Interpolation of Multi-LPV Control Systems Based on Youla-Kucera Parameterization
Hussam Atoui, Olivier Sename, Vicente Milanes, John Martinez

To cite this version:
Hussam Atoui, Olivier Sename, Vicente Milanes, John Martinez. Interpolation of Multi-LPV Control Systems Based on Youla-Kucera Parameterization. Automatica, 2021, 134, pp.109963. 10.1016/j.automatica.2021.109963 . hal-03196373

HAL Id: hal-03196373
https://hal.science/hal-03196373
Submitted on 12 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Interpolation of Multi-LPV Control Systems Based on Youla-Kucera Parameterization

Hussam Atoui a,b, Olivier Sename a, Vicente Milanes b, John J. Martinez a

a Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France
b Research Department, Renault SAS, 1 Avenue de Golf, 78280 Guyancourt, France

Abstract

This paper presents a methodology which considers an interpolation between Linear Parameter-Varying (LPV) controllers that were designed separately for different objectives. The quadratic stability of the closed-loop system is proved under arbitrary interpolation in terms of a set of Linear Matrix Inequalities (LMIs). The interpolation strategy is based on Youla-Kucera (YK) parameterization. The proposed method can help multi-variable and multi-objective systems, to achieve high performances at different critical situations regardless of the interpolation rate.

Key words: Linear parameter-varying system, Youla parameterization, Gain-scheduling, Linear matrix inequality

1 Introduction And Motivation

The interpolation of several controllers to meet multi-objectives criteria is an important topic in theory and practice. A method has been investigated in the literature to achieve a multi-objective switching Linear Time-Invariant (LTI) controller based on Youla-Kucera (YK) parameterization [5]. It is structured by mapping a set of linear stabilizing controllers onto a Q-based controller. The interest is to parameterize a set of linear stabilizing controllers $K(Q)$ for an LTI system, where each one is parameterized by its corresponding LTI-YK parameter Q [14]. The LTI-YK parameter Q is designed using the doubly coprime factorisation [15]. Using such parameterization for controller interpolation: 1) It allows stable gain-scheduling between unstable controllers [13]; 2) Interpolated controllers can be designed and tuned separately using different techniques ($H\infty$, LQR, PID) [14]; 3) It facilitates adding new parts to an existing system online as Plug&Play control theory [12]; and 4) The closed-loop stability is guaranteed under arbitrary interpolating signals between different stabilizing controllers [5] without requiring a single Lyapunov function.

The YK parameterization has been successfully applied to several domains such as: 1) Noise/vibration control [7]; 2) Interpolation between robust and high performance controllers [4]; and 3) Control systems subjected to convex constraints [3]. A significant literature review of YK work including its recent applications can be found in [10]. In addition, YK parameterisation is used in a rising topic which is autonomous vehicles [11],[9]. [9] uses an LTI-YK control structure to interpolate between fast and slow LTI controllers to optimize a lane change of an autonomous vehicle. However, the study is done on an LTI lateral system with a fixed longitudinal speed of the vehicle.

On the other hand, the control of multi-variable or Linear Parameter-Varying (LPV) systems is studied due to its interest to handle system complexity (as nonlinearities) as well as to bring some adaptive control schemes thanks to the self-scheduling of the controller, see for instance [6] and references therein. Nonetheless, it is today admitted that designing a single LPV controller for various objectives may be conservative [8]. However, while many YK interpolation studies have been concerned with LTI systems, few works have integrated YK concepts to LPV systems. [1] introduces an LPV model which varies with respect to time-varying parameters. It proposes a YK-based gain-scheduling between LTI controllers designed separately at different operating points. Closed-loop quadratic stability and performance are guaranteed at intermediate interpolation points of...
Consider a Multi-Input-Multi-Output (MIMO) LPV Plant and Controllers Description

2 Problem Statement

2.1 LPV Plant and Controllers Description

Consider a Multi-Input-Multi-Output (MIMO) LPV system $G(\rho)$ with m inputs and p outputs and n_z controlled outputs:

$$
\begin{align*}
 x(t) &= A(\rho(t))x(t) + B_1(\rho(t))w(t) + B_{2u}(t) \\
 G(\rho) &= C_1(\rho(t))x(t) + D_{11}(\rho(t))w(t) + D_{12}(\rho(t))u(t) \\
 y(t) &= C_2x(t) + D_{21}w(t)
\end{align*}
$$

where $x(t) \in \mathbb{R}^{n_z}$, $y(t) \in \mathbb{R}^p$, $u(t) \in \mathbb{R}^m$, $z(t) \in \mathbb{R}^{n_z}$ are the state, output, input, controlled output vectors respectively. $w(t) = \begin{bmatrix} r & n & d \end{bmatrix}^T \in \mathbb{R}^{n_w}$ contains the exogenous inputs of the tracking reference r, noise n and input disturbance d. $\rho(t) := \rho \in \mathbb{R}^{n_p}$ is a vector of n_p known time-varying parameters.

Here, ρ belongs to a convex polytopic region \mathcal{P} defined by the parameters extremums $[\rho_l, \rho_u]$ as $\mathcal{P} := \{C_0(\nu_1, ..., \nu_{2^n_p}) \mid \nu_i \text{ represent the vertices of } \mathcal{P} \forall i \in \mathbb{I}[1, 2^n_p] \}$, ρ is then scheduled as: $\rho = \sum_{i=1}^{2^n_p} \alpha_i \nu_i$, where $\sum_{i=1}^{2^n_p} \alpha_i = 1$, $\alpha_i \geq 0 \forall i$. Therefore, the system representation at any operating point $\rho \in \mathcal{P}$ is given as a convex combination of the state-space realizations of the LTI systems given at the vertices ν_i:

$$
\begin{bmatrix}
 A(\rho) & B_1(\rho) & B_2 \\
 C_1(\rho) & D_{11}(\rho) & D_{12} \\
 C_2 & D_{21} & 0
\end{bmatrix} = \sum_{i=1}^{2^n_p} \alpha_i(\rho) \begin{bmatrix}
 A_i & B_{1,i} & B_2 \\
 C_{1,i} & D_{11,i} & D_{12} \\
 C_2 & D_{21} & 0
\end{bmatrix}
$$

Let \mathcal{K} be a finite set of quadratically stabilizing LPV controllers $K^{(j)}(\rho)$ of $G(\rho)$ that were designed to achieve different objectives and performances. Thus, $\forall j \in \mathbb{I}[0, n_c]$:

$$
\begin{bmatrix}
 A_k^{(j)}(\rho) & B_k^{(j)} \\
 C_k^{(j)}(\rho) & D_k^{(j)}(\rho)
\end{bmatrix} = \sum_{i=1}^{2^n_p} \alpha_i(\rho) \begin{bmatrix}
 A_k^{(j)}(\rho) & B_k^{(j)} \\
 C_k^{(j)}(\rho) & D_k^{(j)}(\rho)
\end{bmatrix}
$$

where $A_k^{(j)}(\rho) \in \mathbb{R}^{n_{k,i} \times n_{k,i}}$, $B_k^{(j)}(\rho) \in \mathbb{R}^{n_{k,i} \times m_k}$, $C_k^{(j)}(\rho) \in \mathbb{R}^{p_k \times n_{k,i}}$ and $D_k^{(j)}(\rho) \in \mathbb{R}^{p_k \times m_k}$.

Notation 2.1 For the rest of the paper, the subscript i of a matrix (resp. system) denotes the LTI matrix (resp. system) at its corresponding vertex ν_i of the polytope \mathcal{P}. The superscript (j) denotes the j^{th} controller in the set of already designed LPV controllers \mathcal{K}.

2.2 Coprime Factorization

Using the YK parameterisation concept, the plant model $G(\rho)$ and the controllers $K^{(j)}(\rho)$ given at each vertex ν_i of \mathcal{P} (namely G_i and $K^{(j)}_i$), can be factorized using the...
The structural stability of the closed-loops (K_i factors are computed at each vertex (ν_i), ν_i, ν_j), the coprime factors are computed such that $M_i, N_i, \tilde{M}_i, \tilde{N}_i, U_i^{(j)}, V_i^{(j)}, \tilde{V}_i^{(j)}, \tilde{U}_i^{(j)} \in \mathbb{R}^{\infty}$ (proper, stable and rational) [14] and satisfying the following Bezout Identity:

$$
\begin{bmatrix}
\tilde{V}_i^{(j)} - \tilde{U}_i^{(j)} \\
-M_i \ N_i \ V_i^{(j)}
\end{bmatrix} =
\begin{bmatrix}
M_i U_i^{(j)} \\
N_i V_i^{(j)}
\end{bmatrix} \begin{bmatrix}
I & 0 \\
0 & I
\end{bmatrix}
$$

At each vertex ν_i, all the factorized LTI controllers $K_i^{(j)}$ stabilize G_i (proof in [14]). To perform a stable coprime factorisation, polytopic LPV state-feedback controllers $F_{g,i}$ and $F_{k,i}$ are designed to quadratically stabilize G_i and $K_i^{(j)}$ respectively $\forall i,j$. This ensures the structural stability of the closed-loops ($A_i + B_{g,i} F_{g,i}$) and ($A_i^{(j)} + B_{k,i}^{(j)} F_{k,i}^{(j)}$) which are Hurwitz $\forall i,j$. The coprime factors are computed at each vertex ν_i using the state-space representations written in (6)-(7).

$$
\begin{bmatrix}
M_i U_i^{(j)} \\
N_i V_i^{(j)}
\end{bmatrix} =
\begin{bmatrix}
A_i + B_{g,i} F_{g,i} & 0 \\
0 & A_i^{(j)} + B_{k,i}^{(j)} F_{k,i}^{(j)}
\end{bmatrix}
\begin{bmatrix}
B_{g,i} & 0 \\
0 & B_{k,i}^{(j)}
\end{bmatrix}
$$

$$
\begin{bmatrix}
\tilde{V}_i^{(j)} - \tilde{U}_i^{(j)} \\
-M_i \ N_i \ V_i^{(j)}
\end{bmatrix} =
\begin{bmatrix}
A_i + B_{g,i} F_{g,i} C_2 B_2 C_2^{(j)} A_i^{(j)} - B_2 B_{k,i}^{(j)} \\
F_{g,i} - D_{k,i}^{(j)} C_2 - C_2^{(j)} A_i^{(j)} & 0 & B_{k,i}^{(j)}
\end{bmatrix}
\begin{bmatrix}
B_{g,i} & 0 \\
0 & B_{k,i}^{(j)}
\end{bmatrix}
$$

The LPV-YK Control Structure

Fig.1 shows the proposed structure of the dynamic interpolation between two dynamic output-feedback LPV controllers $K^{(0)}(\rho)$ and $K^{(1)}(\rho) \in K$. Notice that, as explained above, $N(\rho), M(\rho), U^{(0)}(\rho), V^{(0)}(\rho), V^{(0)}(\rho)$ and $Q^{(1)}(\rho)$ are computed from the convex combination of their corresponding LTI systems at the vertices of P. $K^{(0)}(\rho)$ is chosen to be the nominal controller, where it can be designed to achieve high robustness. The remaining controllers (such as $K^{(1)}(\rho)$) can be designed to deal with higher performances or critical situations. Then, $\forall i$, $K_i^{(1)}$ is written in terms of its corresponding YK parameter $Q_i^{(1)}$ represented as:

$$
Q_i^{(1)} : \begin{bmatrix}
A_{q,i}^{(1)} & B_{q,i}^{(1)} \\
C_{q,i}^{(1)} & D_{q,i}^{(1)}
\end{bmatrix}
$$

Following Fig. 1, in this work, an external signal $\gamma(t)$ multiplying the output of the designed $Q_i^{(1)}$, i.e. its output matrices are written as $C_{q,i}^{(1)}(\gamma) = \gamma(t) C_{q,i}^{(1)}$ and $D_{q,i}^{(1)}(\gamma) = \gamma(t) D_{q,i}^{(1)}$ obtaining $Q_i^{(1)}(\gamma) = \gamma Q_i^{(1)}$ (see Fig. 1), γ could be any continuous or discontinuous switching signal which interpolates between $K^{(0)}(\rho)$ and $K^{(1)}(\rho)$. This complete interpolated LPV controller is referred to as the parameterized controller $\bar{K}^{(1)}(\rho)$. The state-space representation of $Q_i^{(1)}(\rho, \gamma)$ is represented as:

$$
Q^{(1)}(\rho, \gamma) : \begin{bmatrix}
A_{q,i}^{(1)}(\rho) & B_{q,i}^{(1)}(\rho) \\
C_{q,i}^{(1)}(\rho, \gamma) & D_{q,i}^{(1)}(\rho, \gamma)
\end{bmatrix}
$$

where $A_{q,i}^{(1)} \in \mathbb{R}^{n_{q,i} \times n_{q,i}}$. The interpolated LPV-YK controller $\bar{K}^{(1)}(\rho, \gamma)$ is computed as:

$$
\bar{K}^{(1)}(\rho, \gamma) = (U^{(0)}(\rho) + M(\rho) Q^{(1)}(\rho, \gamma)(V^{(0)}(\rho) + N(\rho) Q^{(1)}(\rho, \gamma))^{-1}
$$

$$
= (U^{(0)}(\rho) + Q^{(1)}(\rho, \gamma) N(\rho))^{-1}(U^{(0)}(\rho) + Q^{(1)}(\rho, \gamma) M(\rho))
$$

Its state space matrices are written as:

$$
\begin{bmatrix}
A_{i}^{(1)}(\rho, \gamma) - A_{i}^{(0)}(\rho) - B_{i}^{(1)}(\rho, \gamma) C_{i}^{(0)}(\rho) C_{i}^{(1)}(\rho, \gamma) - B_{i}^{(1)}(\rho, \gamma) C_{i}^{(1)}(\rho, \gamma) C_{i}^{(1)}(\rho, \gamma) C_{i}^{(1)}(\rho, \gamma) C_{i}^{(1)}(\rho, \gamma)
\end{bmatrix}
$$

The next step proposes a gain-scheduling/interpolation between the designed LPV controllers to achieve different performances depending on the situations. Knowing that $Q^{(1)}(\rho, \gamma)$ is quadratically stable by construction (see later in the proof of Theorem 3.1), it is worth mentioning that:

- for $\gamma = 0$, $\bar{K}^{(1)}(\rho, \gamma = 0) = K^{(0)}(\rho)$
- for $\gamma = 1$, $\bar{K}^{(1)}(\rho, \gamma = 1) = K^{(1)}(\rho)$
3 Main Results

Based on the statements on LPV concepts and YK parameterization, a quadratically stable interpolation procedure between two LPV controllers is formulated. A non-minimal state-space realization of each LPV controller is computed based on Linear Matrix Inequality (LMI) optimization problem [5]. A gain-scheduling signal γ is included to interpolate between both controllers.

Theorem 3.1 Consider an LPV plant $G(\rho)$ (2), and given a set of LPV controllers $K(\rho)$ (3) that quadratically stabilizes $G(\rho)$. Let us choose any two controllers $K(0)(\rho)$ and $K(1)(\rho) \in K$, where $K(0)(\rho)$ represents the nominal controller. Then, the YK-parameterized LPV controller $\tilde{K}(\rho,\gamma)$ (11) (see Fig. 1) stabilizes $G(\rho)$ for any continuous/discontinuous signal $\gamma \in [0,1]$, if there exist symmetric, positive definite matrices $X_\gamma \in \mathbb{R}^{n_x \times n_x}$, $X_k \in \mathbb{R}^{n_{o_k} \times n_{o_k}}$, and matrices W_i and V_i such that:

$$A_i X_\gamma + X_\gamma A_i^T + B_k W_i + V_i^T B_k^T < 0 \quad (12)$$

$$A_{k,i}^{(0)} X_k + X_k A_{k,i}^{(0)T} + B_{k,i}^{(0)} V_i + V_i^T B_{k,i}^{(0)T} < 0 \quad (13)$$

for all $i = 1,\ldots,2^{n_p}$.

Proof. According to YK parameterisation concept, $\forall \rho \in \mathcal{P}$, the LPV parameterized controller $\tilde{K}(\rho,\gamma)$ can be formulated as a Linear Fractional Transformation (LFT) system [14], i.e. $\tilde{L}(\rho,\gamma) = F_{\gamma}(J(\rho),Q(\rho,\gamma))$ (see Fig. 2). Where, $J(\rho)$ and $Q(\rho,\gamma)$ are written as a convex combination of their corresponding LTI systems (14)-(15) at the vertices ν_i of \mathcal{P}.

$$J_i = \begin{bmatrix} A_i + B_2 D_{k,i}^{(0)} C_2 & B_2 C_{k,i}^{(0)} \hline 0 & 0 & B_2 \end{bmatrix}$$

$$Q_i^{(1)}(\gamma) = \begin{bmatrix} A_i + B_2 D_{k,i}^{(0)} C_2 & B_2 C_{k,i}^{(0)} \hline 0 & 0 & B_2 \end{bmatrix}$$

At each vertex ν_i, the closed-loop system $CL_{\nu_i}(\gamma)$ is derived from the LFT interconnection between G_i and $\tilde{K}_i^{(1)}(\gamma)$. The closed-loop state matrix $A_{cl}(\rho,\gamma) = \sum_{i=1}^{2^{n_p}} \alpha_i(\rho) A_{cl,i}(\gamma)$ is quadratically stable if there exist a symmetric, positive definite, constant matrix X_{cl} such that:

$$X_{cl} A_{cl}(\rho,\gamma) + A_{cl}^T(\rho,\gamma) X_{cl} < 0 \quad (16)$$

Now, let $T = \begin{bmatrix} I & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & I & 0 \end{bmatrix}$ be a state transformation matrix which is applied to $CL_{\nu_i}(\gamma)$ without changing its input-output nature, then

$$\tilde{A}_{cl,i}(\gamma) = T A_{cl,i}(\gamma) T^{-1} = \begin{bmatrix} A_i + B_2 F_{g,i} & B_2 C_{k,i}^{(0)} & B_2 C_{k,i}^{(0)} & B_2 C_{k,i}^{(0)} \\ 0 & A_i + B_2 F_{g,i} & B_2 C_{k,i}^{(0)} & B_2 C_{k,i}^{(0)} \\ 0 & 0 & A_i + B_2 F_{g,i} & B_2 C_{k,i}^{(0)} \\ 0 & 0 & 0 & A_i + B_2 F_{g,i} \end{bmatrix} \quad (17)$$

Due to the block-triangular form of $\tilde{A}_{cl}(\rho,\gamma)$ (17), (16) is satisfied if the following equations hold (check Lemma 2 in [16]):

$$\sum_{i=1}^{2^{n_p}} \alpha_i(\rho) (Y_g(A_i + B_2 F_{g,i}) + (A_i + B_2 F_{g,i})^T Y_g) < 0 \quad (18)$$

$$\sum_{i=1}^{2^{n_p}} \alpha_i(\rho) (Y_q A_q^{(i)} + A_q^{(i)T} Y_q) < 0 \quad (19)$$

$$\sum_{i=1}^{2^{n_p}} \alpha_i(\rho) (Y_0 A_0^{(i)} + A_0^{(i)T} Y_0) < 0 \quad (20)$$

where $Y_g \in \mathbb{R}^{n_x \times n_x}$, $Y_q \in \mathbb{R}^{n_q \times n_q(i)}$ and $Y_0 \in \mathbb{R}^{(n_x+n_{o_k}) \times (n_x+n_{o_k})}$ are symmetric, positive definite, parameter-invariant matrices, with $X_{cl} = T^T \text{diag}(Y_g,Y_q,Y_0) T$, and

$$A_{i}^{(0)} = \begin{bmatrix} A_i + B_2 D_{k,i}^{(0)} C_2 & B_2 C_{k,i}^{(0)} \\ 0 & 0 & B_2 \end{bmatrix} \quad (21)$$

Inequality (18) can be reformulated by $Y_g = X_{cl}^{-1}$ which
leads to (12) when choosing $W(\rho) = \sum_{i=1}^{2^p} \alpha_i(\rho)F_{i,g}X_g$. Regarding (15), the state matrix of the LPV-YK parameter $A_i^{(1)}(\rho) = \sum_{i=1}^{2^p} \alpha_i(\rho)A_i^{(1)}(\rho)$ is quadratically stable if there exist symmetric, positive definite, constant matrices $P_1 \in \mathbb{R}^{(m+n_k)\times (m+n_k)}$ and $P_2 \in \mathbb{R}^{n_k \times n_k}$ such that:

$$\sum_{i=1}^{2^p} \alpha_i(\rho)(P_1A_i^{(1)} + A_i^{(1)T}P_1) < 0$$

(22)

$$\sum_{i=1}^{2^p} \alpha_i(\rho)(P_2(A^{(0)}_{k,i} + B^{(0)}_{k,i}F^{(0)}_{k,i}) + (A^{(0)}_{k,i} + B^{(0)}_{k,i}F^{(0)}_{k,i})^TP_2) < 0$$

(23)

being,

$$A_i^{(1)} = \begin{bmatrix}
A_k + B_2D_{k,i}C_2 & B_2C_{k,i} \\
B_{k,i}^T & A_{k,i}^{(1)}
\end{bmatrix}$$

(24)

The condition in (22) is verified given that $K^{(1)}(\rho)$ quadratically stabilizes $G(\rho)$. Moreover, the inequality (23) satisfies (13) by choosing $P_2 = X_k^{-1}$ and $V(\rho) = \sum_{i=1}^{2^p} \alpha_i(\rho)F^{(0)}_{k,i}X_k$. Thus, $A_i^{(1)}(\rho)$ is quadratically stable and (19) is verified. Finally, (20) is fulfilled given that $K^{(0)}(\rho)$ quadratically stabilizes $G(\rho)$. □

After verifying the conditions of the theorem, it is worth mentioning that they depend only on the nominal LPV controller $K^{(0)}(\rho)$ and not on the other designed LPV controllers given the considered YK parameterization.

The following brief example presents the objective of the proposed approach in improving the closed-loop performance. Given two LPV controllers that are designed separately achieving distinct performance specifications: 1) $K^{(0)}(\rho)$ for noise rejection with slow tracking capabilities; and 2) $K^{(1)}(\rho)$ for fast tracking capabilities but without respecting the robust margin. Let us construct a YK-based interpolation scheme $\tilde{K}^{(1)}(\rho, \gamma)$ as shown in Fig. 1. As a result, multiple closed-loop performances are obtained thanks to the variation of the interpolating signal $\gamma(t)$. At an instant $t = t_k$:

1. if $\gamma(t_k) = 0$, $\tilde{K}^{(1)}(\rho, \gamma(t_k) = 0) \equiv K^{(0)}(\rho)$, the closed-loop performance achieves only noise rejection
2. if $\gamma(t_k) = 1$, $\tilde{K}^{(1)}(\rho, \gamma(t_k) = 1) \equiv K^{(1)}(\rho)$, the closed-loop performance includes only tracking capabilities
3. if $0 < \gamma(t_k) < 1$, $\tilde{K}^{(1)}(\rho, \gamma(t_k))$ interpolates between both controllers to obtain a percentage of noise rejection performance and a percentage of tracking capabilities.

An example is shown in [9] on how to choose γ according to the required control objectives.

4 Conclusion

This work has proposed a new LPV YK-based method to design an interpolation between two dynamic output-feedback LPV controllers. An external signal is introduced to the LPV-YK parameter, which can be used to incorporate any ad-hoc physically-based interpolation. As a result, a YK-based interpolation scheme is drawn between two LPV controllers while guaranteeing the closed-loop quadratic stability under arbitrary interpolating signal. This approach improves the performance for LPV complex systems that need to deal with various objectives and situations. As a future work, the LPV-YK control scheme will be extended to more than two controllers. In addition, application of the presented results and possible extension for discrete-time systems will be explored.

References

