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Abstract: Predictive maintenance has received considerable attention in the aviation industry where1

costs, system availability and reliability are major concerns. In spite of recent advances, effective2

health monitoring and prognostics for the scheduling of condition-based maintenance operations is3

still very challenging. The increasing availability of maintenance and operational data along with4

recent progress made in machine learning has boosted the development of data-driven prognostics5

and health management (PHM) models. In this paper, we describe the data workflow in place6

at an airline for the maintenance of an aircraft system and highlight the difficulties related to a7

proper labelling of the health status of such systems, resulting in a poor suitability of supervised8

learning techniques. We focus on investigating the feasibility and the potential of semi-supervised9

anomaly detection methods for the health monitoring of a real aircraft system. Proposed methods10

are evaluated on large volumes of real sensor data from a cooling unit system on a modern wide body11

aircraft from a major European airline. For the sake of confidentiality, data has been anonymized and12

only few technical and operational details about the system had been made available. We trained13

several deep neural network autoencoder architectures on nominal data and used the anomaly scores14

to calculate a health indicator. Results suggest that high anomaly scores are correlated with identified15

failures in the maintenance logs. Also, some situations see an increase in the anomaly score for several16

flights prior to the system’s failure, which paves a natural way for early fault identification.17

Keywords: aviation; predictive maintenance; prognostics and health management; condition18

monitoring; anomaly detection; deep learning; neural networks; autoencoders; time series19

1. Introduction20

Prognostics and health management (PHM) has drawn growing interest from industrial and21

academic research in the last few years, especially in sectors like aviation where profit margins are22

small and operational costs are critical. Aircraft availability and system reliability can be improved23

with effective health monitoring and prognostics. The purpose is the anticipation of system failures24

before their actual occurrences, as these cause major repair cost and operational disruptions. Condition25

monitoring is also key for optimising the scheduling of maintenance operations based on the estimated26

condition or remaining useful life (RUL) of the systems.27

The increasing availability of large volumes of sensor data generated daily by aircraft in flight28

calls for technologies to make the best of recent progresses made in the field of machine learning29

(ML) and anomaly detection [1]. This data can be exploited by algorithms in order to extract patterns30
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or anomalies to be linked with the degradation of the system. In PHM, data-driven approaches are31

particularly relevant for complex systems for which appropriate physics-based models may not exist.32

In this paper, we investigate the use of anomaly detection to generate system health indicators33

(HI) for a fleet of a modern wide-body aircraft. We focus our analysis on a specific aircraft system,34

but claim that the presented methodology is generic enough to be adapted to other use cases. More35

precisely, our contribution includes:36

1. a presentation of the different sources of data available at a major airline for the maintenance37

of an aircraft cooling system unit. We explain the difficulties to exploit such data for health38

monitoring primarily due to the inherent uncertainties in the maintenance data;39

2. the introduction of a semi-supervised anomaly detection approach for condition monitoring40

based on autoencoders to extract meaningful information from a complex dataset with high41

uncertainty in the labelling. For the sake of confidentiality, data has been anonymized and prior42

knowledge about the system under study is very limited;43

3. the experimentation of the proposed approach with three types of autoencoders to compute the44

anomaly scores: a fully-connected autoencoder, a convolutional autoencoder, and a variant of a45

long short-term memory (LSTM) autoencoder available in the literature.46

4. a method to determine a health indicator from the anomaly scores by computing a threshold47

based on the Fβ-score metric.48

5. the evaluation of the autoencoders with a set of binary classification metrics by using instance49

weights to account for the uncertainty on the provided failure data.50

We explore the feasibility and potential of an approach based on standard anomaly detection51

techniques and autoencoders for condition monitoring when applied to a real and complex dataset.52

The results of the study show that a relatively high anomaly score usually corresponds with53

the periods where a failure has been expected by maintenance engineers. In some cases, we also54

observe an upward trend on the anomaly scores a few flights before the failure was actually detected55

by the maintenance operators. However, the task remains challenging because of the lack of prior56

system knowledge (confidentiality constraints), sensor data complexity, the lack of guarantee that57

available signal data are appropriate to detect a given failure and general uncertainties in the sensor58

and provided failure data.59

The paper is organised as follows. Section 2 reviews the classical and more recent anomaly60

detection methods used in aviation, as well as the data-driven approaches specific to prognostics and61

their application to health monitoring. Section 3 describes the system under study and the different62

data sources available as well as the adopted approach to constitute a properly labelled dataset63

with failure periods. Section 4 overviews the anomaly detection approach to address data labelling64

uncertainty and compute the health indicator. Section 5 presents the design of the autoencoders used65

for anomaly detection and the alternative options tested. Section 6 describes the details of the training66

and testing of the autoencoders. Section 7 provides an analysis of the results and a discussion on67

the suitability and issues related to the use of such models for health monitoring. Lastly, Section 868

highlights the main points of the study, the implications for health monitoring and suggests some69

potential ideas for future work.70

2. Literature review and background71

2.1. Anomaly detection methods in aviation72

Autoencoder architectures can be considered as part of the recent advances in the field of neural73

networks and deep learning, which explains why their application to anomaly detection in aviation74

and PHM are still relatively limited compared to other classical approaches.75

In this sub-section, we briefly review progresses made in anomaly detection applied to aviation76

in general, before focusing in the next subsections on data-driven methods adapted to the PHM field.77
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For more details, the reader may refer to popular surveys in the literature on anomaly detection78

methods [2–4] including the recent advances [5] and their application to aviation [1].79

Firstly, it is important to note that aviation data is challenging for several reasons: its large volume,80

high-dimensionality, heterogeneity (mixed categorical and continuous attributes), multi-modality81

(multiple modes of nominal and non-nominal operations with different types of aircraft, airports and82

airspaces) and temporality (long time-series). In addition, the challenge is expected to be even bigger83

in the future with the continuously growing number of sensor-equipped aviation systems.84

Among the classical approaches for anomaly detection in aviation, Multiple Kernel Anomaly85

Detection (MKAD) [6] developed by NASA is still one of the state-of-the-art methods for the detection86

of anomalies in flight data. Based on kernel functions and One-Class Support Vector Machine87

(OC-SVM) [7], its computational complexity is quadratic with respect to the number of training88

examples. More recently, Puranik et al. [8] propose a framework based on OC-SVM to identify89

anomalies with the aim of improving the safety of general aviation operations.90

Anomaly detection based on clustering methods (ClusterAD) are also widely applied. For instance,91

Li et al [9,10] uses ClusterAD methods based on DBSCAN [11] to detect anomalies in the take-off92

and approach operations with datasets containing from a few hundreds to a few thousands flights.93

OC-SVM and ClusterAD methods have both performance issues with large datasets. ClusterAD94

methods have the advantage though that they can identify multiple types of flight operation patterns95

(different nominal operations) corresponding to the identified clusters.96

As far as we know, only a few classical techniques for anomaly detection are scalable to large97

datasets. For instance, Oehling et al. [12] approach based on Local Outlier Probability (LoOP) [13] was98

applied to an airline dataset of 1.2 million flights in order to detect anomalies related to safety events.99

Classical approaches such as clustering or distance-based methods like k-Nearest Neighbours100

(kNN) suffer from the curse of dimensionality issue when applied to high-dimensional data. The101

solution is often the application of a dimensionality reduction technique like principal component102

analysis (PCA) [14] as a preprocessing step. On the other hand, distance-based methods are103

computationally expensive even during the prediction phase, which makes them inappropriate for104

certain applications.105

With large-scale high-complex data as the one generally available in aviation, deep-learning106

approaches are supposed to perform better than traditional machine learning methods [5]. This is107

because deep-learning algorithms are specifically designed to learn complex patterns in big data. A108

diversity of neural network models are used in deep-learning, such as the traditional Fully Connected109

Network (FCN), Convolutional Neural Networks (CNN) or Recurrent Neural Networks (RNN).110

Deep-learning architectures are based on a sequence of layers combining one or several types of such111

neural network models. Their goal is to progressively find a representation of the original data features112

which is more appropriate for tasks like classification or regression.113

In the particular case of autoencoders, they are trained to find a lower-dimensional hidden114

representation (latent space) from which original data can be reconstructed, so they are often used as a115

technique for non-linear dimensionality reduction. In addition, they are suitable for anomaly detection116

based on the assumption that anomalies are incompressible and cannot be properly reconstructed117

from the lower dimensional representation of the latent variables. In the case of time-series data,118

autoencoders with RNN layers should be particularly adapted to exploit the temporal dependencies119

related to anomalies. In practice, however, they present significant limitations when applied to long120

sequences.121

2.2. Data-driven approaches for prognostics122

PHM has leveraged the increasing availability of sensor data to monitor the health of complex123

systems. The advantage of data-driven approaches is that they generally do not require any knowledge124

about the failure mechanisms inherent to these systems.125
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Depending on the availability of time-to-failure or end-of-life data, data-driven methods for126

prognostics can have two types of expected outputs [15]: direct failure prediction in the form of127

remaining useful life (RUL) estimation, or indirect failure prediction through the calculation of health128

degradation indicators. The first type of output requires availability of enough historical failure cases129

to train a RUL estimator. In the aerospace domain, failures are very scarce which make RUL prediction130

challenging. This second type of results need fewer failure cases, but do require the definition of a131

threshold to decide on the presence of a failure. Anomaly detection for prognostics falls within this132

second category.133

Data-driven approaches for PHM can be divided in two major categories [16–18]: statistical134

approaches (e.g. hidden Markov models, Bayesian networks, Gaussian mixture models) and neural135

networks approaches (e.g. autoencoders), the latter being more frequently used over the past few136

years.137

As for the statistical approaches, in [19] a mixture of Gaussian Hidden Markov Models is presented138

for RUL prediction of bearings from a NASA benchmark database. Also, we can cite the work by139

Zhao et al. [20] to detect early anomalies in an electric generator’s multivariate sensor data, based on140

Pearson correlation between the sensors and vector quantization clustering.141

Concerning the application of neural networks to PHM, as sensor data come naturally in the142

form of time series, RNN have been widely used. For instance, in [21] and [22] a RNN is trained for143

temporal feature extraction and RUL estimation. In both methods, models are trained in a supervised144

way on run-to-failure time series data, and test on time series data for systems that have not reached145

failure yet. More recently, Husebø et al. [23] propose a CNN autoencoder for feature extraction to146

diagnose electrical faults in induction motors.147

In PHM, neural networks have also been specifically used for anomaly detection. We can mention148

hybrid neural network approaches such in [24], where a CNN is combined with a gated recurrent unit149

(GRU) RNN in order to extract spatio-temporal features from sensor data and detect anomalies in150

rotating machinery. Hundman et al. [25] propose an approach based on LSTM for anomaly detection151

in spacecraft systems in real time: the comparison between the values predicted by the LSTM and152

the actual data gives a reconstruction error, used as a health indicator. Non-parametric dynamic153

thresholding is then used to determine whether there is a failure or not and alert operations engineers.154

2.3. Applications to aircraft systems health monitoring155

The increasing availability of condition monitoring data for aircraft fleets has made data-driven156

PHM valuable for proactive maintenance of aviation systems. Thus, in [26] a non-parametric modelling157

technique is described to calculate the health indicator for an aircraft air conditioning system. In [27], a158

study is made on several feature selection techniques in combination with neural networks for RUL159

prediction applied to a gas turbine engine dataset.160

More recently, Schwartz et al. [28] propose a method using self-organizing maps (SOMs) and161

kernel density estimation for fault detection and identification in aircraft jet engines. Baptista et al. [29]162

study the use of hybrid neural networks combining RNN layers with multi-layer perceptron (MLP)163

layers to estimate the RUL. The hybrid neural network is fed with statistical features computed on164

time series of two real-world aircraft engine datasets.165

Concerning the more specific use of autoencoder-based anomaly detection with flight data,166

we can mention a few recent efforts. For instance, an approach based on fully-connected deep167

autoencoders [30] and another one based on convolutional denoising autoencoders [31] have been168

applied for fault detection, the first on the NASA DASHlink open database [32], and the second on a169

dataset of customer notification reports sent over aircraft communications addressing and reporting170

system (ACARS) to airlines for engine fault detection.171

However, as far as we know, there is no comparative study in the literature on the use of several172

kinds of autoencoders for the computation of a health indicator of an aircraft system, which is the173

purpose of our research.174
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3. System and data description175

3.1. System under study176

The aircraft system under study is a cooling unit system belonging to a modern and widely-used177

airliner. Each aircraft has four units installed. A pump package pumps cooling fluid sequentially178

through each of the 4 cooling-units. Each cooling unit consists of a compressor, condenser, flash-tank179

and evaporator. Depending on the required cooling capacity, one or more cooling units may be180

operational. By changing the priorities of the cooling unit during each flight, the aircraft attempts to181

spread usage equally over each of the 4 units. For most failure cases, failure starts with clogging of the182

cooling-units filters, which can ultimately lead to failure of the compressor. When failure on any of the183

cooling units internals is expected, the entire unit is replaced and sent to the maintenance-shop for184

repair. Early detection of a fault in the filter could avoid a costly repair of the cooling-unit’s compressor.185

These cooling units are not safety critical, the aircraft is allowed to depart even with all cooling-units186

inoperative. However, this would impose an operational limitation to the airline.187

3.2. Flight and sensor data188

The 32 GB dataset provided by the airline contains anonymous sensor and contextual data for189

18 294 flights. Contextual flight data is a mix of categorical and continuous variables such as timestamp,190

flight identification number, tail number, flight phase, altitude, computed airspeed (CAS), airport191

departure and arrival. Sensitive information such as the names of the airports or the flights and tail192

numbers have been encrypted, and timestamps do not correspond with the real departure times as193

they have been shifted.194

Sensor data is provided in the form of variable-length (per flight) time series of nine continuous195

variables sampled at 1 Hz for each of the four cooling units installed. The physical nature of the196

signals is unknown as the names of the parameters are encrypted. After a discussion with the airline,197

it was concluded that the four units could be assumed to work independently, so the number of actual198

samples are four times the number of flights.199

Figure 1 shows the nine types of anonymised sensor signals for a healthy cooling unit system200

during a flight. Each of the nine subplots displays four time series representing the sensor values of201

the four cooling units installed in the aircraft.202
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Figure 1. Anonymous sensor data during a flight for the four healthy cooling units installed in an
aircraft.

3.3. Maintenance data203

For the cooling unit, most replacements are triggered by aircraft maintenance messages (MMS).204

These messages are raised when a suspected deviation from nominal operation is detected by the205

aircraft. In the ideal case, a failure isolation procedure follows, which identifies the corrective action206

immediately, resulting in replacement of the cooling unit and disappearance of the MMS. In most207

cases however, trouble-shooting is less trivial, as these maintenance message are ’noisy’ on its own.208

For example, faults in various components may result in the same maintenance message, making209

fault isolation challenging. Furthermore, a simple re-set of a system can make the messages disappear,210

only to re-occur months later. In practise, the diagnostics of whether a cooling unit is faulty and211

need replacement comes down to the engineering judgement of the responsible specialist. When the212

replaced cooling-unit is inspected at the repair-shop the existence of the fault can be confirmed, but no213

start-date of the fault can be inferred from this inspection. This makes labelling of the data a challenge214

on its own. To address this problem, we make use of multiple data sources for labelling of the data:215

• Removal data: list of removal dates for all replaced cooling units. For non-safety critical216

components such as the cooling unit, immediate corrective action after expected failure is217

not mandatory. Hence, removals dates do not correspond to actual failure dates.218

• Aircraft technical logbook: Contains potential issues reported by the crew. This textual data is219

ordered by date, but the fault description is not well structured which makes it difficult to link220

an issue directly to cooling-unit failure.221

• Central maintenance computing function (CMCF) data: system generated messages including222

flight deck effects (FDE) and MMS.223

• Shop reports: List the condition of the internals of the cooling unit upon inspection at the224

component repair shop.225

For labelling the data, the following approach is taken. Firstly, the dates for all unscheduled226

removals of the cooling unit are collected. Only removals that have resulted in disappearance of the227

MMS are considered. Subsequently, only those removals that were confirmed in the shop-report were228

considered. For these failures, the start-date of each of these failures was selected to be the first day229
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prior to the removal, after which maintenance message appeared consistently over multiple flights.230

Technical specialists and predictive maintenance engineers from the airline were asked to confirm231

these failure dates (PM). As uncertainty about the actual failure data persisted, each failure in the PM232

data was tagged by the airline as either TRUE, LIKELY or DUBIOUS.233

The final labelling data consists of expected failures of the cooling-unit, including: the aircraft234

tail number, the position of the failed cooling system unit, dates on which the failure was detected,235

dates on which the failure was fixed by the removal, the uncertainty tag (TRUE, LIKELY or DUBIOUS) and236

sometimes associated comments. The tag and comments can provide valuable information concerning237

the uncertainty on the actual occurrence of fault.238

The airline provided the MMS as well, which might help to understand some anomalies identified239

by the models outside the PM failure data intervals (potential false positives). MMS and PM uncertainty240

tags are especially exploited when computing the performance metrics on the models (see 7.2).241

The distribution of faults per aircraft is shown in Table 1.242

Table 1. PM and MMS fault distribution per aircraft tail number.

MMS PM Total

apbsayjk 9 0 9
cntxlxyh 20 1 21
cwuumlxe 55 1 56
dlkzncgy 97 4 101
ekzlmbdx 146 3 149
enwslczm 236 3 239
ibauqnxj 223 3 226
iefywfmy 103 5 108
iilvtkok 105 3 108
lbhkyjhi 196 3 199
rgwwyqtt 155 3 158
tjyjdtaf 93 4 97
trmblwny 276 3 279
vazmznfq 42 0 42
whjlcdan 44 0 44
wnjxbqsk 79 3 82
zcbiftrr 42 0 42
Total 1921 39 1960

4. Anomaly detection approach243

4.1. Semi-supervised learning244

Models are trained on what we assume to be normal or healthy data, i.e. flights for which a failure245

has been identified are removed from the training set. Thus, our setting is the most extended variant246

of semi-supervised anomaly detection known as learning from positive (i.e. normal) and unlabeled247

examples (LPUE) [33,34].248

More precisely, we removed from the training set the flights falling within the PM failure periods.249

However, we do not exclude the flights for which only a MMS but no confirmation of a fault exists. In250

addition, we removed from the training set the flights within the 20 days preceding the detection of a251

PM failure, where the uncertainty on the real health status of the cooling system is higher. In spite of252

that, the uncertainty on the labelling makes it impossible to ensure that all flights in the training set are253

actually healthy.254

.255
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4.2. Anomaly detection models256

Anomaly detection is based on a variety of neural networks known as autoencoders. The257

advantage of the autoencoders is their ability to reduce dimensionality, by automatically extracting the258

most significant features in a lower dimensional latent space.259

Three variants of autoencoders are tested: fully-connected, convolutional and RNN autoencoders.260

RNN-based autoencoders are well adapted to find time-dependent patterns in the signals, which is261

not the case of the fully-connected and convolutional autoencoders. In addition, RNN autoencoders262

can accept variable-length sequences as input, whereas the other two types of autoencoders require263

the use sliding windows to breakdown the sequences into fixed-sized vectors.264

Autoencoders output an anomaly score which is the reconstruction loss, i.e. the difference265

between the predicted and the actual value according to some norm (e.g. MSE, L1). Anomaly scores266

are assumed to increase with anomalous data "not seen" by the model, since correlations in sensor data267

should change because of some incipient degradation or fault. In addition, we expect the anomaly268

scores to present an upward trend a few flights before the system runs into failure in order to prevent269

its breakdown.270

The architecture and characteristics of the three variants of autoencoders are further detailed in271

Section 5.272

4.3. Anomaly threshold273

For each flight and for each cooling unit, a health indicator is produced, which is an anomaly274

score along with a binary health status ("healthy" or "faulty"). A flight anomaly score is the mean of275

the anomaly scores calculated at sensor level. For the models requiring a sliding window, we take the276

average of the scores computed over the sliding windows of a flight.277

In order to determine the health status, we need to compute a threshold. Then, we can predict278

the label ("faulty" or "healthy") of a flight depending on whether the anomaly score of the system is279

higher ("faulty") or lower ("healthy") than the threshold. The predicted label can then be compared280

with the real label in order to assess the performance of our model. However, the ground truth as to281

whether a flight is faulty or not depends on the fault information, which is uncertain for the reasons282

we mentioned before.283

Obviously, there is a trade-off when computing the threshold. If it is set too high, some faults will284

be missed. If it is too low, the rate of false alarms (false positives) will become unacceptable. Selecting285

the optimal threshold is case-specific, as it depends on the underlying failure rate of the cooling unit,286

the performance of the anomaly detector, and the cost of (corrective and preventive) maintenance.287

After a discussion with the airline, it seems preferable to set a relative high threshold because of several288

reasons. Firstly, faults are rare in aviation and so they are for this cooling unit. Hence, the distribution289

between healthy and faulty legs is biased to healthy data. For instance, if we say only 0.1% of the290

flights are faulty, a model with a 100% of true positives and 1% of false positives will end up triggering291

110 alerts every 10000 flights even though only 10 alerts correspond with a real fault. Secondly, too292

many false alarms would outweigh the benefit of cheaper preventive repairs, and may require more293

units to be held in stock. Finally, a low rate of false positives is necessary if we want our prognostic294

alerts to be trusted and accepted by the maintenance operators. This requires that at least between 65%295

or 70% of the total alarms are true (precision).296

The methodology to determine the threshold is described in Section 7.2.297

5. Autoencoder models298

We have implemented three different autoencoders solutions which are described in the following299

three subsections. Although we did perform some testing with other variants in order to select the300

presented architectures, the objective was not to find the most optimized one in terms of layers,301

units per layer, activation functions and so on. The goal was to come up with three reasonable302
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models for comparison, each one representing a different approach to autoencoders: fully-connected,303

convolutional-based and LSTM-based autoencoders.304

5.1. Fully-connected autoencoder (FCAE)305

The FCAE used in this paper is a multi-layered neural network with an input layer, multiple306

hidden layers and an output layer (see Figure 2). Each layer can have a different number of neural307

units and each unit in a layer is connected with every other one in the next layer. For this reason we308

call it here fully-connected, although in the literature it is usually refer to as autoencoder (AE), or to309

emphasise the multi-layer architecture aspect, as deep autoencoder (DAE) or stacked autoencoder310

(SAE). In all cases, an autoencoder performs two functions in a row: encoding and decoding.311

Figure 2. FCAE with multiple stacked layers

The encoding function maps the input data s ∈ Rd to a hidden representation y ∈ Rh = e(s) =312

g(w · s + b) where w ∈ Rd×h and b ∈ Rd are respectively the weight matrix and the bias vector and313

g(·) is a non linear activation function such as the sigmoid or ReLU functions. The decoding function314

maps the hidden representation back to the original input space according to ŝ = d(y) = g(w′ · y + b′),315

g(·) being most of the time the same activation function.316

The objective of the autoencoder model is to minimise the error of the reconstructed result:

(w, b, w′, b′) = argmin `(s, d(e(s))) (1)

where `(u, v) is a loss function determined according to the input range, typically the mean squared
error (MSE) loss:

`(u, v) =
1
n ∑ ||ui − vi||2 (2)

where u is the vector of observation, v the reconstructed vector and n the number of available samples317

indexed by variable i.318

The proposed FCAE architecture is described in Table 2. We use three blocks of layers both in the319

encoder and decoder, which have a symmetric structure in terms of number of neural units per layer.320

The output shape refers to the shape of the tensors after the layers have been applied, where bs, wl and321

n f refers respectively to the the batch size, (sliding) window length and number of features. The layer322

dimensions are defined as dim1 = wl ∗ nl, dim2 = dim1/3 and dim3 = dim2/2.323
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Table 2. Fully-Connected Autoencoder (FCAE) architecture

Block Layer Output shape

Input - (bs, dim1)

Enc1
Linear(dim1, dim2) (bs, dim2)
ReLU

Enc2
Linear(dim2, dim3) (bs, dim3)
ReLU

Enc3 Linear(dim3, n f) (bs, n f )

Encoding - (bs, n f )

Dec1
Linear(n f, dim3) (bs, dim3)
ReLU

Dec2
Linear(dim3, dim2) (bs, dim2)
ReLU

Dec3
Linear(dim2, dim1) (bs, dim1)
Sigmoid

Output - (bs, dim1)

The encoder Enc1 and Enc2 are blocks made up of pairs of Linear and ReLU activation layers. The324

input encodings (bottleneck with dimension n f ) are the result of Enc3. As a mirror of the encoder,325

the decoder has also two blocks (Dec1 and Dec2) both combining Linear and ReLU layers. The last326

decoding block (Dec3) is made up of a Linear layer with a Sigmoid activation as FCAE outputs are327

expected to be in the range of 0 to 1 (features are min-max scaled). A ReLU rather than a Sigmoid328

activation is used in all the other layers as it presents theoretical advantages such as sparsity and a329

minor likelihood of vanishing gradient resulting in faster learning.330

5.2. Convolutional autoencoder (CAE)331

Table 3 shows the CAE architecture proposed in this paper. It is inspired from the one in [23],332

which has been applied with good results for anomaly detection in time series data. The proposed333

CAE is a variant of the FCAE where fully-connected and convolutional layers are mixed in the encoder334

and decoder. Like the FCAE, the decoder structure is kind of a mirrored version of the encoder.335
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Table 3. Convolutional autoencoder (CAE) architecture

Block Layer Output shape

Input - (bs, nf, 30)

Conv1
Conv1D(30, 32, 5, 2, 1) (bs, 32, 14)
BatchNorm
ReLU

Conv2
Conv1D(32, 64, 5, 2, 1) (bs, 64, 6)
BatchNorm
ReLU

Conv3
Conv1D(64, 128, 3, 2, 2) (bs, 128, 4)
BatchNorm
ReLU

Flatten Flatten (bs, 512)

Dense E1
Linear(512, 64) (bs, 64)
ReLU

Dense E2
Linear(64, 32) (bs, 32)
ReLU

Encoding Linear(32, 9) (bs, 9)

Dense D1
Linear(9, 32) (bs, 32)
ReLU

Dense D2
Linear(32, 64) (bs, 64)
ReLU

Reshape
Linear(64, 512) (bs, 512)
Reshape(bs, 128, 4) (bs, 128, 4)

ConvTransp1

Conv1dTransp(128, 64, 3,
2, 2, 1)

(bs, 64, 6)

BatchNorm
ReLU

ConvTransp2

Conv1dTransp(64, 32, 5,
2, 1, 1)

(bs, 32, 14)

BatchNorm
ReLU

ConvTransp3
Conv1dTransp(32, nf, 5,
2, 1, 1)

(bs, nf, 30)

Sigmoid

Output - (bs, nf, 30)

Table 3 shows also the shape of the input and output tensors in each layer, where bs and n f336

refers to batch size and number of features respectively. The input is three-dimensional, where the337

last dimension is the (sliding) window size (30) and the second dimension is the number of channels338

which in our case are the features (n f ). Unlike a FCAE, a change in the size of the input window may339

involve substantial parameter adaptation, because of the symmetric structure of the autoencoder and340

the nature of convolutional layers.341

The first three layers of the encoder (Conv1 to Conv3) and the last three ones of the decoder342

(ConvTransp1 to ConvTransp3) are convolutional, whereas the innermost layers are fully-connected.343

Conv1d(ic, oc, k, s, p) (and its transpose Conv1DTransp(ic, oc, k, s, p, op)) denotes a344

convolutional (deconvolutional) layer with ic and oc channels, kernel size k, stride s and padding p345

and output padding op. Please note that dimensionality reduction is achieved by using a s > 1 rather346

than by using pooling layers [35].347

All convolutional layers are followed by BatchNorm layers [36] to normalise the inputs to the348

activation layers. ReLU is used as the activation layer everywhere except for the last one in the decoder349

(ConvTransp3) where a Sigmoid has been used instead for the same reasons stated with the FCAE.350
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We tested other alternative options for the activation functions, such as using SELU everywhere351

(with appropriate LeCun normal initialisation of weights), or Sigmoid in the dense layers and ReLU in352

the convolutional ones as in [23]. However, the results were worse and these options were abandoned.353

5.3. LSTM autoencoder (LSTMAE)354

The blocks of the two autoencoders previously introduced are made up of either dense or355

convolutional layers, which makes necessary the use of sliding windows to provide them with356

fixed-sized input vectors. In this subsection, we introduce the LSTM autoencoders (LSTMAE), where357

layers consist of Long Short-Term Memory (LSTM) neural networks allowing for input sequences to358

be of variable length.359

A LSTM is a type of RNN widely used for sequential data processing, since it can learn temporal360

dependencies over longer sequences than a simple RNN. For our particular purpose, a LSTMAE361

presents a theoretical advantage: samples can be entire flights instead of sliding windows, and362

anomaly scores can be calculated for the flight as a whole rather than by aggregating window anomaly363

scores.364

In the literature, there have been a few efforts to implement a LSTMAE. For instance, Malhotra et365

al. [37] introduced the model in Figure 3 for anomaly detection in time series data.366

Figure 3. LSTM autoencoder by Malhotra et al.[37]

In this architecture, the encoder and the decoder are both LSTM networks. The last hidden state367

of the encoder is passed as the initial hidden state to the decoder. Then, at every instant t, the decoder368

takes as input the reconstruction of the previous instant x′(t−1) obtained by linear transformation of369

the hidden state ht−1 computed by the decoder cell.370

Srivastava et al. [38] introduced the LSTMAE architecture shown in Figure 4, which combines371

input reconstruction with future prediction in order to achieve a better hidden representation.372

Reconstruction is operated in reversed order as the last hidden state of the input sequence contains373

better information about the short-term correlations which should improve the reconstruction of the374

beginning of the sequence in reversed order.375
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Figure 4. LSTM autoencoder by Srivastava et al.[38]

The authors reported good results in both papers. However, Malhotra’s LSTMAE is mostly376

applied to short univariate time series of around 30 points, or several hundred points in the case of377

periodic series. As for Srivastava’s, good results are also reported with short video sequences (although378

of very high dimensions) by using high-dimensional hidden state vectors of size 2048 or even 4096.379

We tested both LSTMAE architectures with our data and reconstructions were in general of380

poor quality, even with large latent spaces and after dimensionality reduction with severe signal381

downsampling and PCA. The intuition is these methods do not scale well when applied to our time382

series, which can reach several thousand points in long-haul flights. This could be explained by the383

fact that the hidden representation h(T) has not enough capacity to allow for a good reconstruction of a384

long and multivariate input sequence.385

Pereira et al. [39] mentioned this issue with long sequences and propose an attention-based386

mechanism to help the decoder. The resulting architecture is however highly complex, so we decided387

instead to work on a variant of the LSTMAE architectures by Malhotra and Srivastava. The goal is to388

test whether such an architecture could be good enough for our data when combined with appropriate389

dimensionality reduction.390

The proposed LSTMAE architecture is depicted in Figure 5. Two encoders and two decoders are391

introduced to improve the reconstruction of long sequences, in particular the beginning and the end of392

the input sequence, where signal variation is very significant.393
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Figure 5. LSTM autoencoder proposal.

The input sequence of length n is split in half, where each xi (i = 1..n) is a vector of size n f394

(the number of features). In Figure 5, each encoder is represented by a rectangular block of multiple395

LSTM cells, where h and hn are the last hidden state vectors output respectively by the top and bottom396

encoder. As for the decoders, they are both represented on the right side. The two sequences of small397

circles are the LSTM cells of the decoders. Each ci outputs a hidden state vector computed from the398

reconstruction and the hidden state of the previous decoder step. The dimensions of all hidden states399

of the two encoders and decoders have been set to 80.400

The top LSTM encoder receives the first half of the input in reversed order and computes latent401

representation h which is fed to the top decoder. The bottom encoder receives h and the second half of402

the input sequence in the original order and outputs the hidden representation hn. The top decoder403

takes h and linear transformation L1(h) to feed cell state c1. The rest of the cell states ci (i = 2..m)404

hidden states are computed from previous ci−1 hidden state and reconstruction x̂i−1. The first half of405

the output sequence is obtained by linear transformation L1 of the cell hidden states.406

The inputs of the bottom LSTM encoder block are h and the second half of the input sequence407

in the original order, and its output the hidden state hn. The bottom decoder decodes the sequence408

in reversed order, and takes as inputs hn and linear transformation L2(h) to output cn hidden state.409

The rest of the cell hidden states for ci (i = n− 1..m + 1) are computed from ci+1 hidden state and x̂i+1.410

The second half of the output sequence is obtained by linear transformation L2 of the cell hidden states411

and needs to be reversed.412
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6. Model training and testing413

6.1. Dataset preparation414

After studying the distribution of flight durations, we excluded from the dataset the flights with415

a duration of less than two hours (952 flights). These flights correspond to shorter legs in case the416

aircraft flies multiple legs in a single flight-segment. The goal was to reduce variability on operational417

conditions and focus the study on medium and long-haul flights, i.e. the main operating mode for the418

fleet under study. 139 flights with NaN values in sensor data were also removed. The NaN were present419

in the readings of sensors 2, 7 and 9 for the whole duration of the flights, since these sensors were not420

operational yet for these flights according to the airline.421

Also, we noticed in some cases the presence of −9999 values recorded for practically the whole422

duration of a flight. These outlier values appeared simultaneously in several sensors and often for423

the four system units. This occurred independently of the real health status of the concerned cooling424

units due to a failure in a higher level system upstream of the cooling unit. In total, 207 flights were425

identified and removed from the dataset.426

In order to reduce the dimensionality of sensor data, we generated several datasets by427

downsampling the original 1 Hz sensor data to lower rates such as 1/10 Hz, 1/30 Hz and 1/60 Hz. The428

last two sampling rates were tested only with the LSTMAE as a way to mitigate the LSTM limitations429

with long sequences. Also, like Malhotra et al. [37], we apply an additional linear dimensionality430

reduction technique (PCA), as an optional pre-processing step when using LSTMAE.431

Figure 6 shows the variance ratio explained by the three first components, which reaches 99% no432

matter the sampling rate used to generate the dataset.433

Figure 6. PCA - Variance ratio explained vs number of features.

Sliding windows were also generated for the FCAE and CAE models which need fixed-length434

sequences as inputs. After a few preliminary tests were done with different windows lengths and435

steps, we finally chose to apply 30-point-long and 20-step sliding windows (10 overlapping points).436

Following the cleaning and re-sampling, we create a test set (teh f ) by selecting a subset of six tails437

with a significant number of failures, which accounts for about 20% of data. The 80% of data left is split438

into what we assume to be healthy and faulty data. Around 80% of healthy data is used as training set439

(trh), and the 20% left as validation set (vh) for early-stopping. A second validation set (v f ) is created440

with the remaining faulty data, which is combined with vh to set the anomaly threshold (see 7.2).441

Finally, we calculate the max and min values for each feature in the training set trh in order to442

perform feature max-min scaling in all of the datasets.443

In Table 4 we show the sample distribution per dataset type as well as in terms of health status444

(healthy vs faulty). Please note that there are four samples for each flight in the dataset, i.e. one for445

each system unit. When using sliding windows, the number of samples is much higher (see Table 5)446

and sample distribution can be slightly different as NaN filtering is performed at window rather than at447

flight level.448
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Table 4. Cooling unit dataset.

faulty healthy Total faulty healthy Total

test 2542 20850 23392 3.7% 30.1% 33.8%
train 0 31632 31632 0.0% 45.7% 45.7%
val 1652 12596 14248 2.4% 18.2% 20.6%
Total 4194 65078 69272 6.1% 93.9% 100.0%

Table 5. Cooling unit dataset with 30-20 sliding windows.

faulty healthy Total faulty healthy Total

test 420672 3578908 3999580 3.6% 30.7% 34.3%
train 0 5259420 5259420 0.0% 45.1% 45.1%
val 274398 2123922 2398320 2.4% 18.2% 20.6%
Total 695070 10962250 11657320 6.0% 94.0% 100.0%

6.2. Model training449

Several runs were planned to test some combinations of models, training datasets and450

hyper-parameters. In particular, several experiments are defined to test the LSTMAE with different451

sampling rates as well as with and without PCA.452

The batch size is set to 200 samples for LSTMAE and 20 000 samples for the FCAE and CAE. This453

is to take into account the fact that LSTMAE takes as input long time series corresponding with full454

flights (it can be several thousand points), whereas the other two models take windows of reduced455

size (30 points).456

LSTM can be hard to train [40], especially with long input sequences of more of a thousand points457

for a long-haul flight with 1/10 Hz sampling rate. To avoid the issue of unstable training linked458

to exploding gradients, we apply gradient norm clipping set to 1.0 during the training of LSTMAE459

models. In addition, we use the truncated back-propagation through time (TBTT) technique [41]: input460

sequences are split into chunks of 200 time-steps for both the forward and backward-pass.461

To avoid overfitting, the number of training epochs is controlled via an early-stopping mechanism462

and the validation vh dataset. Early-stopping is setup to monitor the validation loss and halts the463

training process after 10 consecutive training epochs with no improvement of the validation loss.464

The model parameters are optimised with Adam algorithm [42] to minimise the MSE loss with a465

learning rate set to 1× 10−3.466

Table 6 lists the subset of the runs for further analysis in Section 7. Other runs were performed to467

test a few architectural options (see Section 5), but resulted in overall worse performance in terms of468

the metrics defined in Section 7.2. Hence, we dropped them to limit the study to the best candidate469

model found per autoencoder category. In the case of LSTMAE models, we included several runs to470

test the impact of several pre-processing options (the use of PCA and sampling rate).471

Table 6. Runs performed with the number of epochs.

run epochs

0 lstmae_pca_10 101
1 lstmae_10 101
2 lstmae_30 101
3 lstmae_60 8
4 lstmae_pca_30 29
5 lstmae_pca_60 54
6 cae_30_20_10 23
7 fcae_30_20_10 117
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The name of each run indicates: 1) the model used (fcae, cae, lstmae), 2) whether PCA features472

(pca) are used instead of the original ones, 3) the length and step used for the sliding windows (30_20)473

for FCAE and AE models, 4) the resampling rate (e.g. 10 means 1/10 Hz). The epochs shown are the474

effective number of epochs as controlled by the early stopping mechanism with the maximum number475

of epochs set to 120.476

6.3. Model testing477

During the testing phase, trained models are used to output the anomaly scores for all the samples.478

Then, we set an anomaly threshold based on the scores in the validation dataset, which allows for the479

calculation of the performance metrics on the test set.480

Figure 7 plots the anomaly score distribution per dataset type as calculated with a CAE model.481

You can see as the anomaly scores for the datasets with faulty data are distributed differently from the482

ones with normal data: faulty data present a higher density for the highest anomaly scores.483

Figure 7. Anomaly score distribution with a LSTMAE obtained with a CAE model.

In order to calculate the metrics commonly used to evaluate the performance of binary classifiers,484

we need first to set a threshold τ. A flight is faulty if τ > ai and healthy otherwise, where ai is the485

anomaly score of a system unit.486

τ is calculated by maximizing Fβ-score:

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

according to the parameter β and the precision and recall values computed for a set of possible487

thresholds over the merge of the two validation sets vh and v f .488

We can observe the trade-off between precision and recall in Figure 8, which plots the489

precision-recall curve for a run with a LSTMAE. For the reasons explained in Section 4.3,490

maximising the precision is the priority which means to choose a β < 1. For the sake of comparison,491

we will set β = 0.05 to compute the threshold as well as the related performance metrics.492
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Figure 8. Precision-Recall curve for threshold setting.

Once the threshold is set, models can be evaluated with the test set by using classical performance493

metrics such as precision, recall and Fβ-score. In addition to the classification performance metrics,494

we calculate the rate of flights predicted as faulty five days before the fault was actually identified495

in the maintenance checks (pbfr). This metric is to measure the predictive ability of the models to496

anticipate a fault, which highly depends on whether a "degradation signature" is actually present or497

not in the signals.498

To take fault data uncertainty into account when calculating the performance metrics, we give a499

weight between 0 and 1 to each sample based on the level of confidence on its real label. Please note500

that by sample here we mean a system unit per flight (not a sliding window).501

Table 7 describes more precisely the rules for sample allocation of health status label and502

uncertainty weights. We allocate zero weight to samples for the 20 days prior to the identification of a503

fault or for which we have an associated MMS, since their real health status is in fact unknown. On the504

other hand, we set a high weight for the flights where the fault has been labelled as TRUE or LIKELY505

by the airline. For the vast majority of cases (Rest category in Table 7), we assume they are mostly506

healthy with a weight of 0.85.507

Table 7. Rules on sample allocation of health status label and weight.

Condition Label Weight

TRUE fault FAULTY 1
LIKELY fault FAULTY 0.7

DUBIOUS fault FAULTY 0.2
20 flights before fault HEALTHY 0

Associated MMS HEALTHY 0
Rest HEALTHY 0.85

7. Results and discussions508

7.1. Training and validation losses509

Before analysing the performance metrics in the next section, it is worth looking at what happened510

during the learning process in terms of the evolution of the reconstruction losses. This should help511

understand the models ability to learn to reconstruct what we consider normal data. By analysing512

the training and validation curves, we can also check whether there are cases of models overfitting or513

underfitting the data.514

The x-axis in the loss plots represents the step in the training and validation set (i.e. an iteration515

with a forward and backward pass of a batch of samples) and y-axis is the MSE loss. The left subplots516

display the evolution of the loss for the training set (trh) and the right ones for the validation one (vh).517
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Figure 9 shows the training and validation curves for the FCAE and CAE models. We can observe518

that convergence of both losses is reached pretty early by the two models. Loss decreasing is smooth519

in all cases except for a slight fluctuation of the validation loss of the CAE model. Based on these520

observations, there is no evidence of either model overfitting or underfitting.521

Figure 9. FCAE and CAE - Reconstruction loss (MSE) for the training (left) and validation (right) sets.

Figure 10. LSTMAE trained with the nine original features - Reconstruction loss (MSE) for the training
(left) and validation (right) sets.

Figure 10 shows the training and validation curves for the LSTMAE models trained with the522

original nine features. The training loss is very noisy for the three runs, although a downwards trend523

(orange curve) can still be observed in the three cases. The periodic fluctuations in the training loss is a524
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sign of instability in the batch gradient descent caused by the variety of batches containing each one a525

different subset of flights. The high volatility is also symptomatic of the difficulty for our LSTMAE526

models to learn from long-sequences, in spite of our design with a double LSTM encoder/decoder527

and the application of training techniques such as gradient clipping to avoid gradient vanishing or528

exploding. A smoother downward trend can be observed in the three validation losses. In conclusion,529

there is no evidence of overfitting, but we cannot completely rule out a certain degree of model530

underfitting based on the shape of the training losses.531

Figure 11. LSTMAE trained with PCA - Reconstruction loss (MSE) for the training (left) and validation
(right) sets.

The losses for the LSTMAE trained with PCA are plotted in Figure 11. The training loss curve is532

again fluctuating but still headed downwards. However, in the last two plots there is a change of trend533

with an increase of the training and validation losses towards the end. The increases in the validation534

losses certainly triggered the early-stopping mechanism to halt the training process in order to avoid535

overfitting. The validation losses for the two last plots are also far less smooth when compared to the536

ones for the LSTMAE models trained with the original features. If overfitting has been prevented by537

early-stopping even in the most evident case of lstmae_pca_30, we cannot rule out by looking at the538

training curve the possibility of a certain degree of underfitting.539

7.2. Performance metrics540

Table 8 lists the resulting performance metrics for the runs sorted out by the auc_pr (area under541

precision-recall curve) metric and Fβ-score computed with β = 0.05.542
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Table 8. Performance metrics.

run auc_pr precision recall fbeta pbfr

0 lstmae_pca_10 0.471 0.805 0.126 0.794 0.124
1 lstmae_10 0.451 0.665 0.169 0.660 0.183
2 lstmae_30 0.450 0.661 0.169 0.656 0.185
3 lstmae_60 0.430 0.687 0.148 0.681 0.158
4 lstmae_pca_30 0.348 0.858 0.077 0.837 0.083
5 lstmae_pca_60 0.341 0.672 0.133 0.665 0.140
6 cae_30_20_10 0.231 0.934 0.033 0.875 0.054
7 fcae_30_20_10 0.218 0.971 0.031 0.902 0.049

In terms of Fβ-score and precision only, CAE and FCAE models gets the top results. However,543

when considering other metrics like recall or pbfr, LSTMAE presents a more balanced overall544

performance in most of the runs, especially in lstmae_pca_10.545

LSTMAE performance is highly sensitive to the combination of sampling rate and PCA. The best546

precision and Fβ-score for LSTMAE models is practically always reached with PCA. On the other547

hand, the higher the sampling rate the better the auc_pr metric is when using PCA.548

In general, but particularly with FCAE and CAE models, recall is low, even though it could549

be increased with a higher β by sacrificing part of the precision. Depending on the shape of the550

precision-recall curve, an increase of recall (even small) is not always possible without a significant551

drop of precision. In that sense, the relatively low auc_pr of FCAE and CAE models is not a good552

sign.553

The evaluated autoencoders can correctly identify the health status of the flights in the test set554

with a level of precision higher than the goal of 65% discussed in Section 4.3. Although FCAE555

and CAE precision is the highest, both models tend to reconstruct some of the anomalies in the556

test set which results in a high rate of false negatives and low recall (further analysis provided557

in Section 7.4). The added complexity of a CAE compared to a FCAE does not translate into any558

performance improvement. LSTMAE models are more balanced in terms of precision and recall559

and overall superior when considering auc_pr and pbfr. Based on the auc_pr metric, which offers a560

good comparison between different models on a binary classification problems with an imbalanced561

dataset as in our case, we recommend using lstmae_pca_10 model.562

As for the choice of sensors and features, apart from recommending the use of the PCA features563

and a sample rate of 1/10 Hz for the LSTMAE model, the analysis in Section 7.6 points out the564

relevance of sensors 2, 3 and 9 and the insignificance of the others as fault precursors. It would be565

interesting to evaluate the models again with only these three sensors. Concerning the parameters of566

the sliding windows for the FCAE and CAE, more tests are required to assess the sensitivity of the567

models to their length and step. It is however not straightforward in the case of the CAE to perform568

such tests as the design needs to be adapted each time we change the sliding window length.569

7.3. Signal reconstruction570

The main assumption when using autoencoders for anomaly detection is that after being trained571

with mostly normal data, they should be able to reconstruct healthy data better than faulty one.572

FCAE and CAE models produce reconstructions of similar quality. Figure 12 illustrates this573

principle with an example of signal reconstruction for 4 sensors by a FCAE of both a healthy (left) and574

a faulty (right) cooling unit during two flights of aircraft tjyjdtaf. We can see that reconstruction is575

indeed better for the healthy than the faulty system, which results in a correct identification of their576

health status.577
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Figure 12. Signal reconstruction examples with a FCAE of two flights from tail tjyjdtaf. On the left,
good reconstruction for a healthy cooling unit. On the right, bad reconstruction for a faulty cooling
unit.

As for the LSTMAE (see Figure 13), in spite of reconstructions following the original signal trend,578

they are very smooth even with the dataset generated with a sample rate of 1/10 Hz. As high-frequency579

components of the signals are ignored, LSTMAE performance is worse than the one of the FCAE and580

CAE models in terms of Fβ-score and precision (see Table 8). However, LSTMAE overall performance581

is more balanced in general as discussed in Section 7.2, and the HI produced correlates well with some582

of the failures (see Section 7.5).583

Figure 13. LSTMAE signal reconstruction examples (run lstmae_pca_10) of the same two flights and
sensors from Figure 12.

7.4. False negative and false positive analysis584

Unfortunately, we have cases where faulty signals are correctly reconstructed (false negatives)585

and healthy signals are not (false positives). Thus, it can be interesting to look at the loss signatures586
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to analyse which sensor contributes the most to the different cases. The spider plots represent the587

contribution to the reconstruction loss per sensor for the different cases and models.588

Figure 14 shows the average loss per sensor as generated by a FCAE for each of the four cooling589

units. We plot on top the contribution of each sensor in the true positive cases, and in the bottom590

those of the false negatives. A first observation is that not all faulty cooling units (true positives)591

present exactly the same loss signature, so there are some differences in the way they fail. A second592

observation is that in the false negative cases, the model is able to reconstruct the signals better that it593

should have done, including sensor 9 (units 1, 3, 4) as well as sensors 5 and 6 (unit 2), which are the594

main contributors in the case of the true positives.595
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Figure 14. FCAE loss signatures per cooling unit for the true positive cases (top) and the false negatives
(bottom).

Figure 15 shows the plots for the cases where healthy flights are correctly classified (true negatives)596

or wrongly classified as faulty (false positives). For the true negatives, sensor 9 signals are the597

ones being reconstructed the worst, although its loss value is still relatively low enough. For the598

false positives, the situation is more complex as several sensors contribute to the misclassification.599

Furthermore, each unit has a different false positive signature, although the ones in unit 1 and 3 are600

close. Sensor 9 is in all cases the major contributor to false positives.601
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Figure 15. FCAE loss signatures per cooling unit for the true negative cases (top) and the false positives
(bottom).

However, we noticed that loss signatures are model dependent. For instance, we can see in602

Figure 16 how the false negatives and false positive loss signatures for a LSTMAE (run lstmae_pca_10)603

can be significantly different from the FCAE ones.604
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Figure 16. LSTMAE loss signatures per cooling unit for false negatives (top) and false positives
(bottom).

After analysis with the help of the airline, false negatives can be generally explained by weak or605

short-lived faulty signatures. Even for the airline experts, it was difficult sometimes to detect a clear606

faulty signature when looking at some of the signal plots. Another explanation could be the uncertainty607

on the labelling of health status, especially for the flights with incipient faults in the beginning of the608

failure period. This is however not always the case as it can be observed in the HI plots in Section 7.5.609

Finally, we noticed false negatives are less frequent for the flights where there is a corresponding MMS.610

On the other hand, we have not found an enough degree of similarity in the signatures generated611

by the different models as to hold a specific subset of sensors responsible for the false positives. Noisy612
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data could have been then a clear cause, such as a malfunction in an external system impacting the613

operation of the cooling system and changing signal correlations. Whereas noise can still be one of the614

issues, false positives can also be linked to model shortcomings in discriminating certain cases. Also, a615

subset of the false positives are repeating in almost every run, which indicates that for some reason616

correlations in the sensor signals in these cases must be significantly different from the ones found617

in healthy signals. Finally, some of the false positives are correlated with the presence of MMS (see618

example in Section 7.5), which indicates the detection of some abnormal behaviour on the system.619

7.5. Health indicator: correlation with PM faults and MMS620

In this section, we analyse whether high anomaly scores and predicted failure health status621

correspond well with the periods where a fault has been identified. For that, we plot the HI showing622

the anomaly score per flight and system unit along with the failure periods. Due to the size of the623

figures, we present only the plots for two of the tails in the test set. The anomaly scores in the plots has624

been generated with a LSTMAE model (run lstmae_pca_10).625

Figure 17 shows the HI for the tail enwslczm. There are four plots, each one representing one of626

the four system units. The blue horizontal line is the average HI for healthy data and the red horizontal627

line is the anomaly threshold τ. On top of each plot, the coloured bars show the PM failure periods:628

TRUE faults in red and LIKELY faults in orange. The blue little ticks underneath the bars represent the629

MMS, whereas the vertical lines represent the anomaly scores for a system unit computed over a flight.630

Health status is determined from the anomaly scores and threshold: red for the faulty flights (τ > HI)631

and green otherwise.632

The long TRUE failure period in unit 1 has many flights properly identified as faulty. However, for633

the LIKELY failure period that follows, no flights are identified as faulty. In unit 3, only four flights are634

faulty for the LIKELY fault period. These two LIKELY cases are examples of fault uncertainty, which635

makes it difficult to ascertain whether the model predictions are correct.636

Another observation is that for the long failure period in unit 1, some of the anomaly scores can637

be high in spite of the lack of an associated MMS. We have noticed this happening for other failure638

periods in other tails, which drew the attention of the airline as it shows our anomaly detection can be639

complementary to the one currently implemented in the aircraft.640
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Figure 17. HI computed for the test tail enwslczm.

Figure 18 plots the HI for another tail in the test set (tjyjdtaf). The second fault in unit 4 is well641

identified, with all corresponding flights in the period being predicted as faulty. Unfortunately, this642

is not at all the case for the shorter failure periods in units 3 and 4, in spite of the anomaly scores643

being relatively high and close to the threshold. The shorter LIKELY fault period in unit 1 is also well644

identified. In unit 2, there are a few MMS and no confirmed PM faults. It can be observed that some of645

the MMS correlate sometimes with high anomaly scores, which seems to indicates there was some646

issue with the system identified by the aircraft and reflected in sensor data. Finally, we can see a few647

isolated red anomaly peaks in units 1, 2 and 3 with no corresponding MMS or fault, which are fault648

positives.649
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Figure 18. HI computed for the test tail tjyjdtaf.

7.6. Fault anticipation650

In addition for our models to be able to properly discriminate healthy from faulty data, we would651

like them to anticipate the occurrence of a fault. Ideally, any incipient degradation present in the652

signals should translate into a progressively higher anomaly score for the few flights preceding the653

start of a failure period. Of course, such capability ultimately depends on whether a degradation654

signature actually exists in the sensor signals.655

Figure 19 shows the evolution of the anomaly scores for the last 40 flights before a cooling unit656

runs into failure as computed in run lstmae_pca_10. We plot only the subset of faults tagged as TRUE657

and concerning the tails in the test set. Each plot shows the rolling average of both the anomaly score658

per sensor and the aggregated mean loss (thick blue line).659
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Figure 19. Run-to-failure computed in run lstmae_pca_10 for the test tails.

In general, the average loss is rather flat except for the last plot (fault_id=28), where the upward660

trend is the most visible by far. Sensors 2, 3 and sometimes 9 are the main contributors to the increasing661

trend, whereas the rest of the sensors play a minor role and remain mostly flat except in the last plot.662

The characteristics of the anomaly score slopes are highly dependent on the fault and seem to indicate663

different degradation signatures probably corresponding to different failure modes.664

Although an upward trend in the anomaly scores of some sensors can be observed for most of the665

faults, the prediction of a fault occurrence seems difficult as dynamics are different from one case to666

another. The limited number of faults in the dataset and the lack of knowledge on the failure modes667

make the task very challenging. However, what these plots do seem to reveal is the importance of668

sensors 2, 3 and 9 and the insignificance of the others as fault precursors when using a LSTMAE. These669

same subset of sensors are also the main contributors to the loss signatures of a LSTMAE (see Figure16).670

8. Conclusions671

In this study, we illustrated the difficulties in extracting meaningful information for health672

monitoring, by exploiting real raw sensor and maintenance data provided by an airline. We focused673

on a specific example with the cooling unit system of a modern wide body aircraft. Determining the674

ground truth on the real health status of the aircraft systems is an arduous task: the labelling of data is675

uncertain and the use of supervised ML techniques unfitted.676

In this context, we investigated the potential of a semi-supervised anomaly detection framework:677

we evaluated three different autoencoder architectures to assess whether such approach is viable with678

a complex system such as the cooling unit system. The training and the proper evaluation of the679

models have proven to be challenging because of the uncertainty in the ground truth and the lack680
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of prior knowledge on the system. In the end, the proposed approach provided useful insights for681

condition monitoring in spite of uncertain and noisy data.682

High anomaly scores and faulty status detected by our models matched periods where a fault683

had been identified. Further, our metrics (the health indicator) were able to correctly detect faulty684

flights which were not identified as such by the on-board detection systems, with a clear upward trend685

before a failure occurs in some situations. This approach opens promising perspectives, and would be686

appreciated as a complement to the existing certified aircraft fault detection systems. Alongside other687

information sources such as MMS, the health indicator can help the airline maintenance team with688

more efficient diagnostics. Although the different dynamics in the evolution of the anomaly curves do689

not make their use very straightforward for fault prediction, they can be of great value for monitoring690

the rate of degradation, anticipating an impending failure and scheduling a preventive replacement at691

a convenient time-slot.692

Future research works include a thorough finetuning of hyper-parameters and autoencoder693

architectures and a better understanding of the trends in resulting anomaly scores depending on the694

physics of the system; this would bring the approach to a higher technology readiness level, which695

falls beyond the scope of our current study. Further, as LSTMAE and RNN-based autoencoders seems696

unfitted for such long time series, attention-based mechanisms [43] or transformer architectures [44]697

could be a powerful tool to cope with longer intra-flight or even inter-flight temporal dependencies.698

In spite of the mentioned shortcomings pointed out in our study, we have shown the potential of699

our proposed approach and its value to monitor the health of an aircraft fleet.700
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