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Abstract

This paper presents a methodology which considers an interpolation between Linear Parameter-Varying (LPV) controllers that
were designed separately for different objectives. The quadratic stability of the closed-loop system is proved under arbitrary
interpolation in terms of a set of Linear Matrix Inequalities (LMIs). The interpolation strategy is based on Youla-Kucera (YK)
parameterization. The proposed method can help multi-variable and multi-objective systems, to achieve high performances at
different critical situations regardless of the interpolation rate.
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1 Introduction And Motivation

The interpolation of several controllers to meet multi-
objectives criteria is an important topic in theory and
practice. A method has been investigated in the litera-
ture to achieve a multi-objective switching Linear Time-
Invariant (LTI) controller based on Youla-Kucera (YK)
parameterization [5]. It is structured by mapping a set of
linear stabilizing controllers onto a Q-based controller.
The interest is to parameterize a set of linear stabiliz-
ing controllers K(Q) for an LTI system, where each one
is parameterized by its corresponding LTI-YK parame-
ter Q [14]. The LTI-YK parameter Q is designed using
the doubly coprime factorisation [15]. Using such pa-
rameterization for controller interpolation: 1) It allows
stable gain-scheduling between unstable controllers [13];
2) Interpolated controllers can be designed and tuned
separately using different techniques (H∞, LQR, PID)
[14]; 3) It facilitates adding new parts to an existing sys-
tem online as Plug&Play control theory [12]; and 4) The
closed-loop stability is guaranteed under arbitrary inter-
polating signals between different stabilizing controllers
[5] without requiring a single Lyapunov function.
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The YK parameterization has been successfully applied
to several domains such as: 1) Noise/vibration control
[7]; 2) Interpolation between robust and high perfor-
mance controllers [4]; and 3) Control systems subjected
to convex constraints [3]. A significant literature review
of YK work including its recent applications can be found
in [10]. In addition, YK parameterisation is used in a ris-
ing topic which is autonomous vehicles [11],[9]. [9] uses
an LTI-YK control structure to interpolate between fast
and slow LTI controllers to optimize a lane change of an
autonomous vehicle. However, the study is done on an
LTI lateral system with a fixed longitudinal speed of the
vehicle.

On the other hand, the control of multi-variable or Lin-
ear Parameter-Varying (LPV) systems is studied due to
its interest to handle system complexity (as nonlineari-
ties) as well as to bring some adaptive control schemes
thanks to the self-scheduling of the controller, see for
instance [6] and references therein. Nonetheless, it is
today admitted that designing a single LPV controller
for various objectives may be conservative [8]. However,
while many YK interpolation studies have been con-
cerned with LTI systems, few works have integrated YK
concepts to LPV systems. [1] introduces an LPV model
which varies with respect to time-varying parameters.
It proposes a YK-based gain-scheduling between LTI
controllers designed separately at different operating
points. Closed-loop quadratic stability and performance
are guaranteed at intermediate interpolation points of
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a convex domain. The parameterized controller is then
compared to an LPV controller designed using the poly-
topic approach. A different concept is proposed in [16] to
design an LPV controller based on Youla parameterisa-
tion. It extends the coprime factorization of LTI systems
to LPV systems and it is proved that any quadratically
stabilizing LPV controller can be parameterized, based
on Youla concept, providing the closed-loop quadratic
stability. Notice that the concept is proved only for
observer-based LPV state-feedback control. In [2], a
fixed pole assignment application of LPV system is in-
troduced using an LPV Q-based method. Its concept
aims to preserve the closed-loop poles at the same lo-
cation by interpolating between different controllers
regardless the variations in the LPV system. Therefore,
a unique performance is obtained along the variation of
the parameters while keeping stability.

Nevertheless, none of the mentioned works did concern
multi-objective controllers, i.e. achieving different per-
formances in the full parameter-varying region. The
objective and contribution of this paper is to develop
an LPV-YK dynamic output feedback control struc-
ture which can interpolate between several LPV con-
trollers, that have been designed to achieve different
objectives. Such interpolation scheme aims to improve
the closed-loop performance which could achieve both
multi-variable and multi-objective requirements.

This paper develops the work in [16] by proposing a
dynamic output-feedback LPV controller (to be pa-
rameterized), instead of observer-based state feedback
LPV controller, which extends the stability conditions.
Moreover, the proposed method extends the work in
[1] by adding an exogenous signal (physical-based or
parameter-dependent signal) to the model parameters
to interpolate between two LPV controllers. This means
that new dimensions can be added to the parameter
region to incorporate any ad hoc physically-based inter-
polation. Notice that the addition of such interpolating
signal doesn’t add any conservatism to the standard
LPV problem conservatism. Contrarily, it improves the
overall closed-loop performance by choosing the best
LPV controller (designed separately) at different situ-
ations. As a result, an interpolation scheme is drawn
between two LPV controllers based on YK parame-
terization which guarantees the closed-loop quadratic
stability under arbitrary interpolating signal.

2 Problem Statement

2.1 LPV Plant and Controllers Description

Consider a Multi-Input-Multi-Output (MIMO) LPV
system G(ρ) with m inputs and p outputs and nz con-

trolled outputs:

G(ρ)


ẋ(t) = A(ρ(t))x(t) +B1(ρ(t))w(t) +B2u(t)

z(t) = C1(ρ(t))x(t) +D11(ρ(t))w(t) +D12u(t)

y(t) = C2x(t) +D21w(t)

(1)
where x(t) ∈ Rnx , y(t) ∈ Rp, u(t) ∈ Rm, z(t) ∈ Rnz

are the state, output, input, controlled output vectors

respectively. w(t) =
[
r n d

]T
∈ Rnw contains the ex-

ogenous inputs of the tracking reference r, noise n and
input disturbance d. ρ(t) := ρ ∈ Rnp is a vector of np
known time-varying parameters.

Here, ρ belongs to a convex polytopic region P de-
fined by the parameters extremums [ρ, ρ] as P :=
CO{ν1, ..., ν2np}, where νi represent the vertices of P

∀i ∈ I[1, 2np ]. ρ is then scheduled as: ρ =
2np∑
i=1

αiνi, where

2np∑
i=1

αi = 1, αi ≥ 0 ∀i. Therefore, the system representa-

tion at any operating point ρ ∈ P is given as a convex
combination of the state-space realizations of the LTI
systems given at the vertices νi:

A(ρ) B1(ρ) B2

C1(ρ) D11(ρ) D12

C2 D21 0

 =

2np∑
i=1

αi(ρ)


Ai B1,i B2

C1,i D11,i D12

C2 D21 0


(2)

LetK be a finite set of quadratically stabilizing LPV con-
trollersK(j)(ρ) ofG(ρ) that were designed to achieve dif-
ferent objectives and performances. Thus, ∀j ∈ I[0, nc]:

K(j)(ρ) :

A(j)
k (ρ) B

(j)
k (ρ)

C
(j)
k (ρ) D

(j)
k (ρ)

 =

2np∑
i=1

αi(ρ)

A(j)
k,i B

(j)
k,i

C
(j)
k,i D

(j)
k,i


(3)

where A
(j)
k (ρ) ∈ Rn

(j)

k
×n(j)

k , B
(j)
k (ρ) ∈ Rn

(j)

k
×mk ,

C
(j)
k (ρ) ∈ Rpk×n(j)

k and D
(j)
k (ρ) ∈ Rpk×mk .

Notation 2.1 For the rest of the paper, the subscript i
of a matrix (resp. system) denotes the LTI matrix (resp.
system) at its corresponding vertex νi of the polytope P.
The superscript (j) denotes the jth controller in the set
of already designed LPV controllers K.

2.2 Coprime Factorization

Using the YK parameterisation concept, the plant model
G(ρ) and the controllers K(j)(ρ) given at each vertex νi
of P (namely Gi and K

(j)
i ), can be factorized using the
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Fig. 1. YK control structure

doubly coprime factorisation as ∀i, j:

Gi = NiM
−1
i = M̃−1i Ñi ∀i

K
(j)
i = U

(j)
i V

(j)−1
i = Ṽ

(j)−1
i Ũ

(j)
i ∀i,∀j

(4)

Thus ∀i,∀j, the coprime factors are computed such that

Mi, Ni, M̃i, Ñi, U
(j)
i , V

(j)
i , Ũ

(j)
i , Ṽ

(j)
i ∈ RH∞ (proper,

stable and rational) [14] and satisfying the following Be-
zout Identity :

[
Ṽ

(j)
i −Ũ (j)

i

−Ñi M̃i

][
Mi U

(j)
i

Ni V
(j)
i

]
=

[
Mi U

(j)
i

Ni V
(j)
i

][
Ṽ

(j)
i −Ũ (j)

i

−Ñi M̃i

]
=

[
I 0

0 I

]
(5)

At each vertex νi, all the factorized LTI controllers K
(j)
i

stabilize Gi (proof in [14]). To perform a stable coprime
factorisation, polytopic LPV state-feedback controllers

Fg(ρ) and F
(j)
k (ρ) are designed to quadratically stabi-

lize G(ρ) and K(j)(ρ) respectively ∀j. This ensures the
structural stability of the closed-loops (Ai +B2Fg,i) and

(A
(j)
k,i + B

(j)
k,iF

(j)
k,i ) which are Hurwitz ∀i, j. The coprime

factors are computed at each vertex νi using the state-
space representations written in (6)-(7).

[
Mi U

(j)
i

Ni V
(j)
i

]
:


Ai +B2Fg,i 0 B2 0

0 A
(j)
k,i +B

(j)
k,iF

(j)
k,i 0 B

(j)
k,i

Fg,i C
(j)
k,i +D

(j)
k,iF

(j)
k,i I D

(j)
k,i

C2 F
(j)
k,i 0 I


(6)

[
Ṽ

(j)
i −Ũ (j)

i

−Ñi M̃i

]
:


Ai +B2D

(j)
k,iC2 B2C

(j)
k,i −B2 B2D

(j)
k,i

B
(j)
k,iC2 A

(j)
k,i 0 B

(j)
k,i

Fg,i −D(j)
k,iC2 −C(j)

k,i I −D(j)
k,i

C2 −F (j)
k,i 0 I


(7)

2.3 The LPV-YK Control Structure

Fig.1 shows the proposed structure of the dynamic in-
terpolation between two dynamic output-feedback LPV
controllers K(0)(ρ) and K(1)(ρ) ∈ K. Notice that, as

explained above, N(ρ), M(ρ), U (0)(ρ), V (0)−1(ρ) and
Q(1)(ρ, γ) are computed from the convex combination
of their corresponding LTI systems at the vertices of P.
K(0)(ρ) is chosen to be the nominal controller, where
it can be designed to achieve high robustness. The re-
maining controllers (such as K(1)(ρ)) can be designed
to deal with higher performances or critical situations.

Then, ∀i, K(1)
i is written in terms of its corresponding

YK parameter Q
(1)
i represented as:

Q
(1)
i :

A(1)
q,i B

(1)
q,i

C
(1)
q,i D

(1)
q,i

 (8)

Following Fig. 1, in this work, an external signal γ(t)

multiplying the output of the designed Q
(1)
i , i.e. its out-

put matrices are written as C
(1)
q,i (γ) = γ(t)C

(1)
q,i and

D
(1)
q,i (γ) = γ(t)D

(1)
q,i obtaining Q

(1)
i (γ) = γQ

(1)
i (see Fig.

1). γ could be any continuous or discontinuous switching
signal which interpolates between K(0)(ρ) and K(1)(ρ).
This complete interpolated LPV controller is referred
to as the parameterized controller K̃(1)(ρ, γ). The state-
space representation of Q(1)(ρ, γ) is represented as:

Q(1)(ρ, γ) :

 A
(1)
q (ρ) B

(1)
q (ρ)

C
(1)
q (ρ, γ) D

(1)
q (ρ, γ)

 (9)

whereA
(1)
q ∈ Rn(1)

q ×n
(1)
q . The interpolated LPV-YK con-

troller K̃(1)(ρ, γ) is computed as:

K̃(1)(ρ, γ) = (U (0)(ρ) +M(ρ)Q(1)(ρ, γ))(V (0)(ρ) +N(ρ)Q(1)(ρ, γ))−1

= (Ṽ (0)(ρ) +Q(1)(ρ, γ)Ñ(ρ))−1(Ũ (0)(ρ) +Q(1)(ρ, γ)M̃(ρ))

(10)
Its state space matrices are written as:

Ã
(1)
k (ρ, γ) =


A(ρ) +B2Fg(ρ)−B2D

(1)
q (ρ, γ)C2 −B2D

(1)
q (ρ, γ)F

(0)
k (ρ) B2C

(1)
q (ρ, γ)

−B(0)
k (ρ)C2 A

(0)
k (ρ) 0

−B(1)
q (ρ)C2 −B(1)

q (ρ)F
(0)
k (ρ) A

(1)
q (ρ)



B̃
(1)
k (ρ, γ) =

[
B2D

(1)
q (ρ, γ) B

(0)
k (ρ) B

(1)
q (ρ)

]T
C̃

(1)
k (ρ, γ) =

[
Fg(ρ)− (D

(0)
k (ρ) +D

(1)
q (ρ, γ))C2 C

(0)
k (ρ)−D(1)

q (ρ, γ)F
(0)
k (ρ) C

(1)
q (ρ, γ)

]
D̃

(1)
k (ρ, γ) = D

(0)
k (ρ) +D

(1)
q (ρ, γ)

(11)
The next step proposes a gain-scheduling/interpolation
between the designed LPV controllers to achieve differ-
ent performances depending on the situations. Knowing
that Q(1)(ρ, γ) is quadratically stable by construction
(see later in the proof of Theorem 3.1), it is worth men-
tioning that:

• for γ = 0, K̃(1)(ρ, γ = 0) = K(0)(ρ)

• for γ = 1, K̃(1)(ρ, γ = 1) = K(1)(ρ)

3



Fig. 2. YK general configuration

3 Main Results

Based on the statements on LPV concepts and YK pa-
rameterization, a quadratically stable interpolation pro-
cedure between two LPV controllers is formulated. A
non-minimal state-space realization of each LPV con-
troller is computed based on Linear Matrix Inequality
(LMI) optimization problem [5]. A gain-scheduling sig-
nal γ is included to interpolate between both controllers.

Theorem 3.1 Consider an LPV plant G(ρ) (2), and
given a set of LPV controllers K (3) that quadratically
stabilizesG(ρ). Let us choose any two controllersK(0)(ρ)
and K(1)(ρ) ∈ K, where K(0)(ρ) represents the nom-
inal controller. Then, the YK-parameterized LPV con-
troller K̃(1)(ρ, γ) (11) (see Fig. 1) stabilizes G(ρ) for any
continuous/discontinuous signal γ ∈ [0, 1], if there ex-
ist symmetric, positive definite matrices Xg ∈ Rnx×nx ,

Xk ∈ Rn
(0)

k
×n(0)

k , and matrices Wi and Vi such that:

AiXg +XgA
T
i +B2Wi +WT

i B
T
2 < 0 (12)

A
(0)
k,iXk +XkA

(0)T
k,i +B

(0)
k,iVi + V T

i B
(0)T
k,i < 0 (13)

for all i = 1, ..., 2np .

PROOF. According to YK parameterisation concept,
∀ρ ∈ P, the LPV parameterized controller K̃(1)(ρ, γ)
can be formulated as a Linear Fractional Transformation
(LFT) system [14], i.e. K̃(1)(ρ, γ) = Fl(J(ρ), Q(1)(ρ, γ))
(see Fig. 2). Where, J(ρ) and Q(1)(ρ, γ) are written as a
convex combination of their corresponding LTI systems
(14)-(15) at the vertices νi of P.

Ji =


Ai +B2Fg,i 0 0 B2

−B(0)
k,iC2 A

(0)
k,i B

(0)
k,i 0

Fg,i −D(0)
k,iC2 C

(0)
k,i D

(0)
k,i I

−C2 −F (0)
k,i I 0

 (14)

Q
(1)
i (γ) =
Ai +B2D

(1)
k,iC2 B2C

(1)
k,i B2[D

(1)
k,i −D

(0)
k,i ]F

(0)
k,i −B2C

(0)
k,i

B
(1)
k,iC2 A

(1)
k,i B

(1)
k,iF

(0)
k,i

0 0 A
(0)
k,i +B

(0)
k,iF

(0)
k,i

B2[D
(1)
k,i −D

(0)
k,i ]

B
(1)
k,i

B
(0)
k,i

γ[D
(1)
k,iC2 − Fg,i] γC

(1)
k,i γ[(D

(1)
k,i −D

(0)
k,i )F

(0)
k,i − C

(0)
k,i ] γ[D

(1)
k,i −D

(0)
k,i ]


(15)

At each vertex νi, the closed-loop system CLi(γ) is
derived from the LFT interconnection between Gi

and K̃
(1)
i (γ). The closed-loop state matrix Acl(ρ, γ) =

2np∑
i=1

αi(ρ)Acl,i(γ) is quadratically stable if there exist a

symmetric, positive definite, constant matrix Xcl such
that:

XclAcl(ρ, γ) +AT
cl(ρ, γ)Xcl < 0 ∀γ (16)

Now , let T =


I 0 0 0

0 0 0 I

I −I 0 0

0 0 I 0

 be a state transformation

matrix which is applied to CLi(γ) without changing its
input-output nature, then

Ācl,i(γ) = TAcl,i(γ)T−1 =
Ai +B2Fg,i B2C

(1)
q,i −B2(Fg,i − (D

(0)
k,i +D

(1)
q,i (γ))C2) B2(C

(0)
k,i −D

(1)
q,iF

(0)
k,i )

0 A
(1)
q,i B

(1)
q,iC2 −B(1)

q,i F
(0)
k,i

0 0 Ai +B2D
(0)
k,iC2 B2C

(0)
k,i

0 0 B
(0)
k,iC2 A

(0)
k,i

.
(17)

Due to the block-triangular form of Ācl(ρ, γ) (17) , (16)
is satisfied if the following equations hold (check Lemma
2 in [16]):

2np∑
i=1

αi(ρ)(Yg(Ai+B2Fg,i)+(Ai+B2Fg,i)
TYg) < 0 (18)

2np∑
i=1

αi(ρ)(YqA
(1)
q,i +A

(1)T
q,i Yq) < 0 (19)

2np∑
i=1

αi(ρ)(Y0A(0)
i +A(0)T

i Y0) < 0 (20)

where Yg ∈ Rnx×nx , Yq ∈ Rn(1)
q ×n

(1)
q and Y0 ∈

R(nx+n
(0)

k
)×(nx+n

(0)

k
) are symmetric, positive defi-

nite, parameter-invariant matrices, with Xcl = TT

diag(Yg, Yq, Y0) T , and

A(0)
i =

[
Ai +B2D

(0)
k,iC2 B2C

(0)
k,i

B
(0)
k,iC2 A

(0)
k,i

]
(21)

Inequality (18) can be reformulated by Yg = X−1g which
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leads to (12) when choosing W (ρ) =
2np∑
i=1

αi(ρ)Fg,iXg.

Regarding (15), the state matrix of the LPV-YK param-

eter A
(1)
q (ρ) =

2np∑
i=1

αi(ρ)A
(1)
q,i (ρ) is quadratically stable if

there exist symmetric, positive definite, constant matri-

ces P1 ∈ R(nx+n
(1)

k
)×(nx+n

(1)

k
) and P2 ∈ Rn

(0)

k
×n(0)

k such
that:

2np∑
i=1

αi(ρ)(P1A(1)
i +A(1)T

i P1) < 0 (22)

2np∑
i=1

αi(ρ)(P2(A
(0)
k,i+B

(0)
k,iF

(0)
k,i )+(A

(0)
k,i+B

(0)
k,iF

(0)
k,i )TP2) < 0

(23)
being,

A(1)
i =

[
Ai +B2D

(1)
k,iC2 B2C

(1)
k,i

B
(1)
k,iC2 A

(1)
k,i

]
(24)

The condition in (22) is verified given that K(1)(ρ)
quadratically stabilizes G(ρ). Moreover, the inequal-
ity (23) satisfies (13) by choosing P2 = X−1k and

V (ρ) =
2np∑
i=1

αi(ρ)F
(0)
k,i Xk. Thus, A

(1)
q (ρ) is quadratically

stable and (19) is verified. Finally, (20) is fulfilled given
that K(0)(ρ) quadratically stabilizes G(ρ). 2

After verifying the conditions of the theorem, it is worth
mentioning that they depend only on the nominal LPV
controller K(0)(ρ) and not on the other designed LPV
controllers given the considered YK parameterization.

The following brief example presents the objective of the
proposed approach in improving the closed-loop perfor-
mance. Given two LPV controllers that are designed sep-
arately achieving distinct performance specifications: 1)
K(0)(ρ) for noise rejection with slow tracking capabil-
ities; and 2) K(1)(ρ) for fast tracking capabilities but
without respecting the robust margin. Let us construct
a YK-based interpolation scheme K̃(1)(ρ, γ) as shown in
Fig. 1. As a result, multiple closed-loop performances
are obtained thanks to the variation of the interpolating
signal γ(t). At an instant t = tk:

(1) if γ(tk) = 0, K̃(1)(ρ, γ(tk) = 0) ≡ K(0)(ρ), the
closed-loop performance achieves only noise rejec-
tion

(2) if γ(tk) = 1, K̃(1)(ρ, γ(tk) = 1) ≡ K(1)(ρ), the
closed-loop performance include only tracking ca-
pabilities

(3) if 0 < γ(tk) < 1, K̃(1)(ρ, γ(tk)) interpolates be-
tween both controllers to obtain a percentage of
noise rejection performance and a percentage of
tracking capabilities.

An example is shown in [9] on how to choose γ according
to the required control objectives.

4 Conclusion

This work has proposed a new LPV YK-based method
to design an interpolation between two dynamic output-
feedback LPV controllers. An external signal is intro-
duced to the LPV-YK parameter, which can be used
to incorporate any ad-hoc physically-based interpola-
tion. As a result, a YK-based interpolation scheme is
drawn between two LPV controllers while guaranteeing
the closed-loop quadratic stability under arbitrary in-
terpolating signal. This approach improves the perfor-
mance for LPV complex systems that need to deal with
various objectives and situations. As a future work, the
LPV-YK control scheme will be extended to more than
two controllers. In addition, application of the presented
results and possible extension for discrete-time systems
will be explored.
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