x0 are defined on [0, T ] for any ε ∈ (0, ε0). There exist
C > 0 (depending on T ) such that for any ε ∈ (0, ε0), and t ∈ (0, T ), we have the estimate

‖x(t)− x0(t)‖ ≤ Cε (2.27)

3 Integrating many perturbations in the slow-fast approximation

3.1 Steps for application of Tikhonov’s theorem in our system

Next we develop a lemma showing allowing to linearly combine all the relevant simple cases directly into the
slow equation. For this purpose, we use the following notations in system (2.5).

βi = β (1 + χ1εbi) ; γi = γ (1 + χ2ενi) ; γij = γ (1 + χ3εuij) ;

psij =
1

2
+ χ4εω

s
ij s ∈ {i, j}

(
ωiij + ωjij = 0

)
; kij = k + χ5εαij ;

(3.1)

where χd ∈ {0, 1} for d = 1, 2, 3, 4, 5.

Any combination of trait variation among strains, can be captured via A where A is a subset of {1, 2, 3, 4, 5}
denoting the absence/presence of perturbations in that parameter among strains: for some fixed initial values
given, let CA be the system (2.5) with χd = 1 if d ∈ A and χd = 0 if d /∈ A. For simplicity, we note also C{d}
by Cd for d ∈ {1, 2, 3, 4, 5}.

Remark 4. If A = ∅ then there is no perturbation and the system C∅ is exactly the neutral model (2.7). If
A = {5} then C5 is the system with perturbation on the co-colonization interaction parameters kij only, that
has been studied in [15, 16, 26].

In order to capture all the perturbations of order 1 in the equation of the zi we need these additional
changes of variables:

S(t) = S∗ − εX(t) +O(ε2); T (t) = T ∗ + εX(t) +O(ε2); I(t) = I∗ + εY (t) +O(ε2). (3.2)

8



3 INTEGRATING MANY PERTURBATIONS IN THE SLOW-FAST APPROXIMATION

where S∗, T ∗ and I∗ are defined in (2.12), and for i = 1, · · · , N :

Li(t) =
1

2

N∑
j=1

(uijIij(t) + ujiIji(t)) . (3.3)

With these notations, CA reads

dX

dt
=− βT ∗X + χ1βS

∗
N∑
i=1

biJi − χ2γ

N∑
i=1

νiIi − χ3γ

N∑
i=1

Li +O(ε)

dY

dt
=β(S∗ − T ∗ − kI∗)X − (m+ βkT ∗)Y + χ1β(S∗ − kI∗)

N∑
i=1

biJi − χ2γ

N∑
i=1

νiIi − χ5β

N∑
i,j=1

αijIiJj +O(ε)

dLi
dt

=−mLi + χ3
1

2
βγkIi

N∑
j=1

uijJj + χ3
1

2
βγkJi

N∑
j=1

ujiIj +O (ε)

(3.4)
together with (we omit terms of O

(
ε2
)
)

d

dt

(
Ii
Ji

)
= A

(
Ii
Ji

)
− εβ

(
k 1
k
2 1

)(
Ii
Ji

)
X + ε

βk

2

(
0 0
0 1

)(
Ii
Ji

)
Y + εMA

(
Ii
Ji

)
− εχ3

(
0
Li

)
(3.5)

where A is defined in (2.13) and MA is the matrix −χ1βk
N∑
i=1

biJi − χ2γνi − χ5β
N∑
j=1

αijJj χ1βbiS
∗

β
N∑
j=1

(
χ4kω

i
ij − χ5

αij

2

)
Jj − χ1β

k
2

N∑
i=1

biJi − χ2γνi χ1βbi

(
S∗ + kI∗

2

)
+ β

N∑
j=1

(
χ4kω

i
ji + χ5

αji

2

)
Ij

 (3.6)

In order to apply the Theorem (2), we rewrite system CA using the changes of variables detailed in (2.14).
Let us note

L = (Li)i, v = (vi)i, z = (zi)i,

and −ξ = −(m+ βkT ∗) +
βkI∗

2
< 0. The system CA reads now as the slow-fast form



dX

dt
=− βT ∗X + χ1F

1
X (v, z) + χ2F

2
X (v, z) + χ3F

3
X (L) +O(ε)

dY

dt
=β(S∗ − T ∗ − kI∗)X − (m+ βkT ∗)Y + χ1F

1
Y (v, z) + χ2F

2
Y (v, z) + χ5F

5
Y (v, z) +O(ε)

dLi
dt

=−mLi + χ3FLi
(v, z) +O (ε)

dvi
dt

=− ξvi +O(ε)

dzi
dt

=ε (Fzi(X,Y,L,v, z) +O(ε))

(3.7)

wherein we have replaced Ii and Ji by vi and zi though the change of variable (2.14), that is:(
Ii
Ji

)
= P

(
vi
zi

)
with P =

(
2T ∗ I∗

D∗ T ∗

)
.

For i = 1, · · · , N , the functions F iX , F iY and FLi
are obviously deduced from the right term of (3.4) and are

linear in theirs variables, X,Y and L respectively. The function F 4
Y is quadratic in (v, z). Finally, Fzi is given

by the second line of the right term of (3.6) after the linear change of variables (2.14):

Fzi (X,Y,L,v, z) =
(
0 1

)
P−1

(
β

(−k −1

−k
2
−1

)
X +

βk

2

(
0 0
0 1

)
Y +MA

)
P

(
vi
zi

)
+
(
0 1

)
P−1χ3γ

(
0
Li

)
.

(3.8)
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3 INTEGRATING MANY PERTURBATIONS IN THE SLOW-FAST APPROXIMATION

The next step is to change the time scale. Taking τ = εt in (3.7) we obtain3 the following system which is
equivalent to (3.7) but in the slow motion τ .

ε
dX

dτ
=− βT ∗X + χ1F

1
X (v, z) + χ2F

2
X (v, z) + χ3F

3
X (L) +O(ε)

ε
dY

dτ
=β(S∗ − T ∗ − kI∗)X − (m+ βkT ∗)Y + χ1F

1
Y (v, z) + χ2F

2
Y (v, z) + χ5F

5
Y (v, z) +O(ε)

ε
dLi
dτ

=−mLi + χ3FLi (v, z) +O (ε)

ε
dvi
dτ

=− ξvi +O(ε)

dzi
dτ

=Fzi(X,Y,L,v, z) +O(ε)

(3.9)

Using the notation of the Theorem 2, we see that the fast variables is y(τ) = (X,Y,L,v) and the slow variable
is x(τ) = z(τ). The first step in applying the Tikhonov theorem is to take ε = 0 in (3.9) and to show that
the fast variable converge to an attractor φ(z) which is parametrized by the slow variable.

Lemma 5. Let ε = 0 in (3.9). Then there exist a function Φ(z) = (X∗(z), Y ∗(z), χ3L
∗(z), 0) such that the

solution (X,Y,L,v, z) of (3.7) with any initial condition

(X,Y,L,v, z)(0) = (X0, Y0,L0,v0, z0) ∈ R× R× Rn × Rn × Rn

verifies z(t) = z0 for all t ≥ 0 and
lim

t→+∞
(X,Y,L,v)(t) = Φ(z0).

Moreover, X∗ and Y ∗ are linear function of the χi.

Proof. Using the triangular structure of (3.9) the idea is to compute the limits step by step of v, L, X and Y
in this order. Here we make a quick formal computation by simply plugging the limits obtained at one step
into the equation of the next step. It is easy to verified that this computation is justified and we omit it here
for clarity.
Since (3.9) is equivalent to (3.7) but in the slow motion, we take ε = 0 in (3.7). We have directly z(t) = z0

for all t ≥ 0 and vi = e−ξtvi(0) → 0 asymptotically as t → +∞. Remark that taking vi = 0 in the others
equations leads to the simple change of variables : Ii = I∗zi and Ji = T ∗zi that we can plug in (3.4)-(3.5)-(3.6)
to simplify the explicit computations.
Now we have the following asymptotic limits

Li(t)→ χ3
1

m
FLi

(0, z0) = χ3L
∗
i (z0).

Denoting L∗ = (L∗i )i and plugging this into the equation of X we have:

X(t)→ − 1

βT ∗
(
χ1F

1
X (0, z0) + χ2F

2
X (0, z0) + χ3F

3
X (χ3L

∗(z0))
)

= X∗(z0).

Remark that by linearity of the F iX and the fact that χ2
d = χd for each d, we have the simpler formula

X∗(z0) = − 1

βT ∗
(
χ1F

1
X (0, z0) + χ2F

2
X (0, z0) + χ3F

3
X (L∗(z0))

)
. (3.10)

Finally, using the same arguments we get
Y (t)→ Y ∗(z0)

wherein we have note

Y ∗(z0) =
1

m+ βkT ∗
(
β(S∗ − T ∗ − kI∗)X∗(z0) + χ1F

1
Y (0, z0) + χ2F

2
Y (0, z0) + χ5F

5
Y (0, z0)

)
.

3We use the usual notation abuse. Rigorously speaking, we have to define X̃(τ) = X
(
τ
ε

)
and the same for each variables.

Here we remove the˜for simplicity.
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3 INTEGRATING MANY PERTURBATIONS IN THE SLOW-FAST APPROXIMATION

Now, we take ε = 0 in (3.9) and we fixe

(X,Y,L,v)(τ) = Φ(z(τ)). (3.11)

Then the 2 + 2N first equations are satisfied and the N last equations give the slow system

dzi
dτ

= Fzi(X
∗(z), Y ∗(z),L∗(z), 0, z). (3.12)

It’s important to note that, since v = 0 (3.12) then (2.14) gives
∑N
i=1 zi = 1 by the formula Ii = I∗zi. Hence

zi reflects the frequency of strain i for all i. Remark that we have also Ji = T ∗zi.
The Theorem 2 imply that the solutions of (3.12) together with (3.11) gives a good approximation of the
original system (3.9) for a small enough but positive ε. Coming back to the original variables of the SIS
system, we deduce the following result on error estimate, whose proof will be given in section 4.5.

Lemma 6. Let T > 0 be fixed. There exists ε0 > 0 and CT > 0 such that for any ε ∈ (0, ε0) we have for any
solution of (S, (Ii)i, (Iij)ij)i,j of (2.1) and (zi)i of (3.12)

∣∣∣S (τ
ε

)
− S∗

∣∣∣+

N∑
i=1

∣∣∣Ii (τ
ε

)
− I∗zi(τ)

∣∣∣+

N∑
i,j=1

∣∣∣∣Iij (τε )− k I∗T ∗S∗
zi (τ) zj (τ)

∣∣∣∣ ≤ εCT , (3.13)

Proof. See section 4.5.

It remains to compute explicitly the slow system (3.12). The following lemma shows that it suffices to
compute independently the system for each perturbation, that is A = {d} for d ∈ {1, 2, 3, 4, 5}. The case of a
general A is simply a sum over simple cases thanks to the following result.

Lemma 7. Let A ⊂ {1, · · · , 5}. Recall that χd = 1 if d ∈ A and χd = 0 if d /∈ A. The functions Fzi for
i = 1, · · · , N in (3.12) read

Fzi(X
∗(z), Y ∗(z),L∗(z), 0, z) =

5∑
d=1

χdzif
d
zi (z) ,

where the functions fdzi do not depend on χd.
In particular, if A = {d} for some d ∈ {1, 2, 3, 4, 5}, then

Fzi(X
∗(z), Y ∗(z),L∗(z), 0, z) = zif

d
zi (z) .

Proof. Taking vi = 0 in (3.8) we see that there is two constant CX and CY such that

Fzi(X
∗(z), Y ∗(z),L∗(z), 0, z) = zi

(
CXX

∗(z),+CY Y
∗(z) +

(
0 1

)
PMAP−1

(
0
1

))
+
(
0 1

)
χ3γP

−1

(
0

L∗i (z)

)
.

Firstly, as it is shown in the proof of the lemma 5, the expression of X∗ and Y ∗ are both a linear combination
of the χd.

Secondly, recalling that we have at this step Ii = I∗zi, Ji = T ∗zi, L = χ3L
∗ and, in particular, χ2

3 = χ3.
Plugging this in (3.7), we see that the matrix MA is also a linear combination of the χd :

MA =
∑
d∈A

M{d} =
∑

d∈{1,2,3,4,5}

χdMd.

denoting md (z) =
(
0 1

)
P−1M{d}P

(
0
1

)
, this yields to:

(
0 1

)
P−1MAP

(
0
1

)
=

∑
d∈{1,2,3,4,5}

χdmd (z) . (3.14)

Thirdly, plugging Ii = I∗zi and Ji = T ∗zi, for all i in (3.4) we prove that

L∗i (z) =
1

2m
βkI∗T ∗zi

N∑
j=1

(uij + uji) zj .

Actually, this value L∗ (z) is exact as in (4.23) computed in section 4.3.
The result follows directly from the three previous points.

In the next section 4, these functions fdzi are explicitly computed for any d.
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3 INTEGRATING MANY PERTURBATIONS IN THE SLOW-FAST APPROXIMATION

3.2 Main Results

In the earlier study [26] we computed the slow dynamics for A = {5}, that is for perturbation in kij = k+εαij
only, i.e. for strains varying only in their co-colonization susceptibility interactions. We found that the slow
system obeys a replicator equation which has the from

żi = Θzi
(
(Λz)i − zTΛz

)
, i = 1, · · · , N,

N∑
i=1

zi = 1
(3.15)

where Θ is a positive constant depending on the parameters of the neutral system and Λ =
(
λji

)
i,j

is the

N ×N matrix of pairwise invasion fitness among strains where the term of line i and column j was

λji =
I∗

D∗
(αji − αij) + (αji − αjj) .

In this present article, we show that the system (3.15) is true for any type of perturbation. The change is
that the constant Θ and the pairwise fitness λji depend on the multiple trait variations which occur in the

system. From the Lemma 7, we infer in particular that the λji are just a linear combination of the different
perturbations. This implies that the pairwise invasion fitness between any two strains is an explicit weighted
sum over all fitness dimensions where the two strains vary. More precisely, the main result of this article is
as follows.
Let A ⊂ {1, 2, 3, 4, 5}. Using the notations in the previous section, we prove in the 4 that (3.12) reads.

dzi
dτ

= Θ1zi

bi − N∑
j=1

bjzj

+ Θ2zi

−νi +

N∑
j=1

νjzj

+ Θ3zi

− N∑
j=1

(uij + uji)zj +

N∑
j,l=1

(ujl + ulj)zlzj


+ Θ4zi

 N∑
j=1

(ωiij − ω
j
ji)zj

+ Θ5zi

 N∑
j=1

(
T ∗

D∗
αji −

I∗

D∗
αij

)
zj −

N∑
j,l=1

αjlzjzl


(3.16)

where

Θ1 = χ1
2βS∗T ∗2

|P |
, Θ2 = χ2

γI∗ (I∗ + T ∗)

|P |
, Θ3 = χ3

γT ∗D∗

|P |
, Θ4 = χ4

2mT ∗D∗

|P |
, Θ5 = χ5

βT ∗I∗D∗

|P |
.

(3.17)

Naturally, if A = ∅, (3.16) becomes simply
dzi
dτ

= 0. Otherwise, if A 6= ∅, it is useful to rewrite (3.16) using

the pairwise invasion fitness between strains in (3.15). Define

Θ = Θ1 + Θ2 + Θ3 + Θ4 + Θ5 and θi =
Θi

Θ
. (3.18)

we see that θi ≥ 0 for each i = 1, 2, 3, 4, 5 and θ1 + θ2 + θ3 + θ4 + θ5 = 1. For completeness, if A = ∅ then we
set Θ = 1. Using these notations, we obtain our main result.

Theorem 8. Consider the system of equations{
żi = Θzi

(
(Λz)i − zTΛz

)
, i = 1, · · · , N,

z1 + z2 + · · ·+ zN = 1.
(3.19)

where Λ is the square matrix of size N × N whose coefficients (i; j) are the pairwise invasion fitnesses λji
which satisfy

λji = θ1 (bi − bj) + θ2 (−νi + νj) + θ3 (−uij − uji + 2ujj)

+ θ4

(
ωiij − ω

j
ji

)
+ θ5 (µ (αji − αij) + αji − αjj) .

(3.20)

with µ =
I∗

D∗
.

Then, for any initial values of (2.1), for each τ0 > 0, T > τ0 arbitrarily and independent on ε, there is ε0 > 0,

C > 0 and a vector of positive coefficients z0 ∈ RN verifying
∑N
i=1 z0,i = 1, such that ∀ε < ε0∣∣∣S (τ

ε

)
− S∗

∣∣∣+

N∑
i=1

∣∣∣Ii (τ
ε

)
− I∗zi(τ)

∣∣∣+

N∑
i,j=1

∣∣∣∣Iij (τε )− k I∗T ∗S∗
zi(τ)zj(τ)

∣∣∣∣ ≤ εC, ∀τ ∈ (τ0, T ) . (3.21)
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4 PROOFS AND EXPLICIT COMPUTATIONS

where S, (I1, I2, . . . , IN ), (Iij)i,j∈{1,...,N} is the solution of (2.1) and (z1, z2, . . . , zN ) is the solution of reduced

system (3.19) together with z(0) = z0.

This system (3.19) is a general replicator system, which is studied in [21].
We have two remarks on λji in (3.20). The first is that, each coefficient θi, i ∈ {1, 2, 3, 4, 5} measures

the weight of each trait perturbation on pairwise invasion fitness. Thus, each λji is a weighted average of
the perturbations. Secondly, the pairwise invasion fitnesses play an important role in predicting collective
dynamics, since λji is the pairwise invasion fitness between strains i and j, describing the quantitative initial
growth rate of i invading an equilibrium set by j alone. In a 2-strain system, recall the final outcome results
depend on the signs of the these mutual coefficients between the strains (Table 2), mentioned and used in
[15, 16, 26].

Table 2: From 2-strain invasion dynamics to collective multi-strain dynamics. Each pair of strains
in the system falls in one of 4 classes, according to λ2

1 and λ1
2 in (3.19): either competitive exclusion of 1, com-

petitive exclusion of 2, coexistence, or bistability. The N -strain mutual invasion network drives competitive
dynamics over long time.

Mutual invasion
(
λ2

1, λ
1
2

)
Pairwise Outcome N -strain network Strain freq.

(+,+) Stable coexistence

żi = Θzi
(
(Λz)i − zTΛz

)(+,−) Exclusion of type 1

i = 1...N
(−,+) Exclusion of type 2
(−,−) Bistability

λji = θ1 (bi − bj) + θ2 (−νi + νj) + θ3 (−uij − uji + 2ujj) + θ4

(
ωiij − ω

j
ji

)
+ θ5 (µ (αji − αij) + αji − αjj)

In the next section, we present explicitly all the necessary computations and we also prove the lemma for
the error estimate 6.

4 Proofs and explicit computations

Initially, let us recall the following definitions.

• S: total proportion of susceptible hosts

• T : the total proportion of infected hosts (prevalence of colonization)

• Ii: the proportion of hosts singly-colonized by strain-i

• Iij : the proportion of hosts co-colonized by strain-i then strain-j (Including Iii).

4.1 A = {1}. Perturbations only in transmission rates βi

Here we compute the functions f1
zi . In (3.7), take ε = 0, χ1 = 1 and χd = 0 for d > 1. It comes

dX

dt
=− βT ∗X + F 1

X (v, z)

dY

dt
=β(S∗ − T ∗ − kI∗)X − (m+ βkT ∗)Y + F 1

Y (v, z)

dLi
dt

=−mLi
dvi
dt

=− ξvi
dzi
dt

=0

(4.1)

Following the notation of the lemma 5, we obtain that the solution (X,Y,L,v, z) of (4.1) with the initial

condition (X,Y,L,v, z)(0) = (X0, Y0,L0,v0, z0) ∈ R× R× (Rn)
3

verifies

lim
t→+∞

(X,Y,L,v)(t) = (X∗(z0), Y ∗(z0), 0, 0) .
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4 PROOFS AND EXPLICIT COMPUTATIONS

for some functions X∗(z) and Y ∗(z) which remains to be compute.
Replacing L and v by 0 in the two first equation of (4.1) yields

dX

dt
=− βT ∗X + F 1

X (0, z)

dY

dt
=β(S∗ − T ∗ − kI∗)X − (m+ βkT ∗)Y + F 1

Y (0, z)

(4.2)

Note that v = 0 implies that the change of variables (2.13) reads simply

Ii = I∗zi, Ji = T ∗zi.

The quantities F 1
X (0, z) and F 1

Y (0, z) are then easily deducting from (3.4)

F 1
X (0, z) = βS∗T ∗

N∑
i=1

bjzj , F 1
Y (0, z) = β (S∗ − kI∗)T ∗

N∑
i=1

bjzj . (4.3)

Plugging this in (4.2), we obtain

X∗(z) = S∗
N∑
i=1

bjzj

and then

Y ∗(z) = β · S
∗2 − kI∗S∗ − kI∗T ∗

m+ βkT ∗

N∑
i=1

bjzj = β · S
∗2 − kI∗

m+ βkT ∗

N∑
i=1

bjzj .

Now, (3.8) with the notation of the lemma 7 gives

f1
zi(z) =− β

|P |

(
kI∗2 − T ∗D∗ + 2T ∗2

)
S∗

N∑
i=1

bjzj +
β

|P |
βkT ∗2

m+ βkT ∗

(
S∗2 − kI∗

) N∑
i=1

bjzj

− β

|P |

(
kI∗2T ∗

N∑
i=1

bjzj + biD
∗T ∗S∗ − 2biT

∗2S∗ − kbiT ∗2I∗
)
.

(4.4)

Denote
G =−D∗T ∗S∗ + 2T ∗2S∗ + kT ∗2I∗

H =−
(
kI∗2 − T ∗D∗ + 2T ∗2

)
S∗ +D∗

(
S∗2 − kI∗

)
− kI∗2T ∗

(4.5)

then G = −H = 2T ∗2S∗ > 0, by straightforward computations. Setting Θ1 =
2βT ∗2S∗

|P |
> 0, we have

f1
zi(z) = Θ1

bi − N∑
j=1

bjzj

 . (4.6)

It follows that the slow system (3.12) reads

dzi
dτ

= Θ1zi

bi − N∑
j=1

bjzj

 , 1 ≤ i ≤ N. (4.7)

Now we will show the simple computations showing that this system is exactly on the form of the replicator

equation (3.19). It is clear that the set
{

z ∈ [0, 1]N ,
∑N
i=1 zi = 1

}
, is conserved for (4.7). Hence, (4.6) may

be rewrite as

f1
zi(z) = Θ1

 N∑
j=1

(bi − bj)zj

 . (4.8)

Denoting pairwise invasion fitness between strains i and j, i invading in an equilibrium set by j, λji = (bi−bj)
and Λ = (λji ), we have

f1
zi(z) = Θ1 (Λz)i . (4.9)

Finally, from ΛT = −Λ we see that zTΛz = 0 which leads to the (artificial) representation of (4.7) :

dzi
dτ

= Θ1zi
(
(Λz)i − zTΛz

)
, 1 ≤ i ≤ N. (4.10)

which is nothing but the slow system (3.19) with λji = bi − bj .
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4 PROOFS AND EXPLICIT COMPUTATIONS

4.2 A = {2}. Perturbations only in clearance rates of single colonization γi

Similarly to the case A = {1}, we compute the functions f2
zi . In (3.7), take ε = 0, χ2 = 1 and χd = 0 for

d 6= 2. It comes 

dX

dt
=− βT ∗X + F 2

X (v, z)

dY

dt
=β(S∗ − T ∗ − kI∗)X − (m+ βkT ∗)Y + F 2

Y (v, z)

dLi
dt

=−mLi
dvi
dt

=− ξvi
dzi
dt

=0

(4.11)

Following the notation of the lemma 7, we obtain that the solution (X,Y,L,v, z) of (4.11) with the initial

condition (X,Y,L,v, z)(0) = (X0, Y0,L0,v0, z0) ∈ R× R× (Rn)
3

verifies

lim
t→+∞

(X,Y,L,v)(t) = (X∗(z0), Y ∗(z0), 0, 0) .

for some functions X∗(z) and Y ∗(z) which remains to be compute.
Replacing L, K and v by 0 in the two first equation of (4.11) yields

dX

dt
=− βT ∗X + F 2

X (0, z)

dY

dt
=β(S∗ − T ∗ − kI∗)X − (m+ βkT ∗)Y + F 2

Y (0, z)

(4.12)

The quantities F 2
X (0, z) and F 2

Y (0, z) are then easily deducting from (3.4)

F 2
X (0, z) = −γI∗

N∑
i=1

νizi, F 2
Y (0, z) = −γI∗

N∑
i=1

νizi. (4.13)

Plugging this in (4.12), we obtain

X∗(z) = − γI∗

β2T ∗

N∑
i=1

νizi

and then

Y ∗(z) =
γI∗(kI∗ − S∗)
T ∗(m+ βkT ∗)

N∑
i=1

νizi.

Now, (3.8) with the notation of the lemma 7 gives

f2
zi(z) =

γ

|P |

−νiI∗(I∗ + T ∗) +
I∗ (kI∗T ∗ −D∗ + 2T ∗)

T ∗

N∑
j=1

νjzj

 . (4.14)

By straightforward computations we can verify that

(−kI∗T ∗ +D∗ − 2T ∗) + T ∗(I∗ + T ∗) = 0. (4.15)

Setting Θ2 =
γI∗ (I∗ + T ∗)

|P |
> 0, we have

f2
zi(z) = Θ2

−νi +

N∑
j=1

νjzj

 . (4.16)

It follows that the slow system (3.12) reads

dzi
dτ

= Θ2zi

−νi +

N∑
j=1

νjzj

 , 1 ≤ i ≤ N. (4.17)
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4 PROOFS AND EXPLICIT COMPUTATIONS

By the same arguments in section 4.1, we can show the simple computations showing that this system is
exactly on the form of the replicator equation (3.19). Denoting the pairwise invasion fitness

λji = (−νi + νj)

and Λ = (λji ), we have
f2
zi(z) = Θ2 (Λz)i . (4.18)

Finally, from ΛT = −Λ we see that zTΛz = 0 which leads to the (artificial) representation of (4.17) :

dzi
dτ

= Θ2zi
(
(Λz)i − zTΛz

)
, 1 ≤ i ≤ N. (4.19)

which is nothing but slow system (3.19) with λji = −νi + νj .

4.3 A = {3}. Perturbations only in clearance rates of co-colonization γij

Similarly to the case A = {1}, we compute the functions f3
zi . In (3.7), take ε = 0, χ3 = 1 and χd = 0 for

d 6= 3. It comes 

dX

dt
=− βT ∗X + F 3

X (L)

dY

dt
=β(S∗ − T ∗ − kI∗)X − (m+ βkT ∗)Y

dLi
dt

=−mLi + FLi
(v, z)

dvi
dt

=− ξvi
dzi
dt

=0

(4.20)

Following the notation of the lemma 7, we obtain that the solution (X,Y,L,v, z) of (4.20) with the initial

condition (X,Y,L,v, z)(0) = (X0, Y0,L0,v0, z0) ∈ R× R× (Rn)
3

verifies

lim
t→+∞

(X,Y,L,v)(t) = (X∗(z0), Y ∗(z0),L∗(z0), 0, 0) .

for some functions X∗(z), Y ∗(z) and L∗(z0) which remains to be compute.
Replacing v by 0 in the two first equation of (4.20) yields

dX

dt
=− βT ∗X + F 3

X (L)

dY

dt
=β(S∗ − T ∗ − kI∗)X − (m+ βkT ∗)Y

dLi
dt

=−mLi + FLi (0, z)

(4.21)

The quantities FLi
(0, z) and F 3

X (L) are then easily deducting from (3.4).

F 3
X (L) = −γ

N∑
i=1

Li, FLi (0, z) =
1

2
βkI∗T ∗zi

N∑
j=1

(uij + uji) zj . (4.22)

Plugging this in (4.21), we obtain

Li
∗(z) =

1

2m
βkI∗T ∗zi

N∑
j=1

(uij + uji) zj , (4.23)

then we deduce that

X∗(z) = −γkI
∗

2m

N∑
i,j=1

(uij + uji)zizj

and

Y ∗(z) = −βγkI
∗(S∗ − T ∗ − kI∗)

2m(m+ βkT ∗)

N∑
i,j=1

(uij + uji)zizj .
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4 PROOFS AND EXPLICIT COMPUTATIONS

Now, (3.8) with the notation of the lemma 7 gives

f3
zi(z) =

γ

|P |

βkI∗T ∗2
m

N∑
j,l=1

(ujl − ulj)zlzj +
βkI∗T ∗2

m

N∑
j=1

(uij + uji)zj

 . (4.24)

It’s trivial to see that
βkI∗T ∗2

m
= T ∗D∗. Setting Θ3 =

γT ∗D∗

|P |
> 0, we have

f3
zi(z) = Θ3

− N∑
j=1

(uij + uji)zj +

N∑
j,l=1

(ujl + ulj)zlzj

 . (4.25)

It follows that the slow system (3.12) reads

dzi
dτ

= Θ3zi

− N∑
j=1

(uij + uji)zj +

N∑
j,l=1

(ujl + ulj)zlzj

 , 1 ≤ i ≤ N. (4.26)

By the same arguments in section 4.1, we can show the simple computations showing that this system is
exactly on the form of the replicator equation (3.19). Denoting pairwise invasion fitness

λji = −uij − uji + 2ujj

and Λ = (λji ), we have
f3
zi(z) = Θ3

(
(Λz)i − zTΛz

)
. (4.27)

Finally, we see the (artificial) representation of (4.26) :

dzi
dτ

= Θ3zi
(
(Λz)i − zTΛz

)
, 1 ≤ i ≤ N. (4.28)

which is nothing but replicator system (3.19) with λji = −uij − uji + 2ujj .

4.4 A = {4}. Perturbations only in transmission coefficients from mixed co-
colonization piij

Similarly to the case A = {1}, we compute the functions f4
zi . In (3.7), take ε = 0, χ4 = 1 and χd = 0 for

d 6= 4. It comes 

dX

dt
=− βT ∗X

dY

dt
=β(S∗ − T ∗ − kI∗)X − (m+ βkT ∗)Y

dLi
dt

=−mLi
dvi
dt

=− ξvi
dzi
dt

=0

(4.29)

Following the notation of the lemma 7, we obtain that the solution (X,Y,L,v, z) of (4.29) with the initial

condition (X,Y,L,v, z)(0) = (X0, Y0,L0,v0, z0) ∈ R× R× (Rn)
3

verifies

lim
t→+∞

(X,Y,L,v)(t) = (X∗(z0), Y ∗(z0), 0, 0) .

for some functions X∗(z) and Y ∗(z) which remains to be compute.
The two first equation of (4.29) reads

dX

dt
=− βT ∗X

dY

dt
=β(S∗ − T ∗ − kI∗)X − (m+ βkT ∗)Y

(4.30)
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4 PROOFS AND EXPLICIT COMPUTATIONS

So X∗(z0) = 0 and ,Y ∗(z0) = 0. Now, (3.8) with the notation of the lemma 7 gives

f4
zi(z) =

1

|P |

2(T ∗)2I∗βk

N∑
j=1

(ωiij + ωiji)zj

 . (4.31)

Note that 2βkT ∗2I∗ = 2mT ∗D∗. From ωiji = −ωjji we see that the slow system (3.12) reads

dzi
dτ

= Θ4zi

N∑
j=1

(
ωiij − ω

j
ji

)
zj , 1 ≤ i ≤ N (4.32)

with Θ4 =
2mT ∗D∗

|P |
.

Denote the N ×N matrix Ω = (ωiij)i,j and Λ = Ω− ΩT . We may rewrite this equation as

dzi
dτ

= Θ4zi ((Λz)i) , 1 ≤ i ≤ N. (4.33)

Finally, noting that Λ = −ΛT is skew symmetric, we have zTΛz = 0 so the slow equation reads

dzi
dτ

= Θ4zi
(
(Λz)i − zTΛz

)
, 1 ≤ i ≤ N. (4.34)

which is nothing but (3.19) with λji = ωiij − ω
j
ji.

Remark that, this system leads to family of closed trajectories of an odd number Ñ of persistent strains
but it is structurally unstable (except if Ñ = 1), see [9]. Hence, in this case A = {4} we need to compute
the term in ε2 in the expansion, which we do not do in this text. However, when there are perturbations in
other terms then the deviation in this trait conducts to interesting non trivial dynamics, which is shown in
sections 5.3 and 5.3.2. This is similar to the case of large µ with perturbation in co-colonization interaction
factor kij , i.e. A = {5}, see [16]. We find that for µ → 0 and random αij , we have a case of Generalized
Lotka-Volterra (GLV) dynamics with constant growth rates and random interactions. Meanwhile, if µ � 1,
dynamics converge to hyper-tournament dynamics studied by [4] for anti-symmetric matrix of interaction W
with Wij = ±1; and by [20] for the case in which all the eigenvalues of W + WT are negative.

4.5 Proof of lemma 6 of error estimate

Lemma 9. The solution (zi)i=1,...,N of the slow-fast form system (3.9) tends to the solution of the slow
system (3.12) as ε → 0 locally uniformly in time on [τ0, T ], with τ0 > 0, T > τ0 arbitrarily and independent
on ε.

Proof. It suffices to verify the conditions for Tikhonov’s theorem, see Theorem (2).
• Firstly, we prove that (3.9) with initial values possesses the unique solution.
The system (3.9) with initial values can be rewritten into

dx

dτ
= f(x), x(0) = x0, (4.35)

where x = (X,Y,L,v, z), then x(τ) ∈ R3N+2. We note that the function f of (4.35) is a vector function
with all the components are polynomial of variables (X,Y,L,v, z) (explicitly computed in sections 2.4, 4.3
and 4.4)and we work in the bounded set [0, T ] of time where all the functions (X,Y,L,v, z) are differentiable.
Hence, f is global Lipschitz and the uniqueness of solution for (3.9) follows, according to the Picard-Lindelof
Theorem, see Theorem 2.2 in [31].
Implement analogously for (3.12), we acquire the same conclusion for the uniqueness of solution.

• Secondly, by the proof of lemma 5, we have that the solution (X,Y,L,v, z) of (3.7) with any initial condition

(X,Y,L,v, z)(0) = (X0, Y0,L0,v0, z0) ∈ R× R× (Rn)
3

verifies z(t) = z0 for all t ≥ 0 and
lim

t→+∞
(X,Y,L,v)(t) = Φ(z0)
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4 PROOFS AND EXPLICIT COMPUTATIONS

asymptotically, in which, Φ (z) = (X∗(z), Y ∗(z), χ3L
∗(z), 0) satisfy the system (3.9) in slow timescale, with

ε = 0 as follows
0 =− βT ∗X + χ1F

1
X (v, z) + χ2F

2
X (v, z) + χ3F

3
X (L) +O(ε)

0 =β(S∗ − T ∗ − kI∗)X − (m+ βkT ∗)Y + χ1F
1
Y (v, z) + χ2F

2
Y (v, z) + χ5F

5
Y (v, z)

0 =−mLi + χ3FLi (v, z)

0 =− ξvi

(4.36)

Applying Tikhonov’s Theorem, we have the required conclusion.

Let us now approximate the solution of the original dynamics (2.1) using the solution of slow-fast form
3.9, when ε is small enough.

Lemma 10. Under our assumptions, for any initial values of (2.1), there exists τ0 > 0 and initial value z (τ0)
of (3.9), such that for any T > τ0, there are ε0 > 0 and CT > 0 satisfies ∀ε < ε0

∣∣∣S (τ
ε

)
− S∗

∣∣∣+

N∑
i=1

∣∣∣I∗zi(τ)− Ii
(τ
ε

)∣∣∣+

N∑
i=1

∣∣∣T ∗zi(τ)− Ji
(τ
ε

)∣∣∣ ≤ εCT , (4.37)

for all τ0 ≤ τ ≤ T , where (S, Ii, Ji)i=1,...,N verifies (2.1) and (z1, . . . , zN ) is the solution of (3.9).

Proof. To prove this lemma, we make two steps, one is to prove the error estimate between S∗, T ∗, I∗ and
the solution (S, T, I) of (2.5), the other one is approximating the solutions of (2.5) using the solution of (3.9).

• First step, we wish to apply the Expansion Theorem 3. Note that, if (2.5) satisfies the conditions of
Theorem 3 because of the property of global Lipschitz, then it will also fulfill the conditions of the Picard-
Lindelof, see Theorem 2.2 in [31]. Thus, if that, for each initial value, (2.5) always has the unique solution.
Therefore, it’s suffices to verify the two conditions mentioned in Theorem 3, including the global Lipschitz
properties.

Denote x = (S, I1, I2, . . . , IN , J1, J2, . . . , JN ). By the extract of (2.5) for S, Ii, Ji, 1 ≤ i ≤ N , we write
the system for (S, T, Ii, Ji), i = 1, . . . , N in (2.5) into the following form

dx

dt
= f0(t, x) + εf1(t, x) (4.38)

and in any bounded domain |t− t0| ≤ h we have

1. f0(t, x) is continuous in t, continuously differentiable in x;

2. f1(t, x) continuous in t, x, Lipschitz-continuous in x.

According to this extraction, f0(t, x) and f1(t, x) are well-defined. Note that the function f0(t, x) has the
(fS(t, x), fI1(t, x), . . . , fIN (t, x), fJ1(t, x), . . . , fJN (t, x)) for fS , fIi , fJi are functions R2N+1 → R, for all
1 ≤ i ≤ N . The function f1(t, x) has the same form as well.
It’s easy to see that f0(t, x) is continuous in t, continuously differentiable in x and the function f1(t, x) contin-
uous in t, x. It remains to prove that f1(t, x) is Lipschitz-continuous in x in each bounded domain |t− t0| ≤ h,
for all h ∈ R+. Indeed, f1(t, x) is a polynomial in multi variables (S, T, Ii, Ji), i = 1, . . . , N , and note that
S + T = 1. In consequence, it is Lipschitz-continuous.

By the earlier arguments, if xr = (Sr, T r, Iri , J
r
i ) satisfies the neutral system (2.7) and x = (S, T, Ii, Ji)1≤i≤N

satisfying (2.5) then ‖x− xr‖R2N+2 = O(ε).

Therefore, note that I =
∑N
i=1 Ii, we deduce the solution of (2.5) can be approximated using neutral system.

Combine with the arguments in section 2.3, the approximation of solution (S, T, I) of (2.5) by (S∗, T ∗, I∗) is
accordingly plausible in the sense of O (ε). We have done our first step.

• Second step, we claim that all the algebraic and linear transformations from (2.5) to (3.9) are equiva-
lent with error estimate O (ε), including changing (S, T, I) to (X,Y ) using S∗, T ∗, I∗ (proved in the first

part), changing

(
Ii
Ji

)
to

(
vi
zi

)
(linear operator) and changing to time scale τ = εt with re-denote z (τ) (see
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4 PROOFS AND EXPLICIT COMPUTATIONS

argument in (3.9)). We follow the steps of the preceding proof, that are verifying the conditions, and using
Expansion Theorem 3 once again (note that v (τ)→ 0 asymptotically), we have that

N∑
i=1

∣∣∣I∗zi(τ)− Ii
(τ
ε

)∣∣∣+

N∑
i=1

∣∣∣T ∗zi(τ)− Ji
(τ
ε

)∣∣∣ = O (ε) ,

for all τ0 ≤ τ ≤ T , where (Ii, Ji)i=1,...,N verify (2.1) and (z1, . . . , zN ) is the solution of (3.9).

Combining two parts, we have the conclusion for this lemma.

By two lemmas 9 and 11, we have that

∣∣∣S (τ
ε

)
− S∗

∣∣∣+

N∑
i=1

∣∣∣I∗zi(τ)− Ii
(τ
ε

)∣∣∣+

N∑
i=1

∣∣∣T ∗zi(τ)− Ji
(τ
ε

)∣∣∣ ≤ εCT , (4.39)

for all τ0 ≤ τ ≤ T , where (S, Ii, Ji)i=1,...,N verifies (2.5) and (z1, . . . , zN ) is the solution of (3.12).

Finally, we will find an approximation of Iij , 1 ≤ i ≤ N and estimate the error. Indeed, according to (4.39),
we substitute Ii (t) by I∗zi (τ) +O(ε) and Jj (t) by T ∗zj (τ) in all of the equations for Iij (t), 1 ≤ i, j ≤ N we
have the equations

dIij (t)

dt
= βikij(I

∗zi (τ) +O(ε))(T ∗zj (τ) +O(ε))−mijIij (t) , 1 ≤ i, j ≤ N, (4.40)

which becomes
dIij (t)

dt
= −mIij + βkI∗T ∗zi (τ) zj (τ) +O(ε), 1 ≤ i, j ≤ N. (4.41)

Now we formulate and prove the result for approximations of Iij , 1 ≤ i, j ≤ N , then deduce the approximation
and error estimate for the whole initial system (2.1).

Lemma 11. Under our assumptions, for any initial values of (2.1), there exists τ0 > 0 and initial value z (τ0)
of (3.12), such that for any T > τ0, there is ε0 > 0 and CT > 0 satisfies ∀ε < ε0

N∑
i,j=1

∣∣∣∣Iij (τε )− k I∗T ∗S∗
zi (τ) zj (τ)

∣∣∣∣ ≤ εCT , (4.42)

for all τ0 ≤ τ ≤ T , (Iij)1≤i,j≤N satisfying (2.1) and (z1, . . . , zN ) is the solution of reduced system (3.12).

Proof. Assume
(
Irij
)

1≤i,j≤N to be the solution of

dIij (t)

dt
= −mIij (t) + βkI∗T ∗zi (εt) zj (εt) , (4.43)

1 ≤ i, j ≤ N . Then, for each τ0 > 0 and T > τ0, after the changing time scale τ = εt, we have
N∑

i,j=1

∣∣∣Iij (τ
ε

)
− Irij

(τ
ε

)∣∣∣ = O(ε) for any τ ∈ [τ0, T ]. Indeed, from (2.1) and (4.43), we have that

dIij
dt

(τ
ε

)
=−mijIij

(τ
ε

)
+ βjkijIi

(τ
ε

)
Jj

(τ
ε

)
dIrij
dt

(τ
ε

)
=−mIrij

(τ
ε

)
+ βkI∗T ∗zi (τ) zj (τ)

(4.44)

which implies

d

dt

(
Iij

(τ
ε

)
− Irij

(τ
ε

))
= −m

(
Iij

(τ
ε

)
− Irij

(τ
ε

))
−εγuijIij

(τ
ε

)
+
(
βjkijIi

(τ
ε

)
Jj

(τ
ε

)
− βkI∗T ∗zi (τ) zj (τ)

)
.

(4.45)

By lemma 10, we have that
∣∣∣βjkijIi (s

ε

)
Jj

(s
ε

)
− βkI∗T ∗zi(s)zj(s)

∣∣∣ = O(ε) uniformly for s ∈ [τ0, T ]. It is

trivial to note that, since |Iij | ≤ 1, εγuij

∣∣∣Iij (τ
ε

)∣∣∣ = O (ε). Then, for all 1 ≤ i, j ≤ N , using the expansion

theorem- Theorem 3, we observe that ∣∣∣Iij (τ
ε

)
− Irij

(τ
ε

)∣∣∣ = O(ε). (4.46)
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5 ILLUSTRATIONS OF THE MODEL AND INTERPRETATIONS

We then compute the solution
(
Irij
)

1≤i,j≤N of (4.43) to be

Irij (t) = e−mt
(
βkI∗T ∗

∫ t

0

emszi (εs) zj (εs) ds+ C

)
, C ∈ R. (4.47)

For any fixed time T and τ0 ≤ t ≤ T , when ε→ 0 we can regard zi (εt) invariant. Hence, for all 1 ≤ i, j ≤ N ,

we have

∣∣∣∣Irij (t)− k I
∗T ∗

S∗
zi (εt) zj (εt)

∣∣∣∣ = O (ε), which implies

∣∣∣∣Iij (τε )− k I∗T ∗S∗
zi (τ) zj (τ)

∣∣∣∣ = O (ε).

Combining Lemmas 9,10 and 11, we have the Lemma 6.

Thanks to this section, we now have the main result for the error estimate, that allows us to approximate the
solution of the original system (2.1) using the solution of slow system (3.19). The original system (2.1) now
formally reduces to the slow system (replicator system) (3.19), which leads to many advantages in analysis
and prediction. The massive number of equations in (2.1) now decreases from N2 +N + 1 to N equations of
(3.19), which helps in computation and time. Thus, we may not need to compute the whole original model
(2.1) to make prediction but only the replicator equations (3.19). The main result in section 3.2 also has bi-
ological meaning, when the coefficients of slow system (3.19) are pairwise invasion fitness, giving information
about survival outcome of 2-strain system as in table 2. Furthermore, λji ’s give us the meaning and effects of
each trait perturbation on the system and its long time behavior, which can not be seen directly in the (2.1).

5 Illustrations of the model and interpretations

In this section, we present some results and simulations about survival outcome of model based on the
replicator system (3.19). Initially, we recall the definition of basic reproduction ratio of strain i that is
the expected number of secondary cases produced by a single (typical) infection of strain i in a completely

susceptible population and computed by R0,i =
βi
mi

. If there is only variation in transmission rates among

strains, then R0,i’s fully determine the unique winner in the system. Yet, in cases of variation in transmission
and clearance rates, it can be shown that R0,i’s alone do not determine the survival outcome anymore because
of the feedbacks induced by persistence in the coinfection compartment. These phenomena are illustrated in
proofs and numerical simulations as follows in this section.

5.1 Competitive exclusion due to variation in transmission and infection clear-
ance rates only, A = {1}, A = {2}, and A = {1, 2}

5.1.1 Variation in transmission rate or infection clearance rates A = {1} or A = {2}

Now, we show the competitive exclusion principle in this case CA withA = {1}. In these cases, the competitive
exclusion principle holds: the species with the largest R0,i is the only survivor.

Theorem 12. Assume that A = {1} and b1 > b2 ≥ · · · ≥ bN . Then E1 = (1, 0, . . . , 0) is globally stable in

(0, 1)× [0, 1]N−1 ∩ {u ∈ RN :
∑N
i=1 zi = 1}.

This result means that, the strain with the largest basic reproduction number is the best competitor.
However, in general, this fact does not always occurs, which we will illustrate in later subsection.

Proof. For simplicity, denote D = (0, 1)× [0, 1]n−1 ∩ {u ∈ RN :
∑N
i=1 zi = 1}.

We aim to use LaSalle’s invariant principle. Consider V (u) = − ln z1. Since we are consider the coexistence
in D, then

dV (u)

dτ
= −Θ1

b1 − N∑
j=1

bjzj

 = −Θ1

b1 N∑
j=1

zj −
N∑
j=1

bjzj

 = −Θ1

N∑
j=1

(b1 − bj)zj . (5.1)

It’s straightforward that V (u) > 0 because 0 < z1 < 1 in D. Because of the assumption b1 = max{bi; 1 ≤ i ≤

N} then b1 − bj must be positive for all j 6= 1. Recall that Θ1 > 0 then,
dV (u)

dτ
≤ 0. We have that

dV (u)

dτ
= 0⇔ (b1 − bj)zj = 0, ∀j ⇔

{
zj =1, j = 1

zj =0, j 6= 1.
(5.2)

Thus, V (u) is a Lyapunov function associated to u (τ). Applying LaSalle’s invariant principle, we obtain our
solution u tends to E1 asymptotically.

21



5 ILLUSTRATIONS OF THE MODEL AND INTERPRETATIONS

Analogously, we have a similar result for A = {2}, that states that, the strain with smallest single infection
clearance rate (longest duration of carriage) is the unique survivor.

Theorem 13. Assume that A = {2} and ν1 < ν2 ≤ · · · ≤ νN . Then E1 = (1, 0, . . . , 0) is globally stable in

(0, 1)× [0, 1]N−1 ∩ {u ∈ RN :
∑N
i=1 zi = 1}.

The proof for this result uses the same argument in the theorem 12 so we do not present it.

5.1.2 Variation in transmission and single infection clearance rates, A = {1, 2}

In this subsection, it is shown that R0,i’s do not determine the unique survivor anymore when A = {1, 2} by
constructing a counterexample. Firstly, we need an auxiliary lemma. With system CA with A = {1, 2}, we
try to make a result similar to Theorem 12 about the longtime scenarios of competition for

dzi
dτ

= Θ1zi

(
bi −

N∑
i=1

bjzj

)
+ Θ2zi

(
−νi +

N∑
i=1

νjzj

)
z1 + z2 + · · ·+ zN = 1.

(5.3)

Recalling that Θ1,Θ2 > 0 by definitions, we can prove the following theorem stating that the competitive
exclusion occurs again but depends on the parameters of the neutral model though the quantity Θ1bj −Θ2νj
which characterizes the unique survivor. Note that this

Theorem 14. Assume in (5.3) with N strains, there exists a strain, namely 1, satisfies Θ1b1 − Θ2ν1 =
max

1≤j≤N
{Θ1bj − Θ2νj}. Then E1 = (1, 0, . . . , 0) is globally stable in D = (0, 1) × [0, 1]N−1 ∩ {u ∈ RN :∑N

i=1 zi = 1}.

Proof. Analogously to the earlier result in section 5.1, we want to apply LaSalle’s invariant principle. Consider
the function V (u) = − ln z1 then by our hypothesis, it’s easy to see that V (u) > 0 and

dV (u)

dτ
= −

N∑
j=1

(Θ1b1 −Θ2ν1 −Θ1bj + Θ2νj) zj ≤ 0. (5.4)

Hence, V (u) is an association Lyapunov function. The equation
dV (u)

dτ
= 0 is equivalent to{

[(Θ1bi −Θ2νi)− (Θ1bj −Θ2νj)] zj =0, 1 ≤ j ≤ N
z1 + z2 + · · ·+ zN =0

(5.5)

which is equivalent to (z1, z2, . . . , zN ) = (1, 0, . . . , 0). By LaSalle’s invariant, E1 is globally stable in D.

We next come to see how this result is used in the forthcoming examples. We then compare the results
with relations of R0,i to see how basic reproduction numbers affect the final competitive outcomes. Firstly,
with the perturbations existing in clearance rates, the R0,i now becomes

R0,i =
βi
mi

=
β + εbi
m+ ενi

=
β

m
(1 +

ε

β
bi)
(

1− ε

m
νi

)
+O(ε2), (5.6)

which is equivalent to R0,i =
β

m
+ ε

β

m

(
bi
β
− νi
m

)
+O(ε2).

Hence, note that R0 =
β

m
we have that R0,i ≤ R0,j if and only if bi − bj ≤ R0 (νi − νj) when ε→ 0.

Example 15. Consider the system (5.3).
Initially, we can directly apply Lemma 14 and infer that the strain, called 1, satisfying Θ1b1 − Θ2ν1 =
max

1≤j≤N
{Θ1bj −Θ2νj} will be the winner.

Yet, unlikely to such result in section 5.1, according to the explicit calculation on R0,i, we can construct
so that this strain 1 may not have the biggest basic reproduction number. Indeed, Θ1bi−Θ2νi ≥ Θ1bj−Θ2νj
is equivalent to

bi − bj ≥
1

2

γ

β
R0

1

1 + k (R0 − 1)

(
1

1 + k (R0 − 1)
+ 1

)
(νi − νj) . (5.7)
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We can choose bi, νi, 1 ≤ i ≤ n and γ > 0, r > 0, k > 0 and R0 > 1 such that for j 6= 1,b1 − bj ≥
1

2

γ

β
R0

1

1 + k (R0 − 1)

(
1

1 + k (R0 − 1)
+ 1

)
(ν1 − νj) ,

b1 − bj ≤ R0 (ν1 − νj) ,
(5.8)

then strain 1 has Θ1b1 −Θ2ν1 = max
1≤j≤N

{Θ1bj −Θ2νj} and R0,1 = min
1≤i≤N

{R0,i}.
It is possible because

1

2

γ

β
R0

1

1 + k (R0 − 1)

(
1

1 + k (R0 − 1)
+ 1

)
< R0

and we can pick, for instance, ν1 = max
1≤j≤N

{νj}, then easily find satisfactory bi, νi.

This example shows us that, even a strain i with smallest basic reproduction number R0,i can be the single
competitively exclusive strain if there is variation in both transmission and clearance rates in a system with
co-infection. Explicitly, the strain 1 is the only survivor but it has the smallest R0.

Hence, we can see that, even when there is competitive exclusion, R0,i alone still do not determine the
winner if there are perturbations in the transmission rates and clearance rates. More detailed consideration
of such effects and interplay between parameters for the 2-strain general system is provided in [27]. To close
this subsection, we present simulations in figure 2 of competitive exclusion to illustrate claims in sections 5.1.1
and 5.1.2. We choose the 10-strain system and plot frequencies of strains in two cases: perturbation in only
transmission rates βi; and, perturbation in transmission rates βi and in clearance rates of single colonization
γi.

Figure 2: Illustration of competitive exclusion dynamics for N = 10 when strains vary in transmission
and clearance rates. We choose the parameter values of the neutral system β = 4, m = 2, γ = 1 and k =
1.5. The variation of β is given by b =

(
b1 b2 . . . bN

)
and is set to be the equal in both cases and equals

b =
(
0.25 −0.2 0.125 −0.125 0.075 0.225 0.05 −0.5 −0.175 0

)
. The matrix of νi in (b) is chosen to be

ν =
(
1 0.8 −1.5 −0.5 0.3 −1 1.2 −2 0.7 −2

)
. (a) Strains vary only in transmission rates βi: A = {1}.

(b) Strains vary in transmission and clearance rates βi, γi: A = {1, 2}. We can see that competitive exclusion is the
only outcome in either case. However in (a) the strain with the highest reproduction number will persist while all
other strains will go extinct. In contrast, in (b) the coinfection parameters matter, and it is not true that the strain
with highest R0 will persist. In this example strain 10 has highest basic reproduction number but strain 6 is the
ultimate winner, because of its exact advantage in clearance rate (as explained in Example 15).(Data & Codes )

5.2 Variation in clearance rate of co-colonization may yield coexistence

5.2.1 Variation in clearance rate of co-colonization only, A = {3}

In this case, the very first claim about competitive outcomes of the system is that, in contrast to the above
cases A ⊂ {1, 2}, there can be coexistence of strains. Indeed, in this case the system can be rewritten on the
form of a replicator system with a symmetric matrices for which several results exists (see in particular [21]).
In particular we have :
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5 ILLUSTRATIONS OF THE MODEL AND INTERPRETATIONS

Theorem 16. Let A = {3} which means variation in coinfection clearance rates only. The system (3.19)
may be rewritten as {

żi = 2Θ3

(((
−Ū
)
z
)
i
− zT

(
−Ū
)
z
)
, 1 ≤ i ≤ N

z1 + · · ·+ zn = 1.

where the symmetric matrix Ū = 1
2

(
U + UT

)
is symmetric part of the matrix of perturbation U = (uij)1≤i,j≤N .

In particular, the function z 7→ zT Ūz is a strict Lyapunov function and any positive asymptotic equilibria z∗

are globally stable.

Proof. We refer here to the theorem 7.8.1 page 82 of [21] for the results about a replicator system with a
symmetric matrix A. Then we only have to prove that the system (3.19) may be rewritten in terms of the
symmetric matrix −Ū .
This comes from the following general fact in the replicator equation. Let x = (xj)1≤j≤N be a vector
and A = (aij)1≤i,j≤N and C = (cij)1≤i,j≤N be two N × N matrix such that cij = aij + xj . For every
z = (z1, · · · , zn) we have

(Cz)k − zTCz =

N∑
j=1

ckjzj −
∑
i,j

cijzjzi =

N∑
j=1

akjzj +

N∑
j=1

xjzj −
∑
i,j

aijzjzi −
∑
i,j

xjzjzi, 1 ≤ k ≤ N.

If
∑N
i=1 zi = 1 then

∑
i,j xjzjzi =

∑N
j=1 xjzj which yields

(Cz)k − zTCz = (Az)k − zTAz, 1 ≤ k ≤ N.
The proof follows from the explicit expression of (3.19) when A = {3} and by taking aij = 1

2λ
j
i = ujj −

1
2 (uij + uji), xj = −ujj and cij = − 1

2 (uij + uji).

Figure 3: Strain coexistence is possible when there is variation in coinfection clearance rate and the
speed of the dynamics depends on the parameters of the neutral model. Here, we illustrate coexistence
dynamics under the effect of k for k = 0.2 (a), k = 1 (b) and k = 5 (c). In the top sub-panels we show the dynamics
of 10 strain frequencies. We choose β = 4, and basic reproduction number R0 = 2. It can be seen that as k increases,
the system tends to its stable state faster. In figures (a, b, c), three strains 2, 4, 7 coexist after a long time. (Data
& Codes)

Two important features of the dynamics in the case A = {3} are:

• Large possibilities of stable coexistence steady states.

• The parameters of the neutral models affect only the speed of the dynamics, given by Θ3, but not the
qualitative behavior. The latter depends only on the symmetric part of the perturbation U = (uij).

For an illustration of this case, we take the following example.
We consider a system of N = 10 strains with A = {3}. In figure 3, we plot strains frequencies for multiple
values of k showing that the same coexistence equilibrium of 3 strains is achieved with a speed dependent on
k. Note that a similar effect would hold if we vary R0.

We note that the speed of the dynamics is given by

Θ3 =
γT ∗D∗

|P |
=

γT ∗

2T ∗ + S∗

k

(
1 + m

m+βkT∗

) ,
which increases with k. Thus, in this case, increasing k only multiplies whole matrix Λ by a factor, which
increases the speed of the convergence to the stable state of coexistence.
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5.2.2 Variation in transmission and coinfection clearance rates, A = {1, 3}

When A ⊂ {1, 2, 3}, the perturbations occur both on traits {1} and {2} leading on competitive exclusions and
on {3} leading on coexistence. Thus the relative weights of the perturbation, depending on the parameters
on the neutral model, will affect the qualitative outcomes of the dynamics among strains.

Hence, unlike in section 5.2.1, the qualitative behavior does not depend only on the pertubations bi, νi
and uij but also on the values of the parameters of the neutral model. A precise generic result is out of the
scope of this paper.
For simplicity, consider the case A = {1, 3}. From the formula λji = Θ1(bi − bj) + Θ3(−uij − uji + 2ujj), we
infer that the larger the ratio Θ3

Θ1
is the more chance a coexistence may happen. From

Θ3

Θ1
=
R0

2

γ
m
k + βT ∗

,

we see in particular that this ratio increases with k. This is illustrated in the figure 4. We see in this figure
that shifting k alters qualitatively the dynamics and the ultimate outcome among strains. In figure 4(a)
k = 0.1 and the only winner is strain 8, whereas for k = 1, figure 4(b), then the winners turn to strain 3 and
6. Finally, for k = 3, the outcome in figure 4 (c) is the coexistence of strains 2, 4 and 7.
Note that the short explanation above, gives only an overview of the phenomena and do not explain all the
details. For instance, we observe that the set of coexistent species depends on the value of k in a complex
maner.

Figure 4: The final ecological outcome can shift with changing vulnerability to coinfection, when strains
vary in transmission and coinfection clearance rates. We illustrate coexistence dynamics for k = 0.1 (a),
k = 1 (b), k = 3 (c). In the top sub-panels we show the dynamics of 10 strain frequencies. We choose β = 4,
R0 = 5 and γ = 0.5. We keep the initial values in 3 and the matrix of value’s bi as follows, in which bi is in cell
i-th

(
0 −0.2 0.125 −0.125 0.225 0.75 0.5 1.25 −0.175 0

)
. We plot for multiple values of k respectively

equal to 0.1, 1 and 3, to show effects of k to transient phenomena. It can be seen that as k increases, changes the
survival strains. (Data & Codes)

5.3 Variation in transmission probability from mixed carriage may lead to cycles
among strains.

In this subsections, we make simulations in which variation at least in transmission probability from mixed

carriage, 4 ∈ A. Despite of the antisymmetric matrix of pairwise invasion fitness Λ =
(
λji

)
i,j

as in cases

A = {1} and A = {2}, there are many long time behaviors that may occur in this case. In [9], one proves that
there can be coexistence with higher possibility than competitive exclusive of one strain. However, when there
are combinations with other trait perturbation, the outcome survival can shift due to neutral parameters,
which will be presented in the next subsections 5.3.1 and 5.3.2.

5.3.1 Variation in transmission rates and transmission probability from mixed carriage, A =
{1, 2, 4}

We make simulations when perturbations in transmission rates βi and transmission capacity of a strain by a
host co-colonized. From (3.19) when A ⊂ {1, 2, 4}, the equations for this case can be written as

dz

dτ
= z · (Λz)
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where anti-symmetric matrix Λ is the invasion fitness matrix with

Λji = Θ1 (bi − bj) + Θ2 (νj − νi) + Θ4

(
ωiij − ω

j
ji

)
.

this type of replicator equation is known as a zero sum games tournaments from which several results are
known (see [9]). In particular the set E of persistent strains is unique, regardless the initial values, and the
number of persistent strains is odd.

• If this odd number is 1, then the competitive exclusion principle occurs, as we saw above in the particular
case ∅ 6= A ⊂ {1, 2}.

• If this odd number is above 1, the system is conservative and structurally unstable: there is a family of
cycles around a single steady states of these strains E. This is possible thus the effect of a perturbation
in ωiij (i.e. 4 ∈ A).

As in the section 5.2.2, the parameters of the neutral models affect the relative weight of the pertubation
and therefore the type of outcomes.

In figure 5, we take A = {1, 4}. We have

Θ4

Θ1
=

k (R0 − 1)

1 + k (R0 − 1)
=

1

µ+ 1
.

Hence, changing µ =
1

k (R0 − 1)
shift the dynamics outcome. When µ = 0.6, i.e. small enough, makes

Θ1

Θ4

large yielding to a cycle of 3 persistent strains. Conversely, µ = 1.2 large enough leads to the competitive
exclusion.

Figure 5: The long time behavior can shift with changing the co-infection prevalence
(
µ = I

D

)
rate,

when strains vary in transmission rate and transmission coefficients from mixed carriage. We il-
lustrate coexistence dynamics for µ = 0.6 (a) and µ = 1.2 (b). We choose β = 3, γ = 1.2, R0 = 2 and
b =

(
0.3 −0.8 2.4 −0.5 0.9 2 1.2 1 −0.7 0.5

)
. It can be seen in this case that an increase in µ (re-

ducing co-infection prevalence), shifts the cycle of persistent strains in (a), to the competitive exclusion of strain
3-with biggest transmission rate βi in (b). (Data & Codes)

5.3.2 Variation in coinfection clearance rates and transmission probability from mixed car-
riage, A = {3, 4}

When there are perturbations in coinfection clearance rates and transmission probability from mixed carriage,
pairwise invasion fitness matrix Λ is not anti-symmetric anymore. The analysis of the sections 5.2.1 and 5.3.1

suggest that, depending on the ratio
Θ4

Θ3
, we may observe coexistence through stable steady states if

Θ4

Θ3
� 1

and through cycles if
Θ4

Θ3
� 1. We have the explicit formula

Θ4

Θ3
=

2m

γ
= 2

(
1 +

r

γ

)
,
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then, depending on the values of r and γ, we can have other interesting phenomena.
We make simulations for two cases of r, susceptible host recruitment rate. When r = 0.2 small enough, we
obtain the coexistence of 3 strains, that is structurally stable, although it oscillates in a first period of time.
When r = 3 large enough, the coexistence of strains becomes structurally unstable. It can be seen that, the
number of coexistent strains is 3, which is odd as mentioned.

Figure 6: The long time behavior can shift with changing neutral transmission rate, when strains vary
in transmission rate and transmission coefficients from mixed carriage. We illustrate coexistence dynamics
for r = 0.2 (a) and r = 3 (b). We choose k = 3, R0 = 2, γ = 1 and reuse the initial values in figure 3. As r increases,
the stable state coexistence of 3 strains in (a), shifts to the unstable trajectory of strains in (b). (Data & Codes)

5.4 Summary of multi-strain outcomes by studying the slow system

In general, when there are many traits varying among similar among similar strains, the long time behaviour
may lead to complex outcomes. However, in cases of single trait perturbations only A = {j} , the outcome is
often easier to understand.

• If j ∈ {1, 2, 3, 4} (the cases explored within this section), then we can proof or refer to existing result to
explore the dynamics. In particular, in these cases, the values of the pairwize fitness Λij do not depends
on the parameters of the neutral system and then
If A = {j} with j ∈ {1, 2, 3, 4} the qualitative outcome do not depends on the parameters of
the Neutral model.

• If j = 5 (perturbation in kij only) the outcomes is more complexe and an introduction to the phenomena
is given in [16]. In particular, the pairwize fitness reads Λij = αjj − αji + µ(αji − αij does depends on

the parameter µ =
I∗

D∗
=

1

k(R0 − 1)
. It follows that

if A = {5} the qualitative outcome do not depends on the parameters of the Neutral model.

In the table 3 we give a summary the behavior with when there is a perturbation in only one trait.

In general, when there is perturbation in several traits, the qualitative outcomes result in a complex manner
of each single case. The weight of each perturbation in the λji ’s, and thus on the qualitative dynamics, is
govern exactly by the Θi’s which do depend on the parameter of the neutral system. Hence, if the ratio
between the Θi is changing we may observed a change in the qualitative dynamics. Hence, a change in the
parameter of the neutral models (k, R0, r, γ, β) may affect not only the speed of the dynamics but also, and
in a complex manner, the type of the dynamics.

6 Concluding remarks

This mathematical study provides a fundamental advance in understanding analytically quasi-neutral dynam-
ics between multiple strains in a co-infection system. Until now, explicit and general derivations of coinfection
dynamics among N strains are very rare in the literature [1, 26]. Previous studies have considered N = 2,
N = 3 or N -strain dynamics without coinfection, typically with variation in just one fitness dimension. Oth-
ers have sketched the conceptual framework linking neutrality with non-neutral dynamics [24]. Here, we go
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Table 3: Summary of outcome type for each case of single traits varying Note that all the Θi admits
the same denominator |P | =

(
2T ∗2 − I∗D∗

)
> 0. Since, only the ratio between the Θi impact the qualitative

behavior, we represent the values of |P |Θi.

Trait varying Formula of |P |Θi Type of dynamics

1. Transmission rates βi 2βS∗T ∗∗ Competitive exclusion

2. Single infection clearance rates γi γI∗ (I∗ + T ∗) Competitive exclusion

3. Co-infection clearance rates γij γT ∗D∗ Possibility of Coexistence

4. Transmission probability from mixed carriage psij 2mT ∗D∗ Family of cycles

5. Co-colonization interaction factor via altered sus-
ceptibilities, kij

βT ∗I∗D∗ Anything

beyond the state of the art, and provide a full analytical characterization of the coinfection dynamics among
N strains that vary along multiple fitness dimensions, under the assumption that such variation is relatively
small. We complete a series of studies based on slow-fast dynamics, made explicit, for linking neutral and
non-neutral dynamics in interacting multi-strain pathogens [15, 16, 26].

Naturally in this endemic compartmental model, infectious strains compete for susceptible and singly-
colonized hosts, which are the only resources that can favour their growth and propagation. The different traits
provide each strain with variable fitness advantages or disadvantages in exploiting such dynamic resources in
the system, and interact together to shape multi-strain selection. We establish some remarkable results by
simplifying the dynamics when small perturbations arise in the clearance rates, transmission rates, within-
host competitiveness coefficients, as well as co-colonization interaction factors between strains. We derive
the corresponding slow-fast form for the global dynamics, the system of strain frequencies with its relevance,
and provide the formal approximation for solutions having error estimates. We reduce the complexity of
N2 +N + 1 equations at the origin to the N -equation replicator model, which reduces substantially time for
computation.

Instead of studying concurrently all compartmental variables, our approach separately considers the neutral
system and the perturbation components, then integrates them at the final stage. It would be possible to
obtain a solution immediately for the whole emergence within perturbations in all traits. Nevertheless, such
an undertaking in our view would involve many massive and complicated manipulations, and hence constitute
a more difficult route than the one chosen here. This difficulty led us to the main lemma, Lemma 7. This
result enables us to integrate all particular cases for the most general problem. It only leaves us concrete
special cases, with the same structure, but simpler.

As a first step, we comprehend the neutral model and deduce the globally asymptotically stable state of
variables (S, T, I) by (S∗, T ∗, I∗), which give us a conservation law for global quantities in the co-infection
system, reached in a fast time scale. The expansion theorem in [34] plays as the first chain to acknowledges
connectivity between neutrality and slow-fast system. Thanks to new variables zi, denoting strain frequencies,
and the new time-scale τ = εt, understanding the emergent model now becomes an exploration of the so-
called replicator system for {zi}1≤i≤N . This derivation makes sense, in light of Tikhonov’s theorem. The
perturbation is consequently well approximated, which helps us to explicitly demonstrate error estimates in
term O(ε) as well.

Concerning the system of strain frequencies, we find out and work in the invariant set {u ∈ RN+ :
z1 + · · ·+ zN = 1}. In general, by interpreting fitness numbers, the closing equations at each section become
special instances of the same replicator system of {zi}1≤i≤N . This enables us to study the relative dominance
of strains, longtime scenarios of dynamics and other important properties. Notably it appears such a replicator
system leads to the disease-free equilibrium E1 = (1, 0, . . . , 0) under certain conditions. This approach gives
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an essential and sufficient condition for the linearly asymptotically stable of trivial steady state Ei, in which all
of the fitness numbers must be negative. Another remarkable sequel is that there is at most one I-coexistence
solution for any nonempty subset I given.

It is exciting to envision how this approach could be extended to other epidemiological models of multi-
strain dynamics. An essential requirement is that their embedded neutral system admits a central manifold
which is globally stable. The challenge would then be to identify the equations governing slow motion on this
manifold in each specific model. Until now we have not considered a spatial component to the multi-strain
dynamics. A further perspective is considering space and a diffusion model for the replicator equation (e.g see
[8]). Many more extensions and model applications to data in an explicit manner should be now within reach
in the near future. As argued in [26, 17], this coinfection model and its dynamics could also be translated by
analogy to other biological scales, e.g. the colonization dynamics of multi-species communities [4, 20] or gut
microbiota within host [13], which would open new frontiers for application, interpretation and computational
tool development.
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