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Abstract

We implement a new time-independent perturbative quantum method to study quantitatively

electron field emission from two dimensional materials and in particular from graphene. The

Bardeen transfer Hamiltonian formalism is coupled to a detailed description of the electronic struc-

ture of the material. This calculation method is first validated on the standard Fowler-Nordheim

(FN) model of a 3 dimensional (3D) free electron gas. Then, it is used to study emission from a

2 dimensional (2D) free electron gas and from graphene represented by a tight-binding model. In

the case of graphene, we show that a full electronic band model of the material is necessary to

obtain reasonable results because emission is not restricted to the vicinity of the Fermi level near

the Dirac points. The graphene emitted current density follows a modified FN law with respect

to the applied field, with a prefactor exponent for the field n ≈ 1.5 intermediate between the one

for the cases of 2D (n = 0) and 3D (n = 2) free electron gases. However, the emitted current level

is low because the kinetic energy of the electrons corresponds to a motion parallel to the emitting

surface which is not efficient in promoting emission. Our study gives a firm ground to the idea

that emission from graphene results almost exclusively from defects.
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I. INTRODUCTION

Electronic field emission from graphene has been the subject of numerous investigations

(for reviews, see ref. 1,2). It is commonly assumed that pristine graphene has poor emission

properties because its flatness inhibits electric field enhancement. An early experimental

evidence of this assumption was given in ref. 3. Emission from different sites of a single

layer graphene flake deposited on a SiO2 substrate was measured with a micro-anode probe.

It was shown that emission is small near the center of the graphene flake but large near its

edges. Therefore, most field emission experiments try to take advantage of morphological

characteristics of the structure which enhance locally the applied field and thus the emitted

current and many different types of sample preparation which favour the presence of edges,

discontinuity and ripples have been implemented2. The characteristics of the emitting sur-

face can nowadays be well controlled and correlated to emission properties (for a recent

example, see ref. 4).

However, in some experiments, significant current levels were extracted from the central

flat part of individual single- and few-layer graphene flakes. For instance, emission currents

up to 1 µA at applied fields up to 2 V/nm were extracted from graphene flakes laid on a flat

SiO2 / Si substrate5. Complementary to such studies on supported graphene, others were

performed on suspended graphene membranes, which have no direct contact to the substrate

except at their rim connected to gold electrodes6. It was found that emission is nearly twice

larger near its rim than near its center and that the rim turn-on field is only slightly lower

than the central one (which is nearly 0.2 V/nm). This means that a significant current can

be extracted from all locations of the suspended graphene membrane, although this current

remains insufficient to be used in electronic devices7. Also, in other recent experiments8, field

emission with low threshold fields was observed from flat graphene island films deposited on

Si wafers in conditions where morphological field enhancement is not expected.

There is thus an apparent disagreement in the litterature on the possibility, or not, to

extract significant current from flat graphene. This disagreement is one motivation for the

present theoretical study which provides accurate estimates of field emission level from such

a material. Another motivation is purely theoretical. The original Fowler-Nordheim model

(FN)9 and its subsequent refinements10–16 still form nowadays the dominant paradigm to

understand electronic field emission. These models provide in particular a linear relation
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between log (I/F 2) and 1/F , where I is the emitted current and F the applied electric

field. Although widely used successfully over the years, the FN models rely on a crude

semi-empirical description of the emitting electrode, represented by a three dimensional

(3D) homogeneous electron gas associated to the bulk material, without consideration of its

atomic structure. The extension of this type of model to two dimensional (2D) materials

like graphene, which consist of one or few atomic layers such that their thickness L is much

smaller than their length and width, has been the subject of recent works. A modification of

the FN-type model was proposed to describe emission from the edges of such 2D materials3,17,

it provides a relation between current and field which is different from the usual FN relation.

Emissions from the central and edge parts of a suspended graphene membrane were also

found to deviate from the usual FN law6, especially in the low field region. In an attempt

to account for these empirical discrepancies with respect to the standard FN law, emission

models specifically adapted to flat 2D materials were developed recently18,19. The present

study reconsiders the problem of the validity of the FN law for 2D materials from an ab initio

perspective, taking into account explicitely the atomic structure of the emitting material and

its quantum properties.

There is a large set of recent quantum quantitative models20–35 (for reviews, see ref. 34,35)

available to adress the problem of field emission from materials. We propose here to extend

to the present 2D materials the use of the perturbative methods developped recently36–38 to

describe emission from metals. We present a time-independent variant of our original time-

dependent method using the Bardeen transfer Hamiltonian formalism39. This formalism has

been used on a limited number of problems, like emission from a jellium model of a metal40 or

carbon nanotubes41. In the present paper, we first describe (section II) the formalism which

we have implemented and then we describe (section III) the results of its implementation on

different materials : first the 3D free electron gas (the usual FN model revisited) to validate

the method, then the 2D one and finally the single layer graphene.
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II. GENERAL METHOD

A. The Bardeen emission model

We assume that the cathode surface is in the xy plane and that it is subjected to an

external electric field of amplitude F (> 0) parallel to z. The electrons are confined in

the material by a potential barrier located near z0, to be defined more precisely later. As

emitted electrons tunnel only weakly through this barrier, it separates space into 2 domains :

the internal domain, where electrons experience the strong electrostatic field induced by the

presence of the material nuclei which respect to which the applied electric field screened

by the material electrons is negligible ; the external domain, dominated by the external

electric field and where the influence of the material electrostatic potential is negligible.

At first order, the electron emission is determined by the perturbation operator matrix

element coupling unperturbed wavefunctions Φk(r, z) (r = x, y) and Ψk(r, z;F ). Φk(r, z)

is a material valence electron orbital with momentum k (k = kxy + kzz), neglecting the

external field. Ψk(r, z;F ) is the continuum state which describes the same electron outside

the material, it depends parametrically on the external field F experienced by these emitted

electrons. For 2D materials, kz = 0 and for 3D ones, the possible kz values are obtained by

applying boundary conditions over the thickness L of the emitting electrode. We consider

here for simplicity 0-order diffraction at the interface between the material and vacuum.

The component of the momentum parallel to the interface is thus unchanged betwen the

material and vacuum orbitals. Notice that the component kz is not conserved in vacuum

where electrons are accelerated by the external field. Besides, we neglect all energy exchange

between electrons and the lattice, as could occur during collisions between electrons and

phonons or impurities. Initial and final states thus have the same energy ǫk. As the emitted

electrons originate from the valence band, we have : ǫ0 ≤ ǫk ≤ ǫFermi where ǫ0 and ǫFermi

are the valence band bottom and top energies.

We assume that the emitting surface consists of Nc unit cells, its area is given by :

S = NcAps, where Aps is the unit cell area along the material-vacuum interface. The current

emitted by S is obtained by summing up the contributions of all the electrons contained in
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Nc unit cells and following Bardeen’s prescription42, it is given by :

I(F ) = 2
∑

k

Ik(F ), Ik(F ) = q
2π

~

∣

∣

∣

∣

∫ ∫

x,y∈S
dxdyMk(r, z0;F )

∣

∣

∣

∣

2

(1)

where the x 2 prefactor accounts for spin degeneracy. The summation on k is performed

over Nc points in the first Brillouin zone (1BZ) of the reciprocical space. q is the absolute

value of the electron charge and Mk is given by :

Mk(r, z0;F ) =
~
2

2m

(

Ψk(r, z0;F )
∗dΦk(r, z0)

dz
− Φk(r, z0)

dΨk(r, z0;F )
∗

dz

)

(2)

where ~ is the Planck constant, m is the electron mass and ∗ refers to complex conjugation.

We can rewrite the discrete sum in eq. 1 as an integral : I(F ) = = 2 ×
∫ ∫

dDk
δDk

Ik(F )

where D=2 or 3 is the dimensionality of the material. δDk is the elementary area/volume

in reciprocical space over which summation is done : δDk = (2π)D

SLD−2 . The average current

density J(F ) emitted by S is then :

J(F ) =
I(F )

S
=

LD−2

2D−1πD

∫ ∫

dDkIk(F ) (3)

B. Simplified external wavefunction

We assume that the external region potential Vext(z) depends only on z. Indeed, the

periodic variations of the potential which are large inside the material are quickly damped

when the electron moves away from the material into vacuum. The 3D wavefunction in the

external region can be factorized as : Ψk(r, z;F ) =
1

S
1
2
eikrψk(z;F ). Inserting this expression

and eq. 2 into eq. 1 provides :

Ik(F ) =
q

S

π~3

2m2
|ψk(z0;F )|2

∣

∣

∣
Φ̂k(z0)

∣

∣

∣

2

∣

∣

∣

∣

∣

dΦ̂k(z0)

dz
Φ̂k(z0)

−1 − dψk(z0;F )

dz
ψk(z0;F )

−1

∣

∣

∣

∣

∣

2

(4)

Φ̂k being the 2D Fourier transform of Φk(r, z) :

Φ̂k(z) =

∫ ∫

dxdy e−ikrΦk(r, z). (5)

We now assume that the external potential Vext(z) is linear : Vext(z) = V∞ − qF (z − zi).

Solving the one dimensional Poisson equation for a uniform conducting plane subjected to an

external static field shows that zi is the induced charge centroid43. It is also the image plane

location for an external test electron44, but not for one of the substrate which experiences
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the additional exchange interaction with the other substrate electrons45. The solution of the

one dimensional Schrödinger equation in the external domain :
(

− ~
2

2m

d2

dz2
+ Vext(z)

)

ψk(z;F ) =

(

ǫk −
~
2kxy

2

2m

)

ψk(z;F ) (6)

is known analytically :

ψk(z;F ) = N Ai

(

−
(

2mqF

~2

)
1
3

(z − zT (k, F ))

)

(7)

Ai is an Airy function (§10.4 in ref. 46), N a normalization constant, zT (k, F ) is the turning

point defined implicitly by : Vext(zt(k, F )) = ǫk − ~2kxy
2

2m
and explicitly by :

zT (k, F ) = zi +
Wk

qF
(8)

with :

Wk = V∞ −
(

ǫk −
~
2kxy

2

2m

)

= W +WB +
~
2kxy

2

2m
−∆ǫk ; ∆ǫk = ǫk − ǫ0 (9)

Wk is the energy which must be given to an electron initially in the energy level ǫk to escape

into the vacuum level V∞+ ~2kxy
2

2m
, with sufficient energy to sustain its motion parallel to the

interface with momentum kxy. W = V∞− ǫFermi is the work function, WB = ǫFermi− ǫ0 the

band width. ǫFermi and ǫ0 are the valence band top (Fermi level) and bottom energies. The

continuum function ψk(z) is normalized by the prescription :
∫ +∞
−∞ dz ψk′(z;F )∗ ψk(z;F ) =

δ(ǫk − ǫk′) where δ refers to the Dirac distribution. Applying the method described in

appendix A of ref. 47 and using the asymptotic forms of Ai given for the vacuum side by

eq. 10.4.78 and 10.4.79 of ref. 46, we obtain : N = (2m)
1
3

~
2
3 (qF )

1
6
. The barrier near z0 is located

in the energetically forbidden region of the potential where we can replace with an excellent

approximation the Airy function by its asymptotic form given for the material side by eq.

10.4.59 of ref. 46 so that ψk(z0;F ) can be written as :

ψk(z0;F ) ≈
(2m)

1
4

2~
1
2π

1
2 (qF )

1
4 (zT (k, F )− z0)

1
4

e−
2
3(

2mqF

~2
)
1
2 (zT (k,F )−z0)

3
2

(10)

A similar expression can be obtained for dψk(z0;F )
dz

using the asymptotic form given by eq.

10.4.61 in ref. 46. Inserting these expressions in eq. 4 and choosing the observation plane

as the induced charge centroid plane : z0 = zi, we finally obtain :

Ik(F ) =
q

S

~
2
∣

∣

∣
Φ̂k(zi)

∣

∣

∣

2

2
5
2m

3
2W

1
2
k

∣

∣

∣

∣

∣

dΦ̂k(zi)

dz
Φ̂k(zi)

−1 −
(

2mWk

~2

) 1
2

∣

∣

∣

∣

∣

2

e−
4
3(

2m
~2
)
1
2

W

3
2
k

qF (11)
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We now show how to apply this general relation in conjunction with eq. 3 to study emission

properties of different materials.

III. APPLICATION TO DIFFERENT MATERIAL TYPES

A. The 3 dimensional free electron gas : the Fowler-Nordheim model revisited

In order to validate the present formalism, we first apply it to the material of the Fowler-

Nordheim model. It consists of a 3D free electron gas with energy : ǫk = ~
2kxy

2

2m
+ ~2kz

2

2m
+

ǫ0 so that (eq. 9) : Wk = W + WB − ~
2kz

2

2m
. Since the electron gas is uniform in the

material, we have :
∣

∣

∣
Φ̂k(zi)

∣

∣

∣

2

= S
L
and as its wavefunction decays exponentially in vacuum :

dΦ̂k(zi)
dz

Φ̂k(zi)
−1 = −

(

2m
~2

)
1
2 W

1
2
k . As a result, Ik(F ) depends on kz only, not on kxy (eq. 11).

Integrating over kx, ky in eq. 3 is therefore straightforward and amounts in evaluating the

area of the disk inside the sphere ∆ǫk ≤ WB in the (kx, ky) plane corresponding to a given

kz. The result is :

J(F ) =
qm

1
2

2
1
2π2~2

∫

(

2mWB
~2

) 1
2

0

dkzW
1
2
k (Wk −W ) e−

4
3(

2m
~2
)
1
2

W

3
2
k

qF (12)

Calculating the integral involves, as in the standard Fowler-Nordheim model, a first order

Taylor expansion of the integrand in the vicinity of the Fermi level. The final result is :

J(F ) =
q3F 2

16π2~(WWB)
1
2

e−
4
3(

2m
~2
)
1
2 W

3
2

qF (13)

This expression is identical to the standard Fowler-Nordheim result (with n = 2):

J(F ) =
q3F n

16π2~W
e−

4
3(

2m
~2
)
1
2 W

3
2

qF (14)

if we replace W by (WWB)
1
2 in the prefactor. As both terms have the same order of

magnitude, it turns out that both models provide very similar results. In particular, the

usual linear dependence of log(J(F )/F 2) with respect to 1/F is recovered. The similarity

between both results is remarkable because they have been obtained with two completely

different formalisms. The Bardeen formalism indeed uses a perturbative quantum method

whereas the Fowler Nordheim model relies on a semi-classical non-perturbative one. Our

result thus validates the use of the Bardeen method for electronic emission problems and

allows to use it for problems more complex than permits the implementation of the Fowler-

Nordheim model.
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B. The 2 dimensional free electron gas

The material wavefunction now reads : Φk(r, z) =
1

S
1
2
eikxyrϕ(z), where ϕ(z) is a bound

state with energy ǫ0. We have : ǫk = ~2kxy
2

2m
+ ǫ0 and (eq. 9) : Wk = W +WB. Ik(F ) is thus

independent of k (eq. 11) and integration (eq. 3) is straighforward :

J(F ) =
q(2m)

1
2

π~2
WB (W +WB)

1
2 |ϕ(zi)|2e−

4
3(

2m
~2
)
1
2 (W+WB)

3
2

qF (15)

In going from the 3D to the 2D free electron gas, the F 2 pre-factor is lost as the field exponent

changes from n = 2 to n = 0. log J(F ) is linearly dependent with respect to 1/F , with a

slope controlled by W +WB in the 2D case, the energy necessary to extract an electron from

the band bottom, instead of by W , the work function necessary to extract an electron from

the band top, in the 3D case. Emission from 2D materials is thus disfavored as compared

to 3D ones. This is of course related to the fact that the kinetic energy associated to the

electron motion parallel to the interface is not efficient in promoting emission.

C. Graphene

1. Tight-binding model

We now look for a simple expression for the wavefunction Φ̂k(zi) to insert in eq. 11

in the case of graphene. This wavefunction depends on the atomic structure of the ma-

terial. Graphene is a honeycomb crystal lattice which contains two atoms per unit cell.

Each belongs to a different sub-lattice, A or B, each A type atom being surrounded

by three B type ones, and vice-versa (see fig. 1). The lattice vectors are given by :

a1 = a
2
(3,

√
3), a2 = a

2
(3,−

√
3) where a is the nearest-neighbor distance. The vectors

connecting one atom (of one type) to its neighbors (of the other type) are given by :

δ1 = a
2
(1,

√
3), δ2 = a

2
(1,−

√
3), δ3 = a(−1, 0). The graphene unit cells are labelled

by the position vectors rL given by : rL = n1a1 + n2a2, where n1 and n2 are integers. The

positions of the atoms in each cell are given by rL
s = rL + δs (s = A or B) with δA = (0, 0)

and δB = (a, 0) (s being the sublattice index s = A or B). The unit cell area in physical

space is given by : Aps =
3
√
3

2
a2.

We use the tight-binding formalism which combines simplicity with accuracy48,49. A
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graphene orbital Φk is given by :

Φk(r, z) = akΦ
A
k (r, z) + bkΦ

B
k (r, z) (16)

The functions Φsk(r, z) associated to each sublattice A or B can be expanded in Wannier

states localized in the vicinity of the atoms positions rL + δs :

Φsk(r, z) =
1√
Nc

∑

rL

eikrLφ(r− (rL + δs), z) (17)

This corresponds to a Fourier series expansion of a function which is periodic in reciprocical

space. The tight-binding approximation consists in assuming that φ is a carbon pz atomic

orbital, to be described in more details later. Inserting eq. 16 and 17 in eq. 11, and

introducing φ̂k(z), the 2D Fourier transform (eq. 5) of φ(r, z), we obtain :

Ik(F ) =
q

Aps
×

~
2
∣

∣

∣
ake

−ikδA + bke
−ikδB

∣

∣

∣

2 ∣
∣

∣
φ̂k(zi)

∣

∣

∣

2

2
5
2m

3
2W

1
2
k

∣

∣

∣

∣

∣

dφ̂k(zi)

dz
φ̂k(zi)

−1 −
(

2m

~2

)
1
2

W
1
2
k

∣

∣

∣

∣

∣

2

e−
4
3(

2m
~2
)
1
2

W

3
2
k

qF (18)

The pair of coefficients ak, bk is an eigenvector of the 2 × 2 tight-binding Hamiltonian

H(k). In its simplest form, overlaps are assumed to be 0 between orbitals centered on

different atoms and couplings are assumed to be non-zero only between nearest neighbors :

H(k) =





e tγ(k)∗

tγ(k) e



 (19)

where t (> 0) is the hopping parameter, e the carbon atom orbital energy and : γ(k) =

1 + eika1 + eika2 . The energy of the graphene orbital Φk(r, z) belonging to the valence band

is the lowest eigenvalue of this Hamiltonian and is given by : ǫk = e− t|γ(k)| with : |γ(k)| =
√

3 + 2
(

cos
(√

3kya
)

+ 2 cos
(

kx
3a
2

)

cos
(

ky
√
3a
2

))

The Γ point (kΓ = (0, 0)) corresponds to

the electronic band bottom : ǫkΓ
= e− 3t ; the M point (kM = (2π

3a
, 0)) to : ǫkM

= e− t, the

K point (kK = (2π
3a
, 2π
3
√
3a
)), the apex of the Dirac cone, to : ǫkK

= e = ǫFermi. The atomic

orbital energy is also the Fermi energy.

The eigenvector ak, bk is given by : ak = − 1√
2

γ(k)∗

|γ(k)| , bk = 1√
2
. Eq. 18 can thus be

rewritten :

Ik(F ) = Cke
− 4

3(
2m
~2
)
1
2

W

3
2
k

qF (20)
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with Ck a F -independent coefficient :

Ck =
q

Aps

~
2
∣

∣

∣
φ̂k(zi)

∣

∣

∣

2

2
5
2m

3
2W

1
2
k

(

1− β(k)

|γ(k)|

)

∣

∣

∣

∣

∣

dφ̂k(zi)

dz
φ̂k(zi)

−1 −
(

2m

~2

)
1
2

W
1
2
k

∣

∣

∣

∣

∣

2

(21)

with : β(k) = cos(kxa) + 2 cos(kx
a
2
) cos(ky

√
3a
2
). Inserting eq. 21 in eq. 20, and then eq. 20

into eq. 3, we can compute the emitted current density.

2. Numerical application

We use the tight-binding data given in ref. 48 : the carbon atom nearest neighbor distance

is a = 0.142 nm and the nearest neighbor hopping energy is t = 2.8 eV so that the band

width is : WB = 3t = 8.4 eV. The resulting energy spectrum ǫk is shown on fig. 2 (top)

for the valence band in the kx, ky > 0 portion of the 1BZ. The K and K’ points are 2 of

the 6 equivalent locations of the double inverted cone where the valence band touches the

conduction one, the so called Dirac points, as expected for a semi-metal. In the vicinity of

the Γ point, the spectrum has the expected parabolic shape given by : ∆ǫk ≈ ~2kxy
2

2mΓ
. The

effective mass is obtained by a simple second order Taylor expansion of ∆ǫk : mΓ = 2~2

3ta2
≈

0.9m. Graphene electrons have lower mass than free ones because they are more mobile

by hopping between atomic sites. However, further away from the Γ point, ∆ǫk becomes

increasingly smaller than kxy
2

2mΓ
and even smaller than kxy

2

2m
. This impacts the shape of theWk

function (eq. 9) shown in the 1BZ on fig. 2 (bottom) for : W = 4.5 eV following ref. 50. In

the vicinity of the Γ point, we have : Wk ≈ (W +WB)+
~2kxy

2

2

(

1
m
− 1

mΓ

)

< W +WB. The Γ

point corresponds to a relative maximum of Wk, the absolute one being on the M-K-K’ line.

The minimum region separates Γ from M-K-K’. As electronic emission is controlled by Wk

mainly through the exponential factor (eq. 20), highest emission is expected from electrons

with momentum k from the region where Wk is minimum. Thus, counter intuitively, the

vicinity of the K point, which corresponds to the Fermi level, is not expected to contribute

significantly to emission. Instead, significant emission is expected in the vicinity of the

annular region around the Γ point : |k| ≈ 6 nm−1, which is the region of Wk minima :

Wmin
k =12.81 eV.

Fig. 3 shows the current distribution Ik(F ) (eq. 20) in the 1BZ, the image plane location

being : zi = 0.1 nm, following ref. 51–53. A simple Slater type representation of the

10
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carbon pz orbitals is used (ref. 54, p. 802 and p. 1145) : φ(r, z) = (6−s)
5
2 z

(2a0)
5
2 π

1
2
e
− (6−s)ρ

2a0 with

a0, the Bohr radius, defined by : a0 = 4πǫ0~2

mq2
and ρ = (r2 + z2)

1
2 . Optimized screening

constants following ref. 55 provide : s = 2.8642. The orbital 2D Fourier transform (eq. 5) is

performed numerically. Maximum emission is observed from an annular region surrounding

the Γ point, at a distance |k| ≈ 9 nm−1 larger than expected (|k| ≈ 6 nm−1). Indeed,

the dependence of Ik(F ) on k results not only from the exponential factor but also from

the prefactor Ck which is an increasing function of |k| (eq. 21). Also, mainly because of

the 1 − β(k)
|γ(k)| factor related to the geometry of the lattice, Ck and Ik(F ) have a strongly

directional character in reciprocical space. As a result, emission is modulated with respect

to direction in the emitting annular region and is localized near the 6 points ki
0 (i=1-6)

obtained from k1
0 = (k10x ≈ 9 nm−1, k10y = 0) by rotations of angle (i−1)π

3
around Γ. We

thus obtain for field emission a result already observed for thermoionic emission56, namely

that emission involves electrons residing far away from the Dirac K points. This justifies a

posteriori the present use of a graphene full band model, instead of a linear approximation

which would be valid in the vicinity of the Dirac points only.

Integration of Ik(F ) performed by numerical quadrature over a 100 × 100 grid in the

kx, ky > 0 portion of the 1BZ provides the emitted current density as a function of the

applied electric field (eq. 3), as shown on fig. 4. The obtained currents are very small.

Similarly to the 2D free electron gas problem (section IIIB), the energy carried by the

graphene electrons corresponds mainly to a motion parallel to the interface and it is not

efficient in promoting their emission.

3. Analytical approximation

Recent studies considered the functional relation between current and applied field in

the case of low dimensionality materials18,19. The applicability for such materials of the

Fowler-Nordheim law (eq. 14) with the usual exponent n = 2 is one the main issues raised

in these studies. In the case of the 2D free electron gas, we found n = 0 (see section

IIIB) and we had to substitute W +WB, the vacuum level energy with respect to the band

bottom energy, to the usual work function W in the exponential argument. In order to

answer this question in the case of graphene, we look for an analytical approximation of

the emitted current computed numerically using eq. 3 (section IIIC 2). We have shown
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that emission is localized near the 6 equivalent points ki
0 (i=1-6) in the 1BZ. Assuming for

simplicity that Ck is constant with respect to k, then these points coincide with the minima

of Wk. Performing a second order Taylor expansion of Ik(F ) in the vicinity of these points

in eq. 20, eq. 3 becomes : J(F ) ≈ 9
4π

(

~
2

2m

) 1
2 C

k1
0

(

(W
3
2
k1
0

)xx(W
3
2
k1
0

)yy
)

1
2
qF e−

4
3(

2m
~2
)
1
2

W

3
2
k1
0

qF using the

second derivatives : (W
3
2

k1
0

)xx = d2

dk2x

(

W
3
2

k1
0

)

, (W
3
2

k1
0

)yy = d2

dk2y

(

W
3
2

k1
0

)

. This suggests a linear

dependence between log (J(F )/F ) and 1/F , the slope of which is controlled by Wk1
0
. Since

W ≪ Wk1
0
.W +WB, emission from graphene is expected to be smaller than from graphite,

but slightly larger than from a 2D free electron gas (eq. 15), if we consider the exponential

factor only.

This result is based on the crude assumption that Ck is constant. It provides however a

useful guideline for a fit. The best fit of the numerical emitted current density J(F ) using

eq. 14 with fixed n = 1 and with W as the only free fitting parameter was obtained for

W=12.86 eV, which is close to the minimum of Wk in reciprocical space : Wmin
k =12.81 eV

(see section IIIC 2). The relative error between the numerical and the fitted results is better

than 20 % (see fig. 4). We also performed a fit with fixed n = 2 (the usual Fowler-Nordheim

prefactor), we obtainedW=12.71 eV and a relative error also better than 20 %. Now allowing

both the exponent n andW to be free fitting parameters, we obtained the best fit for n =1.53

and W =12.78 eV. The relative error is then, as expected, much lower (1 % or better). A

power law with n ≈ 1.5, intermediate between the 2D and 3D free electron gas cases, is

thus found to provide the most representative pre-factor for graphene. The same n = 3
2

power dependence was obtained theoretically for the emission from a graphene nanowall in

the high field limit17. A nanowall corresponds to a graphene flake mounted perpendicularly

to the substrate material and in this case, emitted electrons escape from graphene parallel

to the flake surface through its rim. The same n = 3
2
power dependence was also obtained

in the experimental study of ref. 3 from a fit of emitted current measurement at high fields

(n = 3 was obtained at low fields which are not considered in the present study). The

fact that the same power dependence is obtained for both emission configurations, parallel

(ref. 17) or perpendicular (present work) to the graphene sheet, prevents from deducing

from the measured power dependence what was the graphene emission configuration in the

experiment. Very recently57, a different n = 1 power dependence was obtained for the general

class of 2D semi-metals to which graphene belongs. A possible reason, among others, for
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this discrepancy may be related to differences in the graphene dispersion relation : whereas

the present one is global and valid in the whole reciprocical space, the one used in ref. 57 is

a local one, valid in the vicinity of the Dirac K point only.

IV. CONCLUSION

We have presented in this paper an implementation of the general Bardeen formalism to

study 2D material field emission. This formalism uses a quantum mechanical perturbative

method and is based on the detailed knowledge of the material at the atomi level. We have

considered the 2D free electron gas and graphene problem. Modified Fowler-Nordheim laws

were shown to be good approximations of the emitted current dependence with respect to

the applied field. The modifications concern the field exponent in the pre-factor : n=0 for

the 2D free-electron gas and n≈1.5 for graphene, as compared to n = 2 for the standard

Fowler-Nordheim law. Also, the exponential argument depends on the difference of energy

between the vacuum and the valence band bottom energies in the case od 2D materials,

instead of the band top (Fermi level) for 3D ones. In the case of graphene, emission was

shown to involve mainly electrons with low momentum parallel to the interface, instead

of electrons close in energy to the Fermi level (Dirac points) which have high momentum.

But from a general point a view, 2D materials are not good emitters simply because the

electron motion parallel to the interface in the material does not favor it. The present

model corresponds, strictly speaking, to suspended graphene, not taking into account edge

emission. However, as supported graphene interacts weakly with its substrate, these results

are expected to be valid in this case also. It is thus clear that the significant emitted levels

observed experimentally originate from defects (ripples, contaminations, edges...) in the

planarity of the materials.

Although our results are ab initio ones and do not contain empirical adjustments, they

involve physical approximations which it may be interesting to relax. For instance, the

tight-binding graphene orbitals which we used do not have a carefully designed asymptotic

behavior far from the surface. Higher quality orbitals could be used. More fundamentally,

we assumed conservation of the electron momentum parallel to the interface, neglecting

diffraction and dissipation induced by electron-phonon interactions. However, although

such improvements would modify the quantitative results presented here, we do not believe
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that they would change the physical conclusions which were reached. Notice finally that the

present results may be useful not just to study field emission, but also charge injection in

2D material contacts58.

V. DATA STATEMENT

The data that support the findings of this study are available from the corresponding

author upon reasonable request.
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FIG. 1: Left : graphene lattice. Its primitive basis consists of 2 carbon atoms labelled A and B. A

and B type atoms are connected separately by the lattice translational vectors a1 and a2. δ1, δ2

and δ3 are vectors connecting nearest-neighbor atoms. Right : graphene first Brillouin zone (1BZ)

and selected points in reciprocical space : Γ (kΓ = (0, 0)), M (kM = (2π3a , 0)), K (kK = (2π3a ,
2π

3
√
3a
))

and K’ (kK ′ = (0, 4π
3
√
3a
)). K and K’ are Dirac points.
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FIG. 2: Top : the graphene energy (eV) spectrum ∆ǫk (eq. 9) in the kx, ky > 0 quarter of the

1BZ. Bottom : The energy (eV) Wk (eq. 9) necessary to extract an electron with momentum kxy

from the graphene energy level ǫk into the vacuum energy level V∞ +
~2kxy

2

2m .
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FIG. 3: Emitted current distribution Ik (eq. 20) in the kx, ky > 0 quarter of the 1BZ for F = 5

V/nm. Two 1BZ maximum emission points ki
0 (i=1-2) are also shown.
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FIG. 4: Full black line connecting symbols (left scale, A/nm2) : emitted current density Jnum as

the function of the applied electric field F (V/nm), obtained by numerical integration (eq. 3 and

20). Blue lines (right scale) : ratios between fitted and numerical results Jfit/Jnum, Jfit being given

by eq. 14. Dotted line : fixed parameter n = 1, fit parameter W=12.86 eV. Dashed line : fixed

parameter n = 2, fit parameter W=12.71 eV. Full line : fit parameters n =1.53 and W =12.78 eV.
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