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Chapter 1

Introduction

This book presents and studies a class of stochastic models for biological
neural nets. A biological neural net is a system with a huge number of inter-
acting components, the neurons. The activity of each neuron is represented
by a point process, namely, the successive times at which the neurons emit
an action potential, also called a spike. It is generally considered that the
spiking activity is the way the system encodes and transmits information.

Most of our understanding of the working of the cerebral cortex origi-
nates from data that are de facto observations of point processes. Neuro-
physiologists analyzed these data through averaging or aggregation, build-
ing what they call the peristimulus time histogram (46). To the best of
our knowledge, (50) is the first to estimate the intensity of a sequence of
spike times, even if he does not make use of the mathematical framework,
which, by the way, did not exist at this time. (46) clearly represent data
mathematically as realization of a point process even if they do not use the
terminology. Explicit use of the point process formalism will come shortly
after that with the book of (25). We believe that modern statistical research
of systems of spike trains starts in the 70ties with Brillinger (see for instance
(11) and (13)).

Point processes are stochastic sequences of time points. There are in-
deed biological evidences that the spiking activity of neurons is intrinsically
stochastic. Following Brillinger, in our model the spiking probability of a
given neuron is a function of its membrane potential. The membrane po-
tential can be roughly defined as the addition of the overall activity of a
set of neighboring neurons called presynaptic neurons. When the neuron
spikes, its membrane potential is reset to an equilibrium potential. Simul-
taneously, the set of neurons if influences undergoes a membrane potential
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change. These neurons are called postsynaptic neurons. In general, for a
given neuron, the sets of its pre- and its post-synaptic neurons are not the
same. This means that the interaction graph among neurons is oriented.

The reset of the membrane potential following a spike makes the time
evolution to be dependent of a variable length of the past. More precisely,
it depends on the influence received from its presynaptic neurons since its
last spiking time. Therefore our model is a system with a large number
of interacting components each one evolving as a stochastic point process
with memory of variable length. Our class of models can be considered an
extension of both the interacting particle systems, which are Markov, see
(90) and the stochastic chains with memory of variable length which have
finite state space, see (85) or (41).

Our framework is flexible enough to deal with both discrete and con-
tinuous time settings, as well as with various kinds of synapses (chemical,
electrical, plastic) and with spontaneous leakage effects. The discrete time
version of this class of models was introduced in (43). The continuous time
version of the model was first studied in (34).

We believe that apart from the fact that our model is interesting from
a pure and an applied mathematical point of view, it is also biologically
relevant as we will try to show in the next pages. We close this section with
a (non-exhaustive) list of questions to be addressed.

Some questions to be addressed

• Biological data are often considered to be stationary in time. Most
statistical tools suppose the underlying data to be stationary. There-
fore it is an important question to decide whether a stationary version
of the process exists, and if so, how many are they.

• Assuming that a stationary version of the process exists, how long does
it take for the system to relax back to equilibrium after having been
exposed to a stimulation or perturbation? Is it possible to relate this
relaxation time to network parameters?

• It has been often conjectured that the brain operates in a metastable
regime. Does our model exhibit such metastable properties, and if so,
which?

• Is it possible to relate the functional graph, that is, the fact that
the activities of different neurons are correlated, with the anatomi-
cal graph, that is, the fact that neurons are linked through actual
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synapses? More specifically, suppose the system is initially exposed to
one local stimulus, how many neurons will be affected by this stimulus
at a given time, and is it possible to link the spread of this activity
with the interaction structure?

• A central question in contemporary neuroscience is how to explain
macroscopic behavior (EEG, fMRI) from a description at a microscopic
level. Local mean field limits could be a way to address this question.
A main difficulty here is to check if the properties of the limit system
are observed experimentally.

• If we wanted to describe the behavior of a region of the cortex, using
our model, we must consider that there are different populations of
neurons interacting. Taking into account that we have dozens of kinds
of neurons, it is easy to understand that obtaining analytic results for
such models is a complicated and heavy task for mathematicians. Since
an attractive feature of our model is, as will be demonstrated in this
book, that we can easily and exactly simulate it on a computer, this
opens the possibility of numerically studying these situations through
simulations of large systems.

• At this point it is important to discuss wether these simulations are
feasible in a reasonable amount of time, using a reasonable amount
of memory. It is also important to compare this computational cost
with the one of standard procedures in computational neuroscience
which are usually based on deterministic time evolution, described by
differential equations.

• It is commonly accepted that neurobiology is drowning in data but
starving for theory. To face this problem it is crucial to compare
mathematical theory with empirical data, by doing statistical model
selection. The basic question to the class of models we are introducing
is how to identify the interaction graph, especially in situations where
only a tiny part of the system is observed.

All these questions are both mathematically interesting and susceptible to
be compared to physiological measurements. These questions have been
partially addressed in different instances of the class of models introduced
in this book. The list of articles devoted to these questions is included in
the Bibliography.

In order to help our readers familiar with one field (e.g. Neuroscience)
and not with the other (e.g. Probability) we have tried to include links to

Introduction.tex
https://en.wikipedia.org/wiki/Probability
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Wikipedia articles defining and discussing terms and concepts. These links
appear colored in this text.

Roadmap

We have tried to write this book for several types of readers, namely mathe-
maticians interested in stochastic models for neurobiological systems, statis-
ticians interested in the analysis of neurobiological data and neurobiologists
interested in mathematical models that could be relevant to better under-
stand the complex phenomena exhibited by actual data and, last but not
least, computational neuroscientists interested in stochastic models that run
fast on their computers. This means that most chapters can be read at sev-
eral levels; in particular, we tried to always summarize the biological phe-
nomenon as well as the main mathematical ideas in the beginning of each
chapter.

Chapter 2 is a detailed summary of ’basic’ neurophysiological results that
justifies the models and simplifications used throughout the book. Only the
first section of the chapter is required to proceed in the subsequent chapters.
Chapter 3 introduces the basic model as well as most of the notations that
will be used throughout the book. The reading order of the subsequent
chapters is mostly left to the reader’s taste.

Acknowledgments

This research is part of FAPESP project Research, Innovation and Dissem-
ination Center for Neuromathematics (Grant 2013/07699-0).
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Chapter 2

A neurophysiology primer
for mathematicians

2.1 A summary for the impatient

The building blocks of the models discussed in this book are the neurons.
Neurons are ”active” cells; they receive inputs via synapses from presynaptic
neurons, ”sum” these inputs and when the sum is large enough, an action
potential or spike is generated giving rise to inputs to postsynaptic neurons.
This action potential exhibits a fixed shape and amplitude, neurophysiolo-
gists say that it is an ”all-or-none” phenomenon. The only way a variable
quantity can be represented by sequences of action potentials is therefore
through either their precise timing or their local time density. The dis-
tinction just made between ”presynaptic” neurons (the set of neurons from
which a given neuron receives inputs) and ”postsynaptic” ones (the set of
neurons to which a given neuron gives inputs) makes clear that synapses
are not symmetrical. Formally neurons can be pictured as nodes/vertices
and synapses as edges of a graph. Since synapses are not symmetrical, we
are dealing with directed graphs. Neurons come in two main types, exci-
tatory neurons: their input to their postsynaptic partners make the latter
more likely to generate an action potential; and inhibitory ones: their in-
put to their postsynaptic partners make the latter less likely to generate an
action potential. The strength of the inputs that a given neuron gives to
its postsynaptic partners is generally not uniform leading to the notion of
synaptic weight. This synaptic weight will be positive for excitatory neurons
and negative for inhibitory ones. When a neuron generates an action poten-
tial, it is ”reset” and starts its input summation again ”from scratch”. At

https://en.wikipedia.org/wiki/Action_potential
https://en.wikipedia.org/wiki/Action_potential
https://en.wikipedia.org/wiki/Action_potential
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Directed_graph
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this point, our description of neural networks and the units/neurons mak-
ing them fits the one of (72) and the only potential source of variability is
the absence/presence of a synapse between two given neurons and, if there
is a synapse, the strength of the latter. But the last decades have made
abundantly clear that many fluctuation sources can be identified in neu-
rons. The input that a neuron, say j receives from its presynaptic partner
i is variable from one presynaptic action potential to the next; the synaptic
weight must therefore be understood as the mean effect of a spike in i upon
j. The generation of the action potential/spike depends upon the opening
of many ion channels that are membrane proteins going spontaneously back
and forth between open and closed states, leading to fluctuation of the time
at which the action potential is triggered for a given fixed input. Actual
neurons are rather large branching cells along which structure the action
potential propagates, but action potential propagation can fail haphazardly
at branch points, giving yet another source of variability. It is then tempting
to amend the canonical (72) neurons by lumping all the known and yet un-
known sources of variability at a single locus, the one of the spike generation.
Namely, we will adopt in this book a somewhat crude but handy simplifi-
cation consisting in making the spike generation a probabilistic function of
the summed inputs the neuron received since its last spike.

The ”impatient” reader can jump at that stage to the next chapter,
where the description just stated is given a proper formal expression. The
remaining of this chapter exposes a justification of this description, as well
as a discussion of the adopted simplifications.

2.2 Neurons

Neurons are network forming cells whose (biological) function is to receive
signals from other neurons, “integrate” these signals and transmit the “in-
tegration result” to other neurons or effector cells like muscles (71).

2.2.1 Morphological outline

Two key features make most neurons peculiar cells, namely: they do not
divide in adults; they are large—eukaryotic cells are typically 10-100 µm
large, while neuronal processes can be 0.1 to more than a meter long. This
second feature becomes a serious challenge as soon as quick and reliable
signal transmission from one end of the neuron to the other is required.

Figure 2.1 shows a ”typical” cerebral cortex pyramidal cell, the most
numerous neuronal type in this brain region, 80% of the neurons are of this

https://en.wikipedia.org/wiki/Cell_(biology)
https://en.wikipedia.org/wiki/Cell_(biology)#Eukaryotic_cells
https://en.wikipedia.org/wiki/Cerebral_cortex
https://en.wikipedia.org/wiki/Pyramidal_cell


D
RA
FT

CHAPTER 2. A NEUROPHYSIOLOGY PRIMER FOR
MATHEMATICIANS 13

type (see (8), for a comprehensive survey). Typical neurons—we are dealing
with Biology here so for ”rules” stated as a ”typical” feature, there are many
exceptions—have three well defined anatomical parts:

the soma or cell body where the nucleus is located, the large structure
in the middle of Fig. 2.1, its diameter varies between a few and 20 µm
depending on the neuron type,

the dendrites upper part of Fig. 2.1, dentrites can be a few µm to 400
µm long, they are thin, a few µm in diameter to less than 1µm,

the axon the lower part of Fig. 2.1, a thin 10 to 0.1 µm in diameter (see
(76)) and potentially very long, 100 to 106 µm —axons of giraffes and
whales can be several meters long.

Figure 2.1: This drawing shows a single pyramidal neuron, the dominant
excitatory neuron of cerebral cortex, with a synaptic connection from an
incoming axon (red circles). It was created by Amy Sterling and Daniela
Gamba for Neo Brain Game (license: CC BY-SA 4.0).

Pictures and drawings of neurons are very often misleading since the very
long axon is usually ”cut” giving the false impression of a balance between

https://en.wikipedia.org/wiki/Soma_(biology)
https://en.wikipedia.org/wiki/Dendrites
https://en.wikipedia.org/wiki/Axon
https://creativecommons.org/licenses/by-sa/4.0/
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dentritic and axonal length—a brain region where drawing are not mislead-
ing in that way is the (vertebrate) retina where neurons are ”tiny”, except
the output one, the ganglion cell. These differences are not only anatomical
but also functional in the sense of biological/physiological function, as Liqun
Luo (71, pp. 12-13) puts it:

How do information flow within individual neuron? After sys-
tematically observing many types of neurons in different parts of
the nervous system, Ramóm y Cajal proposed a theory of dy-
namic polarization: the transmission of neuronal signal takes
place from dendrites and cell bodies to the axon. Therefore ev-
ery neuron has (1) a receptive component, the cell body and
dendrites; (2) a transmission component, the axon; and (3) an
effector component, the axon terminals.

This ”theory of dynamic polarization” formulated by Santiago Ramón y
Cajal in the 19th century must of course be nuanced in light of modern
knowledge (71), but it remains a very good first approximation.

Neurons come in two categories

Neurons come in two main categories: i) excitatory neurons make their
postsynaptic partners more likely to “be active”; ii) inhibitory neurons make
their postsynaptic partners less likely to be active. There are many sub-
types within both of these categories (8; 71), but we are most of the time
interested in studying a very simplified model of the neocortex—the outmost
and most recently evolved part of the vertebrate brain—and we are going to
consider just two neuronal types, excitatory and inhibitory with the actual
neocortical proportions of 80 and 20% (8).

2.2.2 Membrane potential

Like every cell, neurons are delimited by a plasma membrane—a lipid bilayer—
across which the concentrations of some ions are different. The key ionic
players here are sodium (Na+, a monovalent cation), potassium (K+) and,
to a lesser degree, calcium (Ca2+, a divalent cation) and chloride (Cl−, a
monovalent anion). The combination of different ionic concentrations and
ion specific permeability gives rise to the membrane potential (an electrical
potential difference between the inside and the outside of the neuron). The
latter is usually obtained from the Nernst potential—valid when a single ion
is permeable; when more than one ionic species is permeable, the Nernst po-
tential equation takes a more general form given by the Goldman equation.

https://en.wikipedia.org/wiki/Retina
https://en.wikipedia.org/wiki/Retinal_ganglion_cell
https://en.wikipedia.org/wiki/Function_(biology)
https://en.wikipedia.org/wiki/Santiago_Ram\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \endgroup \relax \let \ignorespaces \relax \accent 19 o\egroup \spacefactor \accent@spacefactor n_y_Cajal
https://en.wikipedia.org/wiki/Santiago_Ram\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \endgroup \relax \let \ignorespaces \relax \accent 19 o\egroup \spacefactor \accent@spacefactor n_y_Cajal
https://en.wikipedia.org/wiki/Plasma_membrane
https://en.wikipedia.org/wiki/Membrane_potential
https://en.wikipedia.org/wiki/Nernst_equation#Nernst_potential
https://en.wikipedia.org/wiki/Goldman_equation
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At ”rest” the neuronal membrane is mainly permeable to potassium (K+)
whose typical concentrations (in mammalian neurons) are: [K+]out = 4 mM
and [K+]in = 120 mM leading to a Nernst potential of ≈ -90 mv. This value
is close to, but slightly more negative than, the measured resting poten-
tials. It is customary in neurophysiological modeling to give all membrane
potential values with respect to the resting value and this convention will be
followed in the subsequent chapters of this book.

2.2.3 The “signal transmission problem” and the action po-
tential

The ”large” size of most neurons poses serious problems when one considers
the reliable transmission of a signal from one end of a neuron to the other
(17). Molecular diffusion is indeed used in bacteria whose size is of the order
of 1 µm but is much too slow (the time grows with the square of the size)
for larger cells like neurons. Axonal transport—energy consuming transport
following elongated proteins, microtubules, running all along the axon—
exists and is used but is also too slow (50-400 mm/day) to account for the
fast reaction times typical of animals. A more effective signal propagation
mechanism involves membrane potential deviations from their resting value:
the action potential or spike.

The action potential

The key properties of the action potential are illustrated in Fig. 2.2 which
was obtained from a numerical model that provides an excellent approxi-
mation to experimental data. This numerical model is tailored to the squid
giant axon but the conclusions drawn from it have a general applicability
(that’s an empirical statement). The black trace on the top panel of Fig. 2.2
shows computed values of V (x, t) (membrane voltage deviation from resting
value) at two different locations, 1 cm apart, when a ”small” stimulation
(current injection) is applied. The curve with the largest amplitude shows
V (0, t) (x = 0 is the site of current injection) and the other one shows
V (1, t). If we increase slightly the stimulation amplitude (grey curves) the
voltage deviations increase correspondingly, that is almost linearly, except
for the small hump on the decaying phase of V (0, t) (around 0.8 ms). If we
keep increasing the stimulation amplitude, Fig. 2.2 bottom panel (notice
that the range of the ordinate at the bottom is five times larger than at the
top), when the current pulse ends at 0.2 ms at the stimulation location, the
initial potential decay is quickly followed by a rise (left black curve). This

https://en.wikipedia.org/wiki/Axonal_transport
https://en.wikipedia.org/wiki/Squid_giant_axon
https://en.wikipedia.org/wiki/Squid_giant_axon
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rise goes up to 90 mv before the potential starts decaying. If we now look
at V (x, t) for x = 1, 2, 3, 4 cm (successive unimodal black curves from left to
right), we see a standard potential waveform propagating at a constant veloc-
ity. Increasing the stimulation amplitude further (set of grey curves) makes
the ”standard waveform” appear earlier, but does neither change its shape,
nor its velocity. This standard waveform propagating at a constant
velocity is the action potential.

Figure 2.2: A replicate of (23) numerical study of the Hodgkin and Huxley
squid giant axon model. Four simulations are illustrated with an applied
current pulse lasting 0.2 ms and an increasing amplitude. Top: responses to
”subthreshold” pulses (1500, black and 1800 µA/cm2 grey) at two locations,
the injection location, and 1 cm away. Bottom: responses to ”suprathresh-
old” pulses (2500, black, and 3000 µA/cm2, grey) at five different locations:
the injection site, 1, 2, 3 and 4 cm away.

The action potential understood as a standard potential waveform prop-
agating at constant velocity clearly provided a way of transmitting a (fast)
signal over long distances. The “standard” aspect of the waveform will
provide robust signal transmission, in the same way as the TTL pulses of
electronic devices do: the exact amplitude (or shape) of the pulse (wave-
form) is not “interpreted”, the pulse (waveform) is there or not. This leads
directly to the all-or-none law of the response to a stimulus: there is either
an action potential or nothing, the response cannot be graded. This robust
feature of the standard waveform comes at a price: if stimulation of differ-
ent amplitudes have to be represented, these different amplitudes have to be
“coded” by different frequencies of action potential sequences or by different

https://en.wikipedia.org/wiki/All-or-none_law
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latencies of the first action potential. A time varying continuous signal can
clearly not be represented by sequences of action potentials from a single
neuron.

We don’t have the space to enter into the biophysical details of action
potential generation and propagation here (55) and we will only summarize
the general feature illustrated by Fig. 2.2. The membrane of (most) neu-
rons exhibits two qualitatively different behaviors: i) when the stimulation
(injected current) is small, the membrane response is essentially linear; ii)
when a threshold is exceeded, a standard, self propagating potential wave-
form of brief duration is generated. The models considered in this book will
also “forget” about the biophysics of the action potential and schematize the
neuronal dynamics by postulating that the neuron spends most of its time
“integrating its inputs” (the linear regime above) and, when the integrated
inputs are large enough, an action potential is generated and propagated.
Neither the action potential nor its propagation are going to be explicitly
modeled.

2.2.4 Talking to other neurons: the synapse

A “signal” gets transmitted from one neuron to the next by the activation
of a synapse: the action potential of the presynaptic neuron (in red on
Fig. 2.1) reaches the presynaptic terminal, this triggers the release of pack-
ets of neurotransmitters (small molecules like glutamate for the excitatory
synapses and GABA for the inhibitory ones) that diffuse in the small space
between the pre- and post-synpatic neurons and bind to receptor-channels
(or ligand-gated ion chennels) located in the membrane of the postsynaptic
neuron (71)—channels are macromolecules spanning the cell membrane and
forming a pore through the latter; the pore can be closed or opened—; af-
ter transmitter binding to these receptor-channels, the latter open and let
specific ions flow through their pore (mainly sodium for excitatory synapses
and chloride for the inhibitory ones). These ion fluxes or currents will in-
duce a change of the postsynaptic neuron membrane potential. What we
just described are chemical synapses, they are by far the most numerous
in cortical regions, but we also find, between specific cell types, electrical
synapses (71) that are likely to play an important role in synchronizing the
outputs of groups of neurons.

https://en.wikipedia.org/wiki/Glutamate_(neurotransmitter)
https://en.wikipedia.org/wiki/Gamma-Aminobutyric_acid
https://en.wikipedia.org/wiki/Ligand-gated_ion_channel
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2.2.5 The integrate and fire model

A simple quantitative neuronal model compatible with the description we
just gave was introduced in 1907 by Lapicque (68). It is now known as
the Lapicque or the integrate and fire model and it describes the membrane
potential dynamics of ’point-like’ neurons (their spatial extension is not
explicitely modeled) as follows (93; 16):

CmdVi/dt = −Vi/Rm +
∑
j∈Si,E

Ij→i(t) +
∑
k∈Si,I

Ik→i(t) if Vi(t) < Vthr ,

(2.2.1)
where i is the neuron index; Cm is the neuron capacitance; Rm is the neuron
membrane resistance; Si,E , respectively Si,I , are the indices of excitatory,
respectively inhibitory, neurons presynaptic to i; Ij→i(t) ≥ 0, respectively
Ik→i(t) ≤ 0, are the synaptic currents due to neuron j, respectively k, at
time t; Vthr is the ’threshold’ voltage. Every time Vi(t) = Vthr an action
potential is emitted and Vi is reset to 0. Very often the Ij→i(t) are set to:

Ij→i(t) = wj→i
∑
l

δ(t− tj,l) , (2.2.2)

where wj→i is referred to as the synaptic weight ; δ stands for the Dirac
delta distribution/function; the tj,l are the successive spike times of neuron
j. In this model, when there are no inputs, the membrane potential relaxes
towards 0 with a time constant τ = RmCm. A presynaptic spike from an
excitatory neuron j generates an instantaneous upward ’kick’ of amplitude
wj→i, while a presynaptic spike from an inhibitory neuron k generates an
instantaneous downward ’kick’ of amplitude wk→i. The actual action po-
tential is not explicitly modeled—it was not doable at the time of Lapicque
since the biophysics of this phenomenon was not understood—but is re-
placed by a point event. Notice that with the synaptic input description
illustrated by Eq. 2.2.2 the current generated in the postsynaptic neuron by
a given synapse does not depend on the membrane voltage of the former.
This constitutes a crude approximation of the actual biophysics of synaptic
current generation. A much better approximation (66; 94)—but harder to
work with analytically—is provided by using:

Ij→i(t) = gj→i(Vrev − Vi)
∑
l

δ(t− tj,l) , (2.2.3)

where gj→i is the synaptic conductance, Vrev is the synaptic current reversal
potential—as its name says this is the voltage at which the current changes
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sign—, it is negative or null for inhibitory synapses and larger than the
threshold voltage for excitatory ones. Taking Vrev = 0 for the inhibitory
inputs we see an important and empirically correct feature appearing: the
downward ’kick’ generated by the activation of an inhibitory input becomes
proportional to the membrane voltage Vi; the larger the latter, the larger
the kick.

2.3 The “stochastic picture”

The description presented so far is essentially deterministic and is far from
giving the whole picture. The biophysical and molecular events leading to
the action potential emission and propagation are by now well understood
(71) and are known to involve the stochastic opening and closing of voltage-
gated ion channels: the probability of finding a channel closed or opened
depends on membrane voltage. This stochastic dynamics of the channels
can lead to fluctuations in the action potential emission or propagation time
when a given (deterministic) stimulation is applied repetitvely to a given
neuron (98; 103). Similarly, the synaptic receptor-channels do fluctuate be-
tween open and close states, but that’s the binding of the transmitter rather
than the membrane potential that influences the probability of finding the
channel in the open state. An even (much) larger source of fluctuations at
the synapse results from the variable number of transmitter packets that get
released upon a presynaptic action potential arrival (71)—even if the same
presynaptic neuron is repetitively activated in the same conditions. The
result of all these fluctuation sources is a rather “noisy” aspect of the mem-
brane potential of cortical neurons that legitimates the use of “stochastic
units” as building blocks of neural network models (94; 103). Historically,
the first stochastic units were built by adding a Brownian motion process
term to the right hand side of Eq. 2.2.1 (47; 16; 87). This approach leads
to Chapman-Kolmogorov / Fokker-Planck equations that are hard to work
with analytically and numerically. But identifying a neuron’s sequence of
action potentials with the realization of a point process suggests another
strategy: modeling “directly” the process stochastic intensity (12; 21). This
is the approach that will be followed in this book.

To be continued...
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Chapter 3

A discrete time stochastic
neural network model

3.1 Introduction

The goal of this chapter is to introduce our model in the most accessible
hands-on way, avoiding as much as possible mathematical difficulties. In
what follows, N = {0, 1, 2, . . . , n, . . .} denotes the set of positive integers
including 0, Z = {. . . − n,−n + 1, . . . , 0, 1, . . . , n, . . .} denotes the set of all
integers, and R denotes the set of real numbers. The basic ingredients of
our model are

1. a family of synaptic weights wj→i ∈ R, for j, i ∈ I;

2. a family of spiking probability or rate functions φi : R→ R+, i ∈ I.

We interpret wj→i as the synaptic weight of neuron j on neuron i. The
functions φi are non-decreasing. The contribution of components j is either
excitatory or inhibitory, depending on the sign of wj→i. We shall introduce

V·→i = {j ∈ I : wj→i 6= 0},

which is the set of presynaptic neurons of i, and

Vi→· = {j ∈ I : wi→j 6= 0},

the set of postsynaptic neurons of i.
We observe that this defines a graph in which the neurons are the vertices

and the synaptic connections are the edges. Since synaptic connections

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
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are generally not symmetrical, we are dealing with directed graphs. For
the simple illustrations considered in this chapter we are going to consider
wi→j = 0 or 1 and we can then see these weights as the elements of the
graph adjacency matrix.

For a case with 3 neurons: N1, N2 and N3, where N1 has N2 and N3
as postsynaptic partners, both with weights 1; N2 has N1 and N3 as post-
synaptic partners, both with weights 1; and N3 has N1 has postsynaptic
partner with weight 1, the adjacency matrix is:

post

pre
. 1 1
1 . 1
1 . .

where we write ”.” instead of ”0” following a convention commonly used
for sparse matrix representations. The V·→i are then the columns of the
adjacency matrix, while the Vi→· are its rows. We will also use graphical
representations for these matrices as illustrated here:

We can and will generalize the construction of the adjacency matrix by
using elements that are not necessarily 0 (no connection) or 1 (connection)
but by plugging-in the actual wi→j values.

3.2 Basic discrete time model

In the discrete time setting, our model describes the spiking activity of a
finite set I of neurons over time, where time is binned into small windows
of length around 1 to 5 milliseconds. In this setting, all functions φi are
supposed to take values in [0, 1]. For any neuron i ∈ I, Xt(i) = 1 indicates
the presence of a spike within the time window of index t, and Xt(i) = 0
indicates the absence of a spike within the same time window. In what
follows, we will simply speak of the value at time t instead of speaking of
the time window of index t.

https://en.wikipedia.org/wiki/Adjacency_matrix


D
RA
FT

CHAPTER 3. A DISCRETE TIME STOCHASTIC NEURAL
NETWORK MODEL 23

To describe the model, we need to introduce some extra notation. For
each neuron i ∈ I and each time t ∈ Z, let Lt(i) be last spike time of neuron
i before time t. Formally,

Lt(i) = max{s ≤ t : Xs(i) = 1}. (3.2.1)

In the following table that can be viewed as simplified raster plot, the
top row contains the time index. Each subsequent row contains a snapshot
of the realizations of 3 processes. The notation x(i) (i = 1, 2, 3) should be
understood as

x(i) ≡ (. . . , x−2(i), x−1(i), x0(i), x1(i), x2(i), x3(i), x4(i), x5(i), . . .) .

The right columns shows the realization l5(i) of L5(i) for each of the three
processes.

t . . . -2 -1 0 1 2 3 4 5 . . .

x(1) . . . . 1 . . 1 . . 1 . . . l5(1) = 5
x(2) . . . 1 . 1 . . . . . . . . l5(2) = 0
x(3) . . . 1 . . . . 1 . . . . . l5(3) = 3

We also introduce the membrane potential of neuron i at time t,

Vt(i) =
∑
j∈I

wj→i

 t∑
s=Lt(i)+1

Xs(j)

 , if Lt(i) < t, (3.2.2)

where we put
Vt(i) = 0 if Lt(i) = t.

Thus, the membrane potential value is of neuron i obtained by adding up the
contributions of all presynaptic neurons j ∈ V·→i of i since its last spiking
time. Moreover, the membrane potential is reset to 0 at each spiking time
of the neuron.

Using the the previous adjacency matrix, the above realizations lead to:

t . . . -2 -1 0 1 2 3 4 5 . . .

v(1) . . . ? 0 1 1 0 1 1 0 . . .
v(2) . . . 0 1 0 0 1 1 1 2 . . .
v(3) . . . 0 1 2 2 2 0 0 1 . . .

We see that v−2(1) is not defined (”?”) since l−2(1) is missing.
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Warning for physiologists: At this point, to simplify the presenta-
tion, we did not take into account any leakage effects, they will be introduced
in Sec. 3.3. Synaptic delays and synaptic activation times can also easily be
added to the present framework as will be illustrated in Sec. à compléter.

We now give an informal description of our model. Assuming that at
time t ≥ 0 each neuron has spiked at least once before time t, we do the
following steps.

1. We compute Vt(i) for every neuron i.

2. Every neuron i decides to spike at time t+1 with probability φi(Vt(i)),
independently of the others.

3. For every neuron i, we update the values of Xt+1(i) according to the
previous step and calculate Vt+1(i) according to (3.2.2).

The above algorithm can be formally translated as follows. We start at
time t = 0 from some initial condition Xt(i) = xt(i) for all t ≤ 0, i ∈ I.
We suppose that for all i ∈ I, there exist `i ≤ 0, such that x`i(i) = 1. This
means that `i ≤ L0(i) ≤ 0 is well-defined for any i ∈ I, and that we are able
to compute V0(i) for each neuron i.

We consider a family of uniform random variables Ut(i), i ∈ I, t ≥ 1,
which are i.i.d., uniformly distributed on [0, 1]. Then we define in a recursive
way for every t ≥ 0,

Xt+1(i) =

{
1, if Ut+1(i) ≤ φi(Vt(i))
0, if Ut+1(i) > φi(Vt(i))

, (3.2.3)

where for each t ≥ 1 and i ∈ I, Vt(i) is the membrane potential of neuron i
at the previous time step t, defined according to (3.2.2). By construction of
the process, the probability that neuron i spikes at time t+ 1 is a function
of its membrane potential one time step before.

Rule (4.2.1) can be rephrased in the following way. At each step, given
the past, neurons decide to spike or not independently the one from the
others. This means that for any choice a(i) ∈ {0, 1}, i ∈ I,

P (
⋂
i∈I
{Xt+1(i) = a(i)}|Xs(j), s ≤ t, j ∈ I)

=
∏
i∈I

P (Xt+1(i) = a(i)|Xs(j), s ≤ t, j ∈ I), (3.2.4)
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where

P (Xt+1(i) = 1|Xs(j), s ≤ t, j ∈ I)

= P (Xt+1(i) = 1|Xs(j), Lt(i) + 1 ≤ s ≤ t, j ∈ V·→i) = φi(Vt(i)). (3.2.5)

Observe that the process (Xt)t≥0, Xt = (Xt(i), i ∈ I), describing the
spiking activity of each neuron, is not a Markov chain since its dependence
on the past is not restricted to a fixed finite number of steps.

On the contrary, the process (Vt)t≥0, Vt = (Vt(i), i ∈ I), is a Markov
chain and therefore more suitable for simulation issues.

Warning for probabilists The price to pay to obtain a Markovian
description is that we replace a process having compact state space {0, 1}I
by another one having non-compact state space. Therefore simple issues
as the existence of invariant probability measures requires more involved
arguments.

The transitions of the Markov chain (Vt)t≥0 can be described as follows:

Vt+1(i) =

{
0, if Ut+1(i) ≤ φi(Vt(i))
Vt(i) +

∑
j 6=iwj→i1{Ut+1(j)≤φi(Vt(j)}, if Ut+1(j) > φi(Vt(j)).

(3.2.6)

Pseudocode to simulate the basic discrete time model

The following objects appear in the pseudocode:

N network size (number of neurons)

T simulation duration (number of time steps)

w N ×N adjacency matrix (matrix of synaptic weights)

V vector of N elements with the membrane potential of each neuron

U vector of N independent and uniformly distributed random numbers (the
elements of this vector are drawn at each time step)

The pseudocode is:

1: for t← 1, T do
2: for i← 1, N do
3: if Ui ≤ φ(Vi)) then . Neuron i spikes
4: Xi ← 1
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5: Vi ← 0
6: end if
7: end for
8: for i← 1, N do
9: if Xi = 0 then . Neuron i did not spike

10: for j ← 1, N do
11: Vi ← Vi + wj→i ×Xj

12: end for
13: end if
14: end for
15: end for

For a complete Python implementation see Sec. 3.4.

The simulated membrane poten-
tial path of one neuron of the net-
work (red line) together with the
paths of all its presynaptic partners
(alternating black and grey lines)
are shown for the last 40 time steps.
Observe that the paths go down-
ward only when the corresponding
neuron spikes (clear grey rectan-
gles), since all the synaptic weights
are positive.

This model includes two main
features of stochastic integrate and
fire models : synaptic integration
and the release of action potentials
depending on the current value of the membrane potential. One important
aspect, present in most neurons, is however missing, this is the effect of
leakage that we are now going to describe.

3.3 Introducing leakage

The presence of leakage channels in the membrane of a neuron tends to push
the membrane potential of each neuron towards zero. We take this fact into
account by adding to the above dynamics

a family of leak functions gi : R+ → [0,∞[, i ∈ I.
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Every function gi describes how neuron i looses potential due to leakage
effects over time. Introducing leakage in the model, the membrane potential
of neuron i at time t is now given by

Vt(i) =
∑
j∈I

wj→i

t∑
s=Lt(i)+1

gi(t− s)Xs(j), if Lt(i) < t, (3.3.7)

and Vt(i) = 0 if Lt(i) = t. The update rules for the process are given by
(3.2.4) and (3.2.5) and the construction of the process according to (4.2.1)
still applies.

It is important to observe that for general leak functions, the process Vt
is not a Markov chain any more. This is due to the fact that the erosion rate
at every step depends on the time elapsed since the last spike. An exception
occurs when gi(s) = ρsi for all s ≥ 0, for all i ∈ I, for some ρi ∈ [0, 1]. Then
(Vt)t≥0 is a Markov chain whose transitions are given by:

Vt(i) =

{
0 if Ut(i) ≤ φi(Vt−1(i))
ρiVt−1(i) +

∑
j 6=iwj→i1{Ut(j)≤φj(Vt−1(j)} if Ut(i) > φi(Vt−1(i))

.

(3.3.8)

The previous network simulated
in the same conditions except that a
20 % leakage effect has been added.
As before, the membrane potential
path of one neuron of the network
(red line) together with the paths
of all its presynaptic partners (al-
ternating black and grey lines) are
shown for the last 40 time steps.
Neurons spike times are indicated
by clear grey rectangles.

3.4 Python code

A simple Python implementation
of Eq. 3.2.6 and 3.3.8 is presented
next. A network made of 100 neu-
rons is considered. The connections are generated with a uniform probability
of 0.2 per pairs of neurons (an Erdös-Rényi graph). The membrane poten-
tial looses 20 % of its value at each time step (80 % are therefore remaining)

https://www.python.org
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when the neuron does not spike. The synaptic weight is 1 when there is
a synapse. The rate function is linear between 0 and 40 (40 is critical in
order to have a network that does not die too soon and that does not fire
too many spikes), it is 0 below 0 and 1 above 40. The initial value of the
membrane potential is drawn uniformly and independently from the discrete
set {0, 1, . . . , 40}. After each time step, the time index together with the
membrane potential of each neuron are written to a text file. 1000 steps
are simulated. This a ”bare-bone” illustrative implementation, it could be
made much more efficient (but less readable).

1 import random # random number module

2 random.seed(20200622) # set RNG seed

3 N = 100 # Number of neurons in network

4 connection_prob = 0.2 # connection probability

5 remain = 0.8 # fraction of potential remaining after one step due

6 # to leakage (set to 1 for no leakage)

7 graph = [[i for i in range(N) if random.random() <= connection_prob and

8 i != j]

9 for j in range(N)] # generate Erdos-Renyi graph

10

11 thresh = 2*N*connection_prob # voltage threshold

12 # If V_t(i) >= thresh the spiking probability is going to be 1

13 # This is what is implemented by the following function

14 def phi(v):

15 return min(v/thresh,1.0)

16

17 V = [random.randint(0,thresh) for i in range(N)] # initialize V

18

19 fout = open('Vproc_leak','w') # write simulation to file name 'Vproc'

20 fout.write(str([0]+V).strip('[]')+'\n')

21

22 n_step = 1000 # the number of time steps

23 for t in range(1,n_step+1): # Do the simulation

24 P = [phi(v) for v in V] # spiking probability

25 # Find out next if each neuron spikes or not

26 S = [random.random() <= P[i] for i in range(N)]

27 for i in range(N):

28 if S[i]: # neuron n spiked

29 V[i] = 0 # reset membrane potential

30 else: # neuron n did not spike

31 V[i] *= remain # leakage effect

32 for k in graph[i]: # look at presynaptic neurons

33 if S[k]: # if presynaptic spiked

34 V[i] += 1 # identical weight of 1 for each synapse

35 fout.write(str([t]+V).strip('[]')+'\n') # write new V

36

37 fout.close()

Some comments on the code for Python ”newbies” The reader
new to Python is strongly encouraged to read first the official tutorial (a
short and really enjoyable read), while the impatient looking for a quick

https://docs.python.org/3/tutorial/index.html
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reminder can consult the very useful Python syntax and semantics article
from Wikipedia.

line 1 If Python like C is now everywhere and is here too last, it’s partly
because of its Standard Library, a collection of modules (in Python

parlance) dedicated to specific tasks like manipulating compressed files
(eg zlib), performing mathematical operations (math) or dealing with
random numbers (random). To use the functions and variables of a
module/library in Python code or in an interactive session, we must
import it, that’s what the first line is doing for the random module.

line 2 the default pseudorandom number generator (PRNG) of the random

module is a Mersenne Twister; like any PRNG it is in fact a fully de-
terministic generator whose output ”looks” random–and passes strong
statistical tests of randomness–. It is therefore possible to generate the
exact same sequence if one starts from the same generator state. This
code line sets the starting state, in PRNG parlance, we are ”seeding”
the generator. Remark that we are calling a function seed defined
in the random module and the way we are ”telling” Python that ”we
want to use seed from the random module” is by prefixing seed with
the module name using a dot in between. In a Python session we can
get help about any function by calling the help function on the latter,
eg, help(random.seed)). By using the same seed as we do in line

2, the reader will reproduce exactly our ”random” simulation.

lines 7-9 An example of nested list comprehensions; lists are the most
general way to store many objects in one place in Python. They start
with ”[” and end with ”]”, the different objects are separated by ”,”.
Objects within a list need not to be of the same type: [1,2,3,4] is
a valid list; so is [1,"2",3,"4"]. List elements can be accessed via a
sub-setting syntax; if foo = [1,2,3,4], then the line foo[2] returns
3 (indices in Python start from 0). Concerning types, 2 is not the same
as "2", the former has an int type (this implies, among other things,
that Python returns 4 when we use the command 2+2), while the latter
has a str type (a text sequence, so Python returns "22" when we use
"2"+"2" because the + operator is a concatenation operator for text
sequences). The idea of the list comprehension is the same as the
mathematicians’ way of defining a set by specifying a property shared
by all set members rather than explicitly listing all of them (a clearly
impossible task for infinite sets!). The call to random.random() is a
function call, that’s what the two ”()” imply (they must be there,

https://en.wikipedia.org/wiki/Python_syntax_and_semantics
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/zlib.html
https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/random.html
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://en.wikipedia.org/wiki/Mersenne_Twister
https://en.wikipedia.org/wiki/Statistical_randomness
https://en.wikipedia.org/wiki/List_comprehension
https://en.wikipedia.org/wiki/Data_type
https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
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otherwise Python would assume we are referring to a variable named
random). random is a function of module random that takes no ar-
gument and that returns a random floating point number uniformly
distributed in the range [0, 1). The list referred to by the variable
graph is a list of lists. It contains 100 sub-lists. The sub-list graph[i]
(as in line 32) contains the indices of the neurons presynaptic to neu-
ron i. Function range(N) generates sequentially the integers from 0
to N-1.

lines 14-15 Definition of function phi. This function takes a single formal
parameter/argument x. To have a value a function must return some-
thing and what it returns in Python is what comes after the keyword
return, here the minimum of the argument x divided by thresh (de-
fined outside of the function body at line 9, see Python scoping rules
do understand why this is valid) and of 1.0. This is the first example
of block definition by indentation: The function’s body starts after the
”:” and must be indented, here by four white spaces (the number of
spaces is conventional, we could have used 3, but it must be consis-
tent within a block and tabs are not identical their equivalent number
of white spaces!). This indentation rule is a hotly debated issue in
the programmers’ world, although it was not introduced for historical
reasons but readability ones (thereby enforcing in the language syntax
something that is normally dealt with by the editor), it reminds me of
fortran 77 syntax. . .

line 17 Membrane potential initialization; a simpler example of list compre-
hension usage. Potentials are initialized to integer values and random.randint

is called instead of random.random.

line 19 A file called Vproc leak is opened in ”writing” mode (that’s what
the second parameter, w, means).

line 20 The initial value of the membrane potential of each neuron is writ-
ten to file Vproc leak on a single line. The line starts with the time
index (here 0). The special meaning of the + operator for lists is put
to use: [0]+V concatenates the list [0] with the list V. The result-
ing list is then converted to a string representation (call to str) and
the square brackets surrounding the string representation of a list are
removed by calling the method strip with parameter ’[]’ on the
string generated by: str([0]+V). The ”new line” character \n is then
added to line end using again the special ”concatenation” meaning of

https://docs.python.org/3/library/random.html#real-valued-distributions
https://docs.python.org/3/tutorial/controlflow.html#the-range-function
https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces
https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Indentation
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the + operator for strings this time. The actual writing to the file is
performed by calling the write method.

line 23-35 Main simulation loop.

line 24 Spike probability of each neuron is obtained by calling our function
phi with the membrane potential of each neuron as parameter in a list
comprehension.

line 26 A sequence of independent draws is used to ”decide” if each neuron
spikes or not in a list comprehension; the resulting list S is a list of
Boolean values.

line 27-34 The individual neurons are processed successively (at a given
time step t).

line 28-29 If the neuron i spikes, S[i] is True, its membrane potential is
reset to zero.

line 30-34 The membrane potential of neuron i that doesn’t spike, S[i]
is False, is updated.

line 31 The leakage effect; this line could be removed in order to speed up
the code for a model without leakage (remain set to 1).

line 32-34 The spiking behavior of each presynaptic neuron to neuron i is
checked.

line 33-34 If neuron k presynaptic to neuron i spikes, then the membrane
potential of neuron i is increased by 1.

line 35 The new value of the membrane potential of each neuron is written
to our file with the time index starting the line.

line 37 Once the simulation is over, the file is closed.

3.5 Exercises and complements

The first three exercises require some probabilist training.
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Exercice 1 : Is the membrane potential process Markov or
not ?

i) Put

Ṽt(i) =
∑
j 6=i

t−1∑
s=Lt−1(i)+1

gi(t− s)Xs(j)

and show that

Vt(i) = 1{ Ut(i)>φi(Vt−1(i))}

Ṽt(i) +
∑
j 6=i

wj→i1{Ut(j)≤φj(Vt−1(j)}

 .

ii) Compare Ṽt(i) to Vt−1(i) and show that Ṽt(i) is a (deterministic) func-

tion of Vt−1(i) if and only if gi(t−s)
gi(t−1−s) is constant for all Lt−1(i) < s ≤

t − 1. Deduce from this that (Vt)t≥0 is a Markov chain if and only if
gi(t) = ρti for some ρi ∈ [0, 1], for all i.

Exercice 2 : And what about the spike trains ?

Let k ≥ 1. We say that Xt = (Xt(i), i ∈ I) is a Markov chain of order k if
for any i and t, in (3.2.5),

P (Xt+1(i) = 1|Xs(j), s ≤ t, j ∈ I)

= P (Xt+1(i) = 1|Xs(j), (Lt(i) + 1) ∧ t− k ≤ s ≤ t, j ∈ V·→i). (3.5.9)

i) Show that if for all i ∈ I, gi = ci1[0,Ti], Ti ≤ k, then (3.5.9) holds.

ii) Show that (3.5.9) implies that for each i, gi(t) = 0 for all t ≥ k + 1,
that is, the leakage functions are all of compact support.

Exercice 3: An embedded Markov chain

Notation and extra definitions. Given two integers s ≤ t, the sequence
(xr : s ≤ r ≤ t)) of symbols belonging to the alphabet A will be denoted
xts. Given a sequence xts, its length t− s+ 1 will be denoted l(xts). Given a
sequence xts and an element a ∈ A, the sequence obtained by concatenating
the sequence to the element will be denoted xtsa. This a sequence of length
t − s + 2, starting with xs and ending with symbol a. The sequences xtr,
where s ≤ r ≤ t, are called its suffixes of the sequence xts.
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i) Let the process (Xt(i) : i ∈ I , t ≥ 0) be defined as in Section 3.2 and
3.3. For each t ≥ 0, define

Lt = inf{Lt(i) : i ∈ I}

and
Ct = (Xt

Lt
(i); i ∈ I) .

For each t ≥ 0, show that Ct+1 is a suffix of CtXt+1.

ii) Show that (Ct : t ≥ 0) is a Markov chain of order 1. Notice that
this Markov property is not restricted to settings where the leakage
function decays exponentially with time (as in Exercice 1). The price
to pay is to work with a much more complicated state space.

iii) Assuming that φi(0) = 0 for every i ∈ I, show that the null configu-
ration nt(i) = 0, for any i ∈ I and any t ≥ 0, is trap for the chain a
(Ct : t ≥ 0).

iv) Assuming that φi(u) ≥ δ > 0, for any i ∈ I and any u ∈ R, prove that
the Markov chain (Ct : t ≥ 0) has at least one invariant measure and
never stops spiking, i.e.

P (∩i∈I ∩t≥0 ∪s≥t{Xs(i) = 1}) = 1 .

v) Assuming that φi(u) ≥ δ > 0, for any i ∈ I and any u ∈ R, under
which conditions on the set of synaptic weigths (wj→i : i ∈ I, j ∈ I, the
Markov chain (Ct : t ≥ 0) has a unique invariant probability measure.

vi) Let now the process (Xt(i) : i ∈ I , t ≥ 0) be defined as in Section 3.3,
with leakage. Assuming that φi(0) = 0 and ρi < 1, for every i ∈ I.
Prove that this processes spikes only a finite number of times, i.e.

P (∪i∈I ∩t≥0 ∪s≥t{Xs(i) = 1}) = 0 .

Exercice 4: Cross-correlation of simulated trains

Use the Python simulation code of the Section 3.4 to simulate a simple
network made of 3 neurons. Neuron 1 has an input with a large synaptic
weight on neuron 2; it has a weak input on neuron 3; neurons 2 and 3 do
not form synapses on any of the other two neurons. Make sure that neuron
1 never stops spiking by having a positive value of the rate function when
the membrane potential is null.
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i) Simulate such a network for long enough to observe of the order of
1000 spikes from every neuron.

ii) Write a Python code computing the cross-correlogram between a pair
of neurons. Given two observed trains, {x1(i), x2(i), . . . , xT (i)} and
{x1(j), x2(j), . . . , xT (j)}, the cross-correlogram at lag τ , ĉτ (i, j), be-
tween the reference i and the test j train estimates the probaility that
a spike from neuron j follows a spike from neuron i by exactly τ time
steps. It is formally defined by:

ĉτ (i, j) =

∑min(T,T−τ)
max(−τ,1) xt(i)xt+τ (j)∑min(T,T−τ)

max(−τ,1) xt(i)
,

for −τmax ≤ τ ≤ τmax and τmax > 0.

The cross-correlogram is called the cross-intensity by (author?) (13).

iii) Use this code to compute the cross-correlogram between every pair of
simulated neurons.

iv) Change the synaptic weights and observe the effect on the cross-
correlograms.
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A case study: correlations
between successive inter
spike intervals

4.1 Are inter spike intervals correlated?

An often measured parameter in neurobiologial experiments is the correla-
tion between successive inter-spike intervals (ISI) of a given neuron (77).
Neurophysiologists use this parameter to decide what type of model is ap-
propriate for their spike trains. The simplest spike train model, a Poisson
point process, is ’never’ adequate because of the refractory period. The
next simplest model is the renewal process that is fully specified by the ISI
distribution (and the distribution of the first spike). A requirement for a
renewal process is the absence of correlation between successive ISI. Start-
ing with (50; 48) experimental studies in several species and brain regions
reported both significant and un-significant correlations. The question has
been repetitively addressed (e.g. (73)) and examples of both have been
described.

It is therefore mandatory to check whether a proposed mathematical
model aiming at describing actual data exhibits significant ISI correlation
or not. This is the purpose of the present chapter. We will show that we can
account for the apparently contradictory facts of observing both correlated
and uncorrelated ISI, within the framework introduced in Chapter 3.
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4.2 Spiking neurons interacting through an Erdös-
Rényi random graph

We work in a setup in which the synaptic weights define a directed random
graph with a large but finite number of components. The simplest random
graph one can think of is one where the probabilty of observing a connection
between an ordered pair of arbitrary neurons (the first pair member is the
presynaptic neuron, while the second member is the postsynaptic neuron) is
the same for all pairs. Moreover the decision concerning a specific ordered
pair does not influence in any way the decision relative to any other pair
of neurons in the network. In probabilistic terms we toss a biased coin for
each ordered pair of neurons to assign or not a synaptic connection. This
is done sequentially and independently with the same coin for each ordered
pair of neurons. This simple random graph is called a “directed Erdös-
Rényi random graph”. We will provide more mathematical insight in our
Appendix Section ??. For a general reference on random graphs we refer
the reader to (6).

Despite of its apparent simplicity a slightly refined version of this model
is commonly used in neural modeling where several coins are used instead
of a single one; each coin corresponding to a specific combination of neu-
ronal type and neuronal location. For instance the cortical column model
considered by (79) uses this procedure to generate a network with 80x106

neurons where each neuron belongs to one of 8 possible types making a total
of 64 different ordered pairs and therefore using 64 different coins. This is
illustrated on Fig. 4.1 and by the following connectivity matrix giving the

A

Figure 4.1: Example of network with 6 neuronal classes (81).

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model
https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model
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coin biais value

Table 4.1: Connectivity matrix between the different populations of the
model (extracted from (81)). The connectivity matrix describes the proba-
bilities of the target-specific connections between populations of neurons.

from

L23e L23i L4e L4i L5e L5i L6e L6i Th

L23e 0.101 0.169 0.044 0.082 0.032 0.0 0.008 0.0 0.0
L23i 0.135 0.137 0.032 0.052 0.075 0.0 0.004 0.0 0.0
L4e 0.008 0.006 0.050 0.135 0.007 0.0003 0.045 0.0 0.0983

to L4i 0.069 0.003 0.079 0.160 0.003 0.0 0.106 0.0 0.0619
L5e 0.100 0.062 0.051 0.006 0.083 0.373 0.020 0.0 0.0
L5i 0.055 0.027 0.026 0.002 0.060 0.316 0.009 0.0 0.0
L6e 0.016 0.007 0.021 0.017 0.057 0.020 0.040 0.225 0.0512
L6i 0.036 0.001 0.003 0.001 0.028 0.008 0.066 0.144 0.0196

In the sequel we will work with the simple directed Erdös-Rényi random
graph. This choice is justified if we restrict ourselves locally to a specific
cell type in the neocortical region. As illustrated by the first figure in (8),
neocortical tissues display a quite chaotic structure, where at first sight,
any neuron can locally connect with any other neuron. This impression
is confirmed by quantitative and analytical studies focusing on the main
neocortical cell type, the pyramidal cell, and adopted, for instance, in a
very influential paper by (5).

Let us start by defining the directed Erdös-Rényi random graph in a
precise mathematical way. We consider a finite system consisting of a large
numberN of neurons with random synaptic weightsWi→j , i 6= j. Here we use
capital letters to distinguish the random variables from their deterministic
counterparts wi→j that we have used up to now. In our model there is no self-
interaction, that is, all Wi→i = 0. Moreover, the random variables Wi→j , i 6=
j, are independent and identically distributed random variables taking the
values 0 or 1. In the mathematical literature such random variables are
called Bernoulli random variables. We denote pN the probability that
Wi→j equals 1. Starting from the family Wi→j , i 6= j, we now define the
associated directed graph such that the directed link i→ j is present if and
only if Wi→j = 1.



D
RA
FT

38
CHAPTER 4. A CASE STUDY: CORRELATIONS BETWEEN

SUCCESSIVE INTER SPIKE INTERVALS

Notice that the synaptic weights Wi→j and Wj→i are distinct and inde-
pendent random variables. In the sequel, we first choose a random graph,
that is, a particular realization of synaptic weights W = (Wi→j , i 6= j). Let
us call P̃ the probability measure we used to make this choice. This proce-
dure seems rather complicated, but it actually only requires to simulate a
sequence of independent uniformly distributed random variables to choose
the values of Wi→j for all i 6= j.

Once the graph W is chosen, we define the time evolution of the chain.
To do so, we consider another family of uniform random variables Ut(i), i ∈
I, t ≥ 1, which are i.i.d., uniformly distributed on [0, 1], independent of the
one used in the first stage. Then we define in a recursive way for every t ≥ 0,

XW
t+1(i) =

{
1, if Ut+1(i) ≤ φi(V W

t (i))
0, if Ut+1(i) > φi(V

W
t (i))

, (4.2.1)

where for each t ≥ 1 and i ∈ I, V W
t (i) is the membrane potential of neuron

i at the previous time step t, defined by

V W
t (i) =

N∑
j=1

Wj→i

t∑
s=Lt(i)+1

gi(t− s)Xs(j).

From now on, whenever it is clear with which fixed W we work, we will omit
mentioning it and write Xt and Vt instead of XW

t and V W
t .

Fix a neuron i and consider its associated sequence of successive spike
times

. . . < T−n(i) < . . . < T0(i) ≤ 0 < T1(i) < T2(i) < . . . < Tn(i) < . . . ,
(4.2.2)

where

T1(i) = inf{t ≥ 1 : Xt(i) = 1}, . . . , Tn(i) = inf{t > Tn−1(i) : Xt(i) = 1},

n ≥ 2, and

T0(i) = sup{t ≤ 0 : Xt(i) = 1}, . . . , T−n(i) = sup{t < T−n+1(i) : Xt(i) = 1},

n ≥ 1.
In neuroscience, Tk+1(i)−Tk(i), k ≥ 0, is referred to as interspike interval

(ISI). As we mentioned, it has been reported in (73) that successive inter-
spike intervals have negligible correlations. To check weather this feature is
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reproduced by our model, we introduce the covariance between successive
inter-spike intervals, given a fixed choice of synaptic weights W, by

CovW (Tk+1(i)− Tk(i), Tk(i)− Tk−1(i))

= EW [(Tk+1(i)− Tk(i))(Tk(i)− Tk−1(i))]

− EW (Tk+1(i)− Tk(i))EW (Tk(i)− Tk−1(i)),

for any k 6= 0, 1.
To obtain estimates for these covariances, we need to make specific as-

sumptions on the graph of interactions. Following (5) we assume that the
Erdös-Rényi random graph is slightly super-critical. This means that

pN = λ/N, (4.2.3)

where
λ = 1 + ϑ/N for some 0 < ϑ <∞ . (4.2.4)

Here, super-critical means that for each neuron, the mean number of post-
synaptic neurons related to it has an average strictly greater than one. This
implies that most neurons in the network are connected. More details are
given in the appendix.

We will show that for most choices of the graph of interactions, the above
covariance is exponentially small in N, for large values of N. More precisely,
the following theorem holds true.

Theorem 1. Assume that there exists γ > 0, such that for all i and for all
s, s′ ∈ R,

|φi(s)− φi(s′)| ≤ γ|s− s′|. (4.2.5)

Suppose moreover that there exists δ > 0 such that for all i ∈ I, s ∈ R, ,

φi(s) ≥ δ. (4.2.6)

Then there exists a subset A of realizations of the synaptic weights such
that on A,

|CovW (Tk+2(i)− Tk+1(i), Tk+1(i)− Tk(i))| ≤
3

δ2
N(1− δ)

√
N .

Moreover,

P̃ (A) ≥ 1− 2
e2ϑ

√
N
.
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Does the past before the last spike of a neuron in-
fluence its future?

The rest of this chapter is devoted to the proof of the above theorem. Before
discussing mathematical details let us discuss the intuition behind. The most
important point to understand is how a given spike of a given neuron, say i
successively influences other neurons which in turn influence other neurons
and so on until the moment the effect of this initial spike eventually returns
to neuron i (if this ever happens).

The point to be understood is the following. The last spike of neuron i
before time Lt(i) affects many neurons different from i. These neurons in
turn affect other neurons and so on. How long does it take until this chain
of influence returns to the starting neuron i?

To formalize this question we introduce the following sequence of sets:

V1
i→· = {j : Wi→j = 1},

...

Vni→· = {j : ∃k ∈ Vn−1
i→· : Wk→j = 1}, n ≥ 2.

Note that V1
i→· is the set of neurons influenced by neuron i in one step and

Vni→· is the set of neurons influenced by neuron i in n steps. We define

τ i = inf{n : i ∈ Vni→·}.

Informally speaking this is the first time that an information emitted by
neuron i can return to neuron i itself.

Recall (Eq. 4.2.4) that λ = 1 + ϑ/N. We have the following bound.

Proposition 2. For any k the following inequality holds.

P̃ (τ i ≤ k) ≤ k − 1

N
exp

(
ϑ
k

N

)
.

Proof. The proof compares the sequence (Vni→·)n≥1 with a different one in
which at each step we choose the links in an independent way, excluding the
choice of i itself. Let us call this new sequence (Ṽni→·)n≥1. The choice of the
links appearing at each step is done in such a way that the two sequences,
(Vni→·)n≥1 and (Ṽni→·)n≥1 are coupled together and

∪mn=1Vni→· ⊂ ∪mn=1(Ṽni→·), ∀m < τ i .
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The reason to do this is that it is much simpler to compute the probabilities
of events related to the sequence (Ṽni→·)n≥1.

Formally this is done as follows. Let us suppose that j 6= i does not
belong to any of the sets Ṽki→·, k = 1, . . . , n− 1, but j belongs to Ṽni→·. This
means that the choice of the random synaptic weights Wj→j′ , ∀j′ 6= i, never
interfered in the choices of the previous sets Ṽki→·, k = 1, . . . , n. In this case
we are free to choose the original values of the random variables Wj→j′ for
all j′ 6= i to construct the new set Ṽn+1. In opposition, every time a label j
appears for the second time or more in the sequence, we are not allowed to
use again the original value of Wj→j′ . What do we do in this case? Every
time j appears again we select new random variables Wm

j→j′ independently
of the first choices. In this notation, m stands for the mth time the random
variable is selected independently of past choices. With this notation the
original choice of the random variables Wj→j′ is now denoted W 1

j→j′ .

With this construction, the two sequences (Vni→·)n≥1 and (Ṽni→·)n≥1 are
equal up to the first time n at which a label j (including i) appears a second
time. Moreover, since in the new sequence (Ṽni→·)n≥1 we allow for new,
independent choices of the random variables Wm

j→j′ , independently of the

first choices, it is clear that ∪mn=1Vni→· ⊂ ∪mn=1(Ṽni→·), for all m < τ i.
We have

P̃ (τ i > k) = P̃

Wj→i = 0 ∀ j ∈
⋃

n≤k−1

Vni→·

 ≥ P̃
Wj→i = 0 ∀ j ∈

⋃
n≤k−1

Ṽni→·

 .

Since in the definition of Ṽni→·, no choice W·→i has been made, we can condi-
tion with respect to

⋃
n≤k−1 Ṽni→·, use the fact that for any j ∈

⋃
n≤k−1 Ṽni→·,

the random variable Wj→i is independent of
⋃
n≤k−1 Ṽni→·, and obtain the

following inequality

P̃ (τ i > k) ≥ Ẽ
[
(1− pN )|

⋃
1≤n≤k−1 Ṽn

i→·|
]
.

We conclude as follows. We observe that for n ≥ 2, the process Zn := |Ṽni→·|,
where |Ṽni→·| denotes the number of elements belonging to Ṽni→·, is a classical
branching process, starting from Z1 = V1

i→·. In this branching process, each
element belonging to a given generation gives rise to a random number of
offspring elements with mean µ = (N − 2) λN . Here, the factor N − 2 comes
from the fact that any j has N − 2 choices of choosing arrows Wj→·, since
j itself and i are excluded.

Write Σk−1 = Z1 + . . . + Zk−1 and let Ẽ(sΣk−1), s ≤ 1, be its moment
generating function. Using the convexity of the moment generating function,
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we have that
Ẽ(sΣk−1) ≥ 1 + Ẽ(Σk−1)(s− 1).

Using that Ẽ(Z1) = N−1
N λ and that the offspring mean is µ = N−2

N λ, the
claim follows from

Ẽ(Σk−1) =
N − 1

N
λ
[
1 + µ+ . . .+ µk−2

]
≤ λ+ . . .+ λk−1 ≤ (k − 1)λk−1,

since µ ≤ λ and λ ≥ 1. Hence, evaluating the above lower bound in s =
1− pN , we obtain

P̃ (τ i > k) ≥ 1− pN (k − 1)λk−1,

and therefore,

P̃ (τ i ≤ k) ≤ pN (k − 1)λk−1 =
k − 1

N
λk,

since pN = λ/N. Using that λ = 1 + ϑ/N, we obtain the assertion.

In what follows, we are going to evaluate the probability that neuron i
spikes at at given time, given a fixed past of length k of its own history. To
denote such a past, we introduce the following notation. We write a−1

−k for
the finite sequence (a−1, . . . , a−k), where each a−i is either 1, indicating the
presence of a spike, or 0, indicating the absence of a spike, for 1 ≤ i ≤ k. In
particular, the notation 0k−11a−1

−l stands for the sequence given by

(0, . . . , 0, 1, a−1, . . . , a−l).

We write

p(W,i)(1|a−1
−k) = PW (Xk(i) = a|Xk−1(i) = a−1, . . . , X0(i) = a−k)

for the probability that neuron i spikes, given a fixed choice of synaptic
weights W and given its past of length k equals a−1

−k. In what follows, con-
ditionings will be read from the left to the right. In particular, we write

p(W,i)(a|0k−11a−1
−l ) =

PW (Xk(i) = a|Xk−1(i) = . . . = X1(i) = 0, X0(i) = 1, X−1(i) = a−1, . . . , X−l(i) = a−l).

The following proposition shows that on the event {τ i > k+l}, the two tran-
sition probabilities p(W,i)(1|0k−11a−1

−l ) and p(W,i)(1|0k−11) necessarily coin-
cide.



D
RA
FT

CHAPTER 4. A CASE STUDY: CORRELATIONS BETWEEN
SUCCESSIVE INTER SPIKE INTERVALS 43

Proposition 3. For any k ≥ 1, l ≥ 1,

{p(W,i)(1|0k−11a−1
−l ) 6= p(W,i)(1|0k−11)} ⊂ {τ i ≤ k + l}.

Proof. Let W be fixed. From now on, since we will work for this fixed choice
of W, we will omit the superscript W and write for short pi(a|a−1

−k) instead

of p(W,i)(a|a−1
−k) and so on. Recall that V·→i = {j : Wj→i = 1}. We have

P (Xk(i) = 1, Xk−1
1 (i) = 0k−1, X0(i) = 1, X−1

−l (i) = a−1
−l )

=
∑

j∈V·→i

∑
zk−1
1 (j)∈{0,1}k−1

P (Xk(i) = 1, Xk−1
1 (i) = 0k−1, X0(i) = 1,

X−1
−l (i) = a−1

−l , X
k−1
1 (j) = zk−1

1 (j),∀j ∈ V·→i)

=
∑

j∈V·→i

∑
zk−1
1 (j)∈{0,1}k−1

φi

 ∑
j∈V·→i

k−1∑
s=1

gi(k − s)zs(j))

×
× P (Xk−1

1 (j) = zk−1
1 (j),∀j ∈ V·→i, Xk−1

−l (i) = a−1
−l 10k−1).

Thus,

pi(1|0k−11a−1
−l ) =

∑
j∈V·→i

∑
zk−1
1 (j)∈{0,1}k−1

φi

 ∑
j∈V·→i

k−1∑
s=1

gi(k − s)zs(j))

×
× P (Xk−1

1 (j) = zk−1
1 (j), ∀j ∈ V·→i|Xk−1

−l = a−1
−l 10k−1).

The same calculus shows that

pi(1|0k−11) =
∑

j∈V·→i

∑
zk−1
1 (j)∈{0,1}k−1

φi

 ∑
j∈V·→i

k−1∑
s=1

gi(k − s)zs(j))

 ·
× P (Xk−1

1 (j) = zk−1
1 (j), ∀j ∈ V·→i|Xk−1

0 (i) = 10k−1).

This shows that in order to ensure that pi(1|0k−11a−1
−l ) = pi(1|0k−11), it

is sufficient to have

P (Xk−1
1 (j) = zk−1

1 (j),∀j ∈ V·→i|Xk−1
0 (i) = 10k−1) =

= P (Xk−1
1 (j) = zk−1

1 (j),∀j ∈ V·→i|Xk−1
−l (i) = a−1

−l 10k−1), (4.2.7)

for all possible choices of zk−1
1 (j), j ∈ V·→i, which is implied by τ i > k+l.
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We are now able conclude the proof of Theorem 1. We call Ω̃ the prob-
ability space where all synaptic weights W are realized, with P̃ the cor-
responding probability measure. Condition (4.2.6) allows to introduce a
sequence of independent Bernoulli random variables (ξt(i), i ∈ I, t ∈ Z) of
parameter δ, such that positions and times (i, t) with ξt(i) = 1 are spike
times for any realization of the chain. Write l = sup{n < T2(i) : ξn(i) = 1}
and r = inf{n > T2(i) : ξn(i) = 1}. Since the label i is fixed, in what follows,
we write for short Tn for Tn(i). Put

A = {τ i > 2k(N)},

where k(N) is such that k(N)→∞ as N →∞ and k(N) ≤ N. We will fix
the choice of k(N) later. We have for any realization of W ∈ A,

EW [(T3 − T2)(T2 − T1)]

≤ EW [(r − T2)(T2 − l)1{l<T2−k(N)}∪{r>T2+k(N)}]

+ EW [(T3 − T2)(T2 − T1)1{l≥T2−k(N);r≤T2+k(N)}]. (4.2.8)

Using that conditionally on T2, r − T2 and T2 − l are independent and
geometrically distributed, we obtain a first upper bound

EW [(r − T2)(T2 − l)1{l<T2−k(N)}∪{r>T2+k(N)}]

≤ 1

δ2
(k(N) + 2)(1− δ)k(N). (4.2.9)

Here, we have used that for a geometrically distributed random variable T
of parameter δ, E(T1{T>k}) = (1− δ)k 1

δ .
We now consider the second term and use that τ i > 2k(N). We have

EW [(T3 − T2)(T2 − T1)1{l≥T2−k(N);r≤T2+k(N)}]

=
∑
t

EW [(T3 − t)(t− T1)1{l≥t−k(N);r≤t+k(N)}1{T2=t}]

=
∑
t

EW
[
(t− T1)1{l≥t−k(N)}1{T2=t}E

W [(T3 − t)1{r≤t+k(N)}|Xt
t−k(N)(i)]

]
.

(4.2.10)
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Now, since T3 ≤ r,

EW [(T3 − t)1{r≤t+k(N)}|Xt
t−k(N)(i)] =

k(N)∑
n=1

n× PW (T3 − t = n; r ≤ t+ k(N)|Xt
t−k(N)(i))

≤
k(N)∑
n=1

n× PW (T3 − t = n|Xt
t−k(N)(i)).

Notice that

PW (T3 − t = n|Xt
t−k(N)(i)) = pi(0|1Xt−1

t−k(N)(i))×

pi(0|01Xt−1
t−k(N)(i))× . . .× p

i(0|0n−21Xt−1
t−k(N)(i))p

i(1|0n−11Xt−1
t−k(N)(i)).

Now we use Proposition 3. Since we are working on {τ i > 2k(N)}, we have

pi(0|1Xt−1
t−k(N)(i)) = pi(0|1), . . . , pi(1|0n−11Xt−1

t−k(N)(i)) = pi(1|0n−11),

for all n ≤ k(N). Therefore,

EW [(T3 − t)1{r≤t+k(N)}|Xt
t−k(N)(i)]

≤
k(N)∑
n=1

n× pi(0|1)pi(0|01)× . . .× pi(0|0n−21)pi(1|0n−11)

≤
∞∑
n=1

n× pi(0|1)pi(0|01)× . . .× pi(0|0n−21)pi(1|0n−11)

= EW (T3 − T2). (4.2.11)

We conclude that on A, using successively (4.2.8)–(4.2.11),

EW [(T3 − T2)(T2 − T1)] ≤ 1

δ2
(k(N) + 2)(1− δ)k(N)

+ EW (T3 − T2)EW (T2 − T1).

In a second step, we are seeking for lower bounds. We start with

EW [(T3−T2)(T2−T1)] ≥ EW [(T3−T2)(T2−T1)1{l≥T2−k(N);r≤T2+k(N)}].

(4.2.12)



D
RA
FT

46
CHAPTER 4. A CASE STUDY: CORRELATIONS BETWEEN

SUCCESSIVE INTER SPIKE INTERVALS

Then on {T2 = t},

EW [(T3 − t)1{r≤t+k(N)}|Xt
t−k(N)(i)]

=

k(N)∑
n=1

n× PW (T3 − t = n; r ≤ t+ k(N)|Xt
t−k(N)(i))

≥

k(N)∑
n=1

n× PW (T3 − t = n|Xt
t−k(N)(i))


− k(N)2PW (r > t+ k(N)|Xt

t−k(N)(i))

=

k(N)∑
n=1

n× PW (T3 − t = n|Xt
t−k(N)(i))

− k(N)2(1− δ)k(N).

Now, on {T2 = t},

k(N)∑
n=1

n× PW (T3 − t = n|Xt
t−k(N)(i))

= EW (T3−T2;T3−T2 ≤ k(N)) = EW (T3−T2)−EW (T3−T2;T3−T2 > k(N))

≥ EW (T3 − T2)− EW (r − T2; r − T2 > k(N))

≥ EW (T3 − T2)− 1

δ
(k(N) + 2)(1− δ)k(N).

Therefore, for any realization W ∈ A,

EW [(T3 − T2)(T2 − T1)] ≥

EW (T3 − T2)EW (T3 − T2)− [
2

δ2
(k(N) + 2) + k(N)2](1− δ)k(N).

Putting things together and supposing that k(N) + 2 ≤ k(N)2, we obtain
finally

|EW [(T3−T2)(T2−T1)]−EW (T3−T2)EW (T3−T2)| ≤ 3

δ2
k(N)2(1− δ)k(N).

It remains to find an upper bound for P̃ (Ac). Clearly, applying Proposi-
tion 2, since k(N) ≤ N, we have

P̃ (Ac) ≤ e2ϑ 2k(N)

N
.

It is enough to choose k(N) =
√
N to conclude the proof. •
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Chapter 5

But time is continuous!

5.1 Introduction

Time is intrinsically continuous, but measurements are made with finite
precision through observations within discrete time bins. The stochastic
chain introduced in Chapter 3 was designed to model the sequence of discrete
time observations produced by experimental measurements.

From a mathematical viewpoint there are many technical differences
between models in discrete and those in continuous time. Discrete time
models can be introduced in a more elementary way, while continuous time
requires immediately more sophisticated mathematical tools.

Since before recording, data are continuous, it is experimentally legiti-
mate to investigate the effect of time discretization on the conclusions drawn
from experiments. For instance, the information given by the precise order-
ing between spike times of different neurons is important, but could be
missed with time discretization. An example where this would be a problem
is when we do the statistical analysis of spike trains with the goal to identify
the graph of interactions between neurons. We will come back to this topic
in Section ?? below.

Time discretization can also misguide the neurobiologists when they de-
scribe the qualitative behavior of the system. For instance spurious syn-
chronisation behavior can be induced by too large discretization steps in
deterministic models (see for instance (51)).

For all these reasons as well as others that will be presented in the sequel,
it is clear that we need to develop continuous time models.
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5.2 Basic continuous time model

In continuous time it is natural to model networks of spiking neurons as
systems of interacting point processes (see also Section ??). Informally
speaking, a point process is an increasing sequence of times. In our case we
are interested in the sequence of spiking times of each neuron in the system
such that each neuron i is described by its own point process

. . . < T−n(i) < . . . < T0(i) ≤ 0 < T1(i) < T2(i) < . . . < Tn(i) < . . . ,

where the Tn(i) are the successive spiking times of neuron i.
We may associate a counting process to this sequence of times by

N i(]s, t]) =
∑
n

1{s<Tn(i)≤t} (5.2.1)

for any i ∈ I and for any s ≤ t.
We may also adopt the viewpoint of network to describe the entire sys-

tem. The network generates an event any time one of its neurons spikes. We
write Tn, n ∈ Z, for the sequence of successive spiking times of the system,
where the successive times are again ordered such that

. . . < T−n < . . . < T0 ≤ 0 < T1 < T2 < . . . < Tn < . . . .

Moreover we keep track of the index of the spiking neuron by introducing a
sequence of random marks In ∈ I, n ∈ Z, where In denotes the index of the
neuron that is spiking at time Tn. For any −∞ < s < t < ∞, we can then
introduce

N(]s, t]) =
∑
n

1{s<Tn≤t} (5.2.2)

which is the total number of spikes during the interval ]s, t]. We have

N(]s, t]) =
∑
i∈I

N i(]s, t]).

The sequence (Tn, In)n∈Z is called a marked point process in the literature.
(In)n∈Z is the sequence of marks associated to the point process.

Both descriptions, that is considering either the family of point processes
(T in)i∈I,n∈Z or considering the marked point process (Tn, In)n∈Z are equiv-
alent if simultaneous spikes of different neurons do not happen, that is, if
T in 6= T jm for all i 6= j, n,m.

To define the process, we use the same ingredients as in the discrete time
setting. But in continuous time, the functions φi are allowed to take any
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positive value, that is, any φi : R → R+ is a non-decreasing function, not
necessarily bounded. The model will be defined in such a way that different
neurons never spike at the same time.

Let us introduce for any t ∈ R the quantity

Lt(i) = sup{Tn(i) : Tn(i) ≤ t}

which is the last spiking time of neuron i before time t. We shall always
work under conditions ensuring that this last spiking time exists. From a
mathematical point of view this means that we are sure that there exists
an infinity of spiking times for each neuron. From a computational point of
view that requires that we initialise our model with a piece of past history
in which all the neurons have spiked at least once. From the statistical point
of view we can only start the analysis once each neuron has spiked at least
once.

In our model, the membrane potential Vt(i) of neuron i at time t is given
by

Vt(i) =
∑
j∈I

wj→iN
j(]Lt(i), t]).

Let us start with an informal description of our model. We start at some
time t and a piece of past evolution long enough such that every neuron has
spiked at least once before time t.

1. We compute Vt(i) for every neuron i.

2. For any small time increment ∆ > 0 and given the past, neuron i
spikes within ]t, t+ ∆], independently of the others, with probability

P (N i(]t, t+ ∆]) = 1 |Vt(i)) = φi(Vt(i))∆ + o(∆), (5.2.3)

P (N i(]t, t+ ∆]) = 0 |Vt(i)) = 1− φi(Vt(i))∆ + o(∆),

P (N i(]t, t+ ∆]) ≥ 2 |Vt(i)) = o(∆).

In the above formulas (5.2.3), the expression o(∆) means a quantity
depending on ∆ which decreases to 0 as ∆ approaches 0 faster than ∆, that
is, lim∆→0

o(∆)
∆ = 0.

Clarification for biologists. The above description is informal. The
quantity ∆ corresponds to the time resolution we are considering. The goal
of the continuous time model is to be able to precisely observe in which
order different neurons spike. This cannot be achieved if our observations
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have a fixed time precision ∆. The length ∆ should be a decreasing function
of the number of neurons that we want to observe. Experimentalists refer
to ∆ as the sampling period, that is, the inverse of the sampling rate. By
sampling rate we mean the rate of the clock of the digitization system used by
the experimentalist to record the data. Experimentally we cannot increase
as much as we would like the sampling rate implying that some fine time
differences are unavoidably lost upon data acquisition. We discuss this issue
further in the Appendix section ??.

We also have to ensure that ∆ is sufficiently small such that the quantity
φi(Vt(i))∆ is smaller than 1 which is a necessary condition for our formulas
to have a probabilistic meaning. Therefore, ∆ must be a decreasing function
of both the number of neurons we observe and the maximal spiking rate of
the observed population of neurons.

We now go a step forward in this description. Between two spike times
of the system, each neuron has a fixed membrane potential value. There-
fore, the waiting time until the next spike of neuron i is a geometrically
distributed random variable with parameter φi(v(i)). Obviously, this is only
true until the next spiking time of the total system. At this spike time,
all the neurons update the values of their membrane potentials, and we re-
turn to the previous situation. As a consequence we can describe the entire
system in the following way.

For simplicity we assume that the set of neurons is given by I = {1, . . . , N},
where N is an integer greater or equal to 2.

1. We assign a real number v0(i) (the value of its membrane potential)
to each neuron i. Moreover we put T0 = 0.

2. For n = 1, . . . ,M, do

(a) For each neuron i, independently of the others, we choose a geo-
metric random variable τ in of parameter φi(vn−1(i))∆.

(b) We put τn = min τ in and Tn = Tn−1 + τn.

(c) We put In = {i : τ in = τn}.
(d) For all i ∈ In, we put vn(i) = 0. Moreover, for all i ∈ I \ In, we

update

vn(i) = vn−1(i) +
∑
k∈In

wk→i.

3. Print (vn, Tn), n = 1, . . .M.
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We use the above procedure to define a continuous time process (Vt)t∈R+

by putting Vt = vn for all t ∈ [Tn, Tn+1 [, n = 0, . . . ,M − 1. In the above
description, simultaneous spikes are still possible. We now want to take ∆
sufficiently small such that with overwhelming probability, In is a singleton
for each n = 1, . . . ,M. Mathematically speaking this means that we have to
work in the limit as ∆ goes to 0 sufficiently fast as a function of the number
of neurons N and of the maximal value of φ.

After passing to the limit ∆→ 0, the time evolution of the entire system
we want to define can be described as follows

1. There are no simultaneous spikes of different neurons.

2. For the entire system the times between two successive spikes are expo-
nentially distributed random variables with parameter

∑
i∈I φi(v(i)),

where v(i) is the value of the membrane potential of neuron i after the
last spike. Moreover, the successive waiting times between the spikes
of the system are independent.

3. Finally, given that a spike occurs, the probability that it is neuron i
that is spiking is given by

φi(v(i))∑
j∈I φj(v(j))

.

We resume the above description in the following pseudo-code.

1. We start with a piece of past evolution long enough such that every
neuron has spiked at least once before time 0, including 0.

2. We compute V0(i) for every neuron i.

3. We choose an exponential time T1 with parameter
∑

i∈I φi(V0(i)).

4. We choose I1 = i with probability
φi(VT1 (i))∑
j∈I φj(VT1 (j)) .

5. We update the values of VT1(j) for every neuron j, namely we put
VT1(i) = 0 and VT1(j) = V0(j) + wi→j , for each j 6= i.

6. We iterate the previous steps, starting from step 2. at time Tn and
with VTn already computed. This means that we choose an exponen-
tially distributed waiting time Tn+1−Tn, independent of anything else,
with parameter

∑
i∈I φi(VTn(i)), and that we choose In+1 = i with

probability
φi(VTn (i))∑
j∈I φj(VTn (j)) .
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We can rewrite the above dynamic as follows. Recalling that Lt(i) de-
notes the last spiking time of neuron i before time t, we have that

Vt(i) =

{ ∑
j∈I wj→iN

j(]Lt(i), t]), if T i1 ≤ t,
v0(i) +

∑
j∈I wj→iN

j(]0, t], if T i1 > t.

The process (Vt(i))i∈I is a Markov jump process taking values in RI .
Being a Markov process means that at any time t > 0, it is sufficient to
know all values Vt(i), i ∈ I, to predict the future evolution of the process;
we do not need to keep the memory of any of the values Vs(i), s < t. A
Markov jump process is a Markov process that is piecewise constant and
does only evolve through jumps, that is, it jumps from one configuration to
another after exponentially distributed waiting times.

Markov processes are often represented by means of their associated
generator, a concept that we are going to explain now. Suppose that we
start at time t = 0 from initial potential values v = (v(i), i ∈ I). If we take
a bounded test function f : RI → R, we may calculate

Lf(v) = lim
t→0

E(f(Vt))− f(v)

t
= lim

t→0

E(f(Vt))− f(V0)

t
.

We obtain
Lf(v) =

∑
i∈I

φi(v(i)) [f(v + ∆i(v))− f(v)] , (5.2.4)

where

(∆i(v))j =

{
wi→j j 6= i
−v(i) j = i

}
. (5.2.5)

The application that maps f to Lf is called the generator of the pro-
cess. Equation (5.2.4) means the following. Whenever the process V is
in configuration x ∈ RI , then it stays in this configuration up to the next
jump time. This jump time is exponentially distributed with parameter
φ̄(v) :=

∑
i∈I φi(v(i)). At the next jump, we choose the index of the jumping

particle i with probability φi(v(i))/φ̄(v) and replace the former configuration
v by ∆i(v).

5.2.1 Adding leakage in continuous time

Up to now we have modeled the membrane potential as a piecewise constant
process, only jumping when it receives presynaptic inputs or when it is re-
set due to the neuron’s own spiking activity. This is a simplification that
sets aside the leakage of actual biological membranes. The latter, made
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of lipid bilayers, are far from being perfect electrical insulators and a mem-
brane voltage (V) deviating from the equilibrium value (0 in our setting) will
generate a trans-membrane current that will eventually bring the potential
back to the equilibrium value–this is what leakage means in that context.
The actual membrane current is proportional to the voltage deviation, lead-
ing to a differential equation of the form: dV/dt = −V/τ . An elementary
modification of our basic model, making it more in line with experimental
observations, consists therefore in adding such a leakage effect.

In our model without leakage, we suppose that each neuron has its own
leakage time constant τi > 0. In other words, if the potential of neuron i
equals v(i) at time 0, then up to the next spiking time of the system, its value
decreases according to Vt(i) = e−t/τiv(i). As before, the system is described
by a sequence (Tn, In)n≥1, where Tn is the n−th spiking time of the whole
system after time 0, and where In = i ∈ I if it is neuron i that spikes
at this time. When adding leakage, we have to change the way we choose
the successive waiting times up to the next spike. This is done through
an acceptance/rejection algorithm in which some of the proposed spiking
times will be rejected. This is a consequence of the fact that the parameter∑

i∈I φi(Vt(i)) does not remain constant between successive spiking times
but decreases due to the leakage effect, see Figure ??.

Rejected spiking times will be labelled with †. The random variables
In, n ≥ 1, now take values in I ∪ {†}.

1. The initial values V0(i) ∈ R are given for any i ∈ I.

2. We compute for every neuron i the maximal spiking rate λi given by

λi =

{
φi(V0(i)) if V0(i) ≥ 0,
φi(0)) if V0(i) < 0.

3. We choose an exponential time S1 with parameter λ̄ =
∑

i∈I λi.

4. We choose

K1 =

{
i with probability φi(e

−S1/τiV0(i))/λ̄, for each i ∈ I,
† with probability 1−

∑
i∈I φi(e

−S1/τiV0(i))/λ̄.

5. If K1 = i ∈ I, we put T1 = S1, I1 = i, and we update the values of the
membrane potentials as follows.

VT1(i) = 0,

VT1(j) = e−S1/τjV0(j) + wi→j , for each j 6= i.
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6. If K1 = †, we update VS1(j) = e−S1/τjV0(j) for all j ∈ I.

7. In both cases, we iterate the previous steps, starting from step 2. at
time Tn and with VTn already computed.

The above algorithm allows to define a continuous time process (Vt)t∈R+ =
((Vt(i))t∈R+ , i ∈ I) taking values in RI through

Vt(i) =

∞∑
n=0

1{Tn≤t<Tn+1}e
−(t−Tn)/τiVTn(i).

Having in mind the above algorithm, we can also rewrite the value of the
membrane potential of neuron i at time t as

Vt(i) =
∑

j∈I,j 6=i

∑
k:Lt(i)<Tk(j)≤t

e−(t−Tk(j))/τi . (5.2.6)

This formula holds true if neuron i has already spiked before time t, other-
wise, we have to replace Lt(i) by time 0.

A process evolving as in (5.2.6) is called Piecewise deterministic Markov
process (PDMP). PDMPs evolve in a deterministic manner in between suc-
cessive jumps. Jumps arrive after random waiting times, which are extended
exponential random variables. These jumps might have random amplitude
as well, but this is not the case in our model. The reader can find more
details about such processes in the Appendix Section ?? .

5.2.2 Python implementation

A simple implementation of the above algorithm in Python is given below.
BOX PYTHON

5.3 Complements and exercices.

We will prove in the Appendix Section ?? the following theorem.

Theorem 4. The process (Vt)t = (Vt(i), i ∈ I)t given by (5.2.6) is a piece-
wise deterministic Markov process having generator which is given for any
bounded test function f ∈ C1(RI) by

Lf(v) =
∑
i∈I

φi(v(i)) [f(v + ∆i(v))− f(v)]−
∑
i∈I

αi
∂f

∂v(i)
(v)v(i), (5.3.7)

where the jump term ∆i(v) is given in (5.2.5) above.
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Neurobiologists do not need to know how to prove this theorem. But it
is useful for them to learn how to interpret the formula of the infinitesimal
generator. It is a sum of two terms, corresponding to the two different as-
pects of the process’ time evolution. The first sum describes how the process
jumps together with the infinitesimal probabilities that these jumps occur
within very small time intervals, see equation (5.2.3) above. The second
sum describes the leakage effect that each neuron undergoes continuously in
time.

Exercice 1: Simultaneous spikes do not occur

Show that (5.2.3) implies that

P (N i(]t, t+ ∆]) = 1, N j(]t, t+ ∆]) = 1|Vt(i), Vt(j)) = o(∆).

Exercice 2

In this exercice we show how passing to the limit ∆→ 0 in (5.2.3) naturally
leads to the introduction of exponentially distributed inter-spike intervals.

Suppose we know V0(i) for every neuron i. Write Fk := σ{Vt, 0 ≤ t ≤ kδ}
for the sigma field that is generated by the membrane potential values up
to time kδ. Then (5.2.3) implies that (ignoring the terms of order o(∆))

P (T1 > n∆) = E
(
1{T1>(n−1)∆}P (N i(](n− 1)∆, n∆]) = 0, ∀ i ∈ I|F(n−1)∆))

)
= E

(
1{T1>(n−1)∆}

∏
i∈I

(
1− φi(V(n−1)∆(i))∆

))
.

1. Show that this gives

P (T1 > n∆) = E

(
1{T1>(n−1)∆}

∏
i∈I

(1− φi(V0(i))∆)

)
.

2. Prove that iterating this formula yields

P (T1 > n∆) =
∏
i∈I

(1− φi(V0(i)∆)n .

3. Pass to logarithm and use that log(1− x) ∼ −x as x→ 0, to obtain

P (T1 > n∆) = e
∑

i∈I n log(1−φi(V0(i))) ∼ e−n∆
∑

i∈I φi(V0(i)),

as ∆→ 0. Thus, T1 is exponentially distributed with parameter
∑

i∈I φi(V0(i)).

4. Compute P (I1 = i|T1 = n∆).
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Exercice 3

Suppose that all rate functions φi are bounded. Prove equation (5.2.4) in
this case.

5.4 Discussion and bibliographic comments

The quantity t − Lt(i) measures the time elapsed since the last spike of
neuron i, it is also sometimes called the age of the process, see (? ). We
have t = Lt(i) if and only if i has a spike at that time, and by definition, its
membrane potential equals 0 at this time.
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[20] Chevallier, J., Cacéres, M. J., Doumic, M., and Reynaud-
Bouret, P. Microscopic approach of a time elapsed neural model.
Mathematical Models and Methods in Applied Sciences 25, 14 (2015),
2669–2719.

[21] Chornoboy, E. S., Schramm, L. P., and Karr, A. F. Maximum
likelihood identification of neural point process systems. Biological
Cybernetics 59, 4-5 (Sep 1988), 265–275.

[22] Cohen, L., Celnik, P., Pascual-Leone, A., Corwell, B., Faiz,
L., Dambrosia, J., Honda, M., Sadato, N., Gerloff, C.,
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[31] Ditlevsen, S., and Löcherbach, E. Multi-class Oscillating Sys-
tems of Interacting Neurons. Stochastic Processes and their Applica-
tions 127, 6 (June 2017), 1840–1869.

[32] Duarte, A., Galves, A., Fraiman, R., Ost, G., and Vargas,
C. D. Context tree retrieval for eeg data. Mathematics 7 (2019), 427.

[33] Duarte, A., Galves, A., Löcherbach, E., and Ost, G. Esti-
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[56] Höpfner, R., Löcherbach, E., and Thieullen, M. Ergodicity
for a stochastic hodgkin-huxley model driven by ornstein-uhlenbeck
type input. Annales de l’IHP 52, 1 (2016), 483–501.

[57] Höpfner, R., Löcherbach, E., and Thieullen, M. Strongly
degenerate time inhomogeneous SDEs: densities and support prop-
erties. Application to a Hodgkin-Huxley system with periodic input.
Bernoulli 23 (2017), 2587–2616.



D
RA
FT

62 BIBLIOGRAPHY

[58] Huntsman, M., Porcello, D., Homanics, G., DeLorey, T.,
and Huguenard, J. Reciprocal inhibitory connections and network
synchrony in the mammalian thalamus. Science 283 (1999), 541–543.

[59] Izhikevich, E. Dynamical systems in neuroscience: The geometry of
excitability and bursting. MIT Press, 2009.

[60] Jahn, P., Berg, R. W., Hounsgaard, J., and Ditlevsen, S.
Motoneuron membrane potentials follow a time inhomogeneous jump
diffusion process. Journal of Computational Neuroscience 31 (2011).

[61] Janert, P. K. Data Analysis with Open Source Tools. O’REILLY,
2011.

[62] Janert, P. K. Gnuplot in Action. Understanding data with graphs.,
2nd ed. Manning Publications Co., 2016.

[63] Kilpatrick, Z. P. Wilson-Cowan model, In: Encyclopedia of Com-
putational Neuroscience. Springer New York, 2015, pp. 3159–3163.

[64] Kinouchi, O., and Copelli, M. Optimal dynamical range of ex-
citable networks at criticality. Nature physics 2 (2006), 348–351.

[65] Klemens, B. 21st Century C, 2nd ed. O’REILLY, 2016.

[66] Koch, C., Poggio, T., and Torre, V. Nonlinear interactions in a
dendritic tree: localization, timing, and role in information processing.
Proceedings of the National Academy of Sciences 80, 9 (1983), 2799–
2802.

[67] Krumin, M., Reutsky, I., and Shoham, S. Correlation-based
analysis and generation of multiple spike trains using Hawkes models
with an exogenous input. Front Comput Neurosci. 4 (2010), 147.

[68] Lapicque, L. Recherches quantitatives sur l’excitation électrique des
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