
HAL Id: hal-03195892
https://hal.science/hal-03195892

Submitted on 16 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis and Design of Bessel Beam Launchers:
Transverse Polarization

S.C. Pavone, Mauro Ettorre, Massimiliano Casaletti, M. Albani

To cite this version:
S.C. Pavone, Mauro Ettorre, Massimiliano Casaletti, M. Albani. Analysis and Design of Bessel Beam
Launchers: Transverse Polarization. IEEE Transactions on Antennas and Propagation, 2021, 69 (8),
pp.5175-5180. �10.1109/TAP.2021.3060049�. �hal-03195892�

https://hal.science/hal-03195892
https://hal.archives-ouvertes.fr


ACCEPTED MANUSCRIPT

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2021.3060049, IEEE
Transactions on Antennas and Propagation

1

Communication
Analysis and Design of Bessel Beam Launchers: Transverse Polarization

Santi C. Pavone, Member, IEEE, Mauro Ettorre, Senior Member, IEEE,
Massimiliano Casaletti, Member, IEEE, and Matteo Albani, Fellow, IEEE

Abstract—In this paper, we present a theoretical analysis,
one design and fabrication of a limited-diffractive planar Bessel
beam launcher, that exhibits a zeroth order Bessel profile in
the transverse electric field component with respect to the z-
propagation axis. The launcher is designed by synthesizing a finite
zeroth order, first kind Hankel aperture distribution, polarized
along a fixed polarization unit vector. The field radiated by such
an aperture distribution is derived by following an approximate
model based on geometric theory of diffraction, thus allowing to
highlight the relevant wave constituents involved in transverse
Bessel beam generation, also including the effect of aperture
truncation on the radiated beam. Moreover, the theoretical
analysis has been profitably applied to the design of a circular-
polarized planar transverse Bessel beam launcher by means of
a slotted radial waveguide. A prototype of right-handed circular
polarized (RHCP) transverse Bessel beam launcher has been then
fabricated at f = 30 GHz. The measured transverse electric
field component shows a satisfactory agreement with full-wave
numerical simulations.

Index Terms—Bessel beams, non-diffractive beams, RLSA,
circular polarization, near-field focusing.

I. INTRODUCTION

In the last decade, non-diffractive beams, i.e. ideal solutions
of scalar Helmholtz equation in cylindrical coordinates that
are theoretically not affected by the physical phenomenon
of diffraction, have gained increasing attention among engi-
neers and physicists, due to their remarkable features that
can profitably find applications at microwaves and millimeter
waves. Specifically, the dramatic reduction of beam diffraction
along the propagation direction results in well-collimated
beams, that can be applied in medical imaging [1]–[5], in
ground penetrating radars (GPR) [6], [7], in small particle
manipulation, just to mention the most relevant of them.

Among non-diffractive solutions of Helmholtz equation,
Bessel beams are of paramount importance both from histori-
cal and engineering viewpoints. Introduced by Durnin in 1987
[8], [9], at the beginning they have been mainly studied in
optics [10]–[14], since so-called axicon lenses were available
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to generate Bessel beams, i.e. stationary waves in cylindrical
coordinates, as the superposition of both inward and outward
cylindrical traveling waves. However, the generation of Bessel
beams at lower frequencies, such as microwaves/millimeter
waves, has been considered cumbersome up to more recent
years [15]–[21], mainly due to the fact that Bessel beam
generation by planar devices at those frequencies in general
requires a somewhat involved electromagnetic (EM) analytical
formulation, but above all because planar and lightweight
solutions able to radiate Bessel beams were not easily avail-
able, due to technological issues. Indeed, mainly in the last

Fig. 1. Finite equivalent magnetic current distribution of radius a, shaped
as a zeroth order first kind Hankel function, and polarized along an arbitrary
fixed polarization unit vector p̂.

decade different advanced approaches (i.e., holography [22],
[23], leaky-wave theory applied to focusing [23], [24], etc.)
have been profitably adopted for planar Bessel beam launcher
design. It is well-established [8], [20] that an exact non-
diffractive beam cannot exist, since it should carry infinite
energy (i.e., like plane waves), that in turn imply infinite
radiating apertures. However, finite radiating apertures can
radiate a Bessel beam in a limited spatial region, up to a
certain distance called non-diffractive range, beyond which
beam starts spreading out and loses its collimation property.
Hence, Bessel beam launchers are used only for near-field
applications, thus complicating also the analytical formulation
for describing them.

In this paper, we present the analysis and characterization
of a Bessel beam launcher that implements a zeroth order
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Bessel function aperture distribution in the transverse electric
field component with respect to the propagation z-axis, by
considering a magnetic current distribution oriented along a
fixed unit vector p̂ (in the following, for the sake of simplicity,
we will simply refer also to transverse Bessel beam launchers).
The proposed approach appears more convenient if compared
to that discussed in [20] for different reasons. Indeed, by
removing the restriction of azimuthally-oriented equivalent
magnetic current distribution, a larger number of geometrical
degrees of freedom in aperture field distribution optimiza-
tion are available, together with the additional possibility to
synthesize circular-polarized (CP) fields. Moreover, since EM
field transverse component spatially decays slowly from the
aperture with respect to the longitudinal one, the achievable
non-diffractive range and spatial collimation of the resulting
CP Bessel beam launcher are in general improved, due in
turn to the fact that smaller axicon angles (θa ≈ 15◦) can be
achieved with respect to [20]. Although in [19] a higher non-
diffractive range (≈ 85λ) has been achieved in simulation, the
proposed design was not so easy to be fabricated, especially
for the adopted substrate (foam, εr = 1.04), not suitable
for standard PCB process. The optimization in presence of
dielectrics of higher permittivity is sometimes cumbersome,
hence the achieved results can be considered satisfactory,
leading to fabrication easiness.

To highlight relevant wave constituents involved in descrip-
tion of transverse Bessel beam radiation, an approximate EM
approach based on geometric theory of diffraction (GTD) is
presented in the following, by taking into account also the
effect of radiating aperture truncation. The EM field radiated
by a zeroth order first kind aperture distribution oriented along
a fixed unit vector p̂ is split in two ray-optical contributions,
namely the geometrical optics (GO) and the diffracted (D)
ones. Such an approach allows to precisely define spatial
regions in which a transverse Bessel beam can exists, and
to highlight also space-wave contributions and edge-diffracted
rays arising from the aperture rim. It thus provides physical
insight on transverse Bessel beam generation. The approach
in the present work completes the analysis of Bessel beam
radiation, outlined in [25], by an inward cylindrical traveling
wave aperture distribution polarized along a fixed unit vec-
tor. There, a rigorous analytical approach has been applied
only in the case of an infinite radiating aperture. Instead, a
detailed description of truncated aperture radiation in terms
of edge-diffracted waves is not present. Moreover, in [25] no
prototypes of transverse Bessel beam launcher are presented.
On the other hand, this paper reveals more physical insights on
transverse Bessel beam generation than [26], in which wide-
band performances of Bessel beam launchers are discussed for
localized pulse efficient radiation, without any detailed GTD
description.

The paper is organized as follows. In Section II, a GTD-
based EM analytical model is discussed, to describe the
relevant physical wave constituents involved in transverse
Bessel beam generation by a zeroth order, first kind Hankel
aperture distribution, polarized along an arbitrary transverse
unit vector p̂. Then, in Section III the optimization algorithm
developed for the synthesis of such an aperture distribution by

means a radial parallel-plate waveguide (PPW), loaded by a
huge number of slot pairs, is presented. Finally, in Section IV
details about prototype fabrication and measurements in the
bandwidth 29 − 31 GHz are shown. In the end, conclusions
are drawn.

II. FORMULATION FOR FINITE TRANSVERSE-POLARIZED
BESSEL BEAM LAUNCHERS

The geometry of the EM problem is shown in Fig. 1, in
which a finite circular equivalent magnetic current distribution
oriented along a fixed polarization unit vector p̂ is schemat-
ically shown. A Cartesian coordinate system is defined with
origin at the aperture center, x and y axes on the aperture,
and z axis orthogonal to the aperture, pointing the boresight
direction. Beside Cartesian coordinates, an observation point

Fig. 2. Reference system for GTD analysis of Bessel beam generation
by a finite inward cylindrical traveling wave magnetic current distribution,
polarized along a fixed unit vector. The colored regions are associated to the
transverse electric field component. The transverse Bessel beam (i.e., shaped
as a zeroth order Bessel function) is radiated in the yellow rhomboidal section
conical region around the aperture axis of symmetry. GO shadow boundaries
are denoted by red dotted lines.

P, denoted by the vector r, is also expressed by its standard
cylindrical and spherical coordinates. Moreover, in Fig. 2 two
auxiliary reference systems, centered at the aperture edges,
are introduced, which are suitable to express edge-diffracted
waves. The usual ejωt time-harmonic convention is assumed
and suppressed throughout the paper.

In [20], an azimuthally-polarized (i.e., φ-oriented) finite
magnetic current distribution has been imposed over the aper-
ture and shaped as a first order, first kind Hankel function.
Such a distribution radiates a Bessel beam (i.e., shaped as
a zeroth order Bessel function) in the longitudinal (i.e., z)
electric field component. Instead, here we assume a magnetic
current distribution on the aperture of the form of a zeroth
order, first kind Hankel distribution, polarized along the p̂ unit
vector, namely

M(ρ) = H
(1)
0 (kρaρ)p̂, (1)

in which kρa = k sin θa is the imposed radial wavenumber
on the radiating aperture, k the free-space wavenumber, and
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θa the so-called axicon angle [20]. In the following, it will be
rigorously proven that such an aperture distribution can radiate
a Bessel beam in the transverse electric field component.

The field radiated by such an aperture distribution can
be calculated by using the theory of vector potentials [27].
Since in the present case only a magnetic current distribution
is considered over the aperture, only the vector potential
F(r) = F (r)p̂ is required for electric field calculation, that is

E(r) = −1

ε
∇× F(r) = −1

ε
∇F (r)× p̂. (2)

Due to the azimuthal symmetry of the magnetic current
distribution in (1), the problem of field calculation can be
simplified in the spectral domain. Hence, the potential F
can be recast in the spectral kρ-plane, being kρ the radial
wavenumber (refer to the Appendix A for details), as

F (r) =
ε

4πj

∫ +∞

∞e−jπ
M̃(kρ)H

(2)
0 (kρρ)

e−jkzz

kz
kρdkρ, (3)

where the integration contour extends along the lower shore
of the branch-cut on the negative real axis due to the zeroth
order, second kind Hankel function (see [20], Fig. 2), and
kz =

√
k2 − k2ρ the longitudinal wavenumber (={kz} < 0

on the top Riemann sheet). Moreover, M̃(kρ) is the Hankel
transform of the finite magnetic current distribution imposed
over the aperture, namely

M̃(kρ) = 2π

∫ a

0

M(ρ)J0(kρρ)ρdρ. (4)

in which a is the aperture radius (1). By using (1) in (4),
M̃(kρ) can be evaluated in closed form. In particular, as
outlined in [20], the asymptotic evaluation of the vector
potential (3), relevant to the assumed aperture distribution,
permits to highlight the physics of transverse Bessel beam
generation by means of a simple ray-optical interpretation. To
this end, we consider the magnetic current as the sum of three
contributions,

M̃(kρ) = M̃∞(kρ) + M̃+(kρ) + M̃−(kρ), (5)

being M̃∞(kρ) the spectrum of an infinite (i.e., extending over
a full infinite plane) magnetic current distribution, that is

M̃∞(kρ) = −
4j

k2ρ − k2ρa
, (6)

whereas

M̃±(kρ) =
πa

k2ρ − k2ρa

[
kρaH

(1)
1 (kρaa)H

(2,1)
0 (kρa)

−kρH(1)
0 (kρaa)H

(2,1)
1 (kρa)

]
, (7)

are additional spectral terms that account for aperture finite-
ness. Indeed, for a → +∞, such terms vanish, whereas the
contribution (6) does not depend on the aperture size.

The integral in (3) can be approximated by using the
steepest descent path (SDP) method, as outlined in [16]. The
contribution due to an infinite radiating aperture can be split
in its GO and D contributions, namely

F∞(r) = FGO∞ (r) + FD∞(r), (8)

in which the GO term is calculated as the sum of the
residues of (3), when M̃(kρ) = M̃∞(kρ) (i.e., infinite aperture
contribution), at the poles kρ = ±kρa, so that

FGO∞ (r) = ε
e−jkzaz

jkza

·
[
H

(2)
0 (kρaρ)U(θa − θ) +H

(1)
0 (kρaρ)

]
, (9)

in which kza = k cos θa. It is worth noting that the pole at
kρ = kρa is encountered by the integration path deformation
onto the SDP only when the saddle point ksρ = k sin θ is
smaller than k sin θa [20] (see Fig. 2), hence the unitary step
function U(θa − θ) has been introduced, which vanishes for
negative argument. The GO contribution (9) of an infinite
aperture comprises two conical waves, both propagating in the
z-direction away from the aperture, one propagating outwardly
and one inwardly in the radial direction. The former is
bounded in a conical region θ < θa, whose tip is at the
aperture center; in such a region, the interference of such two
wave constituents creates a cylindrical standing wave, i.e., the
Bessel beam.

As concerns the SDP contribution to the vector potential
FD∞(r), (3) has to be arranged in such a way to isolate
a slowly-varying integrand and a rapidly-oscillating phase
term. By multiplying and dividing the integrand in (3) by
the conjugate asymptotic (kρρ � 1) phase behaviour of
the function H

(2)
0 (kρρ), it can be split as the product of a

slowly-varying function, namely M̃∞(kρ)H
(2)
0 (kρρ)e

jkρρ, and
a rapidly-oscillating phase term, e−j(kρρ+kzz), according to the
theory of asymptotic evaluation of integrals [28]. Hence, the
SDP contribution due to the infinite aperture becomes

FD∞(r) ∼ 2ε

jπk2
(
sin2 θ − sin2 θa

) e−jkr
r

. (10)

The latter asymptotic expression describes a spherical wave
contribution (space wave) that decays as 1/r from the aperture
center, with an elevation pattern exhibiting a caustic at the GO
shadow boundary cone θ = ±θa, where the GTD fails.

The effect to the radiated field due to the aperture finiteness
can be taken into account, in the GTD framework, by consid-
ering the edge-diffracted rays from the aperture circular rim.
To this end, we consider the asymptotic evaluation of (3) when
M̃(kρ) = M̃±(kρ). Again, the asymptotic phase progression
e−j[kρ(ρ∓a)+kzz] reveals a saddle point at ksρ = k sin θ±, being
tan θ± = (ρ ± a)/z and r± =

√
(ρ± a)2 + z2 (Fig. 2), and

the integral is calculated by deforming the integration path
onto the SDP through the saddle point, as the sum of a residue
contribution at the pole kρa = k sin θa and the integral on the
SDP, which is asymptotically dominated by the saddle point
contribution. Namely,

F±(r) = FGO± (r) + FD± (r), (11)

where also in this case the GO and D terms can be determined
as

FGO± (r) = −εe
−jkzaz

jkza
H

(2,1)
0 (kρaρ)U(θa ∓ θ±), (12)
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and

FD± (r) ∼ ∓ε
√

j

2πk3
H

(1)
0 (kρaa)

sin θ± ∓ sin θa

√
a

ρr±
e−jkr± . (13)

The former GO expressions (12) exhibit the same wave
constituents (conical waves) appearing in the infinite aperture
case (9), and cancel them out outside a shadow boundary cone
θ± = θa. The latter asymptotic expressions describe edge-
diffracted waves arising at the aperture rim, whose spreading
reveals an astigmatic wavefront with radii of curvature r±,
i.e., the distance from the observation point to the diffraction
point on the edge, and ρ, accordingly to GTD edge diffraction.
The GTD expressions (13) exhibit an elevation pattern which
is singular at θ± = ±θa, that is the GO shadow boundary
where they fail. In addition (13) are also singular at ρ = 0,
i.e., when observing on the z-axis, which is a caustic of the
edge-diffracted waves.

Fig. 3. Prototype of Bessel beam launcher at f = 30 GHz, synthesizing a
RHCP zeroth order, first kind Hankel aperture distribution. In the inset, details
of the transition used for impedance matching at input coaxial port.

All GO contributions to the vector potential can be then
collected together to obtain

FGO(r) = FGO∞ (r) + FGO+ (r) + FGO− (r), (14)

from which the radiated GO electric field can be finally
calculated by using (2) as

EGO(r) =[
H

(2)
0 (kρaρ)ẑ× p̂+ p̂ · φ̂ kρa

jkza
H

(2)
1 (kρaρ)ẑ

]
·

e−jkzaz
(
U(θa − θ)− U(θa − θ+)

)
+[

H
(1)
0 (kρaρ)ẑ× p̂+ p̂ · φ̂ kρa

jkza
H

(1)
1 (kρaρ)ẑ

]
·

e−jkzazU(−θ− − θa), (15)

in which φ̂ = − sinφx̂ + cosφŷ. The GO field radiated
by the finite aperture comprises the same two conical waves

constituents of the infinite aperture, but differently bounded
by the aperture truncation. Namely, the radial inward conical
wave exists in the conical region θ− < θa (green region in
Fig. 2); the radial outward conical wave exists in the region
θ+ > θa∩θ < θa (orange region in Fig. 2). In the overlapping
of the two existence regions (yellow region in Fig. 2) the
interference of the two conical waves creates the vector Bessel
beam [29], namely

EGO(r) =
[
2J0(kρaρ)ẑ× p̂

+ p̂ · φ̂2kρa
jkza

J1(kρaρ)ẑ
]
e−jkzaz. (16)

The D contribution to the radiated electric field can also
be calculated from FD∞,±, according to (2) where, in the
asymptotic limit, ∇ → jkû, with û denoting the local phase
gradient (i.e., ray) direction, so that

ED∞(r) ∼ 2

πk
(
sin2 θa − sin2 θ

) e−jkr
r

r̂× p̂, (17)

with r̂ = sin θρ̂+ cos θẑ, and

ED±(r) = ∓
√

a

2πjk

H
(1)
0 (kρaa)

sin θ± ∓ sin θa

e−jkr±
√
ρr±

r̂± × p̂, (18)

in which r̂± = sin θ±ρ̂+ cos θ±ẑ, and ρ̂ = cosφx̂+ sinφŷ.
Fig. 2 schematically shows the different regions obtained as a
result of the presented GTD analysis of transverse Bessel beam
generation by an inward cylindrical traveling wave aperture
distribution, polarized along a fixed unit vector. In particular,
it is shown that the transverse Bessel beam (i.e., shaped as a
zeroth order Bessel function) is radiated only in the yellow
rhomboidal section conical region around the aperture axis.

In the next Section, the characterization of a planar slotted
CP transverse Bessel beam launcher will be discussed.

Fig. 4. Comparison of simulated and measured co-polar (RHCP, continuous
lines) and cross-polar (LHCP, dotted lines) electric field component (with
respect to the propagation z-axis) for different azimuthal cuts (0◦, 45◦, and
90◦), at z = NDR/2 = 18.67 cm, at the central frequency 30 GHz. The
ideal Bessel function J0(kρaρ) is shown for comparison in the region θ < θa
(dashed-dotted line).
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III. PROTOTYPE AND MEASUREMENTS

In this Section, we present the fabrication of a Radial Line
Slot Array (RLSA) Bessel beam launcher at the operating
frequency f = 30 GHz, that radiates a J0(kρaρ)e−jkzaz ẑ× p̂
profile in the transverse electric field component with respect
to the propagation z-axis. According to the theory presented
in Section II, by adopting the optimization scheme in [17],
[22], [30] and the full-wave solver in [31], a RLSA has been
designed which synthesize an equivalent magnetic current dis-
tribution as in (1), in which a right-hand circular polarization
(RHCP) was chosen; i.e., p̂ ≡ p̂RH = (x̂ − jŷ)/

√
2. A

similar design could be repeated with linear polarization (LP)
by arranging LP slot quadruplets [32], [33] in place of the
CP slot pairs. To prove that a larger non-diffractive range
can be achieved by the proposed transverse Bessel beam
launcher with respect to the solution presented in [20], we
assumed an axicon angle θa = 15◦, so that kρa = k sin θa ≈
162.62 rad/m, and a circular radiating aperture of radius
a = 10λ = 10 cm, being λ = 1 cm the wavelength at
the operating frequency. The non-diffractive range for such
a launcher is then NDR = a cot θa = 37.3λ = 37.3 cm, that
is greater than that in [20].

The optimized design of transverse RHCP Bessel beam
launcher has been fabricated and measured in the bandwidth
29 − 31 GHz. The prototype is shown in Fig. 3. The radial
PPW has been realized by using a ROGERS 5880 lami-
nate, whose dielectric constant is εr = 2.2, loss tangent
is tan δ = 9 × 10−4, and thickness hd = 2.54 mm. Slot
pairs have been etched on the PPW top plate by using laser
ablation. The coaxial transition has been designed in the
back side of transverse Bessel beam launcher, by using a
standard coaxial connector (SRI Mod. 25-130-1000-90). As
already done in [20], the impedance matching allover the
considered bandwidth 29 − 31 GHz (|S11| < −10 dB) has
been achieved by tuning both diameter (Dc = 2.48 mm) and
height (Hc = 1.09 mm) of a cylindrical metallic cavity directly
connected to the coaxial pin (inner diameter: 2ac = 0.635 mm,
outer diameter: 2bc = 1.46 mm), as schematically shown in
the inset of Fig. 3.

In Fig. 4, a comparison of simulated and measured co-polar
(RHCP) and cross-polar (LHCP) electric field component
(with respect to the propagation z-axis) is shown for different
azimuthal cuts (0◦, 45◦, and 90◦), at z = NDR/2 = 18.67 cm,
at the design frequency 30 GHz. The ideal Bessel function
J0(kρaρ) is shown for comparison in the region θ < θa. The
Bessel beam main lobe and also the first sidelobe are properly
synthesized.

The field maps have been obtained by post-processing
spherical near-field measurements. Namely, the field has been
sampled over a measurement sphere surrounding the antenna
under test (AUT) with radius r = 1.2 m, and it has been
used for calculating the spherical harmonics coefficients and
the far-field pattern [34]. Then, from the far-field pattern,
which corresponds to the field plane wave spectrum in the
visible region, the radiative near-field has been retrieved on
a set of planes parallel to the antenna via inverse Fourier
transform [35]. Since the evanescent part of the spectrum is not

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Measured (a) co-polar (RHCP) and (b) cross-polar (LHCP) electric
field transverse components (with respect to the propagation z-axis) in the
ρ−z plane (φ = 0◦), at the design frequency f = 30 GHz. Measured (c) co-
polar (RHCP) and (d) cross-polar (LHCP) electric field transverse components
(with respect to the propagation z-axis) in the transverse x − y plane (z =
NDR/2 = 18.67 cm), at the design frequency f = 30 GHz. Measured co-
polar (RHCP) electric field transverse component in the ρ−z plane (φ = 0◦),
at (e) f = 29 GHz and (f) f = 31 GHz. The GO shadow boundaries, inside
which the Bessel beam is radiated, are marked by a white dashed line.

known, the reactive field component cannot be recovered by
applying such a technique, however such component becomes
significant only very close to the antenna surface (usually at
distance smaller than the operating wavelength).

In Fig. 5 measured (a)-(c) co-polar and (b)-(d) cross-polar
electric field transverse components maps are shown at the
design frequency in the longitudinal ρ−z and in the transverse
x − y planes, at z = NDR/2 = 18.67 cm. Such a plot
has been added to make a comparison with the theoretical
results achieved in Section II, Fig. 2. Indeed, in the region
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θ < θa, the co-polar electric field transverse component
recovers the shape of the target zeroth order Bessel shape, as
theoretically predicted in Fig. 2 (yellow rhomboidal section
conical region), whereas in the transverse x − y plane the
characteristic amplitude rings of Bessel beams arise inside the
GO shadow boundary (white dotted circle). Finally, to prove
that the Bessel beam is radiated also in a bandwidth around
the design frequency, although the radiated beam constitutive
parameters are in general frequency-dependent [26], in Fig. 5
measured co-polar (RHCP) electric field transverse component
in the ρ − z plane (φ = 0◦) at (e) f = 29 GHz and (f)
f = 31 GHz are shown.

IV. CONCLUSION

We presented the analysis, design and fabrication of a
limited-diffractive planar Bessel beam launcher, that exhibits a
zeroth order Bessel profile in the transverse electric field com-
ponent with respect to the z-propagation axis. The launcher
has been designed by synthesizing a finite zeroth order,
first kind Hankel aperture distribution, oriented along a fixed
polarization unit vector p̂. The EM field radiated by such
an aperture distribution has been derived by introducing an
approximate model based on geometric theory of diffrac-
tion, hence it allowed to highlight relevant wave constituents
involved in transverse Bessel beam generation (GO and D
contributions), by taking into account also aperture finiteness.
Moreover, the model has been validated by designing a CP
planar transverse Bessel beam launcher, realized by means
of a slotted radial waveguide, that is able to synthesize the
above-mentioned aperture distribution. A prototype of RHCP
transverse Bessel beam launcher has been then fabricated
at f = 30 GHz. The transverse electric field component
measurements in the bandwidth 29 − 31 GHz have shown a
satisfactory agreement with numerical full-wave simulations,
and have finally proven the theoretical GTD-based model on
transverse Bessel beam radiation.
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