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Data fusion in aerodynamics

· In aerodynamics, data may come from different types of sources:

Flight tests Wind-tunnel experiments

Aerodynamic numerical simulators

- Flight and wind-tunnel tests lead to more reliable assessments
- Simulators can evaluate situations that cannot be performed in practice
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Data fusion in aerodynamics

· Different data acquisition schemes may lead to different levels of fidelity

Acquisition Scheme Level of Fidelity Data Availability Cost

flight tests high very low expensive
wind-tunnel tests upper-intermediate intermediate moderate

simulators low or intermediate high cheap or moderate
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Data fusion in aerodynamics

· In practice,

- An independent model is considered for each data acquisition scheme

- Aggregation steps are performed to reduce discrepancy between models

- Decisions are taken using the (empirically) aggregated framework

· The aggregation step is not always straightforward in many cases

- Wrong aggregations can lead to misleading results!
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Data fusion in aerodynamics

· Data fusion (DF)-based frameworks aim at jointly treating data acquisition
schemes while accounting for their corresponding levels of fidelity

Multi-fidelity DF-based architecture
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Data fusion in aerodynamics

· In this talk, we focus on

- Multi-fidelity DF-based modelling based on Gaussian processes

- An open-source Python-based surrogate modelling toolbox (SMT):
https://github.com/SMTorg/smt
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Multi-fidelity Gaussian processes



Gaussian processes (GPs)

· GP modelling assumes Gaussian priors on (aerodynamic) functions:
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Gaussian processes (GPs)

· Let {Y(x), x ∈ D} be a GP prior in R with compact input space D ⊂ Rd:

Y ∼ GP(m, k),

with mean function m and covariance function (kernel) k.

· GP priors let to tractable computations of the conditional distribution:

Y(x)|{Y(Xn) = yn} = GP(µ, c), (1)

where

conditional mean: µ(x) = m(x) + k(x,Xn)
>K−1(Xn,Xn)[yn −m(Xn)]

conditional covariance: c(x, x′) = k(x, x′)− k(x,Xn)K−1(Xn,Xn)k(Xn, x′)

predictions: µ(x)± 2
√

v(x), with v(x) = c(x, x)
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Gaussian processes (GPs)

· Benefits of GPs [Rasmussen and Williams, 2005]:

- They form a flexible prior over functions while providing a
well-founded probabilistic framework

- They are commonly used for modelling expensive black-box functions

- Regularity assumptions can be encoded into kernels

- They have been successfully applied in a wide range of applications
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Multi-fidelity model based on Gaussian processes

·We can consider the autoregressive model [see, e.g., Le Gratiet, 2013]:

Y`(x) = ρ`(x)Y`−1(x) + δ`(x), for ` = 1, . . . , L (2)

where

- L + 1 is number of fidelity levels

- Y0 ∼ GP(m0, k0) and δ`(x) ∼ GP(m`, k`)

- ρ` : D → R is a scale factor between Z` and Z`−1

- δ` : D → R is the discrepancy function tasked with capturing the
differences between Z` and Z`−1 beyond scaling

· If Y0, δ1, . . . , δL are independent GPs, then Y1, . . . ,YL are also GP-distributed

∗ As shown by [Le Gratiet, 2013], efficient implementations are obtained
using nested designs of experiments (DoEs):

D` ⊆ D`−1, (3)

with D` = (x`,i, y`,i)0≤`≤L−1,1≤i≤n`
.

9



Multi-fidelity model based on Gaussian processes

·We can consider the autoregressive model [see, e.g., Le Gratiet, 2013]:

Y`(x) = ρ`(x)Y`−1(x) + δ`(x), for ` = 1, . . . , L (2)

where

- L + 1 is number of fidelity levels

- Y0 ∼ GP(m0, k0) and δ`(x) ∼ GP(m`, k`)

- ρ` : D → R is a scale factor between Z` and Z`−1

- δ` : D → R is the discrepancy function tasked with capturing the
differences between Z` and Z`−1 beyond scaling

· If Y0, δ1, . . . , δL are independent GPs, then Y1, . . . ,YL are also GP-distributed

∗ As shown by [Le Gratiet, 2013], efficient implementations are obtained
using nested designs of experiments (DoEs):

D` ⊆ D`−1, (3)

with D` = (x`,i, y`,i)0≤`≤L−1,1≤i≤n`
.

9



Multi-fidelity model based on Gaussian processes
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(a) True functions and design points

· The (nested) dataset contains:

� 4 high-fidelity (HF) design points

� 5 intermediate-fidelity (IF) design points

� 8 low-fidelity (LF) design points
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(b) Independent GP models
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(c) Multi-fidelity GP model

1D multi-fidelity regression example with 3 levels of fidelity
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Blended wing body (BWB) database [Gauvrit-Ledogar et al., 2020]

Example of the configuration of a BWB studied in Europe [Gauvrit-Ledogar et al., 2020]

Inputs x: 7 design variables including,

- wing chord P2

- taper ratio P3

- wing span

- wing sweep P0, P2

- wing thickness ratio P0, P2

Output y: Drag coefficient (CD) for a fixed lift coefficient (CL).

· The nested database contains 3 levels of fidelity, each with 241 observations:
- lowest- and medium-fidelity: empirical models
- high-fidelity: CFD based on Euler equations
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Blended wing body (BWB) database [Gauvrit-Ledogar et al., 2020]

· For illustration purposes, we consider as inputs:

x = (wing span,wing thickness ratio P0)

·Missing inputs are modelled as a noise term in the GP

· The multi-fidelity GP is trained with:
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2D dataset used for training the model

� 50% of the lowest fidelity database:
(x0,i, y0,i)1≤i≤121

� 15% of the intermediate fidelity database:
(x1,i, y1,i)1≤i≤37

� 7.5% of the highest fidelity database:
(x2,i, y2,i)1≤i≤19
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Blended wing body (BWB) database [Gauvrit-Ledogar et al., 2020]
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(b) Multi-fidelity GP at ` = 2

Predictions on the 2D BWB database
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Blended wing body (BWB) database [Gauvrit-Ledogar et al., 2020]

By considering the 7 inputs with the same DoE used in the 2D example:

RMSE = 5.2 × 10−4 RMSE = 2.9 × 10−4
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(b) Multi-fidelity GP at ` = 2

ground truth vs predictions (± 1 standard-deviation confidence intervals [68%])

Predictions on the 7D BWB database
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Surrogate modelling Python toolbox



Surrogate modelling Python toolbox

Surrogate modelling Python toolbox [Bouhlel et al., 2019]

Link: https://github.com/SMTorg/smt
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SMT: latest implementations

Heteroscedastic multi-fidelity GP models

Y`(x`,i) + ε`,i = y`,i, ε`,i ∼ N
(

0, τ 2
`,i

)
(4)

with noise variance parameters τ 2
`,i ∈ R+, for ` = 0, . . . , L and i = 1, . . . , n
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Heteroscedastic multi-fidelity GP regression example

� 4 HF design points

� 12 LF design points

· τ 2
i can be fixed or estimated if considering repetitions of observations
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SMT: latest implementations

Adaptive design of experiments (DoEs) for multi-fidelity GPs
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(b) Iter. 1: new LF point
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(c) Iter. 2: new LF point
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(d) Iter. 3: new LF point
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(e) Iter. 4: new LF point
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(f) Iter. 6: new HF point

Initial DoE: � 3 HF points � 6 LF points
Updated DoE: � 4 HF points � 12 LF points
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SMT: latest implementations

· For adaptive DoEs, we aim at reducing the uncertainty at the L-th GP:

YL(x) = ρL(x)YL−1(x) + δL(x)

Step 1. Optimise an acquisition criterion for placing a new point, e.g.:

x∗ = argmaxx∈D vL,n(x), (5)

where vL,n is the variance of YL(x)|{Y0(X0,n0) = y0,n0
, . . . ,YL(XL,nL) = yL,nL

}

Step 2. Select the number of levels to be enriched, e.g. [Meliani et al., 2019]:

`∗ = argmax`∈{0,...,L}

∑`
κ=0 [vδ,κ,n(x∗)

∏L−1
j=κ ρ

2
j (x∗)]

[
∑`
κ=0 cκ]2

(6)

where

- vδ,κ,n is the variance of δκ(x)|{Y(X0,n0) = y0,n0
, . . . ,Y(Xκ,nκ) = yκ,nκ}

- cκ is a user-defined cost of enrichment for the κ-th fidelity level

Step 3. Enrich the DoE (X`,n`+1, y`,n`+1) = ((X`,n` , y`,n`), (x∗, y`,∗)) for
` = 1, . . . , `∗ and repeat steps 1 and 2
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Conclusions

· Data fusion can be performed via multi-fidelity Gaussian processes (GPs)

- Aerodynamic data aggregation is considered in a unified framework

- The resulting model leads to more accurate predictions

· The GP-based framework can account for:

- uncertainty quantification

- noisy observations

- adaptive designs of experiments (DoEs)

- Bayesian global optimisation

· Developments are freely available in the Python SMT toolbox

Challenges:

- High number of observations: complexity O(n3) and storage O(n2)

- Solving high-order integrals in adaptive DoEs based on:

x∗ = argminx∈D

∫
D

vn,ν(x)dx

- Building proper nested aerodynamic DoEs

19



References

M. Binois, R. B. Gramacy, and M. Ludkovski. Practical heteroscedastic Gaussian
process modeling for large simulation experiments. Journal of Computational and
Graphical Statistics, (4), 2018.

M. A. Bouhlel, J. T. Hwang, N. Bartoli, R. Lafage, J. Morlier, and J. R. R. A. Martins. A
Python surrogate modeling framework with derivatives. Advances in Engineering
Software, 2019.

Julie Gauvrit-Ledogar, Arnault Tremolet, and Loı̈c Brevault. Blended Wing Body Design.
Springer International Publishing, Cham, 2020.

L. Le Gratiet. Multi-fidelity Gaussian process regression for computer experiments. Theses,
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