
HAL Id: hal-03195937
https://hal.science/hal-03195937v1

Submitted on 7 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privacy-Preserving IoT Data Aggregation Based on
Blockchain and Homomorphic Encryption

Faiza Loukil, Chirine Ghedira-Guegan, Khouloud Boukadi, Aïcha-Nabila
Benharkat

To cite this version:
Faiza Loukil, Chirine Ghedira-Guegan, Khouloud Boukadi, Aïcha-Nabila Benharkat. Privacy-
Preserving IoT Data Aggregation Based on Blockchain and Homomorphic Encryption. Sensors, 2021,
21 (7), pp.2452. �10.3390/s21072452�. �hal-03195937�

https://hal.science/hal-03195937v1
https://hal.archives-ouvertes.fr

sensors

Article

Privacy-Preserving IoT Data Aggregation Based on Blockchain
and Homomorphic Encryption

Faiza Loukil 1,*,† , Chirine Ghedira-Guegan 2 , Khouloud Boukadi 3 and Aïcha-Nabila Benharkat 4

����������
�������

Citation: Loukil, F.; Ghedira-Guegan,

C.; Boukadi, K.; Benharkat, A.-N.

Privacy-Preserving IoT Data

Aggregation Based on Blockchain and

Homomorphic Encryption. Sensors

2021, 21, 2452. https://doi.org/

10.3390/s21072452

Academic Editor: Mika Ylianttila

Received: 28 February 2021

Accepted: 26 March 2021

Published: 2 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 University of Lyon, University Jean Moulin Lyon 3, CNRS, LIRIS, 69372 Lyon, France
2 University of Lyon, iaelyon School of Management, University Jean Moulin Lyon 3, CNRS, LIRIS,

69372 Lyon, France; chirine.ghedira-guegan@univ-lyon3.fr
3 Miracl Laboratory, Sfax University, 3018 Sfax, Tunisia; khouloud.boukadi@fsegs.usf.tn
4 University of Lyon, INSALyon, CNRS, LIRIS, 69621 Lyon, France; nabila.benharkat@insa-lyon.fr
* Correspondence: faiza.loukil@liris.cnrs.fr
† Current address: Univ. Polytechnique Hauts-de-France, LAMIH, CNRS, UMR 8201,

F-59313 Valenciennes, France.

Abstract: Data analytics based on the produced data from the Internet of Things (IoT) devices is
expected to improve the individuals’ quality of life. However, ensuring security and privacy in the
IoT data aggregation process is a non-trivial task. Generally, the IoT data aggregation process is based
on centralized servers. Yet, in the case of distributed approaches, it is difficult to coordinate several
untrustworthy parties. Fortunately, the blockchain may provide decentralization while overcoming
the trust problem. Consequently, blockchain-based IoT data aggregation may become a reasonable
choice for the design of a privacy-preserving system. To this end, we propose PrivDA, a Privacy-
preserving IoT Data Aggregation scheme based on the blockchain and homomorphic encryption
technologies. In the proposed system, each data consumer can create a smart contract and publish
both terms of service and requested IoT data. Thus, the smart contract puts together into one group
potential data producers that can answer the consumer’s request and chooses one aggregator, the
role of which is to compute the group requested result using homomorphic computations. Therefore,
group-level aggregation obfuscates IoT data, which complicates sensitive information inference from
a single IoT device. Finally, we deploy the proposal on a private Ethereum blockchain and give the
performance evaluation.

Keywords: privacy; Internet of Things; data aggregation; blockchain technology; homomorphic
encryption technology

1. Introduction

Internet of Things (IoT) has emerged as one of the most significant technology in
recent years. Its wide deployment has improved the quality of the individual’s lifestyle
by providing better facilities on various daily applications, such as smart home, smart
grid, and smart city. The IoT’s benefit to individuals’ lives is realized thanks to the
analytics and aggregate information from the smart devices and the huge volumes of
produced IoT data. However, the privacy-intrusive characteristic of the IoT technologies
can discourage the citizens to participate in the IoT data analytics that may disclose their
privacy. While aggregating IoT data can enhance decision-making processes, ensuring
security and privacy in the data aggregation process is a non-trivial task. For instance,
smart meter data aggregation can help citizens in a region to efficiently use energy; however,
the single user’s electricity consumption data contains user-specific behavior patterns (e.g.,
presence at home), which may cause serious results once revealed.

Although several researchers have studied the privacy-preserving issue in the IoT
data aggregation field, many challenges remain to be addressed: (i) the single point of
trust on the data consumer, (ii) the raw data disclosure for the data aggregator, and (iii)

Sensors 2021, 21, 2452. https://doi.org/10.3390/s21072452 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4753-060X
https://orcid.org/0000-0003-0908-2711
https://orcid.org/0000-0002-6744-711X
https://orcid.org/0000-0002-1911-5524
https://doi.org/10.3390/s21072452
https://doi.org/10.3390/s21072452
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21072452
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/7/2452?type=check_update&version=1

Sensors 2021, 21, 2452 2 of 23

the connection between the user’s identity and the used pseudonym in the IoT network.
Finally, to our best knowledge, none of the existing proposals took the whole IoT data
lifecycle, from the smart device owner’s consent to the IoT data analysis.

The first challenge is to send all the IoT data to a centralized structure that collects,
stores, and processes these data. However, the centralized solutions suffer from the single
point of trust issue. Indeed, the stored data have a risk to be modified or deleted by the
centralized structure. Thus, this issue can affect the data aggregation result reliability.
Moreover, the users (i.e., IoT data owners) have a limited control over how their data are
handled by the data consumers.

In this context, multiple distributed approaches have been proposed to tackle the
data aggregation issue with centralized solutions. Therefore, several users can collaborate
with one another and aggregate their IoT data before sending the obtained result to the
consumer. Thus, distributed approaches select one data aggregator per cluster or form an
aggregation tree where each node aggregates the received data from its children. Although
the transmitted data are encrypted, the distributed approaches might face the challenge
of raw data disclosure. Indeed, the data aggregator needs to decrypt all the IoT data
to aggregate them. However, the risk of cyber-attacks arises, and real-time data can be
eavesdropped by hacking into the aggregator node and illegitimately used. To tackle this
issue, existing distributed approaches used the homomorphic encryption technology.

The third challenge is to hide the connection between a real identity and the used
pseudonym in an IoT network. Pseudonymity can be used to disguise the user’s identity.
However, this connection may be disclosed by matching the individuals’ profiles with
their behaviors.

Motivated by the above drawbacks, we focus on ensuring tamperproof communica-
tion, group-level aggregation, and pseudonymity to preserve privacy driven by blockchain
and smart contracts during the data aggregation process. We look at how to enforce these
privacy requirements in an end-to-end IoT data aggregation scheme. The latter ensures the
computation over encrypted data without decrypting them and, therefore, compromised
involved parties cannot access raw IoT data. The objective of this work is to propose
PrivDA, a Privacy-preserving IoT Data Aggregation scheme. PrivDA takes advantages
from both the blockchain and homomorphic encryption technologies, constituting an origi-
nal contribution. In this work, we take advantages of the blockchain technology by using it
as (i) a distributed data storage that eliminates the single point of trust issue of centralized
storage solutions, (ii) a decentralized tamperproof communication history that facilitates
coordination between several untrustworthy parties in the IoT domain, and (iii) a data
aggregation controller without relying on a trusted aggregator using a smart contract. The
latter is proposed and hosted on the blockchain to put several IoT devices in the same group
based on the smart device owners’ privacy choices. We also take advantage of blockchain
technology by using its self-executed programs, known as smart contracts. In our case, the
proposed smart contract enables (i) the publishing of a data consumer’s request, (ii) the
grouping of potential data producers (i.e., IoT devices) that can answer the request, and (iii)
the publishing the request result. Furthermore, on top of the blockchain, we benefit from
homomorphic encryption technology, which overcomes the raw data disclosure problem.
By enabling computation over encrypted IoT data, the result can be computed without
revealing the raw IoT data to the aggregator or the consumer. In this way, the proposed
solution eliminates the need to trust a centralized consumer or a data aggregator while
keeping the IoT data analysis accuracy. Finally, to tackle the third mentioned challenge, we
allow each group member to create multiple pseudonyms and submit its IoT data under
different pseudonyms.

The main contributions of this paper are summarized as follows:

1. We highlight the benefits of using the blockchain technology to facilitate coordination
between several untrustworthy parties in the IoT domain and the homomorphic
encryption technology to enable computation over encrypted data without revealing

Sensors 2021, 21, 2452 3 of 23

the raw data during the IoT data aggregation process and adopt them in a new
scheme, called PrivDA.

2. We detail the privacy policy generation process that aims at matching between the
data producers’ privacy preferences and the data consumers’ terms of service based
on our semantic-based privacy-preserving API.

3. We introduce the group-level aggregation that aims at preserving privacy during
the whole process of collecting, transmitting, storing, and processing IoT data in a
decentralized network based on the proposed IoTDataAggregation smart contract.

This paper is organized as follows. Section 2 analyses existing solutions that studied
the privacy-preserving issue in the IoT domain. Preliminaries are given in Section 3.
Section 4 defines the proposed system model. Section 5 presents the proposed IoT data
aggregation scheme. Security analysis and performance illustrated by experiments are
detailed in Sections 6 and 7, respectively. Finally, Section 8 concludes the paper and presents
some future endeavors.

2. Related Work

The privacy-preserving data aggregation has become a research concern because it
can guarantee the privacy of sensitive information during the data aggregation process. In
fact, several solutions have been proposed to address this field in the IoT domain. Reading
through the related work, we summarize the related proposals on three aspects focusing
on (i) preserving the user’s privacy based on distributed data aggregation algorithms [1–3],
(ii) protecting the user’s raw data based on the homomorphic encryption technology [4–9],
and (iii) protecting the user’s identity based on the blockchain technology [10,11].

Distributed data aggregation was addressed by Rottondi et al. [1] who proposed a
distributed aggregation of additive energy consumption metering data by relying on local
gateways placed in households. These gateways collected the data generated by local
smart meters and provided communication and cryptographic capabilities. However, this
paper dœs not address the collision issue during the distributed aggregation. For their part,
Corrigann-Gibbs and Boneh [2] have proposed Prio, a system that allowed a set of servers
to compute aggregate statistics over client-provided data while maintaining client privacy
and defending against client misbehavior. Recently, He et al. [3] proposed a consensus-
based data aggregation algorithm that allowed neighbors to self-organize into several
clusters. Data are aggregated in each cluster without revealing each node data to any other
node (including the aggregator). Moreover, the aggregator in this model should have the
knowledge of the topology of the overlay network that should be a connected, undirected
graph. However, in the IoT domain, it is difficult to discover in advance the topology of the
network due to its dynamism. In this context, the blockchain technology can be considered
as a distributed paradigm that overcomes the two aforementioned issues by providing a
decentralized tamperproof communication history that facilitates coordination between
several untrustworthy parties in the IoT domain.

In order to overcome the raw data disclosure issue, several solutions [4–9] were pro-
posed to use the homomorphic encryption technology to protect the user’s privacy while
guarantying the data accuracy. For instance, smart metering is addressed by proposing an
identity-based data aggregation protocol for smart grid to protect against unintentional
errors and maliciously altered messages [4], a multi-service and user self-controllable
smart metering system based on selective aggregation method [5], and a model in which
trusted smart meter devices exchanging consumer’s measurements with the secured ag-
gregator, performed inside an SGX enclave [6]. For the IoT domain, privacy-preserving
data aggregation schemes have been proposed for mobile edge computing-assisted IoT
applications [7] as well as for fog-enhanced IoT [8] based on both local certificate author-
ity and the trusted certificate authority to generate the pseudonym certificates. Besides,
Wang et al. [9] proposed an anonymous aggregation scheme in fog-based public cloud
computing. Bilinear pairings and the Castagnos–Laguillaumie cryptosystem are used to
enable computation over ciphertexts. These data aggregation-based schemes [4–9] aimed

Sensors 2021, 21, 2452 4 of 23

at guarantying the privacy of sensitive information between the data producer and the
aggregator as well as saving bandwidth between the aggregator and the consumer. In
the IoT domain, reducing the communication cost is important for proposing an efficient
solution for physically constrained IoT devices. In fact, the blockchain technology can
contribute to save more computing resources of the data aggregator by delegating the
verification of data authentication, authorization, and integrity to a smart contract while
eliminating trusted entity.

Through using blockchain technology, some other solutions [10,11] were tried to per-
form a secure data aggregation to protect the user’s identity. For instance, Guan et al. [10]
proposed a privacy-preserving data aggregation scheme in a smart grid. Smart meters
are divided into groups with each group having a private blockchain to record the par-
ticipants’ data. For data aggregation, one smart meter is chosen to aggregate the group
members’ data and record the aggregated data into the group’s private blockchain. For
their part, Wang et al. [11] proposed a data aggregation framework to aggregate and verify
meter data using a hierarchical blockchain system. Moreover, smart meters are grouped as
clusters based on their geographical location. Each cluster is equipped with an aggregator
that forwards the aggregated data to the substation. The first difference between our
proposed scheme and the two blockchain-based proposals [10,11] is the used blockchain
platform. In fact, the Merkle Tree blockchain system is used in [10], then the hierarchical
blockchain system is adopted in [11], while the proposed scheme in this paper is based
on the Ethereum blockchain. Besides, although the hierarchical blockchain system in [11]
requires a blockchain platform with smart contract capability, it dœs not include the design
or the use of smart contracts, contrary to what we propose in this paper. The reason behind
proposing a new smart contract is to (i) enforce a common agreement between several un-
trusted parties without the involvement of a trusted third party; (ii) organize smart devices
into groups according to their owners’ privacy choices; and (iii) prevent any identity fraud
attempts concerning the smart devices, the aggregator, and the key generation authority.

3. Preliminaries

This section illustrates some notations used in this paper. Moreover, as mentioned
above, the proposed solution is based on both blockchain and homomorphic encryption
technologies, which are also introduced in this section.

3.1. Notations

Several notations are used in the next sections, thus Table 1 illustrates them with their
descriptions.

Table 1. Notations.

Acronym Descriptions

SDi The i-th smart device

PkSD The SD’s public key

SkSD The SD’s private key

PkAgg The aggregator’s public key

SkAgg The aggregator’s private key

PkPai Public key of Paillier cryptosystem

SkPai Private key of Paillier cryptosystem

Enc(M, k) Encrypting a message M using the key k

Dec(M, k) Decrypting a message M using the key k

Sign(M, k) Signing a message M using the key k

Sensors 2021, 21, 2452 5 of 23

Table 1. Cont.

participationi The encrypted participation of the i-th smart device using the PkPai

encParticipationi
The encrypted participation of the i-th smart device using the

aggregator’s public key

hashencP The hash of an encrypted participation

signaturehash The signature of an encrypted participation hash

computed_hash The computed hash from the received data

computed_identity The computed identity from the received hash and signature

encRequestResult The encrypted sum of all the encrypted participations in one group

request_result The decrypted result of data aggregation process

3.2. Blockchain Technology

The blockchain technology is a distributed computing paradigm that successfully
overcomes the problem related to the trust of a centralized party. Thus, in a blockchain
network, several nodes collaborate among them to secure and maintain shared transaction
records in a distributed way without relying on any trusted party. Specific nodes in the
network known as miners are responsible for collecting transactions into blocks, solving
challenging computational puzzles in order to reach consensus, and adding the blocks to a
distributed public ledger known as the blockchain. Immutability is one of the essential char-
acteristics of blockchain technology. The data stored on the blockchain are unchangeable
records whose states cannot be modified after they are created. Immutability is interlinked
with security, resilience, and irreversibility. Because of the transparency characteristic of
public blockchains, it is possible to verify that the data of a transaction has existed at a
specific time, but by keeping public keys anonymous, the identity of participants in real-life
cannot be revealed. Thus, transactions are publicly accessible, but without information
linking the transaction to anyone [12].

The first proposed system based on this technology was Bitcoin [12], which al-
lows users to transfer securely the currency (bitcoins) without a centralized regulator.
Ethereum [13] is another blockchain-based system that can also be used for the cryptocur-
rency. Unlike Bitcoin, Ethereum has the ability to use a smart contract, which is a common
agreement between two or more parties. It stores information, processes inputs, and writes
outputs thanks to its predefined functions [13].

In recent years, other researchers in [10,11] demonstrated how the blockchain technol-
ogy can be used to address other domains, like the IoT data privacy-preserving.

3.3. Homomorphic Encryption Technology

The homomorphic encryption is a special encryption schema, in which some compu-
tation results can be obtained over ciphertext calculation without knowing the appropriate
plaintexts and private keys of the ciphertexts [14]. Thus, an encryption scheme is called ho-
momorphic over an algebraic operation, denoted as⊕ only if E(M1⊕M2) can be computed
from E(M1)⊕ E(M2), with E() is a homomorphic encryption function and M1, M2 ∈ ZN
are two data items. There are several homomorphic encryption schemes in the literature,
such as RSA [15], ElGamal [16], and Paillier cryptosystem [17]. According to the authors
of [14], both RSA and ElGamal cryptosystems are only multiplicatively homomorphic.
Therefore, they do not allow the homomorphic addition of ciphertexts. However, the
Paillier cryptosystem implements the additive and multiplication operations. For this
reason, we employ the Paillier cryptosystem in our study in order to address the privacy
issue in the blockchain-based data aggregation process.

Principles of the Paillier cryptosystem [14]:

i. Key generation. Let N = pq, where p and q are two large primes such that
gcd(pq, (p− 1)(q− 1)) = 1, with gcd represents the greatest common divisor. Let

Sensors 2021, 21, 2452 6 of 23

λ = lcm(p − 1, q − 1), where lcm refers to the least common multiple. Then,
select g ∈ Z∗N2 , such that N satisfies the order divisible by g. Set function L(u) as
L(u) = (u − 1)/N and check the existence of µ = L(gλ mod N2))−1 mod N to
ensure N divides the order of g. Then, the public and private keys are generated as
PkPai = (N, g) and SkPai = (λ(N), µ), respectively.

ii. Public key encryption. For each message M ∈ ZN , the number r ∈ Z∗N is randomly
chosen and M is encrypted as follows:

C = Enc
(

M, PkPai
)
= gMrN mod N2 (1)

iii. Private key decryption. Let a ciphertext C ∈ Z∗N2 , the decryption is done by

M = Dec
(
C, SkPai

)
=

L
(
Cλ mod N2)

L
(

gλ mod N2
) mod N (2)

iv. Evaluation. Let Enc(M1, PkPai) and Enc(M2, PkPai) be two encrypted messages
and M1, M2 ∈ ZN , the ciphertext is calculated as follows:

Enc
(

M1, PkPai
)
.Enc

(
M2, PkPai

)
= gM1 rN

1 gM2 rN
2 mod N2

= gM1+M2
(
r1r2

)N mod N2

= Enc
(

M1 + M2, PkPai
) (3)

As a result, without knowing the plaintexts of M1 and M2, the encrypted value of
M1 + M2 can be obtained. The private key holder can read the plaintext sum by
using the decryption function.

After introducing some notations and technical backgrounds used in the next sections,
we define our proposal, which is a privacy-preserving IoT data aggregation scheme based
on both blockchain and homomorphic encryption technologies. In the following sections,
two parts are discussed: the system model and the basic scheme.

4. System Model

This section includes both the system model’s main goals and the system model’s description.

4.1. System Model Main Goals

Although multiple researchers have studied the IoT data aggregation field, many
challenges remain to be addressed in order to tackle the privacy-preserving issue in this
field. First, a distributed data storage is needed to eliminate the single point of trust
problem that consists in storing, aggregating, and analyzing all the produced data by a
centralized authority. Second, an end-to-end encryption data aggregation is needed to
overcome the raw data disclosure issue that consists in giving all the raw data produced
by the smart devices to a trusted party to be aggregated. Third, both anonymity and
pseudonymity disguise the user’s identity; thus, they need both to be used to hide the
connection between the real identity and the used pseudonyms (i.e., blockchain address) in
the IoT network. Note that the blockchain address is considered as anonymous information
according to existing privacy regulations, such as GDPR [18] that defines blockchain public
key/address as data that “can no longer be attributed to a specific data subject”, and are
thus pseudonymous data according to Article 4(5) GDPR [19]. Finally, a privacy-preserving
solution needs to take advantage of the asymmetric encryption, the hash functions, and the
digital signature in order to guarantee the three security properties: the data confidentiality,
the data integrity, and the sender’s identity checking (i.e., authentication data). To the best
of our knowledge, none of the existing solutions considered all the privacy requirements
mentioned above, while covering the whole IoT data lifecycle, from the user’s consent to
the data analysis. For this purpose, we propose PrivDA, an end-to-end privacy-preserving
IoT data aggregation solution based on both blockchain and homomorphic encryption

Sensors 2021, 21, 2452 7 of 23

technologies. Indeed, our solution guarantees three security properties, namely data
confidentiality, data integrity, and sender’s identity checking and two privacy properties:
anonymity and pseudonymity.

4.2. System Model Description

In order to provide better facilities for the users, the consumers (e.g., energy substation
as used later in our use case section) need to collect and analyze the produced data from the
smart devices. However, IoT data analytics increases the user’s worries about the potential
uses of collected data. In fact, the users desire to preserve their privacy while taking
advantage of the offered services. Thus, collaboration between several users to aggregate
IoT data prevents the consumer from learning individual data. However, aggregating IoT
data requires a network manager and a trusted aggregator. We aim at addressing this
dilemma by introducing a system model that improves the users’ privacy while keeping
the data accuracy. Thus, our system model is based on (i) the blockchain technology that
acts as a distributed data storage, (ii) the smart contract that acts as a data aggregation
controller, and (iii) the homomorphic encryption technology that enables the computation
over encrypted data without trusting a consumer or an aggregator.

As depicted in Figure 1, the system model consists of seven components: semantic-
based privacy-preserving API, smart device, aggregator, group, smart contract, key genera-
tion node, and consumer.

The detailed description of these components is as follows.

• Semantic-based privacy-preserving API: It is a semantic engine that matches the
consumer’s terms of service and the user’s privacy preferences to generate a common
privacy policy that reflects the user’s privacy choices. This API is based on an IoT
privacy ontology, called LIoPY, which is a European Legal compliant ontology that
supports preserving IoT PrivacY and which has been defined in our previous work [20].
Thanks to LIoPY use and according to Algorithm 1, a privacy policy can be inferred.
A policy is a set of conditions that the consumer needs to fulfill in order to handle
specific shared IoT data. As demonstrated in our previous work [21], when hosting
these conditions in a smart contract, privacy violation attempts can be prevented and
the shared data will be handled as expected. Therefore, according to the user’s privacy
preferences, a privacy policy is generated for each smart device.

• Smart device: It is an IoT device equipped with sensing and communication capa-
bilities for collecting the produced data, encrypting them with both PkPai and PkAgg
keys, and storing them in smart contract. Group-level aggregation and computation
over encrypted data are ensured by an untrustworthy aggregator.

• Aggregator: It is a smart device with high memory and storage capabilities, and it
acts as a relay between the smart devices and the consumer through the latter’s smart
contract. It records the aggregation result into the smart contract by updating the
request result value after aggregating all the members’ data of a group.

• Group: It is a set of smart devices with one selected aggregator which is intended
to obfuscate the individual IoT data of each of group members by computing an
aggregated result from the members’ data. Groups are formed based on the members’
privacy choices, which are stored on the consumer’s smart contract.

• Smart contract: It aims at organizing several producers into groups based on their
privacy preferences to collaborate among them and send only aggregated IoT data
as a request result to the consumer, which is the owner of the smart contract. Indeed,
group-level aggregation prevents the consumer to learn individual data. In order to
eliminate a trusted aggregator, a public key based on the Paillier cryptosystem [17] is
stored in the contract once generated by a key generation node.

• Key generation node: It ensures blockchain and off-chain computations by (i) gen-
erating pair of keys using Paillier cryptosystem [17] off-chain to enable additive
computation over encrypted data, (ii) uploading the obtained public key PkPai on the
smart contract using web3.js library [22], and then (iii) sending the corresponding

Sensors 2021, 21, 2452 8 of 23

secret key SkPai to the consumer off-chain. First, it computes a pair of keys using the
Paillier cryptosystem. The latter executes the key generation function, then returns
back the result to the key generation node. The latter updates the group public key
by invoking a smart contract function and finally shares the group secret key with
the consumer off-chain. This node is honest-but-curious; thus, it follows protocol
specifications but may try to find out confidential data. Although this node generates
the Paillier cryptosystem pair of keys, it cannot recover the plaintext of the stored IoT
data in the smart contract because they are not only encrypted using the public key
PkPai, but also encrypted using the aggregator’s public key PkAgg. Thus, the need to
trust the key generation node is eliminated.

• Consumer: The consumer can be an energy substation, a traffic routing station, or a
scientific researcher who needs IoT data for an analytic purpose. A consumer creates
a smart contract while indicating a key generation node blockchain address. Once
hosted on the blockchain, the consumer can publish its terms of service, create an IoT
data request, and receive the encrypted request result. Then, it uses the group’s secret
key to decrypt the result.

After defining the system model’s core components, we detail below our proposed
privacy-preserving IoT data aggregation scheme.

Figure 1. PrivDA System Model Overview. It is a smart space network that consists of two networks: regional area and blockchain
networks. The regional area network includes several groups, each of which consists of a set of smart devices and one data aggregator.
These groups are connected with the blockchain network thanks to a smart contract created by one consumer in order to receive some
aggregated data as a request result. The blockchain network includes several nodes: a smart device, an aggregator, a consumer, and a
key generation node. Each node has at least one blockchain address to interact with the blockchain, which is a distributed tamperproof
communication history data storage.

Sensors 2021, 21, 2452 9 of 23

Algorithm 1 Privacy Attribute Matching
Input: Terms_of_Service ToS
Output: Privacy_Policy PPolicy

1: PRule← ∅; PPolicy← ∅
2: DCategory = ToS.requestedData.hasDataCategory
3: PRule = DCategory.hasPrivacyRule
4: intendedPA = {Purpose, Operation, Disclosure, Retention, Condition}
5: for each ipa in intendedPA do
6: switch (ipa)
7: case Purpose:
8: if (ToS.requestedPurpose /∈ ProhibitedPurposes and ToS.requestedPurpose ∈

AllowedPurposes) then
9: PPolicy.e f f Purp = ToS.requestedPurpose

10: else
11: return PPolicy
12: end if
13: case Operation:
14: if (ToS.requestedOperation /∈ ProhibitedOperations and ToS.requestedOperation ∈

AllowedOperations) then
15: PPolicy.e f f Ope = ToS.requestedOperation
16: else
17: return PPolicy
18: end if
19: case Disclosure:
20: if (ToS.requestedDisclosure /∈ ProhibitedDisclosures and ToS.requestedDisclosure ∈

AllowedDisclosures) then
21: PPolicy.e f f Disc = ToS.requestedDisclosure
22: else
23: return PPolicy
24: end if
25: case Retention:
26: if (ToS.requestedRetention < PRule.retention) then
27: PPolicy.e f f Ret = ToS.requestedRetention
28: else
29: return PPolicy
30: end if
31: case Condition:
32: if (PRule.icond.allowedRole == ToS.hasInitiator.hasRole) then
33: PPolicy.e f f Condition = PRule.icond
34: else
35: return PPolicy
36: end if
37: end switch
38: end for
39: PPolicy.hasRequestedOutput= output
40: PPolicy.hasAccessDecision= Permit
41: PPolicy.hasPrivacyObligation = PRule.hasPrivacyRuleObligation
42: return PPolicy

5. PrivDA: A Privacy-Preserving IoT Data Aggregation Scheme

In order to detail the proposed scheme, we discuss below seven phases: system
initialization, privacy policy generation, data collection, data transmission, data verification,
data aggregation, and data aggregated reading.

5.1. System Initialization

This first phase consists in (i) deploying an instance of the IoTDataAggregation smart
contract by a consumer, (ii) grouping the data producers based on their privacy policies,
and (iii) sharing the group keys generated by the key generation node with the data
producers and the consumer.

Sensors 2021, 21, 2452 10 of 23

The proposed IoTDataAggregation smart contract is designed for enabling a data
consumer to publish a data request, a key generation node to share a Paillier cryptosystem
public key per group, a data producer to participate into group-level aggregation to answer
request, a data aggregator to verify the data of the group members before aggregation, and
finally update the request result that can be retrieved by the consumer and decrypted with
the appropriate group’s secret key off-chain. Thus, it is deployed by one consumer that
wants to receive aggregated data as a request’s result from a group of data producers (i.e.,
smart devices). Thus, the consumer sends a transaction that invokes the IoTDataAggregation
smart contract constructor to deploy it on the blockchain while indicating the blockchain
address of the key generation node. The blockchain address of the key generation node
must be set when deploying/hosting the smart contract and remains immutable; thus, it
cannot be replaced.

Once the smart contract is hosted on the blockchain, the entire blockchain network
can interact with it by invoking its predefined functions. Indeed, the consumer chooses
the requested IoT data and defines its terms of service by invoking the defined updateToS
function. After that, the smart contract enables the data producers to define the privacy
choices of their owners. Thus, based on these privacy choices, the smart contract can
decide whether or not one producer will be included in a specific group. According to the
number of each group’s members and the aggregator’s capacity, an aggregator is selected
to aggregate the data of all the group’s members and update the request result on the
smart contract.

Finally, once the group is created, the producers are added, and the aggregator is
selected; the key generation node needs to compute the Paillier cryptosystem pair of keys
off-chain and then upload the public key on the smart contract by invoking the updatePK
function. This function can only be invoked by the key generation node’s blockchain
address. The secret key SkPai is only shared with the consumer (i.e., the smart contract
owner) off-chain through a secured channel.

To sum up, the smart contract puts together into one group potential data producers
that can answer the consumer’s request and chooses one aggregator the role of which
is to compute the group requested result using homomorphic computations. Due to the
lack of space, we provide the full definition of the smart contract at our Github-repository
(https://github.com/Floukil/E2EAggregation/blob/master/IoTDataAgg (accessed on 30
March 2021)).

5.2. Privacy Policy Generation

This phase combines blockchain and off-chain semantic computations to generate and
share a privacy policy between data consumer and producer. First, the consumer uploads
its terms of service by invoking the updateToS function defined in the smart contract. Once
this function event is emitted, each producer computes a new privacy policy using the
semantic-based privacy-preserving API. The latter matches the terms of service and the
user’s privacy preferences, then returns back the result to the producer that uploads the
generated privacy policy on the smart contract by invoking the updatePrivacyPolicy smart
contract function. Figure 2 depicts the process of generating a new privacy policy between a
data producer and a data consumer using the proposed IoTDataAggregation smart contract
and the semantic-based privacy-preserving API.

As mentioned above, the API is based on the Algorithm 1 which uses LIoPY concepts
to generate a privacy policy. Moreover, Algorithm 1 takes as input the consumer’s terms of
service and returns an instantiated privacy policy if there is a match with the appropriate
data category’s privacy rule of the requested data. LIoPY [20] considers a set of privacy
attributes: Consent, Purpose, Retention, Operation, Condition, and Disclosure. These
attributes specify, respectively, the user’s awareness, for what reason, for how long, how,
under which conditions the user’s data will be handled, and to whom they can be disclosed.
According to each privacy attribute, a matching type is defined. For instance, according to
the European General Data Protection Regulation (GDPR) [18], without explicit acceptance

https://github.com/Floukil/E2EAggregation/blob/master/IoTDataAgg

Sensors 2021, 21, 2452 11 of 23

of the user, personal data should not be disclosed to third parties. Thus, when an IoT data
item (e.g., smart meter data) is requested, the required disclosure ToS.requestedDisclosure
is checked against the intended allowed disclosures AllowedDisclosures and the intended
prohibited disclosures ProhibitedDisclosures according to the privacy rule of the output
category PRule (Line 20). Thus, the requested disclosure should belong to the set of the
allowed disclosures and not to the set of the prohibited disclosure defined by the user. On
the other hand, a privacy policy is created only if all the privacy rule’s attributes match
all the privacy attributes of the terms of service. A set of effective privacy attributes is
associated with the generated privacy policy. Moreover, some privacy obligations are
associated with the privacy policy according to the data category’s privacy rule of the
requested data (Line 41). Thus, the generated privacy policy defines how the data can be
handled by the consumer once shared. Once generated, the policy is published on the
contract as an agreement with the consumer, that is considered as an untrusted party. The
reason behind storing the privacy policy on the contract has a twofold benefit: First, it can
enforce privacy policy compliance by preventing any privacy violation attempt without the
involvement of a trusted third party. Indeed, before adding any data producer to a specific
group, the contract checks the requested data against the allowed and prohibited data
items that are defined on the data producer policy. Second, it improves the non-repudiation
principal compliance, which consists in preventing any IoT network node from denying
actions that are performed by itself. Indeed, the producers’ owners cannot deny having
sent their consent to use their data. Nevertheless, they can revoke the granted privacy
permissions for a consumer by updating their consent to Deny instead of Permit.

Figure 2. The process for privacy policy generation.

5.3. Data Collection

Figure 3 depicts the process of computing the participation of a data producer during
both collection and transmission phases. Based on the stored privacy policies, the smart
contract decides whether or not one smart device is included in the created group. In case
of an inclusion, each group member collects its produced data according to the requested
data in the appropriate group. Then, it retrieves the group public key of the Paillier
cryptosystem [17] published on the smart contract by the key generation node and encrypts
the data, denoted as participation using the public key PkPai = (N, g).

Both the encrypted collected data participation and the public key PkPai are the main
elements used in the rest of the IoT data lifecycle, namely, the data transmission, verification,
and aggregation, until data aggregated reading.

Sensors 2021, 21, 2452 12 of 23

Figure 3. The process of computing participation during the data collection phase and before the
data transmission.

5.4. Data Transmission

In order to secure the data during the transmission phase, encryption, hash, and
signature techniques are applied.

To guarantee the data confidentiality, the selected aggregator shares a public key,
denoted as PkAgg, with the group’s members and keeps the corresponding private key,
denoted as SkAgg secret. Each group’s member encrypts off-chain the collected data with
the aggregator’s public key and gets the encParticipation, as depicted in Figure 3.

Moreover, the hash functionality and the digital signature are used in order to enable
the message receiver (i.e., the selected aggregator) to check the data integrity and verify
the sender’s identity. Each participant of the blockchain network has at least a blockchain
address with one related pair of keys, a public key PkSD, which is shared by all the
participants and a private key SkSD, which is kept secret by each participant.

Thus, the hash is calculated from the encrypted produced data, which is denoted
as encParticipation using the Secure Hash Algorithm SHA-2(256) [23] and the digital
signature, which is denoted as signature, refers to the ciphertext of the digest produced by
the sender’s private key SkSD.

Both the data hash hash and the digital signature signature are sent with the encrypted
data encParticipation to be stored on the smart contract. Encrypting the collected data by
both PkPai and then by PkAgg prevents the key generation node and the aggregator to learn
plaintext. Besides, the smart contract offers two verification functionalities, which consist
of the hash value verification and the signature verification.

5.5. Data Verification

To verify the transmitted data, the smart contract computes the computed_hash, which
is the hash of the received encrypted data, denoted as received_encParticipation using the
hash function keccak256, as depicted in Figure 4. In case of an equality between both the
received hash hash and the internally computed hash computed_hash by the verifyHashVal
contract function, the smart device participation is accepted and added to the group’s
participation list.

Sensors 2021, 21, 2452 13 of 23

Figure 4. Verification of data integrity and sender’s identity.

Moreover, the smart contract enables the aggregator to verify the smart device identity,
denoted as sender_identity, which presents the sender’s blockchain address. Therefore, the
signature verification function, denoted as ecrecover, recovers the blockchain address using
the hash of the encrypted data and its signature, as depicted in Figure 4.
The computed_identity is equal to the sender identity only if the same private key is used
to sign the hash data.

The data verification functionality of PrivDA is offered by the proposed verifyHashVal
smart contract function.

5.6. Data Aggregation

When the selected aggregator retrieves the participation of all the group members, it
verifies the sender’s identity and the data integrity in order to prevent illegal smart devices
sending malicious data. We assume that an attacker can eavesdrop the collected data by
smart devices but cannot modify them, and therefore collected data by legal devices are
trusted. If the data are verified, the selected aggregator decrypts all the participation using
its private key, which is denoted as SkAgg. After that, the aggregator computes the sum
of all the data, denoted as Mi, with 1 ≤ i ≤ k and k is the number of the group members
as follows:

encRequestResult = Enc

(
k

∑
i=1

Mi, PkPai

)
=

k

∏
i=1

Enc
(

Mi, PkPai
)

=
k

∏
i=1

gMi rN mod N2 = g∑k
i=1 Mi

(
k

∏
i=1

ri

)N

mod N2

(4)

After computing the aggregation data off-chain, the selected aggregator updates the
appropriate group request result by sending a transaction that invokes the updateRequestRe-
sult smart contract function. When the request result is stored on the smart contract, the
requestResultUpdated event is emitted.

Although the considered data aggregation functionality in this paper is the SUM
function, other aggregation functions, such as average, minimum, and maximum, can be
applied in the IoT context. As it has been shown that any homomorphic encryption is
insecure against ciphertext-only attacks (COA) if they support comparison operation, our
solution can consider the minimum and maximum aggregation functions by performing ad-
dition operation instead of comparison operation on the data encrypted with homomorphic
encryption schemes as proposed in [24].

5.7. Data Aggregated Reading

Once the result is updated on the smart contract, the consumer retrieves the appro-
priate group request result, denoted as encRequestResult. Then, the consumer uses the

Sensors 2021, 21, 2452 14 of 23

private key SkPai = (λ(N), µ) of the Paillier cryptosystem [17] to decrypt the request result
such that

request_result = Dec

(
L
(
encRequestResultλ mod N2)

L
(

gλ mod N2
) mod N, SkPai

)

=
k

∑
i=1

Mi

(5)

After that, the consumer ends the group by invoking the endGroup smart contract
function that updates the group state from IN_PROGRESS to FINISHED.

In this way, the consumer can read the sum of all the group members without knowing
the individual IoT data.

6. Security and Privacy Analysis

After detailing our proposal, we highlight and analyze in this section both the security
and privacy properties.

6.1. Anonymity and Pseudonymity

Hiding the connection between each group member and its owner’s real identity is
one of the challenges addressed by the proposed scheme. Anonymity and pseudonymity
are a common solution to disguise the user’s identity in the blockchain network. However,
the connection between the real identity and the pseudonym may be disclosed by matching
the individuals’ profiles with their behaviors over a particular period of time [10]. The
proposed scheme overcomes this issue by giving each group member the possibility
to create and submit the IoT data under different pseudonyms. As the group member
randomly picked a pseudonym, which is a random string, it remains unconditionally
anonymous while using such pseudonym.

6.2. Against Sybil Attacks

Although allowing the smart devices to use several pseudonyms could improve the
device owner’s privacy, it can also raises the risk of Sybil attacks in which a node in a
peer-to-peer network operates multiple identities to gain the majority of influence in the
network to carry out illegal actions [25]. In our case, we prevent Sybil attacks by putting a
cost for every identity that aims to join the network. Indeed, before joining any group, each
new identity needs to update its privacy preferences in the smart contract. This cost is not
expensive to prevent legal devices to create some pseudonyms but can prevent malicious
entities to create thousands of pseudonyms and control the entire system. Furthermore,
enabling validation of new joiner identities by already established member’s group in the
smart contract can be investigated in the future to improve Sybil-resistance.

6.3. Against External Attacks

External attackers can eavesdrop on the communication channels to get unauthorized
IoT data. By encrypting all the IoT data by both the public key of the Paillier cryptosystem
and the selected aggregator’s public key, PrivDA provides powerful protection against
such attacks. Moreover, external attackers cannot alter transmitted data because they do
not have the private key of devices to sign the hash of the encrypted data.

6.4. Data Confidentiality, Integrity, and Sender’S Identity

PrivDA can guarantee three security properties: data confidentiality, data integrity,
and sender’s identity.

For data confidentiality, only a receiver with the appropriate private key can recover
the encrypted message. Therefore, an adversary could eavesdrop the encrypted message,
but without recovering the plaintext. We used the blockchain-based asymmetric encryption
to guarantee the data confidentiality.

Sensors 2021, 21, 2452 15 of 23

For the data integrity and the sender’s identity, the smart contract enables verifying
the data integrity by comparing the received data hash and the computed hash. Moreover,
any illegal smart devices can be detected by comparing the sender’s blockchain address to
the recovered identity using the data hash and its digital signature. To ensure data integrity
and realize a secure identity verification, we used the hash function and the blockchain-
based digital signature, respectively. As such hash function and digital signature are
provably secure, so are our data integrity and sender’s identity proofs.

To sum up, our scheme can ensure that each received message from the claimed
sender can only be recovered by the intended receiver and has not been altered during the
transmission process.

6.5. End-To-End Privacy-Preserving Solution

By enabling computation over encrypted IoT data, the result can be computed without
revealing the raw IoT data to a consumer or a data aggregator. In this way, the need to
trust the consumer or the data aggregator is eliminated during the collection, transmission,
storage, and processing phases.

In data collection, the SD data are encrypted using a public key, which is denoted
as PkPai of the Paillier cryptosystem [17]. The used public key is shared by all the group
members while no one of the SDs has the corresponding private key, which is denoted as
SkPai to recover the other ciphertexts. Moreover, each SD encrypts its generated ciphertext
using the selected aggregator’s public key, denoted as PkAgg before sending its data.
Therefore, the plaintext cannot be known by an adversary that does not have both the
aggregator’s private key SkAgg and the private key SkPai even if it eavesdrops the ciphertext
during the transmission phase. Although the consumer has the private key SkPai, it cannot
recover the plaintext because it does not have the aggregator’s private key SkAgg to decrypt
the message.

Moreover, in the data aggregation process, each group’s aggregator just computes the
result over the received encrypted data without recovering the individual data of each SD.
Thus, even if the aggregator is compromised, it cannot decrypt the ciphertexts because it
does not have the appropriate Paillier cryptosystem private key SkPai.

Last, when the consumer receives the computed result from the aggregator, it uses the
Paillier cryptosystem private key SkPai in order to recover the final result of the aggregation
process. Even if an adversary hacks into the consumer, only the sum of the aggregated data
is exposed while SD’s individual data are not disclosed.

To sum up, the proposed scheme can ensure the SD’s data privacy during the whole
IoT data lifecycle, namely, the collection, transmission, storage, and processing phases.

7. Experiments and Results

Ethereum is currently the most common blockchain platform for the development
of smart contracts [13]. Therefore, we implemented our proposed smart contracts using
the Solidity language [26] and deployed it to the Ethereum test network. Using the latter
instead of the Ethereum real network has no impact on our system because it does not
rely on the currency transfer. Thus, we created a test system using Truffle development
framework [27], which is the most popular development framework for Ethereum. This
framework, among others, generates JavaScript bindings for the smart contract, enables
automated smart contract testing, and includes libraries such as web3.js [22] that facilitates
the communication between the smart contract and the Ethereum clients. In our experi-
ments, we used the contract events in order to automate the actions taken by the different
nodes. Then, we implemented event callbacks in our testing framework using the web3.js
library [22]. All the experiments were conducted on a computer with Intel Core i5 CPU
(2.30 GHz and 8GB RAM).

Sensors 2021, 21, 2452 16 of 23

7.1. Data Aggregation Use Case

We implemented a test system that consists of several nodes: one key generation
node, one consumer, one aggregator, and 50 smart devices. We assumed that each node is
represented by an Ethereum address associated with a pair of public/private keys.

Let the smart devices be smart meters and the consumer an energy substation that
asks for aggregated smart meter data every 15 minutes for a time duration of 30 days.
Figure 5 depicts an example of our test system’s steps.

Figure 5. Use case description.

First, the energy substation creates a smart contract while indicating the blockchain
address of a key generation node. The latter is a JavaScript node that supports the Paillier
cryptosystem [17]. Second, the substation updates its terms of service by invoking the smart
contract function, which is called updateToS. As mentioned above, the smart contract events
are used to automate the actions taken by the different nodes. Thus, the smart meters update
their privacy policies every time the terms of service are updated by invoking the smart
contract function, which is called updatePrivacyPolicy. The privacy policy generation code
is a JAR (Java ARchive) file, which is a package file format used to store many Java classes
and associated metadata into one file for distribution. The used JAR is proposed based on
Algorithm 1, which consists in matching the smart meter owner’s privacy preferences and
the substation terms of service in order to generate a common privacy policy about sharing
smart meter data. After that, the substation creates a group and publishes its request. Once
the group is created, the key generation node generates off-chain a pair of keys (PkPai,
SkPai), updates the group’s public key on the smart contract, and shares the private key
with the substation. Based on the privacy policies, the smart contract decides whether
or not one smart meter is included in the created group. Once the producers are added
to the substation group, they periodically send their produced meter data. Meter data
are assumed to be random numbers generated in the range of [0,4] kilowatt-hour (kWh).
Then, the aggregator retrieves all the produced data, checks the integrity and the sender’s
identity, aggregates them, and updates the request result by invoking the appropriate smart
contract function. Once updated, the substation retrieves the request result and decrypts it
using the private key SkPai. When the retention duration ends, the substation’s group is
automatically ended by invoking the endGroup function. To implement our use case, we
deployed a smart contract and interacted with it by sending a set of transactions. During
our experiments, we recorded the computing time, in milliseconds, of each aforementioned
phase. Each phase consisted of one or several transactions that invoke the appropriate
smart contract functions to read or write on the deployed smart contract.

In the rest of this section, our proposed scheme performance is evaluated in terms
of computation complexity and cost. After that, we compare the proposal with some

Sensors 2021, 21, 2452 17 of 23

existing solutions in terms of communication cost and eavesdropping probability on
private individual data.

7.2. Computation Complexity and Cost

We look into the computation complexity in the data processing, which includes three
phases: data encryption, data aggregation, and data decryption. When the producer wants
to send the IoT data, it encrypts the input with the Paillier encryption function, which
needs two exponentiation operations in Z∗N and one multiplication operation. Besides, the
data producer performs one hash operation in order to generate a digital signature that
enables the verification of both the sender’s identity and the data integrity. When the data
aggregator receives all the encrypted data from k producers, it verifies the validity of each
sender’s identity and data integrity by performing k hash operations, then it computes the
final result by multiplying all the received ciphertexts, which needs k + 1 multiplication
operations, then it executes one hash function before sending the result to the consumer. The
latter executes one hash function to verify the received data, then decrypts the ciphertext
with the Paillier decryption function, which needs one multiplication operation and one
exponentiation operation in Z∗N in order to recover the plaintext.

Table 2 summarizes the computation complexity of the three scheme’s entities: the
producer, the aggregator, and the consumer. For simplicity, the exponentiation operation
is denoted as Ce, the multiplication operation is denoted as Cm, and the hash operation is
denoted as Ch.

Table 2. Computation complexity.

Entity Operations Computation Complexity

Producer Data encryption
Signature generation Cm + 2Ce + Ch

Aggregator

Sender’s identity and
data integrity verification

Data Aggregation
Signature generation

(k + 1) ∗ (Ch + Cm)

Consumer
Sender’s identity and

data integrity verification
Data decryption

Ch + Cm + Ce

Moreover, to measure our solution’s performance, we conduct some experiments to
deduce the appropriate number of group members that preserves each member’s privacy
with a less computational cost. To this end, we evaluate whether the computing time of
data aggregation is acceptable by making several tests using a different number of group
members that increases from 5 to 50. Therefore, we perform a first experiment to measure
the required time to check and compute the aggregated data result by an aggregator and a
second experiment to measure the required time to decrypt the aggregated data result by
a consumer.

Figure 6 shows the computational cost of the data aggregation and decryption cases.
The computational cost varies from 50 to 440 milliseconds(ms). We observe that data
aggregation’s computational cost increases with the number of the group’s members, going
from 51 to 440 ms. The cost increases linearly to reach 200 ms at 20 members, keeps the
same level until 25 members, and then increases linearly again. This lets us conclude
that the appropriate number of group members within a reasonable computational cost
is between 20 and 25 members, whereas the data decryption computational cost is inde-
pendent of the number of the group’s members because all the group’s members’ data are
already aggregated by the aggregator. Therefore, the consumer receives one ciphertext that
represents the sum of all the encrypted group’s data.

Sensors 2021, 21, 2452 18 of 23

Figure 6. Computational cost of data aggregation and data decryption.

In order to understand the data aggregation behavior, we split the data aggregation
phase into two parts—the smart contract interaction and the data additive homomorphism
—and conduct a new experiment to measure the required time for each part. As shown in
Figure 7, the computational cost of the data additive homomorphism part varies only from
7 to 30 ms, as well as the computational cost of the smart contract interaction part varies
from 45 to 412 ms, which explains the high data aggregation computational cost in our first
experiment depicted in Figure 6.

Figure 7. Data aggregation’s computational cost details.

Note that using a distributed system for storing and accessing data instead of storing
all the group’s members’ data on the blockchain would be more appropriate in order to
overcome the computational cost. Thus, the InterPlanetary File System (IPFS) [28] can be
used to reduce both the smart contract interaction and the storage costs. IPFS is built on
the top of both BitTorrent protocol [29] and the Kademlia DHT [30], which are well-known
protocols for their ability to scale to a large number of nodes.

7.3. Communication Cost Comparison

The proposed scheme enables aggregating raw IoT data from several data producers
into one ciphertext based on the Paillier cryptosystem [17]. In order to evaluate the effi-
ciency of the proposed solution, we conduct an experiment to measure the communication
cost from multiple producers to one aggregator, as well as from one aggregator to one
consumer. After that, we compare the obtained communication cost by bits with three
other related schemes [4,7,9] as summarized in Table 3.

Sensors 2021, 21, 2452 19 of 23

Table 3. Communication cost comparison.

Our Scheme [7] [4] [9]

Producer-To-
Aggregator 2048 2144 3136 5344

Aggregator-To-
Consumer 2048 2144 4160 3200

Total (let k the
number of
producers)

k × 2048 + 2048 k × 2144 + 2144 k × 3136 + 4160 k × 5344 + 3200

In the proposed scheme, the ciphertext’s form is C = gMrN mod N2 and the bit
length of N is |N| = 1024. For the communication from k data producers to an aggregator,
the communication cost is k× 2048 bits because each data producer encrypts its data to
one ciphertext, whose bit length is equal to N2, i.e., 2048 bits. For the communication from
an aggregator to a consumer, the overhead is independent of the data producer number
because the data are aggregated by the aggregator before reaching the consumer. Therefore,
the communication cost from an aggregator to a consumer is only 2048 bits. Therefore, the
total communication cost is k× 2048 + 2048 bits. Table 3 shows that our scheme consumes
fewer bits than the three other related schemes [4,7,9] during the communication phase.

Figure 8 depicts the communication cost comparison of the considered schemes.
From Figure 8a, we observe that the communication cost from multiple producers to one
aggregator increases when we vary the number of data producers k from 5 to 50, while
the communication cost from one aggregator to one consumer remains constant, as shown
in Figure 8b. In both cases, the proposed scheme’s communication costs are less than
the three other related schemes [4,7,9]. The difference between the proposed scheme and
the other three schemes is the communicated information beside the ciphertext, such as
the timestamp [7], the digital signature [4], and the authorization information [9]. In our
case, such extra information is included in the blockchain’s transactions and verified by
the smart contract before starting the communication with the data aggregator. Thus, the
data aggregator dœs not need to deal with such verification. To sum up, Figure 8 clearly
shows that the proposed scheme is more effective than the other schemes in terms of
communication cost.

(a) Communication cost from producers to aggregator. (b) Communication cost from aggregator to consumer.
Figure 8. Communication cost comparison. The x-axis values are the number of data producers per one aggregator. Both
y-axes represent the communication cost by bits, but with different measurement scale.

Nevertheless, we deduce that the producers do not need any additional computational
capabilities to communicate with the aggregator as each producer sends one data item inde-

Sensors 2021, 21, 2452 20 of 23

pendently of the number of the group’s members. However, the more members the group
includes, the greater the need for the memory and storage capabilities of the aggregator.

7.4. Comparative Capability Evaluation of Privacy-Preserving

We compare the overall probability of eavesdropping on private individual data in
our proposal and the existing systems considering both a standard centralized system,
where the consumer received all the producers’ data to aggregate them and the distributed
system proposed in [11], where the consumer received only an aggregated result of all the
producers’ data. We reuse the same conditions and variables provided in [11] to perform
this comparison. Thus, we denote success probabilities of manipulating data in a consumer
and obtaining its private key as γ and γ, respectively. Similarly, we denote variables for
both aggregator and producer as detailed in Table 4.

Table 4. Used variables in the comparison.

Consumer Aggregator Producer

Hacking into/
Manipulating data in γ β α

Gaining private key of γ β α

Table 5 shows the success probability of attackers to eavesdrop individual data by
each data type considering three system types: centralized system, distributed system [11],
and the proposed system. We do not consider eavesdropping when it only requires stealing
the private key of the data sender. In Table 5, we denote producer as P, aggregator as A,
consumer as C, and unconsidered eavesdropping probability as N/A.

Table 5. Comparison of eavesdropping probability of different system components.

Centralized System Distributed
System [11] Proposed PrivDA

data type N/A individual(ciphertext) individual(ciphertext)

Producer eavesdropping
probability - (γα + γµ)/2 γα

data type individual(ciphertext) aggregated(ciphertext) individual(ciphertext)
Producer-

Aggregator
eavesdropping

probability N/A N/A N/A

data type individual(plaintext) aggregated(ciphertext) indi/aggr(ciphertext)

Aggregator eavesdropping
probability β N/A γββ

data type individual(ciphertext) aggregated(ciphertext) aggregated(ciphertext)
Aggregator-
Consumer

eavesdropping
probability N/A N/A N/A

data type individual(plaintext) aggregated(plaintext) aggregated(plaintext)

Consumer eavesdropping
probability γ N/A N/A

For the centralized system, individual data can be eavesdropped by attackers through
hacking an aggregator or a consumer node. Indeed, individual data are not encrypted in
these nodes. Thus, the centralized system’s eavesdropping probability is equal to (β + γ)/2.

For the distributed system [11], individual data can be eavesdropped by attackers
through simultaneously gaining the consumer’s private key and hacking into a data pro-
ducer or a channel between data producers. Thus, the distributed system’s eavesdropping
probability is equal to (γα + γµ)/2, with µ is the success probability of hacking into a

Sensors 2021, 21, 2452 21 of 23

communication channel and gain the sender’s private key, a data producer in this case,
thus µ ' α, with 0 < α < α < 1.

For the proposed system, attackers can only eavesdrop individual data through
simultaneously (i) gaining the private key of the consumer’s group and hacking into
a data producer or (ii) stealing the private keys of both the consumer’s group and the
aggregator and hacking into an aggregator. Thus, successful eavesdropping probability in
this proposal is (γα + γββ)/2.

Let the consumer’s defensive capability stronger than the aggregator’s, and α is in
the range of (0, 1); therefore, we deduce (γα + γββ)/2 < (β + γ)/2, which means that the
successful eavesdropping probability in the proposed system is less than the successful
eavesdropping probability in the standard centralized system, as detailed below.

γ < γ < β < β
0 < α < 1

}
⇒ γα < γ⇒ (γα + γββ)/2 < (β + γ)/2

Let the aggregator’s defensive capability be stronger than the data producer’s, where
hacking into an aggregator is the precondition of gaining the node’s private key and hacking
into a communication channel between producers is equal to gaining the producer’s private
key; therefore,

β < β < α

0 < β < β < 1
µ ' α

⇒ ββ < µ⇒ (γα + γββ)/2 < (γα + γµ)/2

Considering all the variables are in the range of (0, 1), then (γα + γββ)/2 < (γα +
γµ)/2, which means that the successful eavesdropping probability in the proposed system
is less than the successful eavesdropping probability in the distributed system proposed
in [11].

To sum up, the value of a successful eavesdropping probability in the proposed system
is less than the considered two systems’ values. Thus, the private individual data are better
protected in the proposed system.

8. Conclusions

In recent years, several researchers have agreed that the combination of blockchain
and IoT generates a peer-to-peer system, in which peers interact in an untrustless and
auditable manner. However, few proposed solutions have dealt with taking advantage of
this technology in order to preserve the individuals’ IoT data privacy from an end-to-end
perspective. For this reason, we have proposed PrivDA, an end-to-end privacy-preserving
IoT data aggregation scheme based on both blockchain and homomorphic encryption
technologies. Blockchain acted as a distributed data storage that eliminated the single point
of trust issue and the proposed smart contract acted as a data aggregation controller. On
the top of the blockchain, the homomorphic encryption technology is used to overcome
the raw data disclosure problem, the single point of trust issue, and enable computation
over encrypted IoT data. Moreover, we have realized several performance experiments
in order to demonstrate the efficiency of the proposed scheme. Then, both computational
complexity and communication cost are analyzed. The obtained results showed that our
proposal protected the IoT data better than the considered solutions.

Note that use of the blockchain leads to a storage overhead cost. In future work, we
plan to store only the newer blocks in order to overcome this issue. Indeed, the consumer
does not require storing all the blockchain for a long term. Thus, it can only save the
hash of the previous blocks and not the entire blocks to keep the blockchain immutable.
Moreover, we intend to incorporate the differential privacy technique in the proposed
scheme to enhance the individual’s privacy. The idea behind this is to add noise to the
group members’ participation to prevent the consumer from inferring extra information

Sensors 2021, 21, 2452 22 of 23

when a group member leaves one group. The impact of the added noise on the data
accuracy and the blockchain size needs to be carefully investigated.

Author Contributions: Conceptualization, F.L., C.G.-G., A.-N.B., and K.B.; methodology, F.L., C.G.-
G., A.-N.B., and K.B.; software, F.L.; validation, F.L., C.G.-G., A.-N.B., and K.B.; formal analysis, F.L.,
C.G.-G., A.-N.B., and K.B.; investigation, F.L.; resources, F.L.; data curation, F.L.; writing—original
draft preparation, F.L.; writing—review and editing, K.B., C.G.-G., and A.-N.B.; visualization, F.L.;
supervision, C.G.-G., A.-N.B., and K.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rottondi, C.; Verticale, G.; Krauss, C. Distributed privacy-preserving aggregation of metering data in smart grids. IEEE J. Sele.

Areas Commun. 2013, 31, 1342–1354. [CrossRef]
2. Corrigan-Gibbs, H.; Boneh, D. Prio: Private, robust, and scalable computation of aggregate statistics. In Proceedings of the 14th

{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 17), Boston, MA, USA, 27–29 March 2017;
pp. 259–282.

3. He, J.; Cai, L.; Cheng, P.; Pan, J.; Shi, L. Distributed privacy-preserving data aggregation against dishonest nodes in network
systems. IEEE Int. Things J. 2018, 6, 1462–1470. [CrossRef]

4. Wang, Z. An identity-based data aggregation protocol for the smart grid. IEEE Trans. Ind. Inf. 2017, 13, 2428–2435. [CrossRef]
5. Mustafa, M.A.; Zhang, N.; Kalogridis, G.; Fan, Z. MUSP: Multi-service, user self-controllable and privacy-preserving system for

smart metering. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), IEEE, London, UK, 8–12
June 2015; pp. 788–794.

6. Silva, L.V.; Marinho, R.; Vivas, J.L.; Brito, A. Security and privacy preserving data aggregation in cloud computing. In Proceedings
of the Symposium on Applied Computing, Marrakech, Morocco, 4–6 April 2017; pp. 1732–1738.

7. Li, X.; Liu, S.; Wu, F.; Kumari, S.; Rodrigues, J.J. Privacy preserving data aggregation scheme for mobile edge computing assisted
IoT applications. IEEE Int. Things J. 2018, 6, 4755–4763. [CrossRef]

8. Guan, Z.; Zhang, Y.; Wu, L.; Wu, J.; Li, J.; Ma, Y.; Hu, J. APPA: An anonymous and privacy preserving data aggregation scheme
for fog-enhanced IoT. J. Netw. Comput. Appl. 2019, 125, 82–92. [CrossRef]

9. Wang, H.; Wang, Z.; Domingo-Ferrer, J. Anonymous and secure aggregation scheme in fog-based public cloud computing. Future
Generat. Comput. Syst. 2018, 78, 712–719. [CrossRef]

10. Guan, Z.; Si, G.; Zhang, X.; Wu, L.; Guizani, N.; Du, X.; Ma, Y. Privacy-preserving and efficient aggregation based on blockchain
for power grid communications in smart communities. IEEE Commun. Mag. 2018, 56, 82–88. [CrossRef]

11. Wang, Y.; Luo, F.; Dong, Z.; Tong, Z.; Qiao, Y. Distributed meter data aggregation framework based on Blockchain and
homomorphic encryption. IET Cyber-Phys. Syst. Theory Appl. 2018, 4, 30–37. [CrossRef]

12. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 30
March 2021).

13. Buterin, V. A next-generation smart contract and decentralized application platform. White Paper 2014, 3, 37.
14. Acar, A.; Aksu, H.; Uluagac, A.S.; Conti, M. A survey on homomorphic encryption schemes: Theory and implementation. ACM

Comput. Surv. 2018, 51, 79. [CrossRef]
15. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM

1978, 21, 120–126. [CrossRef]
16. ElGamal, T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 1985,

31, 469–472. [CrossRef]
17. Paillier, P. Public-key cryptosystems based on composite degree residuosity classes. In International Conference on the Theory and

Applications of Cryptographic Techniques; Springer: New York, NY, USA, 1999; pp. 223–238.
18. GDPR. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural

persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46.
Offi. J. Eur. Union 2016, 59, 1–88.

19. Finck, M. Blockchain and the General Data Protection Regulation: Can Distributed Ledgers be Squared with European Data Protection Law?
Study; European Parliament: Brussels, Belgium, 2019.

20. Loukil, F.; Ghedira-Guegan, C.; Boukadi, K.; Benharkat, A.N. LIoPY: A legal compliant ontology to preserve privacy for the
internet of things. In Proceedings of the 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC),
IEEE, Tokyo, Japan, 23–27 July 2018; Volume 2, pp. 701–706.

21. Loukil, F.; Ghedira-Guegan, C.; Boukadi, K.; Benharkat, A.N. Towards an end-to-end IoT data privacy-preserving framework
using blockchain technology. In International Conference on Web Information Systems Engineering; Springer: New York, NY, USA,
2018; pp. 68–78.

http://doi.org/10.1109/JSAC.2013.130716
http://dx.doi.org/10.1109/JIOT.2018.2834544
http://dx.doi.org/10.1109/TII.2017.2705218
http://dx.doi.org/10.1109/JIOT.2018.2874473
http://dx.doi.org/10.1016/j.jnca.2018.09.019
http://dx.doi.org/10.1016/j.future.2017.02.032
http://dx.doi.org/10.1109/MCOM.2018.1700401
http://dx.doi.org/10.1049/iet-cps.2018.5054
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1145/3214303
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1109/TIT.1985.1057074

Sensors 2021, 21, 2452 23 of 23

22. Web3. web3.js-Ethereum JavaScript API. Available online: https://github.com/ethereum/web3.js/ (accessed on 30 March 2021).
23. Sklavos, N.; Koufopavlou, O. On the hardware implementations of the SHA-2 (256, 384, 512) hash functions. In Proceedings of

the 2003 International Symposium on Circuits and Systems, ISCAS’03, IEEE, Bangkok, Thailand, 25–28 May 2003; Volume 5, p. V.
24. Ertaul, L.; Kedlaya, V. Computing Aggregation Function Minimum/Maximum using Homomorphic Encryption Schemes in Wireless

Sensor Networks (WSNs); ICWN: Jakarta, Indonesia, 2007; pp. 186–192.
25. Douceur, J.R. The sybil attack. In International Workshop on Peer-to-Peer Systems; Springer: New York, NY, USA, 2002; pp. 251–260.
26. Solidity. Solidity Language. Available online: https://solidity.readthedocs.io/en/develop/ (accessed on 30 March 2021).
27. Truffle. Truffle: Ethereum Development Framework. Available online: https://github.com/trufflesuite/truffle (accessed on 30

March 2021).
28. Benet, J. Ipfs-content addressed, versioned, p2p file system. arXiv 2014, arXiv:1407.3561.
29. Legout, A.; Urvoy-Keller, G.; Michiardi, P. Understanding Bittorrent: An Experimental Perspective; Technical Report; INRIA: Sophia

Antipolis, France, 2005.
30. Maymounkov, P.; Mazieres, D. Kademlia: A peer-to-peer information system based on the xor metric. In International Workshop

on Peer-to-Peer Systems; Springer: New York, NY, USA, 2002; pp. 53–65.

https://github.com/ethereum/web3.js/
https://solidity.readthedocs.io/en/develop/
https://github.com/trufflesuite/truffle

	Introduction
	Related Work
	Preliminaries
	Notations
	Blockchain Technology
	Homomorphic Encryption Technology

	System Model
	System Model Main Goals
	System Model Description

	PrivDA: A Privacy-Preserving IoT Data Aggregation Scheme
	System Initialization
	Privacy Policy Generation
	Data Collection
	Data Transmission
	Data Verification
	Data Aggregation
	Data Aggregated Reading

	Security and Privacy Analysis
	Anonymity and Pseudonymity
	Against Sybil Attacks
	Against External Attacks
	Data Confidentiality, Integrity, and Sender'S Identity
	End-To-End Privacy-Preserving Solution

	Experiments and Results
	Data Aggregation Use Case
	Computation Complexity and Cost
	Communication Cost Comparison
	Comparative Capability Evaluation of Privacy-Preserving

	Conclusions
	References

