Malek Abbasi 
email: malek.abbasi@sci.ui.ac.ir
  
ORCID Michel Théra 
email: michel.thera@unilim.fr
  
  
  
  
Strong regular points of mappings

Keywords: Error bound, Lyusternik Theorem, Regular point, Hadamard directional derivative, Hoffman estimate Mathematics Subject Classification (2010) 49J52, 49J53, 49J99

come    

Introduction

Let f be a mapping acting between the normed spaces X and Y, whose norms are denoted by the same symbol • .To judge the approximate solutions of the equation y = f (x), we seek an error bound dist (x, f -1 (y)) ≤ κ yf (x) , locally, for all (x, y) near ( x, ȳ = f ( x)), or globally, for all x and y, where κ is some positive constant. The infimum of such κ is called the modulus of regularity of f . For instance, when f : R → R is smooth and verifies f ( x) = 0, it is easily observed that the modulus of regularity of f at x is exactly | f ( x)| -1 .

A first approach to the concept of regularity goes back to a celebrated fundamental result proved in 1934 by Lyusternik [START_REF] Lyusternik | On conditional extrema of functionals[END_REF]: Theorem 1.1 ( Lyusternik) [START_REF] Lyusternik | On conditional extrema of functionals[END_REF] Let f be a mapping from a Banach space X to a Banach space Y. Suppose that f is Fréchet differentiable in a neighborhood of x and that its derivative f (x) is continuous at x and f ( x) is surjective. Then, for every ε > 0, there exists r > 0 such that dist (x, f -1 (0)) ≤ ε xx , whenever xx ≤ r and f ( x)(xx) = 0.

In other words, the tangent manifold to f -1 (0) is equal to x + Ker f ( x), where Ker f ( x) is the set of those x such that f ( x)(x) = 0.

We report to Dontchev [START_REF] Dontchev | The Graves theorem revisited[END_REF] to a nice overview on the Lyusternik Theorem and to the fact that the Lyusternik Theorem can be simply obtained from the Graves Theorem. We also refer to the forthcoming book by Thibault [START_REF] Thibault | Unilateral Variational Analysis in Banach Spaces[END_REF].

Theorem 1.2 (Graves) [START_REF] Graves | Some mapping theorems[END_REF] Let X and Y be Banach spaces, x ∈ X and f : X → Y be a C 1 -mapping whose derivative f ( x) is onto. Then, there exist a neighborhood U of x and a constant c > 0 such that for every x ∈ U and τ > 0 with B( x, τ) ⊂ U, B( x, cτ) ⊂ f (B( x, τ)) (partial openness property with linear rate).

Ioffe showed in [START_REF] Ioffe | On concepts of directional differentiability[END_REF] that the original Lyusternik proof may lead to a stronger result and proved that if f ( x) is surjective, then there are κ > 0 and δ > 0 such that

dist (x, f -1 ( ȳ)) ≤ κ f (x) -f ( x) whenever x -x < δ . (1.1)
Ioffe's remark, leads to a standard definition:

Definition 1.1 x ∈ X is said to be a regular point of a mapping f : X → Y if the relation (1.1) is satisfied.
In this note, we will call strong regular point of f , a point x such that the inequality

x -x ≤ κ f (x) -f ( x) , (1.2) 
holds locally, for all x belonging to a neighborhood of x, where κ > 0 is a positive constant.

Next, we will provide sufficient conditions for x to be a strong regular point. Our results allow us to estimate the constant κ in (1.2). Then, we apply our results to the Hoffman estimate and achieve some results for the estimate of the distance to the set of solutions to a system of linear equalities. The advantage of our estimate is that it enables to calculate the upper limit of the error. In particular, for a finite dimensional space X and a linear (continuous) mapping A : X → X, we prove that the estimate

dist (x, Ker A) ≤ A(x) inf { A(u) : u ∈ X, dist (u, Ker A) = 1}
, holds for all x ∈ X (Corollary 3.2 below). We can easily see that this estimate is sharp for injective linear mappings, in the sense that, if A is an injective linear mapping and

0 < λ < 1 inf { A(u) : u ∈ X, dist (u, Ker A) = 1} , then, there exists some x ∈ X such that x = dist (x, Ker A) > λ A(x) .
Our work is outlined as follows. In Section 1, we recall the famous Lyusternik Theorem and we survey briefly its relationship with the concept of metric regularity. Then, we introduce the concept of strong regular point for a mapping f acting between two normed spaces. In Section 2, we first introduce the notion of homogeneous continuity of mappings. Then, using an appropriate notion of lower directional derivative, we achieve some results ensuring in finite dimension that for a given mapping a point is strongly regular. Finally, in Section 3, we focus our attention on Hoffman's estimate of approximate solutions of finite systems of linear inequalities and prove some similar estimates.

Sufficient Conditions of Regularity via Generalized Derivative

Throughout the paper, we use standard notations. For a normed space X, we denote its norm by • and by X * its (continuous) dual. The symbol S stands for the unit sphere, that is the elements of X of norm one, while B(x, r) and B(x, r) denote, respectively, the open and the closed balls centered at x with radius r. Some other notations are introduced as and when needed.

Homogeneous continuity

We begin with the following definition. Definition 2.1 Let X and Y be normed spaces and E ⊂ X. The mapping f : X → Y is said to be homogeneously continuous at x ∈ X on E if for every ε > 0 there exist δ > 0 and 0

< β ≤ 1 such that x -y < δ =⇒ f ( x + tx) -f ( x + ty) < tε,
for all 0 < t ≤ β and all x, y ∈ E.

We are going to provide some sufficient conditions under which a mapping f is homogeneously continuous. Let us recall that a mapping f : X → Y is said to be locally Lipschitz around x ∈ X if there exist a neighborhood O of x and a real number λ > 0 such that

f (x) -f (y) ≤ λ x -y ,
for all x, y ∈ O. Lemma 2.1 Suppose that X and Y are normed spaces. If f : X → Y is locally Lipschitz around x ∈ X, then f is homogeneously continuous at x on some closed ball B(0, r).

Proof By hypothesis, there exists a constant λ > 0 such that f (x)f (y) ≤ λ xy , for all x, y belonging to a neighborhood O of x in X. Choose r > 0 such that B( x, r) ⊂ O. It follows that

f ( x + tx) -f ( x + ty) ≤ λ x + tx -( x + ty) = tλ x -y ,
for all x, y ∈ B(0, r) and all 0 ≤ t ≤ 1. Now for each ε > 0 take 0 < δ < ελ -1 . It follows that

x -y < δ =⇒ f ( x + tx) -f ( x + ty) < tε,
for all x, y ∈ B(0, r) and all 0 < t ≤ 1. This completes the proof. Proposition 2.1 Let X and Y be normed spaces, f : X → Y be a mapping, E be a subset of X equipped with the subspace topology and x ∈ X. If the bifunction f

E : E × (0, 1] → Y defined by f E (x,t) := f ( x + tx) -f ( x) t ,
is uniformly continuous (E × (0, 1] equipped with the product topology with the usual linear operations of vector addition and scalar multiplication), then f is homogeneously continuous at x on E.

Proof Let ε > 0. By hypothesis, there exist δ , β > 0 such that for all x, y ∈ E with xy < δ and all s, h ∈ (0, 1] with |s -h| < β we have

f E (x, s) -f E (y, h) < ε. It follows that f ( x + tx) -f ( x) t - f ( x + ty) -f ( x) t < ε,
for all x, y ∈ E with xy < δ and all 0 < t ≤ 1. Thus

f ( x + tx) -f ( x + ty) < tε,
for all x, y ∈ E with xy < δ and all 0 < t ≤ 1. This completes the proof.

Generalized derivatives

We recall the definitions of the Hadamard and the Gateaux derivatives:

The Hadamard directional derivative f H ( x)(ν) of f at x in direction ν is defined as

f H ( x)(ν) := lim t↓0, µ→ν f ( x + tµ) -f ( x) t = lim n→+∞ f ( x + t n ν n ) -f ( x) t n ,
where (ν n ) and (t n ) are any sequences such that ν n → ν and

t n → 0 + . The Gateaux directional derivative f G ( x)(ν) of f at x in direction ν is defined by f G ( x)(ν) := lim t↓0 f ( x + tν) -f ( x) t .
The following facts are well known:

Hadamard differentiability is a stronger notion than Gateaux differentiability, see, e.g., [6]; when f is Hadamard differentiable at x, then it is Gateaux (directional) differentiable at x and moreover f G ( x) is continuous; For locally Lipschitz mappings in normed spaces, Hadamard and Gateaux directional derivatives coincide.

The following corollary, uses Hadamard differentiability and provides another sufficient condition for a mapping f to be homogeneously continuous.

Corollary 2.1 Let X and Y be normed spaces, f : X → Y be a continuous mapping, E be a compact subset of X (equipped with the subspace topology) and x ∈ X. If the Hadamard directional derivative of f at x in every direction ν ∈ E exists, then f is homogeneously continuous at x on E.

Proof Define the bifunction fE :

E × [0, 1] → Y as fE (ν,t) :=        f ( x + tν) -f ( x) t if 0 < t ≤ 1, f H ( x)(ν) if t = 0.
Since f is continuous and the Hadamard directional derivative of f at x in every direction ν ∈ E exists, thus the bifunction fE is continuous. Since E × [0, 1] is compact, thus fE is uniformly continuous. It follows that the bifunction

f E : E × (0, 1] → Y defined by f E (x,t) := f ( x + tx) -f ( x) t ,
is uniformly continuous. Now apply Proposition 2.1.

The following proposition illustrates our main motivation for introducing the homogeneously continuous mappings. Proposition 2.2 Let X and Y be normed vector spaces, f : X → Y be a mapping, E be a subset of X equipped with the subspace topology and x ∈ X. If f is homogeneously continuous at x on E, then there exist δ > 0 and β > 0 such that

f ( x + tx) -f ( x) t - f ( x + ty) -f ( x) t < ε,
for all x, y ∈ E with xy < δ and all 0 < t ≤ β .

Proof The proof is obvious; we therefore omit it.

For a mapping f : X → Y, we consider the following notions of lower directional derivatives which are crucial to our approach:

f l ( x)(ν) := lim inf t↓0 f ( x + tν) -f ( x) t , f 0 ( x)(ν) := lim inf t↓0, µ→ν f ( x + tµ) -f ( x) t .
Note that we have 0

≤ f 0 ( x)(ν) ≤ f l ( x)(ν), (2.1) 
for every ν ∈ X. We shall observe that if inf ν∈S f l ( x)(ν) > 0 and f is homogeneously continuous at x on S, then f satisfies the property (1.2) above.

Main results

Throughout the remaining part of the discussion, unless specified otherwise, we assume that X is a finite dimensional space and Y is an arbitrary normed space. We now are completely ready to state the main theorem of the paper. For a positive scalar α ∈ R let

S α := {x ∈ X : x = α} = αS.
Theorem 2.1 Let f : X → Y be homogeneously continuous at x ∈ X on S α for some positive scalar α. If there exists some κ > 0 such that inf ν∈S α f l ( x)(ν) > κ, then there exists δ > 0 such that

x -x ≤ α κ f (x) -f ( x) ,
for all x ∈ B( x, δ ). In other words, x is a strong regular point of f .

Proof Let κ < γ < inf ν∈S α f l ( x)(ν) and ε := γκ. Hence, for all ν ∈ S α there exists 0 <

r ν ≤ 1 such that inf 0<h≤r ν f ( x + hν) -f ( x) h > γ. (2.2)
Since f is homogeneously continuous at x on S α , thus there exist θ > 0 and β > 0 such that

ν -µ < θ =⇒ f ( x + tν) -f ( x) t - f ( x + tµ) -f ( x) t < ε, (2.3) 
for all ν, µ ∈ S α and all 0 < t ≤ β , by Proposition 2.2. Let rν := min{θ , β , r ν } for all ν ∈ S α .

Clearly S α ⊂ ν∈S α B(ν, rν ). The compactness of S α implies that there exist

ν 1 , ν 2 , . . . , ν m ∈ S α such that S α ⊂ m k=1 B(ν k , rν k ). Now let x ∈ B( x, α δ ) \ { x} and ν := α x-x (x -x)
, where δ := min{r ν k : 1 ≤ k ≤ m}. Then, ν ∈ S α and therefore ν ∈ B(ν s , rν s ) for some 1 ≤ s ≤ m. It follows that νν s < θ and α -1 xx < β . By (2.3) we deduce that

f x + α -1 x -x ν s -f ( x) α -1 x -x - f x + α -1 x -x ν -f ( x) α -1 x -x < ε. Hence f (x) -f ( x) α -1 x -x = f x + α -1 x -x ν -f ( x) α -1 x -x > f x + α -1 x -x ν s -f ( x) α -1 x -x -ε > γ -ε = κ by (2.2), since α -1 x -x < r ν s . It follows that x -x ≤ α κ f (x) -f ( x) ,
for all x ∈ B( x, α δ ). Letting δ := α δ completes the proof.

Corollary 2.2 Let f : X → Y be homogeneously continuous at x ∈ X on S. If there exists some κ > 0 such that inf ν∈S f 0 ( x)(ν) > κ, then there exists δ > 0 such that

x -x ≤ 1 κ f (x) -f ( x) ,
for all x ∈ B( x, δ ).

Proof Apply Theorem 2.1 and (2.1).

Corollary 2.3 Suppose that f : X → Y is locally Lipschitz around x ∈ X. If there exists some κ > 0 such that inf ν∈S f l ( x)(ν) > κ, then there exists δ > 0 such that

x -x ≤ 1 κ f (x) -f ( x) ,
for all x ∈ B( x, δ ).

Proof By Lemma 2.1, f is homogeneously continuous at x on some closed ball B(0, r). It follows that f is homogeneously continuous at x on S r (since S r ⊂ B(0, r)). The condition inf ν∈S f l ( x)(ν) > κ implies that inf ν∈S r f l ( x)(ν) > rκ. Now apply Theorem 2.1.

Corollary 2.4 Let f : X → Y be a continuous mapping and x ∈ X. Assume that the Hadamard directional derivative of f at x in every direction ν ∈ S exists. If there exists some κ > 0 such that inf ν∈S f H ( x)(ν) > κ, then there exists δ > 0 such that

x -x ≤ 1 κ f (x) -f ( x) ,
for all x ∈ B( x, δ ).

Proof By hypothesis, f H ( x)(ν) exists for every ν ∈ S. By continuity of f and • , it follows that

f H ( x)(ν) = f G ( x)(ν) = lim t↓0 f ( x + tν) -f ( x) t = f l ( x)(ν),
for every ν ∈ S. It follows that inf ν∈S f l ( x)(ν) > κ. Since X is finite dimensional, thus S is compact. Hence, f is homogeneously continuous at x ∈ X on S, by Corollary 2.1. Now apply Theorem 2.1.

The following example has been considered in [START_REF] Luu | Optimality condition for local efficient solutions of vector equilibrium problems via convexificators and applications[END_REF] (Example 2.1). We shall prove that the origin is a regular point of the involved mapping f once again by Theorem 2.1.

Example 2.1 Consider the mapping f : R → R defined as

f (x) :=        |x| 2 π -x sin( 1 x ) x = 0; 0 x = 0.
We have S = {±1} and therefore f is homogeneously continuous at 0 on S. One may easily verify that

f l (0)(±1) = lim inf t↓0 ±t 2 π -(±t) sin( 1 ±t ) t = 2 π .
It follows that inf s∈S f l (0)(s) = 2 π > 0. Hence, if 0 < κ < 2 π , then there exists δ > 0 such that

|x -0| = |x| ≤ 1 κ | f (x) -f (0)| = 1 κ | f (x)|,
for all |x| < δ , by Theorem 2.1. Hence, 0 is a strong regular point of f . Since f is continuous, thus the subset f -1 (0) is closed and therefore the distance function dist (•, f -1 (0)) is Lipschitz around 0 (see [8, p. 11]). Hence, 0 is a regular point of f . 3 Hoffman's estimate for the distance to the set of solutions to a system of linear inequalities Theorem 3.1 [START_REF] Hoffman | On approximate solutions of systems of linear inequalities[END_REF] [9,10] Let x * i , i = 1, 2, • • • , k be a finite family of linear forms on X * . Set

C ≤ := {x ∈ X such that x * i , x ≤ 0, (i = 1, 2, • • • , k)}. (3.1)
Then, there exists κ > 0 such that

dist (x, C ≤ ) ≤ κ[Φ(x)] + (3.2)
where Φ(x)

:= max{ x * i , x , i = 1, 2, • • • k} and [Φ(x)] + := max(Φ(x), 0).
Hoffman's result is considered as the starting point of the theory of error bounds, theory that has been extended over the years to different contexts. We refer to [START_REF] Thibault | Unilateral Variational Analysis in Banach Spaces[END_REF][11][START_REF] Kruger | Perturbation of error bounds[END_REF][START_REF] Penot | Calculus Without Derivatives[END_REF] and the reference therein for the fundamental role played by Hoffman bounds and more generally by error bounds in mathematical programming. As described for example in [START_REF] Peña | New characterizations of Hoffman constants for systems of linear constraints[END_REF], they are used for instance in convergence properties of algorithms, in sensitivity analysis, in designing solution methods for non-convex quadratic problems.

When C := {x ∈ X : A(x) = 0, x * i , x ≤ 0, i = 1, 2, • • • , k} where x * i ∈ X * , i = 1, 2, • • • , k
, are some given functionals and A : X → Y is a linear (continuous) mapping, we have the following result. Theorem 3.2 [START_REF] Ioffe | Regular points of Lipschitz functions[END_REF] [START_REF] Ioffe | Regular points of Lipschitz functions[END_REF]) There exists some κ > 0 such that

dist (x, C) ≤ κ A(x) + k ∑ i=1 [ x * i , x ] + , (3.3) 
for all x ∈ X.

Now let G := Ker A k i=1 Ker x * i .
Then, Theorem 3.2 yields the following result.

Corollary 3.1 There exists some κ > 0 such

dist (x, G) ≤ κ A(x) + k ∑ i=1 | x * i , x | (3.4) 
for all x ∈ X.

In this section, we apply Theorem 2.1 and achieve some similar estimations. We prove that there exists κ > 0 such that

dist (x, G) ≤ κ L(x) + k ∑ i=1 [ x * i , x ] + ,
for all x ∈ X, where L : X → X is a linear mapping with Ker L = G. Our results also allow us to evaluate the constant κ. The details are as follows.

Proposition 3.1 Let A : X → Y be a linear mapping and

x * i ∈ X * , i = 1, 2, • • • , k be given. Suppose that L : X → X is a linear mapping such that Ker L = G. Then dist (x, G) ≤ 1 γ L(x) + k ∑ i=1 [ x * i , x ] + , (3.5) 
where γ is a positive real number given by

γ := inf L(ν) + n ∑ i=1 [ x * i , ν ] + : ν ∈ X, dist (ν, G) = 1 . (3.6) 
Proof Let us consider the finite dimensional quotient space M := X G , and denote by [x] the equivalence class containing x in M , that is [x] := x + G. We note [x] := inf{ x + y : y ∈ G}. Denote by S M the unit sphere of M (i.e., the elements of M of norm one). Obviously,

S M = {x ∈ X : inf{ x + y : y ∈ G} = 1} = {x ∈ X : dist (x, G} = 1}. (3.7) 
Consider the continuous linear mapping L : M → X defined as

L([x]) := L(x) for all [x] ∈ M . Also for each 1 ≤ i ≤ k define [x i ] * , [x] := x * i , x for all [x] ∈ M .
Obviously each [x i ] * belongs to G ⊥ (the orthogonal of G) and hence, belongs to the dual of M (which is isometrically isomorphic to G ⊥ [START_REF] Conway | A course in functional analysis[END_REF]). Set

C := {[x] ∈ M : L([x]) = 0, [x i ] * , [x] ≤ 0, i = 1, 2, • • • , k}.
We have Ker L = Ker L = G and therefore C = {[0]}. Now define the mapping f : M → R as

f ([x]) := L([x]) + k ∑ i=1 [ [x i ] * , [x] ] + .
We show that the conditions of Theorem 2.1 for f at

[ x] = [0] are all satisfied. For all [ν] ∈ S M one has lim t↓0,µ→ν f ([tµ]) -f ([0]) t = L([ν]) + k ∑ i=1 [ [x i ] * , [ν] ] + .
Hence, f is homogeneously continuous at [0] on S M , by Corollary 2.1. We also have

f l ([0])([ν]) = L([ν]) + k ∑ i=1 [ [x i ] * , [ν] ] + = L(ν) + n ∑ i=1 [ x * i , ν ] + .
The continuity of f implies that the mapping f | S M (the restriction of f to S M ) attains its minimum at some

[ν 0 ] ∈ S M . Then, [ν 0 ] / ∈ C (note that C = {[0]}) and therefore L([ν 0 ]) + k ∑ i=1 [ [x i ] * , [ν 0 ] ] + > 0. It follows that inf [ν]∈S M f l ([0])([ν]) > 0. Using (3.7) we obtain inf [ν]∈S M f l ([0])([ν]) = inf L(ν) + n ∑ i=1 [ x * i , ν ] + : ν ∈ X, dist (ν, G) = 1 = γ.
Thus γ > 0. Now let 0 < κ < γ. Theorem 2.1 implies that, there exists some δ > 0 such that

[x] -[0] = [x] ≤ 1 κ L([x]) + k ∑ i=1 [ [x i ] * , [x] ] + , for all [x] ∈ B M ([0], δ ). Since f is sublinear thus [x] ≤ 1 κ L([x]) + k ∑ i=1 [ [x i ] * , [x] ] + , for all [x] ∈ M . It follows that dist (x, G) ≤ 1 κ L(x) + k ∑ i=1 [ x * i , x ] + . (3.8) 
For all x ∈ X. Letting κ → γ in (3.8), we achieve the desired result.

Remark 3.1 The existence of the linear mapping L : X → X discussed in Proposition 3.1 is straightforward. Indeed, G is a closed subspace of X and X is separable, thus there exists a (continuous) linear mapping L : X → X with L = G (see, [START_REF] Laustsen | Subspaces that can and cannot be the kernel of a bounded operator on a Banach space[END_REF]). Of course, one can easily make L directly (without using [START_REF] Laustsen | Subspaces that can and cannot be the kernel of a bounded operator on a Banach space[END_REF]). To see this, suppose that dim X = n and let {e 1 , • • • , e j } be a linearly independent basis for the vector space G. By linear algebra, we can extend {e 1 , • • • , e j } to get a linearly independent basis for X (since G is a subspace of X). Let us denote this basis by {e 1 , • • • , e j , e j+1 , • • • , e n }. Now for every x := x 1 e 1 + . . . + x n e n ∈ X, define the mapping L : X → X as

L(x) := (0, 0, • • • , 0 j , x j+1 , • • • , x n n-j
).

One can easily check that L is well-defined, linear and Ker L = G.

Corollary 3.2 Let A : X → X be a linear mapping. Then

dist (x, Ker A) ≤ A(x) inf { A(ν) : ν ∈ X, dist (ν, Ker A) = 1} , for all x ∈ X.
Proof Let X = Y, and x * i ≡ 0 for all 1 ≤ i ≤ k. Then, G = Ker A. Letting L := A in Proposition 3.1 yields the result. 

* i ∈ X * , i = 1, 2, • • • , k, be some given functionals. Then dist (x, G) ≤ L(x) inf L(ν) + ∑ n i=1 [ x * i , ν ] + : ν ∈ X, dist (ν, G) = 1 , (3.9) 
for every x ∈ C ≤ (see (3.1) above).

Proof Proposition 3.1 implies that, dist (x, G) ≤ 1 γ L(x) + k ∑ i=1 [ x * i , x ] + ,
where

γ := inf L(ν) + n ∑ i=1 [ x * i , ν ] + : ν ∈ X, dist (ν, G) = 1 . Now let x ∈ C ≤ . Thus x * i , x ≤ 0 for every 1 ≤ i ≤ k. Hence [ x * i , x ] + = 0 for every 1 ≤ i ≤ k. Then, the above inequality yields dist (x, G) ≤ L(x) inf L(ν) + ∑ n i=1 [ x * i , ν ] + : ν ∈ dist (ν, G) = 1 ,
for every x ∈ C ≤ . This completes the proof.

Finally, let us make a comparison between the two estimations (3.5) in Proposition 3.1 and (3.4) in Corollary 3.1 described above. First, note that an application of Corollary 3.1 (or a direct application of Theorem 3.2) with L (described in Proposition 3.1) in place of A and no inequalities immediately produces the following estimate:

dist (x, G) ≤ κ 0 L(x) , (3.10) 
for all x ∈ X, where κ 0 is a constant. On the other hand, doing the same replacements in The question is: which one of the above estimations ((3.10) and (3.11)) produces a better output? To answer this question we have to know the relationship between the coefficients κ 0 and γ 0 stated above. As long as the value of the constant κ 0 in (3.10) is not known, we can't say which one of the estimates (3.10) or (3.11) produces a better result. We can just say that, the estimate (3.11) technically gives a better production, since it also allows us to estimate the unknown constant κ 0 in (3.10). Indeed, κ 0 ≤ 1 γ 0 .

Another question which may arise is: with the simple estimate (3.11) in hand, what is the necessity of using the estimate (3.5) in Proposition 3.1 (regarding the inequalities)? To answer this question, let's take a closer look at the estimate (3.5). Indeed, by Proposition 3.1 we have dist (x, G) ≤ 1

γ L(x) + k ∑ i=1 [ x * i , x ] + , (3.12) 
where

γ := inf L(ν) + n ∑ i=1 [ x * i , ν ] + : ν ∈ X, dist (ν, G) = 1 > 0.
We observe that; on one hand L(x) ≤ L(x) +∑ k i=1 [ x * i , x ] + , and on the other hand 1 γ ≤ 1 γ 0 . As a result, we can not generally compare the right-hand sides of the estimations (3.11) and (3.12) to determine which estimate has a better operation. We should compare them in a typical experiment in order to find what is the better estimate. Corollary 3.3 says that when x ∈ C ≤ , it would be better to use (3.12).

Corollary 3 . 3

 33 Let A : X → Y and L : X → X be linear mappings with Ker L = G and x

  Proposition 3.1 (i.e., applying Proposition 3.1 with L in place of A and L in place of itself without the inequalities) yields:dist (x, G) = inf { L(ν) : ν ∈ X, dist (ν, G) = 1} > 0.
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