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Co-Cross-Polarization Coherence Over the Sea
Surface From Sentinel-1 SAR Data:
Perspectives for Mission Calibration

and Wind Field Retrieval
Nicolas Longépé , Alexis A. Mouche , Laurent Ferro-Famil , Member, IEEE, and Romain Husson

Abstract— Spaceborne synthetic aperture radar (SAR) has
been used for years to estimate high-resolution surface wind
field from the ocean surface backscattered signal. Current
SAR platforms have one single fixed antenna, and traditional
inversion/retrieval schemes rely on one copolarized channel,
leading to an unconstrained optimization problem for providing
independent estimates of wind speed and direction. For routine
application, this is generally solved with a priori information
from the numerical weather prediction (NWP) model, inducing
severe limitations for rapidly evolving meteorological systems
where discrepancies can be significant between model and mea-
surements. In this study, we investigate the benefit of having
two simultaneous acquisitions with phase-preserving information
in copolarization and cross polarization provided by Sentinel-
1 (S-1). A comprehensive analysis of the co-cross-polarization
coherence (CCPC) is performed to adequately estimate and
calibrate CCPC values from S-1 interferometric wide (IW) mode
images acquired over the ocean. A new polarimetric calibration
(PolCAL) methodology based on least-squares (LS) criterion and
direct matrix inversion is proposed yielding crosstalk estimates.
We document CCPC odd symmetry with respect to relative wind
direction for light to medium wind speeds (up to 14 m/s) and
incidence angle from 30◦ to 45◦. The azimuthal modulation is
found to increase with both wind speed and incidence angle. An
analytical model C-band polarimetric geophysical model function
(CPGMF) is provided. The synergy of the CCPC with other radar
parameters, such as backscattering coefficients or Doppler, to
further constrain the inversion scheme is assessed, opening new
perspectives for SAR-based wind field retrieval independent of
any NWP model information.
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I. INTRODUCTION

SYNTHETIC aperture radar (SAR) ocean surface wind
retrieval has been originally based on a single observed

quantity, the copolarized normalized radar cross section
(NRCS), even though many other SAR observables are poten-
tially available (e.g., cross-polarized NRCS and the Doppler
shift). Since the first attempts ( [1] with Seasat and [2] with
ERS-1) to inverse the NRCS into wind vector, the unique
use of the copolarized signal seems to be the rule for routine
operational SAR wind measurements. Similarly, the only SAR
observable used to provide ocean surface wind fields in
the official ESA/Copernicus Level-2 Ocean products is the
copolarized NRCS. This approach is directly derived from
scatterometry [3] and relies on a transfer function between the
radar observables and the surface wind speed and direction.
This function, also called the geophysical model function
(GMF) or C-band MODel (CMOD) when applied to C-band
scatterometer, has been refined several times since the fourth
version (CMOD4) [4], [5]. In particular, different strategies
have been applied to collocate the radar NRCS with a refer-
ence wind given by the ECMWF analysis (CMOD4 [4], [5]),
the ECMWF analysis combined with aircraft measurements
for high-wind speeds (CMOD5 [6]), or in situ wind measure-
ments (CMODIFR2 [7]). Additional modifications have been
also proposed to take into account atmospheric stratification
(CMOD5n [8]) or extreme wind (CMOD5h [9]). However,
the SAR instruments and missions peculiarities make the
challenges of wind measurement very different than for a
scatterometer.

First, since existing SARs have one single antenna pointing
in the satellite across-track direction, there is only one view
angle per wind vector cell. This particularity yields to an
underconstrained inverse problem to retrieve both wind speed
and direction. The most common method for SAR wind
retrieval is to combine copolarized VV NRCS and comple-
mentary information on the wind direction as the input of
empirical GMFs using a Bayesian scheme [3]. The simplest
and probably most efficient method for operational purposes is
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to take the wind direction from a numerical weather prediction
(NWP) model. This works generally well for meteorological
situations without sharp wind gradients but tends to fail for
rapidly evolving systems, such as atmospheric fronts or low-
pressure systems, including polar lows and hurricanes. Indeed,
for these situations, the global operational NWP models may
be too coarse in space and time or may have phasing issues.
The direction of the wind (with a 180◦ ambiguity) can be also
obtained from streak-like features visible in NRCS images and
measured using wavelet analysis [10], [11] or local gradients
estimation at different spatial scales [12], [13]. This approach
mainly relies on the fact that organized large eddies (OLE),
also referred to as roll vortices, in the marine atmospheric
boundary layer impact the centimeter ocean waves and so
the C-band backscattering. However, the occurrence (seasonal
and spatial distribution) of the OLE at the global scale as
well as the sensitivity of the radar to them are not well
characterized yet, leading to questions regarding the feasibil-
ity of estimating their directions for all SAR observations.
Moreover, although very relevant as an indication of the wind
flow, the OLE orientation is not strictly aligned with the
ocean surface wind direction. Typically, the measurements
from Weather Surveillance Radar by Morrison et al. [14] in
the case of hurricane-generated wind rolls indicate that their
most probable orientation was tilted by 10◦ from the mean
wind toward the center. This value is further confirmed by the
model experiments from [15].

Second, SAR can provide other observables than a scat-
terometer, which can help to overcome the limitation of hav-
ing one single antenna for geophysical applications over the
ocean. In particular, the launch of ENVISAT/ASAR in 2002
enabled to measure the geophysical Doppler shift in VV and
HH polarizations. When calibrated, this radar quantity allows
ocean surface current radial component [16], [17] and ocean
surface wind vector [18] measurements. As shown by Mouche
et al. [18], because of the complementary properties of the
geophysical Doppler shift, the use of this new radar observable
in combination with the copolarized NRCS increases the
constraint on the wind inversion scheme. This leads to better
wind directions in complex situations, such as atmospheric
fronts or low-pressure systems. However, this radar quantity
is very sensitive to the accuracy of the attitude orbit control
system (AOCS), and its absolute calibration is difficult to
achieve. Also, the launch of Radarsat-2 in 2007 enabled to
get routine measurements in cross polarization. The weak
sensitivity of the cross-polarized NRCS to incidence angle
and to wind direction relative to the antenna look angle and
the higher sensitivity to wind speed than for copolarization
are three key properties of this new polarization [19] that
fostered several studies for geophysical applications over the
ocean [20]. The most striking is certainly the direct use of the
cross-polarized channel for hurricane wind measurements [21],
[22]. However, the signal-to-noise ratio (SNR) is very low for
the cross-polarized channel, and the noise can be an issue
if not properly taken into account. As for Doppler, with this
new radar observable, new inversion schemes were proposed
to combine VH and VV intensities channels [23]. To note,
these results have now inspired new scatterometer concepts

relying on Doppler and/or VH-NRCS, such as the next MetOp
scatterometer [24], [25].

Third, due to the on-board memory limitations, the acquisi-
tion strategy, and the multiple SAR acquisition modes, the
number of large swath products acquired over the ocean
from SAR sensors is far less than for scatterometers. The
scatterometer-derived CMOD-based solutions have been sys-
tematically applied to C-band SAR: GMFs for VV and a so-
called polarization ratio for HH polarization [26] However,
since the launch of ENVISAT/ASAR and Radarsat-2, the
amount of data available has significantly increased. The
direct consequences are the recent attempts to derive a
GMF directly based on SAR measurements (CSARMOD)
for both VV- and HH-NRCSs [27]. In addition, a GMF for
HH-polarized SAR data, so-called CMODH, has also been
developed using collocated ENVISAT ASAR backscatter mea-
surements and ASCAT winds. CMODH is validated by a large
number of Radarsat-2 and S-1A/B HH-polarized acquisitions
under different wind speeds and buoy observations [28].

Beyond intensities, SAR sensors have also the capabili-
ties to perform spectral analysis for each polarization chan-
nel and even to provide relative phase information between
polarization channels with dual- or quad-polarization acqui-
sition modes. Indeed, due to the improved spatial resolution,
S-1wave mode measurements can further be extended toward
shorter scale waves, i.e., within the surface wave equilibrium
range. This allows SAR image cross-spectra estimates, includ-
ing range-traveling intermediate wind waves. The statistical
analysis of the spectral energy confirms its sensitivity to both
wind speed and wind direction. Comparable to the Doppler
estimate, the signed parameter can be used to reduce the
wind direction ambiguity in the inversion of high-resolution
wind fields from SAR imagery [29], [30]. Regarding the
combination of copolarization and cross-polarization channels,
theoretical simulations [31], [32] [33] and airborne scatterome-
ter Ku-band observations [34], [35] showed that the correlation
between the two channels has odd symmetry with respect to
wind direction, a property that could be complementary to the
even symmetry of the co-pol NRCS for ocean surface wind
vector retrieval. This characteristic was used with quad-pol
Radarsat-2 data to remove the wind direction ambiguity using
four conditions on the signs of the real and imaginary parts
[36]. Hereinafter and in the alternate way of [36], the co-
cross-polarization coherence parameter is denoted CCPC to
stress the combination of cochannel and cross channel. An ini-
tial formulation of the polarimetric backscattering coefficient
(i.e., the real part of the nonnormalized co-cross correlation
noted σ ◦

xxxy with x and y interchangeably H and V) was
proposed in [34]

σ̂xxxy (U, φ, θ) = α1(U, θ, xxxy)sin(φ)

+ α2(U, θ, xxxy)sin(2φ) (1)

with φ being the relative wind direction with respect to
range direction and θ the incidence angle. α1 and α2 are
specific functions tuned to Ku-band scatterometer (θ > 40◦),
assuming constant cross-to-co polarization ratio σXY /σX X =
−15 dB. In [37], this function (so-called Polarimetric cor-
relation GMF - PGMF) was adapted and tested with C-band

. 



ACCEPTED MANUSCRIPT

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LONGÉPÉ et al.: CCPC OVER THE SEA SURFACE FROM S-1 SAR DATA 3

Radarsat-2 data using CMOD-IFR2 to handle anisotropy mod-
ulation but keeping other Ku-band derived parameterization
due to the lack of a consistent data set.

This work relies on the new capabilities of S-1SARs. S-1 is
a constellation of two European Space Agency (ESA) C-band
SAR satellites developed under the Copernicus program. Since
the launch of the first satellite Sentinel-1A (S-1A) on April 3,
2014, and now with the second satellite, Sentinel-1B (S-1B)
since April 25, 2016, C-band SAR data have been routinely
acquired. Two large swath acquisition modes with only dual-
polarization (VV+VH and HH+HV) capabilities are available
and mostly used over the ocean: the extra-wide (EW) in
the Arctic area and the interferometric wide (IW) swath
modes in the coastal regions. With respect to previous studies
limited by the data number, this study takes benefit of the
unprecedented amount of data available due to the unique
acquisition strategy and data policy of the Copernicus/ESA
S-1 mission. For IW single look complex (SLC) products,
the swath coverage is about 250 km with a pixel spacing
of 2.3 (range) × 14.1 (azimuth) m. EW mode images have
larger coverage of 410-km swath but with a pixel spacing
of only 5.9 × 19.9 m [38]. These two modes acquire data
from three to five subswaths, respectively, using the TOPSAR
imaging technique. Data are acquired in bursts recursively
switching the antenna beam among adjacent subswaths. In
each burst, the beam is electronically steered in the azimuth
forward direction. This technique preserves phase information:
the full exploitation of dual-polarimetric SLC data is, thus,
possible. To date, although S-1 SARs routinely measure and
provide Doppler shifts, they cannot be used for geophysical
applications due to calibration issues. These measurements are
not used for this study. The quality and the possible use of
VH-NRCS for ocean applications have already been reported
by Mouche et al. [39], showing that a noise correction is
required before using wide swath products. Thus, we focus
here on the correlation between copolarization and cross-
polarization channels from S-1 phase-preserving TOPS IW
data to further illustrate the potential of the correlation
between the two channels for ocean surface wind vector
retrieval.

The SAR data set used in this work and the applied
processing steps are first presented in Section II. It is shown
that the co-cross-polarization coherence (CCPC) estimates
from dual-pol S-1 are not properly calibrated. This issue is
investigated, and a calibration methodology is proposed in
Section III. The applicability of these measurements for wind
field retrieval is discussed in Section IV. The amplitude and
phase values of co-cross-polarization coherence (CCPC) are
presented with respect to ocean surface wind speed, relative
wind direction, and incidence angle (see Section IV-A). These
estimates are then integrated into the Bayesian wind inversion
scheme (see Section IV-B). Discussions and conclusions are
given in Sections V and VI. In the Appendix, the analyt-
ical formulas are provided with their corresponding set of
coefficients for the first C-band Polarimetric coherence GMF,
further referred to as C-band polarimetric geophysical model
function (CPGMF).

TABLE I

NUMBER OF S-1 PRODUCTS USED IN THIS STUDY

II. DATA PROCESSING

In this study, the CCPC values are generated from a massive
set of S-1 SLC IW VV-HV products, preferred to EW images
due to a limited number of items in the processed database.
The temporal distribution of the corresponding 5215 S-1A and
893 S-1B images is given in I. Note that, from this point
on, the polarimetric convention is used hereafter. The term
VV-HV is, thus, employed for dual-polarized S-1 sensors with
vertical polarized transmit waves and reception in the vertical
and horizontal polarizations. This follows the mathematical
notation explained in (4) starting from the emitting system
on the right-hand side to the reception on the left-hand side.
The whole database has been processed by cluster computing
in order to reduce the processing time to a few days. Under
the usual assumption that the SLC echoes follow a centered
complex circular normal distribution, CCPC is computed as
the maximum likelihood estimate (MLE) of the normalized
correlation coefficient, as follows:

ρ̂vvhv = �Svv S∗
hv �√�|Svv |2��|Shv |2�

(2)

where �x� �
∑L

l=1 x(l), with x(l) a realization of x , L the total
number of realizations, and x∗ the complex conjugate of x .
The independent realizations, called looks, are sampled over
regions having a stationary polarimetric response, made of
1462 adjacent resolution cells in azimuth, covering a complete
TOPS mode burst extent, and of 2107 cells in the range direc-
tion, resulting in nearly 3 000 000 total looks, located within
an approximately square area in ground coordinates, with
12.5-km long sides. The coherence values obtained from the
sequentially and independently processed bursts are projected
onto a regular geographical grid with 12.5-km spacing, using
a nearest-neighbor interpolation approach to avoid additional
multilooking. All gridded results are then collocated with the
10-m sea surface wind from ECMWF atmospheric numerical
model running at 0.125◦ and 1-h resolution.

CCPC products are analyzed jointly with respect to the
incidence angle, wind speed, and wind orientation, relative to
the radar range direction, and defined so that φ = 0◦ and φ =
180◦ correspond to upwind and downwind situations, respec-
tively. The mean coherence amplitude, averaged over wind
orientation, using values sampled every 6◦ over 360◦ bins, is
shown in Fig. 1.

It is found that the CCPC generally increases with the wind
speed and depends on incidence angle as well. Prior to any
in-depth analysis related to wind speed, this figure highlights
some potential issues with S-1 IW measurements.

1) Some nongeophysical artifacts seem to be directly or
indirectly linked with IW subswath limits. They appear

. 
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Fig. 1. Estimated CCPC magnitude averaged over all relative wind directions.
Vertical dashed lines indicate IW subswath limits.

as a multiplicative effect, whose amplitude increases
with the mean coherence value, occurring at the scale
of a subswath. No particular geophysical or electromag-
netic (EM) scattering reasons could be found to explain
such behaviors.

2) Both the real and imaginary parts of the coherence
should converge toward zero in the condition of reflec-
tion symmetry, supposedly met either at up- or down-
wind situations, with stable wind condition, or at very
low wind situation with no directional preference.

However, Fig. 1 clearly shows an offset of about 0.02 when
wind speed is below 3 m/s.

III. PROPOSED S-1 CCPC CALIBRATION TECHNIQUE

Several kinds of error may affect CCPC estimates, such
as the bias of the MLE in (2) [40], the nonstationarity of
SLC signals over the sampling regions [41], the decorrelation
related to low signal-to-noise power ratio values [42], or
signal leakage between vertical and horizontal polarization
channels [35].

A. Potential Sources of Error

In the following, the importance of these sources of error
is investigated in the case of CCPC estimation from S-1 data.

1) MLE Bias: The MLE of the level of correlation, |γ̂hhhv |,
computed from the optimal L-look expression given in (2), is
known to be biased, and its expectation is written [40]

E(|ρ̂vvhv |) = 	(L)	(1.5)

	(L + 0.5)
(1 − |ρvvhv |2)L

× 3 F2(1.5, L, L; L + 0.5, 1; |ρvvhv |2)
�= |ρvvhv | (3)

where 3 F2(a1, a2, a3; b1, b2; z) and 	(z) stand for the gen-
eralized hypergeometric and Gamma functions, respectively.
Fig. 2 shows the plots of the relationship in (2), calcu-
lated using Monte Carlo simulations of correlated random
sequences, as the numerical evaluation of the hypergeometric
function requires extremely intensive computational resources
when its arguments, here the number of looks L, reach large

Fig. 2. Mean coherence, E(|ρ̂vvhv |), estimated using (3), as a function of
the true value, |ρvvhv |, for various numbers of looks, L . A zoomed-in view
is given for |ρvvhv | ≤ 0.02. The diagonal dashed line represents the locus of
unbiased estimates.

values. The bias effect can be clearly perceived from these
plots, with E(|ρ̂vvhv |) values departing significantly from the
diagonal black dashed line, when an insufficient number of
looks, L, are used to estimate the low true correlation values
|ρvvhv |. With the wind inversion being generally performed
over a 1-km2 grid, the CCPC values could be estimated over a
similar grid obtained with about L = 10 000 looks. However,
given the order of magnitude for the CCPC observed over
oceanic scenes using S-1, as displayed in Fig. 1, L = 10 000
looks may reveal insufficient to compute reliable estimates:
the bias can be significant for low correlation values. As
mentioned in [43], this bias could be compensated using the
curve in Fig. 2 as a lookup table, but such an approach would
remain imprecise, due to the dispersion of estimates around
their mean value, which highly depends on L. The plots shown
in Fig. 2 indicate that L = 3 × 106 looks, corresponding to
12.5 km × 12.5 km averaging regions, lead to bias values that
remain negligible whatever the true correlation level is.

2) Nonstationary Statistical Behavior: Local phenomena,
such as atmospheric or oceanic fronts, and convective rain
cells, may lead to heterogeneous features in SAR images
acquired over the sea surfaces. The resulting statistical behav-
ior may depart from the Gaussian hypothesis used to derive
the MLE in (2) and, hence, affect estimated correlation values.
Similar to other factors, such as SAR processing artifacts
created by the TOPS acquisition mode along the burst, with
the radiometric discontinuity between two adjacent scans, the
occurrence of nonstationary phenomena remains limited given
the very large amount of images, 6108, processed in this
study. These effects are here considered negligible for this
study concerned with a massive statistical assessment, as their
impact on final estimates remains marginal.

B. Polarimetric Calibration

As the MLE bias and the nonstationary statistical behavior
are discarded as potential sources of error for the CCPC
estimates, the decorrelation related to low signal-to-noise

. 
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power ratio values [42] and signal leakage between vertical
and horizontal polarization channels [35] are jointly analyzed
in this section.

According to the available documentation [44], S-1 co-
and cross-pol channels are independently compensated in
amplitude, in order to deliver calibrated σ ◦

pq values, but are
not calibrated or corrected for the relative phase information
and potential coupling between the polarimetric channels. In
[45], a possible approach is provided to assess the polarimetric
distortion matrix of dual-pol S-1 data, including crosstalk,
channel imbalance, and the Faraday rotation effects. It assumes
the availability of a distributed target having a response
with azimuthal symmetry [46], trihedral-like, and oriented
dihedral-like targets to retrieve all the parameters. Similar to
many polarimetric calibration (PolCAL) techniques, it assumes
reflection symmetry [46] over distributed scenes, such as dense
forests. As indicated in the introduction, this assumption,
despite being widely considered in procedures aiming to
detect metallic targets at sea, does not always hold over the
sea surface and may be considered as valid only in up- or
down-wind situation (wind waves are orthogonal to the range
direction) or in case of low wind [31], [35].

1) General Statement for the S-1 Dual-Pol System: The
dual-polarization radar system on-board S-1 sensors transmits
vertically polarized signals and measures responses in a linear
horizontal and vertical polarization basis. In the absence of
the Faraday rotation, the received vector can be written as
follows [47]:[

Mhv

Mvv

]
= Ae jφ

[
1 δ1

δ2 f

][
Shh Shv

Svh Svv

][
δ3

1

]
+

[
Nhv

Nvv

]
(4)

where the subscripts h and v denote the horizontal and
vertical polarizations, respectively, A is the gain factor of the
radar system, e jθ represents a reference round-trip phase shift
common to both acquisition channels, and Npq stands for the
acquisition white noise, verifying E(Nhh N∗

hv ) = E(Npq S∗
rs) =

0 ∀p, q, r, s. Crosstalk parameters are represented by δx ,
whereas f is the channel imbalance coefficient. The relation-
ship in (4) may be simplified by considering that crosstalk
terms generally have a small amplitude, typically |δx | ≈
−37.4 dB [48], and quadratic terms may be neglected, as
|δxδy | 
 1. Accounting for the polarimetric reciprocity, Shv =
Svh applying to monostatic radar systems and environmental
scenes [49], [50] [51], the expression of the received signal
becomes

Mhv ≈ Shv + δ3Shh + δ1Svv + Nhv

Mvv ≈ f Svv + (δ3 f + δ2)Shv + Nvv (5)

When dealing with calibrated S-1 products acquired over
oceanic scenes, one may assume: 1) a unitary channel imbal-
ance factor f ≈ 1; 2) co-pol channel intensities significantly
larger than cross-pol one, Ihh, Ivv � Ihv ; and 3) negligible
second-order crosstalk terms. The measured signal intensities
can then be formulated as follows:

σ ◦
vv ≈ Ivv + σ n

vv

σ ◦
hv ≈ E(|Svh + δ3Shh + δ1Svv |2) + σ n

hv (6)

with σ ◦
pq � E(|Mpq |2), σ n

pq � E(|Npq |2), and Ipq � E(|Spq |2).
In [48], the crosstalk analysis is simply performed using
trihedral corner reflectors (TCRs), characterized by a scattering
matrix proportional to the identity matrix, Svh = Shv = 0
and Svv = Shh = ATCR. A function of δ1 and δ3, namely,
|δ1 + δ3|, is estimated from (6) with σ hv

0 and σ vv
0 measured

over the TCRs. For all S-1 modes, a value is estimated
around −37.4 ± 4.7 dB [48].

2) Proposed Estimation of Crosstalk Parameters: Accord-
ing to the expressions given in (6), the CCPC may be written,
before crosstalk compensation, as follows:

ρvvhv = E(Mvv M∗
hv )√

σ ◦
vvσ

◦
hv

≈ Ivvhv + δ∗
3 Ivvhh + δ∗

1 Ivv + (δ3 + δ2)Ihv√
σ ◦

vvσ
◦
hv

(7)

where Ipqrs � E(Spq S∗
rs). In (7), the crosstalk parameters

are weighted by the co- and cross-pol intensities, reaching
large values compared to |Ivvhv |, resulting in nonnegligible
undesired terms that are very likely to create a bias. A method
is proposed in the following that estimates both the amplitude
and phase of all three crosstalk coefficient and then calibrates
the CCPC values. To do so, the expression in (7) is simplified
by considering only cases with wind conditions for which
reflection symmetry holds, i.e., Ivvhv = 0. The second term
in the numerator is simplified assuming that over sea surfaces
co-pol channel responses are highly correlated with a null
phase difference, leading to Ivvhh = Ivv /

√
η(θ), with η(θ)

being the polarimetric ratio between σ vv
0 and σ hh

0 , as defined in
[26], which depends on the incidence angle. The expression of
ρrs

vvhv , the CCPC under the hypothesis of reflection symmetry,
can be formulated as follows:

ρrs
vvhv = (δ∗

3β(θ) + δ∗
1)Ivv + (δ3 + δ2)Ihv√

σ ◦
vvσ

◦
hv

(8)

where β(θ) � 1/
√

η(θ). Crosstalk parameters may then be
estimated by minimizing a least-squares (LS) criterion as
follows:

(δ̂1, δ̂2, δ̂3) = argmin
δ1,δ2,δ3

M∑
m=1

∣∣ρ̂vvhv (m) − ρrs
vvhv (δ1, δ2, δ3; m)

∣∣2

(9)

where ρ̂vvhv (m) represents an L-look CCPC estimate com-
puted according to (2), over a local area satisfying the reflec-
tion symmetry conditions, and M represents the total number
of points in the database for which this assumption is valid.
For each image, the modeled CCPC of (8), ρrs

vvhv (δ1, δ2, δ3; m),
is evaluated by computing η̂(θ) as specified in [26] and
intensities approximated as Î pq(m) ≈ σ̂ ◦

pq(m) − σ̂ n
pq(m). The

expression in (8) may be rewritten under a linear form by
considering separately its real and imaginary components[
(ρrs

vvhv )
�(ρrs

vvhv )

]
=

[
bT
 0
0 bT�

][
δ

δ�

]
(10)

with δX = X (δ) and δ = [δ1, δ2, δ3]T being the vector of
unknown values. The linear transformation is defined by two
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real vectors given by

bT

 = [Ivv , Ihv , Ihv + Ivvβ(θ)]/√σ ◦

vvσ
◦
hv

bT
� = [−Ivv , Ihv , Ihv − Ivvβ(θ)]/√σ ◦

vvσ
◦
hv . (11)

The estimation of δ using a set of M adequate configurations
may be performed by minimizing the linear LS criterion given
by

(̂δ
, δ̂�)

= argmin
δ
,δ�

M∑
m=1

∥∥∥∥
[
(ρ̂vvhv (m))
�(ρ̂vvhv )(m)

]
−

[
b̂T
(m) 0

0̂ b̂T� (m)

][
δ

δ�

]∥∥∥∥
2

2

. (12)

The criterion may be rewritten as

δ̂ = argmin
δ

∥∥ρ̂ − Âδ
∥∥2

2 (13)

with

δ =
[
δ

δ�

]
, ρ̂ =

[
ρ̂

ρ̂�

]
, Â =

[
Â
 0M×3

0M×3 Â�

]
(14)

where ρ̂T
χ = χ

([
ρ̂vvhv (1), . . . , ρ̂vvhv (M)

])
and ÂT

χ =
χ

([
b̂χ (1), . . . , b̂χ (M)

])
. A solution to this linear LS problem

may be written as

δ̂ = Â†ρ̂ = (ÂT Â)−1ÂT ρ̂. (15)

One may note here that the LS solution proposed here is
generally implemented using stable procedures [52], [53],
rather than through a direct matrix inverse, as shown in (15).
The proposed estimation approach may be further simplified
by taking into account the block-diagonal structure of A, as
detailed hereafter

ÂT Â = M

[
R̂b
 0M×3

0M×3 R̂b�

]
(16)

where R̂bχ = 1
M

∑M
m=1 b̂χ (m)b̂T

χ (m) represents an estimate of
the (3 × 3) sum-of-squares-and-cross-products (SSCP) matrix
of bχ . An alternative implementation of the LS solution
that separately estimates the real and imaginary parts of the
crosstalk coefficients is given by

δ̂χ = 1

M
R̂−1

bχ ÂT
χ ρ̂χ . (17)

The elements of the original IW products database with
relative wind direction close to 0 ± 180◦ are gathered into
clusters of similar acquisition conditions, by considering ten
wind speed classes, from 5 to 14 m/s, with 1-m/s wide bins,
and 31 incidence angle groups, from 30◦ to 45◦, with 0.5◦
wide bins. For each combination of wind speed and incidence
angle values, the estimated quantities σ̂ ◦

pq , Î pq , and ρ̂vvhv )
are averaged, leading to observable vectors of dimensions
M = 310 elements. The retrieved values are found in Table II,
considering S-1 swaths altogether or independently.

The estimated quantities have amplitudes close to the one
found in [48], −37.4 ± 4.7 dB, except for δ2 that cannot be
estimated using a TCR, as shown in (5). Cross-talks values
retrieved over separate beams are relatively similar. Different
antenna configurations from one subswath to the other could

TABLE II

ESTIMATED CROSS-TALKS PARAMETERS FOR S-1A/B IW SWATH MODE
BEAMS. AMPLITUDE ARE IN DB AND PHASES IN DEGREES

Fig. 3. Co-cross coherence at up- and down-wind conditions where reflection
symmetry holds with various wind condition (top: real part and bottom:
imaginary part).

explain the observed slight variations, with different antenna
configurations of transmit and receive modules.

Once the optimized crosstalk parameters are obtained, the
calibrated CCPC can be retrieved from (7), as shown in (18).
Note that this process does include the correction for the
incoherent noise contribution, as a source of decorrelation

ρ̂cal
vvhv = ρ̂vvhv

√
σ̂ ◦

vv σ̂
◦
hv√

Îvv Îhv

− (δ̂∗
3 β̂(θ) + δ̂∗

1) Îvv + (δ̂3 + δ̂2) Îhv√
Îvv Îhv

.(18)

In the case of an up- or down-wind situation, its calibrated
values are very close to 0 (less than 0.005 in absolute values
for both the imaginary and real parts) (see Fig. 3). The
dependence on swath limits seems to be corrected as well.
The bias observed in the coherence products is, thus, mostly
explained by the noncalibration of S-1 data in terms of
polarimetric distortion, including the noise decorrelation that
is compensated for.

In the following, the coherence estimates are calculated
at a 12.5-km spacing from S-1 IW products thoroughly cor-
rected for the polarimetric distortion and its noise contribution

. 
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Fig. 4. Case study with S-1B IW data: real (Left) and imaginary (Right) parts of CCPC with before/after the proposed methodology applied. Caution: the
sharp edges at the boundary of the SAR images are postprocessing artifacts linked to figure generation.

and collocated with ECMWF ocean surface wind speed and
direction. As an illustration, Fig. 4 highlights an example
of CCPC information calculated from the IW S-1 products
acquired over the tropical cyclone Olivia [here, four slices
are stitched (see Fig. 5)]. This case study shows a general
situation with wind rotating counterclockwise around the eye
with associated speeds not exceeding 10 m/s in the southern
part and from 10 to 16 m/s in the northern part. It is, thus,
an ideal study case to illustrate the azimuthal dependence of
the CCPC with medium wind force situation. Note here that
the position of the eye is slightly shifted between the model
and the observation, which can be explained by the modeling
errors inherent in this type of situation, but also by the time
lag between model outputs and observation time. As indicated
in the literature [36], we expect real and imaginary null CCPC
values in upwind or downwind situations. Also, the real term
should show four different regimes depending on the wind
direction (four quadrants are around −90◦, 0◦ and 90◦, and
±180◦), which is well observed in Fig. 4. The imaginary part
should be roughly signed positively and negatively according
to the sign of the wind direction; Figs. 6 and 7 will show more
details. For areas with a downwind situation where the relative
wind direction is close to ±180 (in fact above +135◦ or below
−135◦), the imaginary part remains close to zero (see the
southern part of the eye). The amplitude of the CCPC is higher
when the wind is strong, as illustrated in the northern part of
the eye. At the northeastern part of the eye, around 23◦N ,
there is also a discontinuity clearly visible on the roughness
image. While it is not predicted by the model, the real and
imaginary parameters of the CCPC well depict this wind field
discontinuity. After the proposed methodology is applied, a
general positive shift for the real and imaginary components
is applied. The signs of the complex CCPC values are more
consistent with the theory and the literature with respect to its
dependence on relative wind direction. In addition, increased
amplitudes are output by the methodology once corrected for
the noise decorrelation. As observed in some small “dot” areas

Fig. 5. Case study with S-1B IW data acquired over Hurricane Olivia on
2018/09/12 at 04:21 AM off the coast of Hawaii (USA), ascending pass (Right
Looking for S-1) with roughness in co-pol (Left) and ECMWF wind model
(Right).

with real CCPC values above 0.10 (see the left-hand side of
the image close to Hawaii island), some artifacts appear after
the PolCal methodology is applied. They correspond to bright
targets, such as vessels. Further investigations are needed to
understand the primary reason following (18).

IV. APPLICABILITY FOR WIND VECTOR RETRIEVAL

A. Analysis of Co-Cross-Coherence Estimates Over Sea
Surface

Based on the calibrated and collocated CCPC database
presented in the previous section, this parameter can now

. 
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Fig. 6. Analysis of Pol-calibrated NRCS estimates in copolarization (first row) and cross polarization (second row) and CCPC (amplitude and real and
imaginary parts, from third to last row) with respect to relative wind direction for different values of wind speed (see color code) and incidence angles: 34.5◦
(left), 38.5◦ (middle), and 42.5◦ (right). The dashed line for VH sigma0 corresponds to noise-corrected data only, without PolCAL process.

be statistically analyzed with respect to ocean surface wind
speed, wind direction relative to the antenna look angle, and
the incidence angle. Fig. 6 illustrates the results of this analysis
for three different incidence angles located at mid swaths of
IW1 (left), IW2 (middle), and IW3 (right), corresponding,
respectively, to 34.5◦ ± 0.5◦, 38.5◦ ± 0.5◦, and 42.5◦ ± 0.5◦.
Each row stands for a different radar parameter (VV and VH
NRCS, and the CCPC terms) plotted as a function of the
wind direction relative to the antenna azimuth look angle for
different wind speeds ranging from 2 to 14 m/s. Note that the
database does not enable to study the CCPC beyond 14 m/s for
the entire range of incidence angle and relative wind direction
values. The convention of the relative wind direction is such
that 0◦ stands for upwind configuration, i.e., the wind blows
toward the antenna, 180◦ stands for downwind configuration,
i.e., the wind blows away from the antenna, and 90◦ and
90◦ stand for crosswind configuration, i.e., the wind blows
perpendicular to the antenna.

The following comments can be outlined.
1) The co-pol NRCS variation follows previous well-

documented analysis [27], [54]. A maximum backscat-
tering is obtained in upwind and to a lesser extent
in downwind. The backscattering coefficient is also
found to be minimum at cross-wind. For a given inci-
dence angle, the averaged (over relative wind direction)

backscattering increases with increasing wind speed and
for a given wind speed the averaged backscattering
decreases with increasing incidence angle.

2) Similar to the copolarization, the analysis of the cross-
polarized NRCS estimated from S-1 reveals that, for
a given incidence angle, the averaged (over relative
wind direction) backscattering increases with increasing
wind speed, and for a given wind speed, the aver-
aged backscattering decreases with increasing incidence
angle. These results are in line with the most recent
studies on the NRCS measured in cross polarization
with Radarsat-2 [20] or S-1 [23], [27]. However, we also
confirm a slight variation with respect to relative wind
direction very similar to copolarization, with maxima
obtained for upwind and downwind and minima for
crosswind (see [36]). In addition, this azimuthal modu-
lation seems to increase with increasing incidence angle
and wind speed. Below 8 m/s, this modulation is not
visible in our analysis. With VV NRCS being much
larger than VH NRCS, a remaining leakage from the
copolarized signal may induce this modulation in the
cross-polarized signal. However, the first order deriva-
tion of (6) shows that the terms depending on crosstalk
parameters appear to be negligible (see full/dash lines
with/without PolCAL process, respectively).

. 



ACCEPTED MANUSCRIPT

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LONGÉPÉ et al.: CCPC OVER THE SEA SURFACE FROM S-1 SAR DATA 9

Fig. 7. Analysis of the simulated polarimetric co-cross coherence (amplitude and real and imaginary parts) with respect to relative wind direction and wind
speed—at 34.5◦ , 38.5◦ , and 42.5◦ .

3) The azimuthal modulations obtained from our analysis
for the real and imaginary parts when wind speed is
10 m/s are similar to the ones obtained from quad-
pol RS-2 data achieved by Zhang et al. [36]. An odd
symmetry is confirmed with S-1 data. In addition, our
data analysis further documents these two quantities. In
particular, for a given incidence angle, the azimuthal
modulation is found to increase with wind speed and
to be negligible for wind speed below 5 m/s. Then,
for a given wind speed, this modulation increases with
increasing incidence angle.

4) The amplitude of the coherence also exhibits a clear
azimuthal modulation. Like other radar parameters pre-
sented here, it also increases with wind speed and
incidence angle and becomes negligible for wind speed
lower than 5 m/s.

5) It can be noted that, on the contrary of [36], our
analysis indicates that the imaginary part seems not
strictly positive in the [0; +180] interval (and negative in
[−180; 0] interval). This apparent contradiction does not
hold for 10-m/s wind speed, the value at which analysis
has been done by Zhang et al. [36].

This data set is further used to build the CPGMF for both
real and imaginary CCPC components that allow capturing all
the properties discussed in the previous bullets. The analyt-
ical formulae with the corresponding set of coefficients and
the details regarding the CPGMF accuracy are given in the
appendix. It is illustrated in Fig. 7.

B. On the Bayesian Inversion Scheme

SAR-based wind speed retrieval is generally performed
from σ0 estimates via an inversion of GMF modeling, solving
this equation with two unknowns (u-v or U10-φ wind com-
ponents) with a priori model information. This minimization
problem is often formulated as a Bayesian scheme with inde-
pendent variables (observation and model) subject to Gaussian
uncertainties

Jref(u) = JGMF(u) + JModel(u)

=
(

σ0 − GMF(u)

�σ0

)2

+
(

umod − u
�u

)2

(19)

with umod being the a priori wind field associated with �u
error and �σ0 the NRCS error. The different variables are
expected to be spatially correlated [55], [56], but the inversion
scheme does not account for it and is applied independently
for each wind cell. The zonal and meridional components of
the wind vector u = {u, v} are also assumed to be independent.
The following additional cost functions for the CCPC and
Doppler contributions, respectively, are added in (19). They
are defined as

JPGMF(u) =
(
(ρvvhv ) − PGMFre(u)

�ρre

)2

+
(�(ρvvhv ) − PGMFim(u)

�ρim

)2

(20)

JCDOP(u) =
(

f DA − CDOP(u)

� f DA

)2

. (21)

To note, other SAR-derived parameters, such as the spectral
content of the small scales [29], [30], the cross-polarized
NRCS, or the OLE orientation derived from image processing
could be added in the total cost function. Here, as a first step,
copolarized Doppler and the CCPC terms are added to the
copolarized NRCS to discuss the complementary of these three
parameters. PGMFre and PGMFim are the real and imaginary
parts of the CCPC (for tables or analytic CPGMF functions;
see the Appendix). The CDOP function is described in [18]. At
this stage, it should be noted that the weighting of the various
contributions depends on the chosen uncertainties � f DA,�ρre

and �ρim.
Two uncorrelated sources of uncertainties can be associated

with �ρ: the precision of the MLE-based coherence estimate
and the quality of the derived PGMFs. The standard deviation
of the coherence unbiased estimates is higher than the Cramer–
Rao lower bound derived in [57]

E(|ρvvhv |2) >

(
1 − ρ2

vvhv

)2

2L
(22)

and shown in Fig. 8. This lower bound may be of interest
when designing an adequate inversion scheme: it constrains the
minimum error value in the cost function with a link between
the spatial resolutions of the native SLC data and the targeted
L2 wind product. The quality of the derived PGMF functions

. 
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Fig. 8. CR bounds for the standard deviation of the coherence estimate,
as function of number of looks L. Vertical lines indicate the corresponding
spatial averaging for SLC IW products.

is shown in the Appendix (see Fig. 9). The RMSE of the
models against S-1 estimates is in the order of 0.01 and 0.006
for the real and imaginary parts, respectively (about 10% of
the models’ magnitude). The remaining noise contamination,
the selected analytic functions to model the PGMF, the uncer-
tainties of model wind direction/speed, and, more generally,
the nonstationarity and heterogeneities of the data within the
12.5-km cell (see Section III-A2) may be the cause of this
variability. In the following, �ρ = {0.01, 0.006} is, thus, taken
for the real and imaginary components of the CCPC.

In Fig. 10, the cost functions for each radar parameter,
the ancillary model, and several combinations of these cost
functions for various configurations are shown for a given set
of measurements and model uncertainties (�u = {√3,

√
3},

�σ0 = 0.5 dB, � f DA = 5 Hz, and �ρ = {0.01, 0.006}).
For the first three quantities, they are chosen in line with the
literature and close to the current implementation of the ESA
S-1 Level-2 processing chain. For the latter, these values are
chosen with respect to the measured uncertainties between the
models and the data, as explained in the previous paragraph.
Measurements are synthesized for a 38.5◦ incidence angle, the
true wind speed of 7 m/s, and a wind direction relative to the
radar antenna of 45◦, using CMOD5 [54] for the NRCS in VV,
CDOP [18] for the Doppler in VV, and the PGMFs presented
in this study (see the Appendix and Fig. 7). For each of the
cost functions presented here, the solution for the zonal and
meridional components of the ocean surface wind speed in the
space of solutions considered ({u, v}) is given by the minimum
of the cost function (blue).

1) The first row of Fig. 10 presents the cost function
obtained when using (a) NRCS (JGMF), (b) the real part
of the CCPC (JPGMFRe), (c) the imaginary part of the
CCPC (JPGMFIm ), (d) the two terms of the CCPC (JPGMF),
and (e) the Doppler (JCDOP). These cost functions never
yields to a unique solution. This illustrates the limita-
tions of an inversion scheme relying on one single radar
parameter measured by one single fixed antenna. In the
case of JGMF, the solutions can be found on an ellipse

Fig. 9. Root mean square error of PGMFre (Top) and PGMFim (Bottom)
model against averaged coherence estimates for the consolidated database
(121*15*30) dim.

covering all possible wind direction solutions. For JCDOP,
the pattern of the cost function is significantly different
with solutions confined to only one half of the space of
solutions. Indeed, Doppler is a signed quantity sensitive
to the radial (projected along the radar line of sight)
component of the wind speed. As observed, JPGMFRe

and JPGMFIm are complementary with their respective
cost functions minimum located in different areas of the
space of solutions. In particular, the real term constrains
the solutions with respect to the direction further reduced
by the imaginary part (see JPGMFRe + JPGMFIm ).

2) The second row of Fig. 10 illustrates the advantage of
using a model as ancillary data to remove the ambigui-
ties. Fig. 10(g) recalls what is the minimization when
the only ancillary wind is used in combination with
NRCS. This approach is considered as the reference
solution here. As already discussed and illustrated by
Portabella et al. [3] and Mouche et al. [3], [18], the
quality of this solution is strongly driven by the quality
of the ancillary data, especially for the wind direction.
When the reference approach is further combined with
the information from (h) the CCPC, (i) the Doppler
in copolarization, or (j) both, the space of possible

. 
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Fig. 10. Cost functions for the incidence angle at 38.5◦ , the true wind speed at 7 m/s, and the relative wind direction 45◦. The first line corresponds to the
independent cost contribution (from Left to Right JGMF, JPGMF, and JCDOP). The second line integrates model JModel contribution, with various combinations
(Jref , Jref + JPGMF, Jref + JCDOP, and Jref + JPGMF + JCDOP. The third line does not integrate any model information.

solutions is reduced, showing the interest of adding these
radar parameters in the inversion scheme to decrease the
weight of the ancillary wind solution in the cost function.

3) With the idea of keeping the inversion scheme inde-
pendent of any external constraints, the cost func-
tions can be rewritten solely with radar estimates
[see Fig. 10 (k)–(m)]. Indeed, this approach would pre-
vent any possible wrong information coming from the
model in complex meteorological situations. The combi-
nations of Doppler with NRCS and CCPC with NRCS
yield to different but overlapping solutions. When all
combined, the resulting cost function suggests that these
three different and complementary radar parameters
could lead to an inversion scheme without external
information.

In the aforementioned paragraph, the simulations of the
cost functions are computed based on the assumptions that
the SAR-based measurements (σ0, 
(ρvvhv ), �(ρvvhv ), and
f DA) and the model wind information (umod) correspond to
the actual wind field. In practice, these inputs have a certain
degree of variability corresponding to the heterogeneity of
sea state conditions within the wind vector cell, the SAR
sensor acquisition and imaging processes, and simply model
inaccuracies. In order to further evaluate the real potential
and limitations of the CCPC in the inversion scheme, a
Monte Carlo (MC) approach is tested. A sequence of random
offsets given a normal distribution N (0,�2) is generated
independently for each input. These errors are introduced in
the cost functions, and their impacts on the retrieved wind
vector are assessed against the true wind field.

In Fig. 11, this assessment is shown for the wind speed
at 7 m/s and the incidence angle at 38.5◦. In this Monte
Carlo approach, each radar/model estimate follows a normal
distribution with no bias (i.e., centered at its true value
from GMF, CDOP, C-PGMF or true wind vector) but with
a given variability (�u = {√3,

√
3} for solid lines or

�u = {√10,
√

10} for dashed lines, �σ0 = 0.5 dB, �ρ =
{0.01, 0.006}, and � f DA = 5 Hz). RMSEs are given for
different wind retrieved variables and cost functions. They are
organized in three data sets.

1) Solid lines deal with the addition of radar parame-
ters with respect to the reference Jref cost function
(black solid line) where NRCS is combined with ancil-
lary information from a model. This confirms that the
addition of Doppler (green solid line) or CCPC (red
solid line) information increases the constraint on the
wind inversion and improves performances for both
wind speed and direction, with a slight stronger posi-
tive impact when the CCPC is considered. When both
(i.e., all available information; see solid blue line) are
taken into account, the performances on wind direction
increase, especially for cross-wind cases.

2) For comparison, other MC simulations are performed
with less accurate model information using �u =
{10, 10} (dash lines, referred to as Ref10 hereinafter).
This intends to simulate an NWP model coarse in space
and time, or with phasing issues. This is typically the
case for sharp wind gradients and/or rapidly evolving
systems, such as atmospheric fronts or low-pressure
systems. The quality of Ref10 inversion dramatically
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Fig. 11. Monte Carlo simulation and estimation of RMS error on retrieved wind field for true wind speed at 7 m/s and various relative wind direction, and
the incidence angle at 38.5◦ . Color lines/styles correspond to various cost functions (see legend).

drops down to about 2 m/s for U10 (see black dashed
line), being out of the y-axis for other wind parame-
ters. Adding Doppler, CCPC, or both radar parameters
significantly improves the performances (see red, green,
and blue dashed lines).

3) The third set of curves presents the results obtained
without any ancillary information. The results are very
similar to the one obtained with �u = {10, 10}. The
improved performances achieved when only CCPC (red
marker) or Doppler (green marker) is combined with
NRCS further exhibits the complementary of these two
quantities. As observed, the Doppler mostly helps con-
straining the wind direction retrieval for situations in the
vicinity of up- and down-wind configurations. On the
contrary, the CCPC benefits in a crosswind or near-
crosswind wind regimes. This analysis also confirms that
the CCPC information is more efficient than Doppler
to constrain the wind vector retrieval (see red versus
green markers or dash lines). Overall, when the three
radar parameters (see blue markers or dash lines) are
considered, both wind speed and direction results are
improved with moderate-to-good performances (wind
speed and direction RMSE of less than 1.2 m/s and 20◦,
respectively).

Provided an accurate estimate of these three radar parameters,
their combination with ancillary data remains the best option.
However, it appears that the quality of the NWP model
still remains decisive. This requires an adequate weighting
(and possibly removal) of the a priori model information. If
the model contribution is neglected, the use of NRCS with

both CCPC and Doppler is mandatory for reasonable results.
The CCPC helps constraining the minimization leading to an
acceptable estimated wind vector, except for up- or downwind
situations, where Doppler information is crucial. All the above
discussions apply to wind speed above 5 m/s (and up to 14 m/s
due to our database). For lower wind speed, the general interest
of CCPC remains more limited.

V. DISCUSSION

To date, the main limitation of SAR systems for ocean sur-
face wind vector retrieval is its single fixed antenna. However,
this constrains on the viewing angle can probably be overcome
if we take benefit of other SAR capacities. Up until now, when
performed routinely or operationally, the ocean wind inversion
scheme only relies on the signal intensity in the copolarization
channel. However, the last generation of SAR systems pro-
vides much more information. Other radar parameters, such as
the Doppler and spectral analysis, should be considered. These
parameters (including the intensity) need also to be estimated
in both copolarization and cross polarization. In addition, the
two polarization states can be combined. Here, the estimate
and use of the co-cross-polarization coherence term follow
this idea. Our work suggests that the use of only three of
them could allow not using any ancillary wind information.
This could be decisive for the future as the true added value
of SAR observations certainly lies in situations where models
fail. The on-going work to provide accurate calibrated Doppler
from S-1 should lead to a suited data set to test this idea on
real data in future work.

. 
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With respect to our work, our analysis has to be pursued on
more data to extend the range of wind speeds where the CCPC
has been analyzed. This is critical for the operational use of
such an inversion scheme. In addition, other radar parameters,
such as the NRCS in cross polarization (and possibly also
the Doppler), will have to be included for ocean surface wind
vector retrieval beyond 14 m/s and, in particular, for extreme
wind speed regimes. In addition, the methodology is built on a
database of SLC Level-1 IW products processed with various
instrument processing facility (IPF) versions. Homogenization
of the input database with enhanced noise annotation (IPF
versions newer than v2.9 with both range/azimuth noise depen-
dencies) would be required.

However, probably more challenging would be the deriva-
tion of a new inversion scheme to decipher between different
geophysical contributions, such as ocean surface current or
precipitation, and possibly perform a joint multigeophysi-
cal parameters’ retrieval. When it comes to the analysis
of backscattered signals over the sea surface at very high
resolution, this may become nonnegligible. As a matter of
fact, a thorough analysis of the cost function minimum should
already provide information on areas where other geophysical
phenomena impact significantly the radar parameters (or part
of them) used in the inversion scheme. Up until now, existing
concepts only rely on the use of several antenna [58], [59]
when it comes to multigeophysical parameters retrieval with
SAR. In any case, the combination of all radar parameters
available is certainly the key to maximize constraints on the
inversion scheme. In extreme cases, such as areas with strong
ocean surface currents or tropical cyclones where both high
and complex sea states or intense rainfall can coexist with
ocean surface wind, such a multiradar parameters approach
could help deciphering between all contributions.

Although promising, such an approach requires an accurate
estimate of each radar parameter and its associated uncer-
tainties. To name a few of them, we suggest that: 1) NESZ
level shall be even lower (below −40 dB) with estimates
in the annotation products of enhanced quality (
 ±1 dB)
and 2) bright targets and any other nongeophysical ocean
features shall be filtered out from the CCPC products. One
solution could consist in implementing robust coherence esti-
mation techniques, such as those presented in [60]. One may
envisage estimating CCPC through advanced speckle filtering
techniques, such as the one proposed in [61], which aims to
discriminate and process jointly homogeneous regions, whose
properties show a sufficient level of similarity.

Concepts similar to the one developed in this study could
apply to future spaceborne bistatic missions in either same
side-looking interferometric configurations, similar to the one
of Tandem-X, or opposite side-looking enabling the mea-
surement of forward scattering contributions (e.g., ESA Earth
Explorer 10 Harmony concept [62]), characterized by a sig-
nificantly improved power budget and additional polarimet-
ric features [63], [64]. On the contrary of the NRCS, the
computation and analysis of CCPC from SAR scenes acquired
over the ocean are still not widely spread. However, our
analysis could be performed with other SAR missions with
the possibility to explore frequencies where the contribution

of the ocean surface waves to the backscattered signal is
different and, thus, to further improve our interpretation of
this parameter. For instance, the NRCS analysis of L-band
SAR has revealed wind direction dependence significantly
different from C-band for wind speeds ranging from 3 to
8 m/s. In particular, a negative up/crosswind coefficient is
observed, indicating more roughness in crosswind for waves
scales controlling the backscattering at the L-band [65]. Such
differences could lead to a revision of the calibration method
and a different behavior of the CCPC at L-band.

VI. CONCLUSION

This study takes advantage of the data policy, acquisition
strategy, and new capabilities of the S-1 SAR mission with
respect to previous European SAR missions to investigate the
co- cross-polarization coherence.

In the first part, we showed that the CCPC estimates from
S-1 IW data are biased. Under the assumption of reflection
symmetry in the up- and down-wind conditions, a PolCal
methodology is implemented to correct these biases. Based
on the estimate of corrected CCPC over a large data set,
we document this parameter as a function of wind direction
and incidence angle (between 30◦ and 45◦) for wind speeds
ranging from 2 to 14 m/s. We observe that CCPC amplitude
increases with both increasing wind speed and incidence angle.
The CCPC amplitude and also the real and imaginary parts
exhibit an azimuthal modulation. This modulation increases
with wind speed and incidence angle. Moreover, the azimuthal
modulation is found to be complementary with both Doppler
and NRCS as the maximum/minimum is not reached around
up- and down- wind directions. However, both CCPC mean
signal and modulation tend to be negligible for wind speeds
below 5 m/s. A simple and analytical formulation is proposed
to build a first C-band PGMF for both real and imaginary
CCPC components. The corresponding set of coefficients and
details regarding CPGMF accuracy are given in the Appendix.

One of the potential interests for using the Doppler centroid
anomaly measured by an SAR system over the ocean sea
surface was to improve the wind inversion retrieval and, in
particular, the wind direction [18]. As a matter of fact, it
has been clearly shown that Doppler sensitivity at first order
was driven by the ocean surface wind waves rather than the
ocean surface current [16], especially for lower incidence
angles from 17◦ to 30◦ [66]. However, as also pointed out
by Mouche et al. [18], combining only Doppler with NRCS
does not fully constrain the inversion scheme. Based on a
developed CPGMF for CCPC and existing GMF for NRCS
and CDOP for Doppler in VV polarization, some sensitivity
tests are performed to discuss the complementarity of these
radar-derived parameters and the necessity of ancillary data
to retrieve both wind speed and direction from C-band SAR.
Our study shows that the addition of the CCPC significantly
increases the constraints. In particular, the complementarity of
the three radar quantities allows very similar results to what is
achieved when no ancillary data are considered. Such results
could dramatically change the whole philosophy of the SAR
inversion scheme that heavily relies on ancillary wind direction
when SAR wind vectors are produced operationally. However,

. 
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TABLE III

SET OF α COEFFICIENTS FOR S-1 IW DERIVED PGMF
FUNCTIONS—VALID UP TO 14 m/s

such an approach would require at least: 1) some calibrated
radar parameters from SAR missions, including Doppler and
CCPC; 2) a robust GMF for these two radar parameters with
associated errors; and 3) a sufficient amount of data to work
with. To note, an independent estimate of the wind direction
from SAR (even at a lower resolution than 1 km) would also
allow a coanalysis of the OLE orientation and wind direction
angles that possibly provides information regarding the air–sea
interactions in the marine atmospheric boundary layer.

APPENDIX

DERIVATION OF C-BAND PGMF

The PGMF functions are derived from our compiled data-
base consisting of 6108 IW products with the L ≈ 3M MLE-
based coherence estimates colocated with 1 h–0.1◦ ECMWF
products. All the 12.5-km resolution pixels are then averaged
with nonoverlapping bins centered from 0 to 14 m/s for wind
speed with the step of 1 m/s, from −180◦ to 178.5◦ for wind
direction with the step of 3◦, and from 30◦ to 45◦ for the
incidence angle with the step of 0.5◦. From (1), the complex
co-cross coherence is formulated as follows:

ρvvhv (U, φ, θ) = (
αre

1 (U, θ) + iαim
1 (U, θ)

)
sin(φ)

+(
αre

2 (U, θ) + iαim
2 (U, θ)

)
sin(2φ) (23)

with α1 and α2, in this first PGMF version, expressed as
follows:{

α
re/im
1 = (

a10 + a11U10 + a12U 2
10

)
(a13 + a14θ)

α
re/im
2 = (

a20 + a21U10 + a22U 2
10

)
(a23 + a24θ + a25θ

2)
(24)

with θ in degrees. The results of the optimization processes
are found in Table III and are illustrated in Fig. 7.

In a general manner, the accuracy of the co-cross-coherence
estimates in our database used to build the PGMF is in
the order of 0.005–0.015 (see Fig. 9). The quality of model
fitting varies depending on incidence angle and wind speed.
Subswath-related patterns are observed at angles around 36◦
and 41◦. Further research on dual-polarimetric S-1 data cali-
bration and noise removal might be needed to solve this issue.
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