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ANGLE DEPENDENCE IN COUPLING CONDITIONS
FOR SHALLOW WATER EQUATIONS AT CANAL

JUNCTIONS

M. BRIANI 1, G. PUPPO 2, M. RIBOT 3

Abstract. In this paper we propose a numerical Riemann prob-
lem solver at the junction of one dimensional shallow-water canal
networks. The junction conditions take into account the angles
with which the channels intersect and include the possibility of
canals with different sections. The solver is illustrated with sev-
eral numerical tests which underline the importance of the angle
dependence to obtain reliable solutions.

1. Introduction

The shallow water equations are a model to describe free surface wa-
ter flows. They are a non-linear hyperbolic system of PDEs consisting
of a mass and momentum balance. They are used to describe flows in
artificial canals and water channels with applications for instance to
environmental problems. In water management problems, these equa-
tions are often used as a fundamental tool to describe the dynamics
of networks of canals or of the branching of rivers. Networks occur in
different type of configurations. The most straightforward treatment
from a numerical point of view consists in considering the network as
a two dimensional domain covered with an unstructured grid [10, 11].
However from a computational point of view it is much more efficient
to consider the network as a set of one dimensional canals coupled
through junctions.

The main difficulty mathematically is the definition of the coupling
conditions at the junction between the adjoining channels. We mention
the following reviews for one-dimensional flows on networks [4, 13].
The coupling condition can be seen as a Riemann problem involving a
constant state for each of the adjoining canals. Riemann problems at
a junction are widely discussed in literature, see [14, 8, 19, 31, 29]. To
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close the problem one completes the Riemann problem with physical
conservation properties across the junction, see [27, 26].

From a numerical point of view, one has to couple one dimensional
numerical solvers in the 1D channels with an approximate junction
Riemann solver, see [1, 3, 6, 24, 32].

We consider a junction of three canals and we assume by convention
to have one incoming canal which ends at the junction and two outgo-
ing canals which start at the junction. To solve the junction problem
we need to find the three states (mass and discharge) facing each of
the three one dimensional channels at the junction for a total of six un-
knowns. One imposes mass conservation at the junction which yields
one equation, then one formulates a left-half Riemann problem for the
incoming canal and a right-half Riemann problem for each of the two
outgoing canals. Under subcritical flow assumptions, we obtain there-
fore three more conditions. Thus, two remaining equations have to be
specified in order to define the junction model. In some works the set
of equations is completed by assuming the continuity of water levels
[8, 19, 31, 5] or the continuity of energy [27, 24]. However, none of these
works use a condition that takes into account the geometry and espe-
cially the angles formed by the channels in the fork. For an attempt
to include an angle dependency in the solver, see [7, 25, 16]. Differ-
ent approaches covert the junction with two-dimensional elements and
project the computed 2D solution along the one dimensional channels
[1].

These studies have several applications, such as optimization [29, 22,
20, 21] or see [2] for a nice application to the modeling of a particular
wave energy converter, the so-called oscillating water column.

In this article, we propose new coupling conditions at the junction
that depend on the angles with which the channels intersect at the
junction allowing also for channels with different sections, [12, 28].
Away from the junction we assume the solution to be 1D, while we
describe the junction as a 2D region where coupling occurs between
the branches. We then consider the triangle formed by the intersection
points of the walls of the three channels and, to this two dimensional
domain, we apply conservation of mass and of the two components of
momentum. We obtain three non linear equations which include a de-
pendence on the angles, for the six unknowns at the junction to be cou-
pled with the three equations of the characteristic curves. Extending
this study to a network of canals with several nodes is straightforward.
This work therefor extends the results of [7] by considering branches
with different sections.
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We prove that the conservation condition based on the continuity of
the energy across the junction occurs in a particular configuration of
our setting. We also prove the existence of the solution of our junction
Riemann problem in a few particular cases.

Validation of numerical schemes obtained in this way is carried out
comparing the numerical 1D solution with the junction, with a fully
2D solver, see [16, 18, 23, 17]. We compare our numerical solver with a
fully 2D solver for shallow water equations showing that the numerical
approximation improves as the width of the 2D channels is reduced.

The paper is organized as follows. In Section 2, we concentrate on
the solution of the Riemann problem for shallow-water equations. We
then present the junction geometry in Section 3, defining our coupling
conditions in Section 3.1. We discuss extensions for special configu-
rations in Section 3.2, this includes the case of a single channel with
varying cross-section. In Section 4 we merge the relations at the junc-
tion with the numerical approximation of shallow water equations along
the channels. Section 4.3 is devoted to a discussion of the existence of
the numerical solution in a few cases. We end in Section 5 with the
numerical tests.

2. The shallow water equations and its standard Riemann
problem

Let us first recall the shallow water or Saint Venant equations, and
some of theirs properties that will be useful in the following.

2.1. The shallow water equations. The 1D shallow water equa-
tions, introduced by Saint-Venant in [9] and derived in [15] from Navier-
Stokes incompressible equations with a free moving boundary, describe
the water propagation in a canal with rectangular cross-section and
constant slope as follows:

(1)

 ∂th+ ∂x(hv) = 0,

∂t(hv) + ∂x(hv
2 + 1

2
gh2) = gh(S0 − Sf ),

with h(x, t) the water height, v(x, t) the water velocity at time t and
location x along the canal, g the gravity constant, S0 the bed slope
function and Sf the friction slope function. The first equation comes
from mass conservation and the second one from momentum balance.
For the purpose of this work, we assume a steady state friction on all
canals and we assume horizontal canals with zero slope. Thus, the
source term is zero.
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We set q = hv (the quantity hv is often called the discharge in
shallow water theory, since it measures the flow rate of water past a
point) and we reformulate system (1) in vector form as

(2) ∂tU + ∂xf(U) = 0,

where

(3) U =

(
h
q

)
, f(U) =

(
hv

hv2 + 1
2
gh2

)
.

For smooth solutions, system (2) can equivalently be written in the
quasilinear form

(4) ∂tU + A(U)∂xU = 0,

where the Jacobian matrix A(U) = f ′(U) is

(5) A(U) =

(
0 1

−v2 + gh 2v

)
,

with eigenvalues

(6) λ1(U) = v −
√
gh, λ2(U) = v +

√
gh.

Note that in general λ1 and λ2 can be of either sign. When the velocity
v = q/h of the fluid is smaller than the speed

√
gh of the gravity waves,

that is |v| <
√
gh, the flow is said to be fluvial or subcritical and then

one has

(7) λ1 < 0, λ2 > 0.

Hence, under the subcritical condition (7), there are two waves prop-
agating in opposite directions. The left and right characteristics are
associated to λ1 and λ2 respectively. The ratio Fr = |v|/

√
gh is called

the Froude number and the flow is subcritical iff Fr < 1.

2.2. The standard Riemann problem for shallow-water equa-
tions. Here we are in particular interested in the solution of the Rie-
mann problem:

(8)


∂tU + ∂xf(U) = 0,

U(x, 0) =

{
Ul if x < 0,
Ur if x > 0,

where U(x, 0) = (h(x, 0), q(x, 0)) is the initial condition and Ul =
(hl, ql) (resp. Ur = (hr, qr)) is the initial constant state on the left
(resp. on the right) of the interface x = 0. The characteristic fields
of the shallow water equations are genuinely nonlinear and so the Rie-
mann problem always consists of two waves, each of which is either a
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shock or a rarefaction. Under the subcritical flow condition (7), there
will be one left (with negative speed) and one right (with positive speed)
going wave. In the sequel the left and right going waves are denoted by
l-wave and r-wave, respectively. The solution to this Riemann prob-
lem consists of the l-wave and the r-wave separated by an intermediate
state Û = (ĥ, q̂). We remark that the solution at the interface x = 0

coincides with Û , which is the intersection point of the two functions
φl and φr defined by

(9) φl(h;Ul) =

{
vl − 2(

√
gh−

√
ghl) if h < hl (rarefaction)

vl − (h− hl)
√
g h+hl

2hhl
if h > hl (shock wave),

and

(10) φr(h;Ur) =

{
vr + 2(

√
gh−

√
ghr) if h < hr (rarefaction)

vr + (h− hr)
√
g h+hr

2hhr
if h > hr (shock wave),

which return the physically correct ĥ and v̂ intermediate values con-
necting the left and right states with an entropic solution.

3. Angle dependent conditions at the junction

In this work, a junction is defined as the intersection of three chan-
nels. We assume that 1D shallow water equations hold on each canal
of the network and we aim at deriving coupling conditions at the junc-
tion. These conditions enable to compute the intermediate states at
the junction for the Riemann problem under consideration.

3.1. Definition of the coupling conditions at the junction. The
channels will be labeled 1, 2 and 3 respectively, where channel 1 is
assumed to be parallel to the x axis. We fix the origin of the reference
system in the point where the three channels intersect. Let θ and φ be
the angles that channel 3 and 2 respectively form with the x axis. We
will assume that θ ≥ 0, while φ ≤ 0, obtaining the geometry in Fig. 1
on the left. This is the one dimensional set up.

Further, we will suppose that the channels can have different widths.
Let then 2sj, j = 1, 2, 3 be the width of each channel. Therefore, we
can think that the 1D setup is the core of a two dimensional junction,
as shown in Fig. 1 on the right.

Let Ik, k = 1, 2, 3, be the interface separating the k-th channel from
the junction. Let U∗k , k = 1, 2, 3, denote the state variable in channel
k at the side of Ik facing the channel obtained with the 1D solver used
in the canal, while Uk, k = 1, 2, 3, is the state variable at the side of
Ik facing the junction. The purpose of the junction Riemann solver
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Figure 1. A 3 canal junction. On the left, the 1D set-
up; on the right, the 2D configuration.

is to compute Uk given U∗k . Since each state consists of the couple
(h, v), we need to find 6 unknowns at the junction. Three conditions
are obtained finding the intermediate states of the one dimensional
Riemann problem defined at each interface Ik and in order to compute
the three other missing data we shift to the 2D setting of Fig.1 on the
right. We consider the triangle formed by the intersection points of the
walls of the three channels, and to this two dimensional figure we apply
conservation of mass and of the two components of momentum, which
gives us the 3 missing equations. Once the three states Uk, k = 1, 2, 3,
at the junction have been computed, we have at each interface Ik the
left and right states which are needed to compute the numerical flux
at the boundary interfaces of the channels.

3.1.1. Junction conditions coming from the Riemann solver. Let us be-
gin with the 3 equations coming from the Riemann solver. We empha-
size that, by convention, the given configuration fixes channel 1 as
entering the junction and channels 2 and 3 as leaving the junction.

Three relations are obtained matching the unknowns Uk at the junc-
tion with the data U∗k coming from the three channels through equa-
tions (9) and (10). More precisely,

(11)

v1 = φl(h1;U
∗
1 )

v2 = φr(h2;U
∗
2 )

v3 = φr(h3;U
∗
3 ).

We note again that this construction requires a fluvial regime, in which
only one wave exits the junction towards each of the three adjoining
channels.

3.1.2. Junction conditions coming from mass and momentum conser-
vation. We now derive the 3 supplementary equations coming from
conservation of mass and of the two components of momentum. For
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that purpose, we come back to the 2D configuration of the junction
and we use the following notations

• h denotes the height of water in the 2D configuration,
• v = (vx, vy), denotes the 2D velocity in the 2D junction domain,

see Fig.1,
• q = hv = h(vx, vy) denotes the 2D discharge,
• qk = hk(vx,k, vy,k), k = 1, 2, 3, denotes the average discharge on

the edge of the junction triangle corresponding to channel k,
see Fig.1.

We first recall the shallow-water equations in 2D, composed of the mass
conservation equation and of the momentum conservation equation:

(12)


∂th+∇ · (hv) = 0,

∂t(hv) +∇ · (hv ⊗ v) +∇(
1

2
gh2) = 0.

In the following, we call T the triangle formed by the intersection points
of the walls of the three channels and its boundary ∂T is composed of
three edges, denoted by ek, k = 1, 2, 3, see Fig.1.

Mass conservation across the triangle T with boundary ∂T yields

(13)

∫
∂T

q · n = 0, with q = hv,

where n is the outer normal of ∂T , while the conservation of the two
components of momentum gives the two relations

(14)

∫
∂T

(
vxq +

1

2
gh2

(
1
0

))
· n = 0,

and

(15)

∫
∂T

(
vyq +

1

2
gh2

(
0
1

))
· n = 0.

Decomposing ∂T as the sum of the three edges ek, k = 1, 2, 3, the
three conditions at the junction, given by mass conservation and the
two components of momentum conservation, can then be written as:∑

k=1,2,3

`kqk · nk = 0,(16a)

∑
k=1,2,3

`k

(
vx,kqk +

1

2
gh2k

(
1
0

))
· nk = 0,(16b)

∑
k=1,2,3

`k

(
vy,kqk +

1

2
gh2k

(
0
1

))
· nk = 0,(16c)
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where `k is the length of the edge ek of the triangle, nk is the outer
normal to ek and qk is the average of q on the side ek of the triangle.
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Figure 2. A 3 canal junction. Illustration of the geo-
metrical notations. Parameters are s1 = s2 = s3 = 2,
θ = π

6
and φ = −π

3

To specify all quantities appearing in system (16), we need to com-
pute the normals nk to the sides of the triangle and their lengths `k.
To fix notation, refer to Fig. 2.

To begin with, we need to give the coordinates of the intersection
points of the walls, namely points P12, P13 and P23 that are displayed
on Fig. 2. Let us recall that θ and φ are the angles of canals 2 and 3
with the x-axis, while 2sk is the section of canal k.

The equations for the straight lines composing the 1D skeleton of
Fig.1 written in parametric form are

y1 = t1[1, 0]T ,

y2 = t2[cos(φ), sin(φ)]T ,

y3 = t3[cos(θ), sin(θ)]T ,

with tk ∈ R, k = 1, 2, 3. Then, to obtain the walls of the channels,
i.e, to construct the 2D setting of Fig. 2, we just need to write the
equations of the two straight lines parallel to the axis yk at the center
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of the channel, and at a distance ±sk from the axis, for each channel.
The walls of the three channels are

y±1 = t1[1, 0]T ± s1[0, 1]T ,

y±2 = t2[cos(φ), sin(φ)]T ± s2[− sin(φ), cos(φ)]T ,(17)

y±3 = t3[cos(θ), sin(θ)]T ± s3[− sin(θ), cos(θ)]T .

The triangle in Fig. 2 across which the 2D interaction occurs is ob-
tained intersecting the straight lines defining the walls of the channels.
More precisely, P13, is the intersection of y+1 with y+3 , P12 is defined
by the intersection of y−1 with y−2 , and the last point P23 lies at the
intersection of y−3 and y+2 . We obtain,

(18) P13 =

(
s1 cos θ − s3

sin θ
, s1

)
, θ 6= 0.

If θ = 0, the system has a solution only provided s1 = s3, and the two
straight lines actually coincide. In this case we define P13 = (0, s1).

Analogously,

(19) P12 =

(
−s1 cosφ+ s2

sinφ
,−s1

)
, φ 6= 0.

If φ = 0, we must have s1 = s2, and we pick P12 = (0,−s1). With this
approach, we cannot treat the case in which both φ = θ = 0, unless we
consider the two channels y2 and y3 superposed one on top of the other.
We will see in the next subsection how to extend the construction also
to the case φ = θ = 0.

Finally,

(20) P23 =

(
s3 cosφ+ s2 cos θ

sin(θ − φ)
,
s3 sinφ+ s2 sin θ

sin(θ − φ)

)
.

The quantity sin(φ− θ) can be zero either for φ = θ = 0, in which case
the two pipes coincide, or when φ = −π/2 and θ = π/2. Now you have
solutions only for s3 = s2, which means that y−3 and y+2 coincide, and
we fix the intersection point to P23 = (s3, 0).

We will analysize, and extend, the particular cases θ = 0, φ =
0, (θ, φ) = (π/2,−π/2) in the following section.

Once the points P13, P12, P23 are defined, we can compute all quan-
tities n1, n2, n3, `1, `2 and `3 depending on the geometry appearing in
(16). The length of the sides is

(21) `1 = ||P13 − P12||, `2 = ||P23 − P12||, `3 = ||P23 − P13||,
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and the normals are

n1 =
1

`1

 −2s1

s1 sin(θ + φ)− s2 sin θ − s3 sinφ

sinφ sin θ

 ,

n2 =
1

`2

 s1 +
s2 sin θ + s3 sinφ

sin(θ − φ)

−s2 cos θ + s3 cosφ

sin(θ − φ)
− s1 cosφ− s2

sinφ

 ,

n3 =
1

`3

 s1 −
s2 sin θ + s3 sinφ

sin(θ − φ)

s2 cos θ + s3 cosφ

sin(θ − φ)
− s1 cos θ − s3

sin θ

 .

Remark 1. The construction is well defined as long as the triangle
formed by P13, P12, P23 is non degenerate. We say that the triangle is
degenerate when the three points lie on the same straight line. Straight-
forward computations show that this occurs when det(n1,n3) = 0 which
is equivalent to the particular combination

(22) (s1 sin(θ − φ) + s3 sin(φ)− s2 sin(θ))2 + 4s2s3 sin(φ) sin(θ) = 0.

In the frame of reference we have chosen, the discharge in the three
canals can be written as

(23) q1 = q1

(
1
0

)
, q2 = q2

(
cosφ
sinφ

)
, q3 = q3

(
cos θ
sin θ

)
,

where qk = ‖qk‖.
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Let vk = qk/hk be the velocity along the k−th channel. Then the
conservation laws (16) across the junction can be written as

`1h1v1

(
1
0

)
· n1 + `2h2v2

(
cosφ
sinφ

)
· n2 + `3h3v3

(
cos θ
sin θ

)
· n3 = 0,

(24a)

`1

(
h1v

2
1

(
1
0

)
+

1

2
gh21

(
1
0

))
· n1 + `2

(
h2v

2
2 cosφ

(
cosφ
sinφ

)
+

1

2
gh22

(
1
0

))
· n2,

(24b)

+ `3

(
h3v

2
3 cos θ

(
cos θ
sin θ

)
+

1

2
gh23

(
1
0

))
· n3 = 0,

`1

(
1

2
gh21

(
0
1

))
· n1 + `2

(
h2v

2
2 sinφ

(
cosφ
sinφ

)
+

1

2
gh22

(
0
1

))
· n2

(24c)

+ `3

(
h3v

2
3 sin θ

(
cos θ
sin θ

)
+

1

2
gh23

(
0
1

))
· n3 = 0,

where we used the fact that the axis of channel 1 is parallel to the x
axis.

3.1.3. Solutions for the whole system of equations at the junction. Com-
bining the three equations (24) with the three equations (11) coupling
the states in the junction with the 1D channels, we find a system of
6 non linear equations at the junction, whose solution is given by the
three intermediate states Uk = (hk, vk), k = 1, 2, 3.

Remark 2. If we consider a stationary solution of (1) such that the
velocity is null and the height is constant in space, i.e. h∗k = h̄ and
v∗k = 0, k = 1, 2, 3 then hk = h̄ and vk = 0 k = 1, 2, 3 is a trivial
solution of system (24)-(11) since n1 + n2 + n3 = 0. This means
that the coupling condition at the junction preserves the lake at rest
stationary solution on the whole network.

Substituting v1, v2, v3 from (11) into (24), we find a system of three
non linear equations in the three unknowns h1, h2 and h3 which gives
the solution at the junction. Once the parameters s1, s2, s3, θ, φ and
U∗1 , U

∗
2 , U

∗
3 are fixed, these three equations define three hypersurfaces

whose zeros surfaces can be plot in the plane h1, h2 and h3 (Figure
3). The intersection of this surfaces is the required solution. In Figure
3-right we show an example.

3.2. Special cases and extensions. In this section, we consider three
particular cases.
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unique solution of system (11)-(24) for the parameters
s1 = s2 = s3 = 1, θ = −φ = π/6 and U∗1 = (1.5, 0),
U∗2 = U∗3 = (1, 0).

We start with the simplified case in which the canals are orthogo-
nal to the sides of the triangle. In that case, the junction is defined
uniquely by the three sections and the equations (24) simplify loosing
the dependency on the angles. In this case, see Fig. 4, it is easy to see
that the angles θ and φ defining the skeleton of the junction coincide
with the angles labelled θ and φ internal to the triangle in Fig. 4, and
the length of the sides coincides with the amplitude of the channels,
namely lk = 2sk, k = 1, 2, 3.

Then, it is straightforward to see that the sections depend on the
angles through the following relations

(25)
s2 sinφ+ s3 sin θ = 0,

s1 = s2 cosφ+ s3 cos θ.

Since in the present case, qk is parallel to nk, equation (16a) becomes

(26) −s1q1 + s2q2 + s3q3 = 0.

Equation (16b)-(16c), corresponding to the conservation of momentum
at the junction in 2D give:
(27)(

q21
h1

+
1

2
gh21

)
s1 =

(
q22
h2

+
1

2
gh22

)
s2 cosφ+

(
q23
h3

+
1

2
gh23

)
s3 cos θ
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3

and

(28) 0 =

(
q22
h2

+
1

2
gh22

)
s2 sinφ+

(
q23
h3

+
1

2
gh23

)
s3 sin θ.

Using the identities in (25), we can rewrite (27) and (28) as

q21
h1

+
1

2
gh21 =

q22
h2

+
1

2
gh22 =

q23
h3

+
1

2
gh23.

Therefore, conservation of mass and of the two components of mo-
mentum at the junction in this particular case yield

(29)


−s1q1 + s2q2 + s3q3 = 0,

q21
h1

+
1

2
gh21 =

q22
h2

+
1

2
gh22 =

q23
h3

+
1

2
gh23.

Note that in this case, the junction conditions do not depend on the
angles with which the canals intersect. We thus recover the equal
energy condition at the junction used by several authors, see [24] and
references there in. This condition derives from the 2D momentum
conservation at the junction, but we stress that it holds only for the
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particular case in which the channels are orthogonal to the sides of the
triangle defining the junction.

Moreover, tedious but straightforward calculations show that equa-
tions (25) imply the geometry in Fig. 4. Since the conservation condi-
tion can be multiplied by a constant without changing the result, we
see that for each pair of angles φ and θ there exists a one parameter set
of sections λ(s1, s2, s3), with λ > 0 for which momentum conservation
coincides with energy conservation.

Remark 3. The derivation leading to (29) proves that the present dis-
cussion is actually an extension of the junction conditions based on
energy conservation. Only in the case of the particular combination
of parameters satisfying (25), the junction Riemann solver does not
depend on the angles between the pipes. In particular, if all sections
are equal, (25) implies that conservation of momentum coincides with

conservation of energy only in the case θ =
π

3
= −φ see Fig 4.

We now consider the cases θ = φ = 0 and θ = −φ = π/2 which
where excluded in the generic case described in section 3. We call :

• T-junction: θ = −φ = π/2.
• Straight channel: θ = φ = 0.

-4 -3 -2 -1 0 1 2

-4

-3

-2

-1

0

1

2

3

4

Canal 1

Canal 2

Canal 3

P12

P13

P23

s1

s3

s2

(a) Case when s2 = s3

-4 -3 -2 -1 0 1 2

-4

-3

-2

-1

0

1

2

3

4

Canal 1

Canal 2

Canal 3

P12

P13

P23

s1

s3

s2

(b) Case when s2 6= s3

Figure 5. Junction - Particular case of the T-junction.
Parameters are θ = −φ = π

2
and s1 = 1, s2 = s3 = 2 (on

the left) and s1 = s2 = 1, s3 = 2 (on the right).

3.2.1. T-junction. In the case of a T-junction, for which the angles are
equal to θ = −φ = π/2 and s2 = s3, the points P12, P13 and P23 can
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be defined as in Fig.5-(A), namely

P12 =

(
−s2
−s1

)
, P13 =

(
−s2
s1

)
, P23 =

(
s2
0

)
.

Equations (24) reduce to

− s1h1v1 + s2h2v2 + s2h3v3 = 0,

− 2

(
h1v

2
1 +

1

2
gh21

)
+

1

2
gh22 +

1

2
gh23 = 0,

−
(
h2v

2
2 +

1

2
gh22

)
+ h3v

2
3 +

1

2
gh23 = 0.

When s2 6= s3, the point P23 can be defined as in Fig.5-(B), then

P12

(
−s2
−s1

)
, P13

(
−s3
s1

)
, P23

(
min(s2, s3)

0

)
.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5
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0

0.5

1

1.5

2
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Canal 2

Canal 3

P12

P13

P23

s1

s3

s2

Figure 6. Junction - Particular case of the straight
channel. Parameters are θ = φ = 0 and s1 = 1, s2 = 1.5
and s3 = 2.

3.2.2. Straight channel. Now, we consider the case when θ = φ = 0.
There is a natural way to define points P12 and P13, see Fig.6. By sym-
metry, the y-coordinate of P23 should be set to 0 but the x-coordinate
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is undetermined. We fix P23,x = s1, thus

P12

(
0

−s1

)
, P13

(
0

s1

)
, P23

(
s1
0

)
and equations (24) reduce to:

− 2h1v1 + h2v2 + h3v3 = 0,

− 2

(
h1v

2
1 +

1

2
gh21

)
+

(
h2v

2
2 +

1

2
gh22

)
+

(
h3v

2
3 +

1

2
gh23

)
= 0,

− 1

2
gh22 +

1

2
gh23 = 0.

Note that, with this configuration we can extend our construction to
the case of a single channel with a varying cross section.

4. Numerical scheme for shallow-water equations
complemented with junction conditions

In this section, we couple a standard final volume scheme for the
shallow water equations along each channel with the numerical flux
consistent with our junction conditions (11)-(24).

4.1. One dimensional finite volume scheme. For the sake of sim-
plicity, we will suppose that each canal has the same length, discretized
with a uniform grid. Then, the computational domain in each canal is
defined by the finite interval [0, L], which is divided in M equal cells, of
amplitude ∆x = L/M . The cell centers are given by xj = (j − 1

2
)∆x,

j = 1, . . . ,M , and the cell average of the numerical solution at time t
in the j-cell is defined as

(30) Uj(t) =
1

∆x

∫ x
j+1

2

x
j− 1

2

U(x, t) dx,

with appropriate boundary conditions for U0(·) in channel 1 and UM+1(·)
on the two outgoing channels 2 and 3. The system is evolved until the
final time T , with time step ∆t. We denote by Un

j the approximate
value for the average of U in cell j at the discrete time tn = n∆t.
Hence, the finite volume approximation of system (2) can be written
under the form

(31)
Un+1
j − Un

j

∆t
= − 1

∆x

(
F̂ n
j+ 1

2
− F̂ n

j− 1
2

)
,

where

(32) F̂ n
j− 1

2
= F

(
Un
j−1, U

n
j

)
,
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with F (·, ·) a proper numerical flux. We apply a Godunov type nu-
merical flux [30, 33], computing the exact intermediate state for the
Riemann problem between the two cells defined by Ul = Un

j−1 and
Ur = Un

j for j = 1, . . . ,M .
From now on we shall add a canal index and we use the notation Un

j,k,
j = 1, . . . ,M , to indicate the numerical solution along canal k = 1, 2, 3
computed at time tn, in xj,k. The time step ∆t is fixed to satisfy the
stability condition

(33) ∆t ≤ ∆x

max
k=1,2,3

max
1≤j≤M

max {|λ1(Un
j,k)|, |λ2(Un

j,k)|}
,

where λ1 and λ2 are the eigenvalues defined in (6).

4.2. Junction conditions and coupling with the finite volume
1D scheme. Let us now explain how we insert the junction conditions
(11)-(24) in the finite volume numerical scheme (31). Let us write
scheme (31) in channel k, k = 1, 2, 3 under the following form:

(34)
Un+1
j,k − Un

j,k

∆t
= − 1

∆x

(
F̂ n
j+ 1

2
,k
− F̂ n

j− 1
2
,k

)
.

In a canal network, the extreme point x1,k or xM,k can be either a
boundary point or a junction point connected with other canals. In
our setting xM,1, x1,2 and x1,3 are junction points, while x1,1, xM,2 and
xM,3 are boundary points. At the boundary points of the network,
the numerical tests use homogeneous Neumann conditions, but other
boundary conditions can naturally be used.

Let Uk = (hk, vk), k = 1, 2, 3 be the solution to system (11)-(24)
with U∗1 = Un

M,1, U
∗
2 = Un

1,2, U
∗
3 = Un

1,3 where Un
M,1, U

n
1,2 and Un

1,3 are
the values computed by the 1D scheme along the channels. Then, at
the junction points we impose F̂ n

M+1/2,1 = f(U1), F̂
n
1/2,2 = f(U2) and

F̂ n
1/2,3 = f(U3).

4.3. Solving the non-linear system at the junction. Now, let us
study the solutions to the nonlinear system at the junction. We recall
the notations used in Sec.3 and denote by h∗k and v∗k the approximate
values of h and v near the junction at channel k = 1, 2, 3 given by
the 1D numerical scheme, see also Sec.4 for their exact definition. Let
Ω be the open set of admissible states, Ω = {hk ∈ R+

∗ , vk ∈ R, |vk| <√
ghk, k = 1, 2, 3}. The approximate values hk and vk are then obtained
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solving the non-linear system (24) with vk given by (11). Let us denote

X =


h1
h2
h3
v1
v2
v3

 , X∗ =


h∗1
h∗2
h∗3
v∗1
v∗2
v∗3

 =


h1,M
h2,1
h3,1
v1,M
v2,1
v3,1

 .

We can rewrite the system under the following form:

(35) Ψ (X;X∗) = 0

where Ψ : Ω × Ω → R6. In general, existence and uniqueness results
for solutions to non linear systems are difficult to prove.

Assume that we have solved the system up to t = tn, this gives
the solution Xn,∗ which faces the junction. Suppose that we have
found a solution Xn such that Ψ(Xn;Xn,∗) = 0. If we can prove
that Det DΨ (Xn;Xn,∗) 6= 0, where DΨ denotes the Jacobian with
respect to the first argument, then there exists a unique X = X(X∗),
for ‖X∗ − Xn,∗‖ < ε, with ε small enough, such that Ψ(X;X∗) = 0.
Therefore, if the flow is smooth, one can find ∆t small enough such that
‖Xn+1,∗−Xn,∗‖ < ε and the implicit function theorem guarantees that
there exists a unique solution Xn+1 such that Ψ(Xn+1;Xn+1,∗) = 0.
So, the procedure can be iterated provided one can prove at each step
that Det DΨ (Xn;Xn,∗) 6= 0.

In the particular case when all waves are rarefactions, the relations
(11) become

(36)


v1 + 2

√
gh1 = v∗1 + 2

√
gh∗1,

v2 − 2
√
gh2 = v∗2 − 2

√
gh∗2,

v3 − 2
√
gh3 = v∗3 − 2

√
gh∗3,

and it is clear that the Jacobian DΨ does not depend on the data
X∗. Thus, starting from a set of data X∗ and a solution X such that
Ψ(X;X∗) = 0, once one can prove that

(37) Det DΨ (X;X∗) 6= 0, for all X∗, X ∈ Ω× Ω,

the solution exists at each time step. Note that, for the steady solution
h = const. and v = 0 one has X∗ = (h, h, h, 0, 0, 0)T and Ψ(X;X∗) = 0
for X = X∗, thus there exists at least one case for which Ψ(X;X∗) = 0.
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Example 1. In the case when the canals are orthogonal to the sides of
the triangle, we have

Ψ (X;X∗) =



s1h1v1 − s2h2v2 − s3h3v3
h1v

2
1 + 1

2
gh21 − h2v22 − 1

2
gh22

h1v
2
1 + 1

2
gh21 − h3v23 − 1

2
gh23

v1 + 2
√
gh1 − v∗1 − 2

√
gh∗1

v2 − 2
√
gh2 − v∗2 + 2

√
gh∗2

v3 − 2
√
gh3 − v∗3 + 2

√
gh∗3


.

Tedious algebra gives,

Det DΨ (X;X∗) = Det

 s1(v1 −
√
gh1) −s2(v2 +

√
gh2) −s3(v3 +

√
gh3)

(v1 −
√
gh1)

2 −(v2 +
√
gh2)

2 0
(v1 −

√
gh1)

2 0 −(v3 +
√
gh3)

2


= λ1λ2λ3 (s1λ2λ3 − s2λ1λ3 − s3λ1λ2) .

We can therefore conclude that since we are in the sub-critical case, for
which

λ1 = v1 −
√
gh1 < 0, λ2 = v2 +

√
gh2 > 0, λ3 = v3 +

√
gh3 > 0,

we have

Det DΨ (X;X∗) < 0, for all X∗, X ∈ Ω,

which implies condition (37). Thus, starting from a point for which
Ψ(X;X∗) = 0 we can prolong the solution for all of times. This coin-
cides with the case in which one assumes the continuity of the energy.

Example 2. Case with vanishing velocities.
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Now, consider the case given by system(24)-(11), with only rarefac-
tion waves. In order to simplify the expressions arising in the compu-
tations, we introduce the following notations

α1 = `1

(
1
0

)
· n1 = −2s1,

α2 = `2

(
1
0

)
· n2 = s1 +

s2 sin θ + s3 sinφ

sin(θ − φ)
,

α3 = `3

(
1
0

)
· n3 = s1 −

s2 sin θ + s3 sinφ

sin(θ − φ)
,

β1 = `1

(
0
1

)
· n1 =

s1 sin(θ + φ)− s2 sin θ − s3 sinφ

sinφ sin θ
,

β2 = `2

(
0
1

)
· n2 = −s2 cos θ + s3 cosφ

sin(θ − φ)
− s1 cosφ− s2

sinφ
,

β3 = `3

(
0
1

)
· n3 =

s2 cos θ + s3 cosφ

sin(θ − φ)
− s1 cos θ − s3

sin θ
,

γ2 = `2

(
cosφ
sinφ

)
· n2 = α2 cosφ+ β2 sinφ,

γ3 = `3

(
cos θ
sin θ

)
· n3 = α3 cos θ + β3 sin θ,

such that

Ψ (X;X∗) =



α1h1v1 + γ2h2v2 + γ3h3v3

α1

(
h1v

2
1 +

1

2
gh21

)
+
(
γ2h2v

2
2 cosφ+

α2

2
gh22

)
+
(
γ3h3v

2
3 cos θ +

α3

2
gh23

)
1

2
β1gh

2
1 +

(
γ2h2v

2
2 sinφ+

β2
2
gh22

)
+

(
γ3h3v

2
3 sin θ +

β3
2
gh23

)
v1 + 2

√
gh1 − v∗1 − 2

√
gh∗1

v2 − 2
√
gh2 − v∗2 + 2

√
gh∗2

v3 − 2
√
gh3 − v∗3 + 2

√
gh∗3


.

Since explicit computations are too difficult, we restrict ourselves to
the particular case when solutions with vanishing velocities vn1 = vn2 =
vn3 = 0 at the junction exist, that is to say

Xn =
(
hn1 hn2 hn3 0 0 0

)
.

We already note that n1 + n2 + n3 = 0, if (h∗1, h
∗
2, h
∗
3, v
∗
1, v
∗
2, v
∗
3) =

(h, h, h, 0, 0, 0), Xn = (h1, h2, h3, v1, v2, v3) = (h, h, h, 0, 0, 0) is a trivial
solution of system (24)-(11).
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We prove that in this case Det DΨ (X;X∗) 6= 0. In fact,

DΨ (X;X∗) =



0 0 0 α1h1 γ2h2 γ3h3
α1gh1 α2gh2 α3gh3 0 0 0
β1gh1 β2gh2 β3gh3 0 0 0√

g√
h1

0 0 1 0 0

0 −
√
g√
h2

0 0 1 0

0 0 −
√
g√
h3

0 0 1


and

Det DΨ (X;X∗) = g5/2 Det

 −α1

√
h1 γ2

√
h2 γ3

√
h3

α1h1 α2h2 α3h3
β1h1 β2h2 β3h3


= g5/2

√
h1h2h3

(
−α1(α2β3 − α3β2)

√
h2h3 − γ2(α1β3 − α3β1)

√
h1h3

+ γ3(α1β2 − α2β1)
√
h1h2

)
= 2g5/2

√
h1h2h3(

√
h1h2s3 +

√
h1h3s2 +

√
h2h3s1)×

( 4s2s3
sin(θ − φ)

+

(s1 sin(θ − φ) + s3 sin(φ)− s2 sin(θ))2

sin(θ − φ) sin(φ) sin(θ)

)
We notice that this expression is the product of two terms: the first

one, 2g5/2
√
h1h2h3(

√
h1h2s3 +

√
h1h3s2 +

√
h2h3s1) is always positive

since h1 > 0, h2 > 0, h3 > 0.
The second term depends only on s1, s2, s3, θ, φ, that is to say on

the triangle geometry. This second term vanishes iff the triangle is
degenerate, see Remark 1.

Therefore, excluding the case of a degenerate triangle,

Det DΨ (X;X∗) 6= 0.

5. Numerical tests

In order to evaluate the effectiveness of our method we perform var-
ious tests consisting of a subcritical wave propagating across junctions
of different geometries. For that purpose, we will use the numerical
scheme presented in the previous section. First of all we check the
numerical convergence of the scheme on the whole network under grid
refinement. Then, we compare numerical simulations on a network
with θ = φ = 0, with simulations on a single canal, to show the consis-
tency of the junction conditions with the traditional one-dimensional
Riemann solver. Subsequently, we increase θ and φ in order to enhance



22 M. BRIANI 1, G. PUPPO 2, M. RIBOT 3

the influence of the angles in our junction conditions. We also inves-
tigate numerically the case when water flows out canals 1 and 3 and
pours into canal 2. Finally, we compare the dynamics of the 1D solver
with the numerical solution obtained with a two-dimensional code.

5.1. Convergence of the 1D numerical scheme. In this test case
we check the numerical convergence of the 1D scheme (31) coupled
with system (24)-(11) at the junction under grid refinement. We set
the geometry parameters s1 = s2 = s3 = 1, θ = −φ = π/6, L1 = L2 =
L3 = 3.5, where Lk is the length of channel k. The initial data in the
three channels is
(38)
vk(x, t = 0) = 0, k = 1, 2, 3, x ∈ [0, Lk],

h2(x, t = 0) = h3(x, t = 0) = 1, h1(x, t = 0) =

{
1.5 x ≤ L1/2
1 x > L1/2.

We expect the formation of a rarefaction wave propagating backwards
on channel 1 and a shock crossing the junction and travelling with
positive speed along the two outgoing canals. In Figure 7 we show
the solution obtained after the water wave has reached the junction.
The dynamic involves the three canals and we observe the convergence
of the numerical solution under grid refinement. The number of grid
points on each channel is N = 12, 24, 48, 96. We observe that the
solution of system (24)-(11) at the junction does not depend on the
grid parameter N , proving the consistency of the Riemann solver. We
observe the formation of a stationary shock at the junction.

5.2. Comparison with the solution on a single canal. Here we
study the influence of our junction conditions involving the angles θ
and φ on the solution.

We set s1 = 1 and s2 = s3 = 1/2, L1 = L2 = L3 = 5 and the initial
data are the same as in (38). In all tests we fix the grid parameters
∆x = 0.01 on each channel and ∆t to satisfy (33).

We first consider θ = φ = 0 which corresponds to a single channel.
As expected for θ = φ = 0 and s1 = s2 + s3 the solution of our al-
gorithm coincides with the solution computed on a single canal, i.e.
without the junction, see blue line and black dashed line on Figure 8.
Next, we change θ and φ to study the influence of the angles on the
dynamics. Specifically, in Figure 8 the angles vary symmetrically with
θ = −φ and θ = 0, π/12, π/6, π/3. We observe that the symmetry of
the configuration is preserved and that the solution varies monotoni-
cally increasing the angles and moving away from the single channel
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Figure 7. Test 5.1: numerical convergence at time
T = 0.9, after the shock has reached the junction.
N = 12, 24, 48, 96. On top: water height as a function of
x; on bottom: water velocity as a function of x. On the
left: canal 1 and 2; on the right: canal 1 and 3. Initial
data are given in (38).

profile. Note that to see the dependence of the solution on the angles,
it is essential to include an angle dependence in the junction condition.

In Figure 9 we study the influence of a non symmetric variation of
the angles: we fix θ = π/8 and vary φ = −kπ/8 with k = 0, 1, 2, 3. We
observe that the symmetry of the solutions of the two outgoing channels
is lost and that water meets more resistance as channel 2 becomes more
and more bent. So, the water level decreases in channel 2 and increases
in channel 3. The solution on channel 1 does not change because the
total lumen of the outgoing channels remains the same.

Finally, we compare the 1D solution fixing the two angles and varying
the channel sizes. Specifically, we fix θ = −φ = π/4, s1 = s2 = 1 and
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Figure 8. Test 5.2: comparison of various symmet-
ric geometries with the solution on a single canal at
T = 0.5: s1 = 1 and s2 = s3 = 1/2; φ = −θ and
θ = 0, π/12, π/6, π/3. Black dashed line: 1D exact
shallow-water on a single channel; Blue solid line: nu-
merical solution for θ = φ = 0. On the left: zoom on
the transition between canal 1 and 2; on the right: zoom
on the transition between canal 1 and 3. Initial data are
given in (38).

consider s3 = 0.5, 1, 1.5, 2. In Figure 10 we observe that, as the section
of channel 3 increases, the water height decreases in canals 1 and 3 and
increases in canal 2. The water velocity in channels 2 and 3 follows the
same behavior, while the velocity in channel 1 increases. However, the
dynamics in channel 2 does not vary significantly.

5.3. Merging canals. In this section we display numerical results for
a 2-to-1 or merging junction for which the water flows from channels 1
and 3 towards channel 2. We set as initial data

(39)
vk(x, t = 0) = 0, k = 1, 2, 3, x ∈ [0, Lk],

h2(x, t = 0) = 1, hi(x, t = 0) =

{
1.5 x ≤ Li/2
1 x > Li/2.

, i = 1, 3.

Then, we fix s1 = s2 = s3 = 1, θ = π/3. In Figure 11, we compare
the solutions obtained for φ = −π/3,−π/6,−π/12, 0. As the angle φ
widens, the water height increases in channel 1 and decreases in channel
3. This asymmetry explains why the dynamic in channel 2 is almost
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Figure 9. Test 5.2: comparison of various triangle
asymmetric geometries with different angles with the so-
lution on a single canal at T = 0.5. s1 = 1 and s2 = s3 =
1/2, θ = π/8 fixed and φ = −π/8,−π/4,−3π/8. Black
dashed line: 1D exact shallow-water on a single channel;
Blue solid line: numerical solution for θ = φ = 0. On the
left: zoom on the transition between canal 1 and 2; on
the right: zoom on the transition between canal 1 and 3.
Initial data are given in (38).

unaffected by the angle variation, the amount of water entering remains
almost constant.

5.4. Comparison of 1D and 2D solutions. We compare our 1D
solver with the 2D shallow water solution (12). The numerical solu-
tion of (12) has been computed by the free and open source ToolBox
FullSWOF2D (Full Shallow-Water equations for Overland Flow in 2D),
which is a C++ code for simulations in two dimensions [10]. We com-
pute the solution on the rectangle in Figure 12 with (vx, vy) · n = 0
on the boundary. To obtain the 2D geometry of the junction we are
interested in, we use a bottom topography which is zin = −1 within
the dashed region Ω and zout = 0 in the complement ΩC . We choose
the initial water height so that h + zin is less than zout. In this way,
the water flows only inside the dashed region while ΩC is seen as a dry
state region.

To compare the results of the 2D solution with the 1D code, the
values of h, hvx, hvy of the 2D solution are sampled on the straight
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Figure 10. Test 5.2: comparison of various geometries
with different sections at T = 0.5. θ = −φ = π/4,
s1 = s2 = 1 and s3 = 0.5, 1, 1.5, 2. On the left: zoom on
the transition between canal 1 and 2; on the right: zoom
on the transition between canal 1 and 3. Initial data are
given at Eq.(38).

lines at the middle of the channels (black solid lines in Figure 12) of
lengths Lk, k = 1, 2, 3. We compare the 1D velocity with the 2D
velocity norm

√
v2x + v2y . The mesh of the two-dimensional domain

contains about 26× 104 grid nodes.
We fix the canal lengths as L1 = L2 = L3 = 5 and the simulation

final time to T = 1.5. We set s = s1 = s2 = s3, and we compare
the 1D solution obtained with junction conditions (24)-(11) to the 2D
solution with s = 1, 0.5, 0.25. As s decreases, the 2D configuration
becomes closer to the 1D network. Recall that, in the 1D case, if s =
s1 = s2 = s3, the solution of the shallow water equations complemented
with junction conditions (24)-(11) does not depend on the value of s.

We consider two different cases, a diverging junction, that it to say
the case when water flows from the single channel 1 towards the two
channels 2 and 3 and a merging junction, when the water flows from
the two channels 1 and 3 towards the single channel 2.
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Figure 11. Test 5.3: comparison of the solution for var-
ious geometries in the case of a merging at T = 0.5, s1 =
s2 = s3 = 1, θ = π/3 and φ = −π/3,−π/6,−π/12, 0.
On the left: zoom on the transition between canal 1 and
2; on the right: zoom on the transition between canal 3
and 2. Initial data are given at Eq.(39).

Canal 1
L1

Canal 3

L3

Canal 2
L2

h = 1.5 h = 1

h = 1.5

h = 1

h = 1

Figure 12. On the left the 2D numerical domain for
the comparison with the 1D geometry. On the right the
2D initial water height in a merging junction.

Diverging junction. We fix θ = π/3, φ = −π/12 and initial states as in
(38) for the 1D configuration and for the 2D system such that

(40)

vx,y(x, y, t = 0) = 0 (x, y) ∈ Ω,

h(x, y, t = 0) =

{
1.5 (x, y) ∈ Ω ∩ {0 ≤ x ≤ L1/2}
1 otherwise.
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In Figure 13, the 1D solution with junction conditions (24)-(11) is
presented in solid red, the dotted black curve is the 1D solution as-
suming equal energy at the junction, as in [24]. We have three 2D
solutions which are displayed in dashed blue, magenta and green for
s = 1, 0.5, 0.25 respectively. Decreasing s we see that the 2D solutions
converge towards the 1D wave front, both in the two shocks and the
receding rarefaction. The only differences are observed in the flat in-
termediate states at the junction. The junction solver proposed in this
work seems more accurate than the one with equal energy condition at
the junction. Some wiggles appearing in the 2D solution might be due
to numerical artefacts at the interface between dry and wet states of
the 2D code.

Merging junction. We fix θ = 5π/12, φ = −3π/8 and initial data as
in (39) for the 1D configuration while for the 2D system as (40) with
h = 1.5 in the right half of channel 3 too, see Figure 12 on the right.

As before, in Figure 14, we superpose the 1D and 2D curves. Again,
our 1D solution is displayed in solid red and the dotted black curve
represents the solution with equal energy condition at the junction,
[24]. The 2D solutions are drawn in dashed blue, magenta and green
for s = 1, 0.5, 0.25 respectively. Decreasing s, we see that the 2D
solutions converge towards the 1D water front, as expected.

6. Conclusions

In this paper we have presented a numerical solver for one dimen-
sional channels in a network. The solver is based on a finite volume
scheme in each canal and coupling conditions at the junction are ob-
tained with a single 2D element at the junction across which mass and
the two components of momentum are conserved. This approach allows
to take into account quite general geometries including the dependence
on the angles with which the canals intersect at the junction and the
sections of the canals. In this framework we can also include the con-
struction of solvers for shallow-water problems along a channel with
varying section.

The solver is based on the assumption that the flow across the junc-
tion is fluvial. Future work on this topic will be concentrated on the
case of torrential flows and on the dependence of the bottom topogra-
phy.

Acknowledgements. This work was partly supported by MIUR (Min-
istry of University and Research) PRIN2017 project number 2017KKJP4X.
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Figure 13. Test 5.4, diverging juntion: comparison
of 2D with 1D solutions at T = 1.5: θ = π

3
and

φ = − π
12

, L1 = L2 = L3 = 5, s1 = s2 = s3 = s with
s = 1, 0.5, 0.25 (in the 2D case). The 1D solution with
junction conditions (24)-(11) is displayed in solid red, the
1D solution with equal energy condition in dotted black,
the 2D solution with s = 1, 0.5, 0.25 in dashed blue, ma-
genta and green. Initial data are given at Eq.(38) (1D
case) and Eq.(40) (2D case).
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Figure 14. Test 5.4, merging junction: comparison
of 2D with 1D solutions at T = 1.5: θ = 5π/12, φ =
−3π/8, L1 = L2 = L3 = 5, s1 = s2 = s3 = s with
s = 1, 0.5, 0.25 (in the 2D case). The 1D solution with
junction conditions (24)-(11) is displayed in red, the 1D
solution with equal energy condition in dotted black, the
2D solution with s = 1, 0.5, 0.25 in dashed blue, solid
magenta and solid green. Initial data are given at Eq.(39)
(1D case) and Eq.(??) (2D case).
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