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As an important issue in special relativity, Wigner rotation is notoriously dicult for beginners for two major reasons: this physical phenomenon is highly unintuitive, and the mathematics behind it can be extremely challenging. To remove the rst obstacle, we introduce a clear and easy toy model under the guidance of group theory. To overcome the second, a concise mathematical method is developed by the integration of geometric algebra and the active-frame formalism.

I. INTRODUCTION

First discovered by L. Silberstein and then rediscovered by L. Thomas [START_REF] Silberstein | The Theory of Relativity[END_REF][START_REF] Thomas | The Kinematics of an electron with an axis[END_REF], the phenomenon that two successive non-parallel boosts (i.e., Lorentz transformations that contain neither rotation nor reection) lead to a boost and a rotation is generally called Wigner rotation [START_REF] Wigner | On unitary representations of the inhomogeneous Lorentz group[END_REF]. It has been studied by many authors for almost a century [START_REF] Ben-Menahem | Wigner's rotation revisited[END_REF][START_REF] Ungar | Thomas rotation and the parametrization of the Lorentz transformation group[END_REF][START_REF] Urbantke | Physical holonomy, Thomas precession, and Cliord algebra[END_REF][START_REF] Rhodes | Relativistic velocity space, Wigner rotation, and Thomas precession[END_REF][START_REF] O'donnell | Elementary analysis of the special relativistic combination of velocities, Wigner rotation and Thomas precession[END_REF], the mysterious aura persists nevertheless. H. Goldstein, author of the classic work Classical Mechanics, compared it to the twin paradox as two famous counter-intuitive consequences of special relativity [START_REF] Goldstein | Classical Mechanics[END_REF].

As for what is wrong with our intuition, we begin our discussion with the classical counterpart of boost transformation. In classical mechanics, for two inertial reference frames with coordinates (x, y, z, t) and (x ′ , y ′ , z ′ , t ′ ), if their relative velocity is the constant three-dimensional vector ⃗ V = [V x , V y , V z ], then the relation between the two set of coordinates is the so-called Galilean transformation

x ′ = x -V x t, y ′ = y -V y t, z ′ = z -V z t, t ′ = t.
The rst three lines of the above transformation correspond to a time-dependent threedimensional passive translation, and the fourth implies the two frames share the same time coordinate. Because the composition of two translations is another translation, there is no doubt that two successive Galilean transformations lead to another one. Being the relativistic version of Galilean transformation, boost is usually mistaken for possessing this closure property as well, i.e., two successive boosts lead to another boost. But the truth is, as mentioned earlier, as long as the directions of the two boosts are not parallel, their composition is not a single boost, but a boost along with a Wigner rotation. * Electronic mail: yehleehwa@gmail.com Getting to the bottom of the matter, it is because boost can not be identied with or compared to any kind of translation. Consequently, analogizing boost to Galilean transformation is groundless and dangerous, at least in the current case. From the mathematical point of view, a boost is a kind of rotation in the four-dimensional spacetime, or more precisely a pseudorotation. It should come as no surprise that the composition law of boosts is more complicated than that of translations.

However, even if we understand a boost is essentially a pseudo-rotation in the four-dimensional spacetime, there is still a fact violating our common sense. When a problem involves two nonparallel boosts and three reference frames, say K 0 , K 1 , and K 2 , with K 0 and K 1 being associated by the rst boost, and K 1 and K 2 by the second, it makes sense that some of the spatial axes of K 0 and K 2 might be non-parallel since not all of the spatial axes of K 0 (K 1 ) are parallel to that of K 1 (K 2 ) from the four-dimensional point of view. What contradicts intuition is another frame K 3 can be obtained from K 2 by a boost so that K 3 and K 0 are at rest with respect to each other, but some spatial axes of K 3 and K 0 still dier by a rotationthe same Wigner rotationeven though there is no temporal dimension involved.

To comprehend this fact, it is better to use a geometric picture to replace the physical one, i.e., consider a series of frame pseudo-rotations (K 0 →K 1 →K 2 →K 3 ) instead of a snap shot of these four frames. Even then, since the pseudo-rotation is quite dierent to the ordinary one, it is hard to build a clear picture in one's mind. The best policy is to nd a toy model for this process which contains only ordinary rotations.

Although Wigner rotation emerges whenever the two boost velocities are not parallel, people usually let these velocities be perpendicular to each other to simplify the calculations. It will be called the simple Wigner rotation in this paper. Interpreting this simple case as a series of pseudo-rotations, we are able to build an SO(3) toy model to mimic this process (Sec. III).

Being a model, it contains the essence of the original problem nonetheless. Thus we can use what we learn to study the simple Wigner rotation (Sec. IV) then generalize it to the general case (Sec. V). This model may be considered as the rst achievement of this paper.

As for the second achievement, by working directly on the active frame we show there is no need to consider the passive coordinate transformation at all. Allying with geometric algebra, the active-frame formalism enables us to derive all the important results of Wigner rotation and condense them into three neat geometric theorems.

II. PRELIMINARIES

A. Active frame

In the two-dimensional Euclidean space R 2 , the position vector of a point is xx + y ŷ = (x ŷ)(x y) ⊤ , where (x, y) are the coordinates of that point, ⊤ is the notation for matrix transpose, and (x, ŷ) is the frame which may be taken as an orthonormal basis at the origin. Now consider a passive linear transformation in this space, if the transformation law for the coordinates is x ŷ = cos ω sin ω -sin ω cos ω x ŷ .

(x ′ y ′ ) ⊤ = [T ](x y) ⊤ ,
(

For a positive ω, Eq. (1) represents a counterclockwise (i.e., positive-sense) rotation of the frame (x, ŷ). We shall regard this rotation as taking place along the xy-plane around (0, 0) instead of some axis, the reason will be clear soon.

If the coordinates (x, y) are replaced by (x, ct), where c is the light speed and t is the time coordinate, the space corresponding to the new coordinates is usually called the two-dimensional Minkowski space R 1,1 . It diers from the two-dimensional Euclidean space R 2 in the following aspects.

1. Although the second coordinate is ct with the dimension of length, the corresponding basis vector is t which is a dimensionless quantity like x and ŷ.

2. There is no ordinary rotation in R 1,1 , instead we have the pseudo-rotation (or more precisely the hyperbolic rotation) dened by

x ′ ct ′ = cosh Ω -sinh Ω -sinh Ω cosh Ω x ct , (2) 
which leaves x 2 -c 2 t 2 unchanged. We may regard it as taking place along the xt-plane just like ordinary rotations along a Euclidean plane.

3. The transformation matrix in Eq. ( 2) belongs to the group SO + (1, 1) whose elements are those reection-free pseudo-orthogonal transformations in R 1,1 . It is symmetric but not orthogonal unless Ω = 0. 

It is obvious that, as long as Ω ̸ = 0, the new basis vectors will no longer have unit length and no longer be perpendicular to each other from the Euclidean point of view (Figure 1).

From the physical perspective, there are two more noteworthy points.

5. If the frame (x, t) is interpreted as a physical reference frame, then the spatial basis vector x is usually thought of as a rigid rule and the temporal basis vector t a set of clocks xed on the rule. When talking about a moving frame, we mean the rule carries those clocks moving along the x-direction.

6. If we interpret the hyperbolic angle Ω as the rapidity of the relative speed u between the two frames, i.e., u = c tanh Ω, then Eqs. ( 2) and (3) become the boost transformations of the spacetime coordinates and the frames respectively. Note that the rigid rules corresponding to the spatial basis vectors x and x′ are still parallel to each other from the one-dimensional point of view. B. SO + (2, 1) and SO(3) groups Although physical spacetime is the four-dimensional Minkowski space R 3,1 , we work on its subspace in many cases without losing generality. For example, when discussing a boost transformation between two frames (x, ŷ, ẑ, t) and (x ′ , ŷ′ , ẑ′ , t′ ), we may assume the relative velocity is along the x-direction and consider just the transformation between the frames (x, t) and (x ′ , t′ ), which is depicted by Eq. (3). Similarly, since the problem of Wigner rotation involves only two relative velocities, it is legitimate to put them in the xy-plane so that none of the z-components shows up in the calculations. Therefore, the space R 2,1 and the transformation group SO + (2, 1) are sucient for us to derive all of the related results.

From the point of view of group theory, there are many similarities between SO + (2, 1) and SO(3). For example, neither of them contains any kind of reection, and the invariants of these two groups are x 2 + y 2 -c 2 t 2 and x 2 + y 2 + z 2 respectively. This allows us to model the Wigner rotation problem with a series of rotations in R 3 which provides a concrete and clear picture.

C. Geometric algebra

Wigner rotation, like many other problems in special relativity, is usually studied by using vectors and matrices as the mathematical tools. However, there is an alternative choice named geometric algebra (also known as Cliord algebra) which might be more suitable. Putting it simply, geometric algebra is nothing but the traditional vector algebra plus a new operation, the so-called geometric product.

For the four-dimensional Minkowski space R 3,1 with an orthonormal basis (x, ŷ, ẑ, t), the geometric product is dened as below.

1. xx = ŷ ŷ = ẑ ẑ = 1, and tt = -1. The rst three correspond to the unit length of those basis vectors and the fourth one reects the Minkowskiness of R 3,1 .

2. The geometric product is associative, e.g., (xŷ)ẑ = x(ŷẑ) = xŷẑ, etc. With the aid of geometric algebra, the three-dimensional version of Eq. ( 1) can be expressed

in a neat form   x′ ŷ′ ẑ′   =   cos ω sin ω 0 -sin ω cos ω 0 0 0 1     x ŷ ẑ  = R   x ŷ ẑ  R † , (4) 
where

R = exp(-ω 2 xŷ) is called rotor. Note that ẑ behaves like a constant because (xŷ)ẑ = ẑ(xŷ).
Using the identity (xŷ)(xŷ) = -1, R can be expanded as cos ω 2 -xŷ sin ω 2 and its action to the basis vectors can be calculated easily. For example,

x′ = RxR † = cos ω 2 -xŷ sin ω 2 x cos ω 2 + xŷ sin ω 2 = x cos ω + ŷ sin ω.
If we replace ω with ω + 2π, R = exp(-ω 2 xŷ) becomes -R, but the rotation transformation Eq. ( 4) is not aected at all. Therefore, we adopt the identication R ≡ -R.

The rotor R introduced above can be derived rigorously from the so called Cartan-Dieudonné theorem [START_REF] Urbantke | Physical holonomy, Thomas precession, and Cliord algebra[END_REF][START_REF] Misner | Gravitation[END_REF]. Here we start with the semi-nished result R = C(x + x′ )x = C(ŷ + ŷ′ )ŷ, where x′ and ŷ′ are given in Eq. ( 1) and C is the real normalization constant in order that RR † = 1. The term (x + x′ ) in C(x + x′ )x may be interpreted metaphorically as halfway between x and x′ , and x on its right as initial position. This combination may be taken as a general rule.

By using the explicit expression of x′ and some trigonometric identities, it is straightforward to derive C(x + x′ )x = cos ω 2 -xŷ sin ω 2 . Obviously, C(ŷ + ŷ′ )ŷ can generate the same result. The rotors for the hyperbolic rotations in R 2,1 are similar to those in R 3 . For example, when the rotation is along the xt-plane, the corresponding rotor B takes the form

B = exp(-Ω 2 xt ),
and the basis vector x is transformed as

B xB † = cosh Ω 2 -xt sinh Ω 2 x cosh Ω 2 + xt sinh Ω 2 = x cosh Ω + t sinh Ω,
where the hyperbolic functions come from the identity (x t)(x t) = 1. Analogous to Eq. ( 4), when we apply B to the frame (x, ŷ, t), the result is

B   x ŷ t   B † =   cosh Ω 0 sinh Ω 0 1 0 sinh Ω 0 cosh Ω     x ŷ t   =:   x * ŷ * t *   .
To derive the hyperbolic rotors, we need to use the Minkowski version of Cartan-Dieudonné theorem. Starting with B = C * (x + x * )x = -C * ( t + t * ) t with the condition BB † = 1, the rest is similar to that of the rotors in R 3 .

D. Composition of velocities

In special relativity, a boost transformation takes place between two inertial frames; hence each boost is dened by a constant velocity which is the relative velocity between the frames.

Since Wigner rotation involves two successive boosts, it is inherently related to the problem of adding two velocities relativistically. We give a brief review of this problem below.

In the four-dimensional Minkowski space R 3,1 , when a four-velocity undergoes a passive boost B( ⃗ V ) with ⃗ V being the relative velocity between the two frames, the transformation formula

W ′ = [B( ⃗ V )]
W is analogous to the boost transformation of spacetime coordinates, where W and W ′ are the four-velocities in the old and the new frames respectively, and [B( ⃗ V )] is the matrix representation of B( ⃗ V ) which can be proved to be always symmetric. Conversely, the inverse

boost transformation W = [B( ⃗ V )] -1 W ′ = [B(-⃗ V )
]W ′ allows us to calculate the four-velocity in the old frame from that in the new one.

Now consider an object resting in the new frame. Since its three-velocity relative to the old frame equals the relative velocity between the two frames, transforming its four-velocity in the new frame back to that in the old one reveals the information of the boost velocity.

W = [B( ⃗ V )] -1     0 0 0 c     = γ( ⃗ V )     V x V y V z c     , where γ( ⃗ V ) = 1 1 -V 2 c 2 . ( 5 
)
The above result has an intriguing geometric representation in the active-frame formalism.

Given a boost transformation B( ⃗ V ), the temporal basis vector t′ of the new frame is proportional to the four-velocity of the boost velocity.

t′ = x′ ŷ′ ẑ′ t′     0 0 0 1     = x ŷ ẑ t [B( ⃗ V )] -1     0 0 0 1     = γ( ⃗ V ) c ( ⃗ V + c t). (6) 
When the problem involves three inertial frames and two successive boosts, say rst

B( ⃗ V 1 )
then B( ⃗ V 2 ), the four-velocity of a rest object in the third frame can be transformed to that in the rst frame by

W = ([B( ⃗ V 2 )][B( ⃗ V 1 )]) -1     0 0 0 c     = [B( ⃗ V 1 )] -1 [B( ⃗ V 2 )] -1     0 0 0 c     .
The three-velocity contained in this four-velocity is the composition of the two boost velocities in that order and is usually denoted by ⃗ V 1 ⊕ ⃗ V 2 ; thus the above formula is equivalent to

[B( ⃗ V 1 )] -1 [B( ⃗ V 2 )] -1     0 0 0 c     = [B( ⃗ V 1 ⊕ ⃗ V 2 )] -1     0 0 0 c     = γ( ⃗ V 1 ⊕ ⃗ V 2 )     ( ⃗ V 1 ⊕ ⃗ V 2 ) x ( ⃗ V 1 ⊕ ⃗ V 2 ) y ( ⃗ V 1 ⊕ ⃗ V 2 ) z c     . (7)
The explicit expression of ⃗ V 1 ⊕ ⃗ V 2 can always be extracted from Eq. [START_REF] Rhodes | Relativistic velocity space, Wigner rotation, and Thomas precession[END_REF]. For example, when

⃗ V 1 = (c tanh Ω 1 )x and ⃗ V 2 = (c tanh Ω 2 )x, Eq. (7) becomes     cosh Ω 1 0 0 sinh Ω 1 0 1 0 0 0 0 1 0 sinh Ω 1 0 0 cosh Ω 1         cosh Ω 2 0 0 sinh Ω 2 0 1 0 0 0 0 1 0 sinh Ω 2 0 0 cosh Ω 2         0 0 0 c     = cosh(Ω 1 + Ω 2 )     c tanh(Ω 1 + Ω 2 ) 0 0 c     , which yields the result ⃗ V 1 ⊕ ⃗ V 2 = c tanh(Ω 1 + Ω 2 )x = V 1 + V 2 1 + V 1 V 2 /c 2 x, where V 1 V 2 /c 2 in the denominator is the relativistic correction term. If ⃗ V 1 and ⃗ V 2 are not parallel, the expression of ⃗ V 1 ⊕ ⃗ V 2 is rather complicated [11], but we still have ⃗ V 1 ⊕ ⃗ V 2 = ⃗ V 1 + ⃗ V 2 in the classical limit c → ∞. Substituting ⃗ V 1 ⊕ ⃗ V 2 for ⃗ V , we rewrite Eq. (6) as t′′ = γ( ⃗ V 1 ⊕ ⃗ V 2 ) c [ ⃗ V 1 ⊕ ⃗ V 2 + c t ], or c t′′ = γ( ⃗ V 1 ⊕ ⃗ V 2 )[ ⃗ V 1 ⊕ ⃗ V 2 + c t ]. (8) 
In short, c t′′ equals the four-velocity which corresponds to the three-velocity ⃗

V 1 ⊕ ⃗ V 2 that denes the composite boost.
If the order of the two boosts is exchanged, then Eq. ( 7) changes to

[B( ⃗ V 2 )] -1 [B( ⃗ V 1 )] -1     0 0 0 c     = [B( ⃗ V 2 ⊕ ⃗ V 1 )] -1     0 0 0 c     = γ( ⃗ V 2 ⊕ ⃗ V 1 )     ( ⃗ V 2 ⊕ ⃗ V 1 ) x ( ⃗ V 2 ⊕ ⃗ V 1 ) y ( ⃗ V 2 ⊕ ⃗ V 1 ) z c     . An important identity γ( ⃗ V 1 ⊕ ⃗ V 2 ) = γ( ⃗ V 2 ⊕ ⃗ V 1
) can be proved by using the following two facts:

(i) [B( ⃗ V 1 )] -1 [B( ⃗ V 2 )] -1 and [B( ⃗ V 2 )] -1 [B( ⃗ V 1 )
] -1 share the same diagonal elements since boost matrices are all symmetric, and (ii)

γ( ⃗ V 1 ⊕ ⃗ V 2 ) equals the (4, 4) element of [B( ⃗ V 1 )] -1 [B( ⃗ V 2 )] -1 and γ( ⃗ V 2 ⊕ ⃗ V 1 ) equals that of [B( ⃗ V 2 )] -1 [B( ⃗ V 1 )] -1 .

III. THE TOY MODEL

A. process a and Theorem 1

To construct the SO(3) toy model of the simple Wigner rotation, rst we dene a series of rotations of a Euclidean frame (x, ŷ, ẑ) as below and name it process a.

Step 1. Rotate the frame along the zx-plane by an angle θ, and call the new frame (x ′ a , ŷ′ a , ẑ′ a ), where ŷ′ a = ŷ.

Step 2. Rotate the new frame along the new yz-plane by an angle ϕ, and call the newer frame (x ′′ a , ŷ′′ a , ẑ′′ a ), where x′′ a = x′ a .

Step 3. Rotate the newer frame along the plane spanned by ẑ and ẑ′′ a to the extent that the nal ẑ′′′ a coincides with the original ẑ.

Using the formulation of geometric algebra, these three rotations can be expressed as follows:

a1.   x′ a ŷ′ a ẑ′ a   = exp(-θ 2 ẑ x)   x ŷ ẑ  exp(-θ 2 ẑ x) † . a2.   x′′ a ŷ′′ a ẑ′′ a   = exp(-ϕ 2 ŷ′ a ẑ′ a )   x′ a ŷ′ a ẑ′ a   exp(-ϕ 2 ŷ′ a ẑ′ a ) † = exp(-θ 2 ẑ x) exp(-ϕ 2 ŷẑ)   x ŷ ẑ  exp(-ϕ 2 ŷẑ) † exp(-θ 2 ẑ x) † = XY   x ŷ ẑ  Y † X † ,
where X = exp(-θ 2 ẑ x) and Y = exp(-ϕ 2 ŷẑ), and the following equalities have been used:

exp(-θ 2 ẑ x) † exp(-θ 2 ẑ x) = exp(+ θ 2 ẑ x) exp(-θ 2 ẑ x) = 1; ŷ′ a ẑ′ a = exp(-θ 2 ẑ x)ŷẑ exp(-θ 2 ẑ x) † ; exp(-ϕ 2 ŷ′ a ẑ′ a ) = exp(-θ 2 ẑ x) exp(-ϕ 2 ŷẑ) exp(-θ 2 ẑ x) † . a3.   x′′′ a ŷ′′′ a ẑ′′′ a   = M   x′′ a ŷ′′ a ẑ′′ a   M † = M XY   x ŷ ẑ  Y † X † M † ,
where M is constructed by employing the Cartan-Dieudonné theorem,

M = C(ẑ ′′ a + ẑ)ẑ ′′ a = C(1 + ẑ ẑ′′ a ) = C(1 + X † Y †2 X † ) (9) 
with the condition M M † = 1. Note that

ẑXY = ẑ exp(-θ 2 ẑ x) exp(-ϕ 2 ŷẑ) = exp(+ θ 2 ẑ x) exp(+ ϕ 2 ŷẑ)ẑ = X † Y † ẑ
has been used to obtain Eq. ( 9).

In light of Eq. ( 4), the expressions of the rst two steps can be easily transformed to matrix forms. In contrast, the elegance of Eq. ( 9) will be lost if we use matrix formulation to replace geometric algebra. Now we are equipped to prove that the result of process a is generated by a rotor along the original xy-plane.

Theorem 1. M XY = exp( ϵ 2 xŷ) =: R w generates the toy Wigner rotation, where the toy Wigner angle ϵ is dened by

tan ϵ 2 = tan θ 2 tan ϕ 2 with ϵ ∈ (-π, π].
The proof is provided by some simple calculations with three notes as follows:

M XY = C(1 + X † Y †2 X † )XY = C(XY + X † Y † ) = C exp(-θ 2 ẑ x) exp(-ϕ 2 ŷẑ) + exp( θ 2 ẑ x) exp( ϕ 2 ŷẑ) = 2C cos θ 2 cos ϕ 2 + xŷ sin θ 2 sin ϕ 2 ∝ cos ϵ 2 + xŷ sin ϵ 2 = exp( ϵ 2 xŷ).
Note 1. A normalized M implies the product M XY is also normalized. Hence we may assert the coecient of exp( ϵ 2 xŷ) equals unity without doing practical calculation. Note 2. Since R w = exp(--ϵ 2 xŷ), a positive ϵ corresponds to a clockwise (i.e., negativesense) rotation according to Eq. ( 4). If the range of θ and ϕ is taken to be (-π, π], then ϵ > 0 if and only if θϕ > 0. The maximum of the toy Wigner angle corresponds to θ = π and ϕ ̸ = 0, or ϕ = π and θ ̸ = 0.

Note 3. This theorem tells us although the basis vector ẑ comes back to its original orientation at the end of the process, the other two basis vectors deviate from the original (x, ŷ) by a toy Wigner rotation (Figure 2). 

M XY

  x ŷ ẑ  Y † X † M † = R w   x ŷ ẑ  R † w =   R w xR † w R w ŷR † w ẑ   .
 N † = N Y X   x ŷ ẑ  X † Y † N † ,
where X and Y are the same as those in process a, and N as the counterpart of M can be constructed in a similar way,

N = C ′ (ẑ ′′ b + ẑ)ẑ ′′ b = C ′ (1 + ẑ ẑ′′ b ) = C ′ (1 + Y † X †2 Y † ) (10) 
with the condition N N † = 1.

It is easy to prove N Y X is also a rotor along the xy-plane. Moreover, it is the inverse of the rotor M XY .

Theorem 2. N Y X = (M XY ) † = R † w = R -1
w .

The proof is also made of a few simple calculations:

N Y X = C ′ (1 + Y † X †2 Y † )Y X = C ′ X + Y † X † ) = C ′ Y † X † (1 + XY 2 X) = C ′ C Y † X † M † = (M XY ) † ,
where C ′ /C = 1 is due to the fact that both M XY and N Y X are normalized.

This theorem implies that, except for the sense of the rotation, the result of process b is the same as that of process a.

N Y X   x ŷ ẑ  X † Y † N † = R † w   x ŷ ẑ  R w =   R † w xR w R † w ŷR w ẑ   .
In addition to Theorem 2, there is another interesting relation between the rotors N and M . Theorem 3. R w N R † w = M. The sketch of the proof is substituting X † Y † N † for R w and N Y X for R † w , then employing Eqs. ( 9) and ( 10). The expressions of these three hyperbolic rotations are similar to those of process a.

c1.

  x′ c ŷ′ c t′ c   = exp(-Θ 2 xt )   x ŷ t   exp(-Θ 2 xt ) † , c2.   x′′ c ŷ′′ c t′′ c   = exp(-Φ 2 ŷ′ c t′ c )   x′ c ŷ′ c t′ c   exp(-Φ 2 ŷ′ c t′ c ) † = exp(-Θ 2 xt ) exp(-Φ 2 ŷt )   x ŷ t   exp(-Φ 2 ŷt ) † exp(-Θ 2 xt ) † = X Y   x ŷ t   Y † X † , c3.   x′′′ c ŷ′′′ c t′′′ c   = M   x′′ c ŷ′′ c t′′ c   M † = MX Y   x ŷ t   Y † X † M † , where X = exp(-Θ 2 xt ), Y = exp(-Φ 2 ŷt ), and M = C(1 + X † Y †2 X †
) are the analogues of X, Y , and M of process a respectively. The construction of M is analogous to Eq. ( 9),

M = -C( t′′ c + t) t′′ c = C(1 -tt ′′ c ) = C(1 + X † Y †2 X † ) (11) 
with the condition MM † = 1.

With regard to this process, we can deduce a theorem which is analogous to Theorem 1 of the toy model.

Theorem I. MX Y = exp( ε 2 xŷ) =: R w is the rotor of the simple Wigner rotation, where the simple Wigner angle ε is dened by

tan ε 2 = tanh Θ 2 tanh Φ 2 with ε ∈ (-π 2 , π 2 ).
The proof is omitted owing to its resemblance to that of Theorem 1.

Similar to the toy Wigner angle ϵ, the simple Wigner angle ε is positive if and only if ΘΦ > 0. However, the range of the latter is half of that of the former because the range of tanh x is (-1, 1) while that of tan x is (-∞, ∞).

B. process d and Theorem II & III

Imitating the procedure for constructing the toy model, we now exchange the rst two rotations in process c, i.e., let the frame rotate along the yt-plane by a hyperbolic angle Φ rst and then let the new frame rotate along the new xt-plane by a hyperbolic angle Θ. This new process will be named process d and its result can be expressed as

  x′′′ d ŷ′′′ d t′′′ d   = N   x′′ d ŷ′′ d t′′ d   N † = N YX   x ŷ t   X † Y † N † ,
where N is the counterpart of M,

N = -C ′ ( t′′ d + t) t′′ d = C ′ (1 -tt ′′ d ) = C ′ (1 + Y † X †2 Y † ) (12) 
with the condition N N † = 1.

Thanks to the isomorphisms between Eqs. ( 9) and [START_REF] Møller | The Theory of Relativity[END_REF], and between Eqs. ( 10) and (12), we acquire the following two theorems by change of notation.

Theorem II. N YX = (MX Y) † = R -1 w . Theorem III. R w N R † w = M.

C. The physical meanings

To discuss the physical meanings of the processes and theorems introduced in this section, we begin with identifying the rotors X and Y with the boosts dened by the velocities ⃗ u = (c tanh Θ)x and ⃗ v = (c tanh Φ)ŷ respectively. Under these identications, the (2+1)-dimensional version of Eq. ( 8) gives us the following results:

c t′′ c = γ(⃗ u ⊕ ⃗ v)[⃗ u ⊕ ⃗ v + c t ], and c t′′ d = γ(⃗ v ⊕ ⃗ u)[⃗ v ⊕ ⃗ u + c t ], (13) 
where γ(⃗ u ⊕ ⃗ v) = γ(⃗ v ⊕ ⃗ u) as proved at the end of Sec. II. Since t′′ c = M † t′′′ c M = M † tM according to Step 3 of process c, it implies that M † = M -1 as a boost is dened by the velocity ⃗ u ⊕ ⃗ v . Therefore, the boost M is dened by -(⃗ u ⊕ ⃗ v), and for the same reason N † is dened by ⃗ v ⊕ ⃗ u and N by -(⃗ v ⊕ ⃗ u). Now we are ready to use physical language to rephrase the two processes in this section (omitting the subscripts c and d ).

process c:

Step 1. A physical reference frame (x ′ , ŷ′ , t′ ) is found which moves with velocity ⃗ u relative to the original frame (x, ŷ, t).

Step 2. Another frame (x ′′ , ŷ′′ , t′′ ) is found which moves with velocity ⃗ v relative to (x ′ , ŷ′ , t′ ).

Step 3. A third frame (x ′′′ , ŷ′′′ , t′′′ ) is found which moves with velocity -(⃗ u ⊕ ⃗ v) relative to (x ′′ , ŷ′′ , t′′ ).

Since t′′′ = t, we know from Eq. ( 6) there is no relative velocity between the third and the original unprimed frames. The spatial parts of these two frames dier by a simple Wigner rotation according to Theorem I.

  x′′′ ŷ′′′ t′′′   = MX Y   x ŷ t   Y † X † M † = R w   x ŷ t   R † w =   R w xR † w R w ŷR † w t   .
Integrating with Theorem III, the above relation can be expressed in the following form:

X Y   x ŷ t   Y † X † = M † R w   x ŷ t   R † w M = R w N †   x ŷ t   N R † w , (14) 
which means the action of the rst two boosts to the original frame is equivalent to that of a boost of velocity ⃗ u ⊕ ⃗ v preceded by a simple Wigner rotation, or a boost of velocity ⃗ v ⊕ ⃗ u followed by the same rotation.

process d:

Step 1. A physical reference frame (x ′ , ŷ′ , t′ ) is found which moves with velocity v relative to the original frame (x, ŷ, t).

Step 2. Another frame (x ′′ , ŷ′′ , t′′ ) is found which moves with velocity ⃗ u relative to (x ′ , ŷ′ , t′ ).

Step 3. A third frame (x ′′′ , ŷ′′′ , t′′′ ) is found which moves with velocity -(⃗ v ⊕ ⃗ u) relative to (x ′′ , ŷ′′ , t′′ ).

Similarly, according to Theorem II and Theorem III, we can conclude that (i) the spatial parts of the third and the original frames dier by an inverse simple Wigner rotation,

  x′′′ ŷ′′′ t′′′   = N YX   x ŷ t   X † Y † N † = R † w   x ŷ t   R w =   R † w xR w R † w ŷR w t   ,
and (ii) the action of the rst two boosts to the original frame is equivalent to that of a boost of velocity ⃗ v ⊕ ⃗ u preceded by an inverse simple Wigner rotation, or a boost of velocity ⃗ u ⊕ ⃗ v followed by the same rotation,

YX   x ŷ t   X † Y † = N † R † w   x ŷ t   R w N = R † w M †   x ŷ t   MR w . (15) 
In addition to the above results, Theorem III leads to a relation R w

t′′ d R † w = t′′ c which is analogous to R w ẑ′′ b R † w = ẑ′′
a of the toy model. We can use Eq. ( 13) to convert this relation to 

R w (⃗ v ⊕ ⃗ u)R † w = ⃗ u ⊕ ⃗ v,

V. GENERAL WIGNER ROTATION

A. process e and Theorem I ′ Now we release the 90 • constraint on the two boost velocities, allowing the angle between them to be arbitrary. Without loss of generality, we still put the velocity ⃗ u along the x-direction, while the velocity ⃗ v deviates from the y-direction clockwise by an angle η ∈ (-π 2 , π 2 ). The basis vector ŷ can be rotated to the direction of ⃗ v by a rotor and the new basis vector will be called ŵ (Figure 6), i.e., ŵ = exp( η 2 xŷ)ŷ exp( η 2 xŷ) † = x sin η + ŷ cos η. Using this new basis vector ŵ, we generalize process c to the following one which will be named process e.

Step 1. Rotate the frame along the xt-plane by a hyperbolic angle Θ, and call the new frame (x ′ e , ŷ′ e , t′ e ), where ŷ′ e = ŷ. Accordingly, ŵ is transformed to ŵ′ e .

Step 2. Rotate the new frame along the new wt-plane by a hyperbolic angle Φ, and call the newer frame (x ′′ e , ŷ′′ e , t′′ e ). Note that x′′ e ̸ = x′ e .

Step 3. Rotate the newer frame hyperbolically along the plane spanned by t and t′′ e to the extent that the nal t′′′ e coincides with the original t.

The expressions for this process are as follows: 

  x ŷ t   exp(-Φ 2 ŵt ) † exp(-Θ 2 xt ) † = X W   x ŷ t   W † X † ,
= MX W   x ŷ t   W † X † M † , where X = exp(-Θ 2 xt ), W = exp(-Φ 2 
ŵt ), and

M = C(1 -tt ′′ e ) = C(1 + X † W †2 X † ) with MM † = 1.
Now we can generalize Theorem I of the simple Wigner rotation to the general case.

Theorem I ′ . MX W = exp( ε 2 xŷ) =: R w , where tan ε 2 = cos η coth Θ 2 coth Φ 2 + sin η with ε ∈ (-π 2 -η, π 2 -η).
The proof is contained in the following calculations:

MX W = C(X W + X † W † ) = C exp(-Θ 2 xt ) exp(-Φ 2 ŵt ) + exp( Θ 2 xt ) exp( Φ 2 ŵt ) = 2C cosh Θ 2 cosh Φ 2 + x ŵ sinh Θ 2 sinh Φ 2 = 2C cosh Θ 2 cosh Φ 2 + sin η sinh Θ 2 sinh Φ 2 + xŷ cos η sinh Θ 2 sinh Φ 2 = cos ε 2 + xŷ sin ε 2 .

B. process f and Theorem II ′ & III ′

Just like process e is a generalization of process c, process f is generalized from process d.

  x′′′ f ŷ′′′ f t′′′ f   = N   x′′ f ŷ′′ f t′′ f   N † = N WX   x ŷ t   X † W † N † , where N = C ′ (1 -tt ′′ f ) = C ′ (1 + W † X †2 W † ) with N N † = 1.
Because the expressions of the rotors M and N are respectively isomorphic to those of M and N of the simple Wigner rotations, Theorem II and Theorem III are generalized to the following.

Theorem II ′ . N WX = (MX W) † = R -1 w . Theorem III ′ . R w N R † w = M.
In summary, except for the fact that the formula for the Wigner angle is more complicated, the related theorems and their physical meanings have no signicant change for the general Wigner rotation. For example, the analogue of Eq. ( 14) is

X W   x ŷ t   W † X † = M † R w   x ŷ t   R † w M = R w N †   x ŷ t   N R † w , (16) 
and that of Eq. ( 15) is

WX   x ŷ t   X † W † = N † R † w   x ŷ t   R w N = R † w M †   x ŷ t   MR w . (17) 
We can take either Eq. ( 16) or Eq. ( 17) as the mathematical manifestation of the claim two successive non-parallel boosts lead to a boost and a rotation in Sec. I.

VI. CONCLUSION

By the joint eort of group theory, geometric algebra, and the active-frame formalism, the geometry of Wigner rotation problem is claried and the mathematics is simplied. Among other things, the SO(3) toy model provides an easy way to comprehend the essence of this problem.

APPENDIX: COMPARISON WITH MATRIX-COORDINATE FORMALISM

The results in this paper are mainly obtained and expressed by geometric algebra. In order to make a comparison with those in the literature, there is a need to translate these results into matrix formulation.

First, we work on an example from process c as a demonstration,

exp(-Θ 2 xt ) exp(-Φ 2 ŷt )   x ŷ t   exp(-Φ 2 ŷt ) † exp(-Θ 2 xt ) † = exp(-Θ 2 xt )   1 0 0 0 cosh Φ sinh Φ 0 sinh Φ cosh Φ     x ŷ t   exp(-Θ 2 xt ) † =   1 0 0 0 cosh Φ sinh Φ 0 sinh Φ cosh Φ     cosh Θ 0 sinh Θ 0 1 0 sinh Θ 0 cosh Θ     x ŷ t   .
Using the aforementioned notations X and Y for the rotors, and denoting the corresponding matrices by [X ] and [Y], we rewrite the above equality as

X Y   x ŷ t   Y † X † = [Y][X ]   x ŷ t   .
The correspondence between these two formulations may be put formally as X Y ⇐⇒

[Y][X ].
However, in order to make those matrices act on the coordinates (x, y, ct) instead of the frame (x, ŷ, t), we need to go further to take the transpose-inverse of As for Theorem III ′ , the rotor-matrix correspondence is 

R w N R † w = M ⇐⇒ [R w ] -1 [N ] -1 [R w ] = [M] -1 ,
Integrating Eq. (18) with Eq. ( 19), we obtain the correspondent of Eq. ( 16),

[B(⃗ v)][B(⃗ u)] = [R w ][B(⃗ u ⊕ ⃗ v)] = [B(⃗ v ⊕ ⃗ u)][R w ]. (20) 
The transpose of Eq. (20) gives us the correspondent of Eq. ( 17), Q = cos 2 η sinh Θ + sin η cosh Θ sinh Φ + sin 2 η sinh Θ cosh Φ, R = cos η cosh Θ sinh Φ + sin η cos η sinh Θ(cosh Φ -1).

[B(⃗ u)][B(⃗ v)] = [B(⃗ u ⊕ ⃗ v)][R w ] -1 = [R w ] -1 [B(⃗ v ⊕ ⃗ u)].

SUPPLEMENTARY MATERIAL

An animation of the six processes discussed in this paper is available at https://www.youtube.com/watch?v=HyVouwd7X2o

  where[T ] is the matrix representation of the transformation T , then the frame transformation must obey (x ′ ŷ′ ) = (x ŷ)[T ] -1 to balance the change made by [T ] and render the position vector intact.When the transformation is a two-dimensional rotation, i.e., an element of the special orthogonal group SO(2), we have [T ] -1 = [T ] ⊤ so that the transformations for the coordinates and frames are formally the same, i.e.,x ′ y ′ = [T ]

4 .

 4 With regard to the coordinate transformation Eq. (2), the transformation law for the
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 1 Figure 1: Hyperbolic rotation of the Minkowski frame (x, t).

3 .

 3 The geometric product of dierent basis vectors obeys the anti-commutative relation, e.g., xŷ = -ŷx, ẑt = -tẑ, etc.4. The dagger conjugation changes the ordering in a product, e.g., (xŷ) † = ŷx, (xŷ t) † = tŷx, etc.
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 2 Figure 2: The frame rotates clockwise along the xy-plane by a toy Wigner angle at the end of process a. The result of process b is the same except the rotation is counterclockwise.B. process b and Theorem 2 & 3To fully model the problem of simple Wigner rotation, we have to create another process which will be named process b. The main dierence between these two processes is the order of the rst two rotations. In process b, we let the frame rotate along the yz-plane by an angle ϕ rst and then let the new frame rotate along the new zx-plane by an angle θ. The result of this process can be expressed as

  An important relation R w ẑ′′ b R † w = ẑ′′ a can be derived from Theorem 3 when M is expressed by C(1+ ẑ ẑ′′ a ) and N by C(1+ ẑ ẑ′′ b ). It implies the two rotations generated by M and N perform along two dierent planes and the N -plane can be transformed to the M -plane by the toy Wigner rotation (Figure 3).
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 3 Figure 3: The third rotation plane of process b (N -plane) can be transformed to that of process a (M -plane) by the toy Wigner rotation.

Figure 4 :

 4 Figure 4: Schematic diagram for Theorem 1∼3 of the toy Wigner rotation.

  which implies the angle between these two composite velocities equals the simple Wigner angle.In summary, each of the three theorems in this section has a precise physical meaning. Theorem I. process c brings about a simple Wigner rotation of the frame along the xy-plane. Theorem II. The only dierence between the results of process c and process d is the sense of the simple Wigner rotation. Theorem III. The composite velocities of the two processes dier from each other by a simple Wigner rotation, implying the angle between them equals the simple Wigner angle. These statements are illustrated in one schematic diagram as shown in Figure 5.

Figure 5 :

 5 Figure 5: Schematic diagram for Theorem I∼III of the simple Wigner rotation.

Figure 6 :

 6 Figure 6: The orientations of velocities ⃗ u and ⃗ v in the problem of general Wigner rotation.

  [Y][X ]. Hence in this example the correspondence between the rotor-frame formalism and matrix-coordinate formalism should be X Y ⇐⇒ ([Y] ⊤ ) -1 ([X ] ⊤ ) -1 . Now we are ready to apply this rule to the results of general Wigner rotation discussed in Sec. V. Starting with Theorem I ′ and bearing in mind the boost matrix is symmetric while the rotation matrix orthogonal, we haveMX W = R w ⇐⇒ [W] -1 [X ] -1 [M] -1 = [R w ].It is better to introduce the notation B( ⃗ V ) from Sec. II to unify those boost matrices. Since B( ⃗ V ) is a passive transformation, we have[W] -1 = [B(⃗ v)], [X ] -1 = [B(⃗ u)], and [M] -1 = [B(-(⃗ u ⊕ ⃗ v))], and the above matrix equality becomes[B(⃗ v)][B(⃗ u)][B(-(⃗ u ⊕ ⃗ v))] = [R w ], or [B(⃗ v)][B(⃗ u)] = [R w ][B(⃗ u ⊕ ⃗ v)].

  the same rule to Theorem II ′ gives us a similar result,[B(⃗ u)][B(⃗ v)] = [R w ] -1 [B(⃗ v ⊕ ⃗ u)].

or[

  R w ] -1 [B(-(⃗ v ⊕ ⃗ u))][R w ] = [B(-(⃗ u ⊕ ⃗ v))], or [R w ] -1 [B(⃗ v ⊕ ⃗ u)][R w ] = [B(⃗ u ⊕ ⃗ v)].

cos 2 ηcos 2 ηP = 1 +

 221 , Eqs. (20) and (21) can also be obtained by applying the correspondence rule to the rotor-frame formulas Eqs. (16) and (17).Lastly, the explicit forms of these boost matrices are provided below for reference. + sin 2 η cosh Φ sin η cos η(cosh Φ -1) -sin η sinh Φ sin η cos η(cosh Φ -1) sin2 η + cos 2 η cosh Φ -cos η sinh Φ -sin η sinh Φ -cos η sinh Φ cosh Φ + sin 2 η cosh Φ sin η cos η(cosh Φ -1) sin η sinh Φ sin η cos η(cosh Φ -1) sin 2 η + cos 2 η cosh Φ cos η sinh Φ sin η sinh Φ cos η sinh Φ cosh Φ cosh Θ cosh Φ + sin η sinh Θ sinh Φ, Q = sinh Θ cosh Φ + sin η cosh Θ sinh Φ, R = cos η sinh Φ.According to Eq. (5), γ(⃗ u⊕⃗ v) and ⃗ u⊕⃗ v can be read out from the last column of [B(⃗ u⊕⃗ v)] -1 , i.e., γ(⃗ u⊕ ⃗ v) = P -1 and ⃗ u ⊕ ⃗ v = c P -1 [Q, R].With the following modications for the expressions of Q and R, the two matrices above can represent [B(⃗ v ⊕ ⃗ u)] and [B(⃗ v ⊕ ⃗ u)] -1 as well, and ⃗ v ⊕ ⃗ u can be extracted by using the same rule.
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