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Lowering latency and processing 
burden in computational imaging 
through dimensionality reduction 
of the sensing matrix
Thomas Fromentèze1,5*, Okan Yurduseven2,5, Philipp del Hougne3 & David R. Smith4

Recent demonstrations have shown that frequency-diverse computational imaging systems can 
greatly simplify conventional architectures developed for imaging by transferring constraints 
into the digital layer. Here, in order to limit the latency and processing burden involved in image 
reconstruction, we propose to truncate insignificant principal components of the sensing matrix 
that links the measurements to the scene to be imaged. In contrast to recent work using principle 
component analysis to synthesize scene illuminations, our generic approach is fully unsupervised and 
is applied directly to the sensing matrix. We impose no restrictions on the type of imageable scene, no 
training data is required, and no actively reconfigurable radiating apertures are employed. This paper 
paves the way to the constitution of a new degree of freedom in image reconstructions, allowing one 
to place the performance emphasis either on image quality or latency and computational burden. 
The application of such relaxations will be essential for widespread deployment of computational 
microwave and millimeter wave imagers in scenarios such as security screening. We show in this 
specific context that it is possible to reduce both the processing time and memory consumption with a 
minor impact on the quality of the reconstructed images.

Imaging with microwaves brings about several advantages, such as all-weather operation, the use of non-ionizing 
radiation, the ability to see through most optically opaque materials and the availability of mature component 
technology. Due to these advantages, microwave imaging has proven to be useful in a wide range of applica-
tions ranging from security-screening1–4 to biomedical imaging5–8 and non-destructive testing9–12. Despite these 
advantages, conventional microwave imaging systems suffer from a number of challenges. In general, microwave 
imaging requires the synthesis of composite apertures to raster-scan the scene, either mechanically, such as in 
synthetic aperture radar13–16, or electronically, such as in phased arrays17–21. Mechanical scanning is not desirable 
in that data acquisition time can be significant, posing a major challenge for real-time operation. All-electronic 
operation can be achieved using phased arrays. However, beam synthesis using phased arrays requires that 
each antenna within the composite aperture has a phase-control circuit, or a phase-shifter, and preferably a 
power amplifier (to compensate for the insertion losses of the phase shifters). As a result, using phased arrays, 
all-electronic operation can require a large number of phase-shifting circuits and power amplifiers, significantly 
increasing the complexity and power-consumption of such apertures. Applications requiring high depth resolu-
tion will also be particularly constrained by the fractional bandwidth limitations of the active components of 
each transmission and reception chain.

To address these challenges, unusual modalities have been proposed that leverage ideas related to compu-
tational imaging22–27. Numerous proofs of concept of frequency-diverse computational imaging have recently 
been proposed28–35, where the scene information is encoded onto a set of measurement modes that exhibit 
quasi-randomness across the operating frequency band. In other words, the scene information is sampled on 
quasi-random bases by stepping through a number of frequency points across the operating frequency band 
(frequency sweep)36. Leveraging this quasi-random set of modes offered by engineered frequency-diverse systems 
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eliminates the need for beam synthesis and requires a simple frequency sweep to achieve imaging. A three-
dimensional (3D) microwave image of the scene can then be reconstructed by interacting the measurements of 
the scene with the transfer function of the frequency-diverse imaging system using computational reconstruction 
techniques, such as direct algorithms, including the matched-filter technique, or iterative algorithms, including 
the least-square technique37.

Using such frequency-diverse schemes for computational imaging of large scenes at microwave frequen-
cies, such as in security-screening, can be a computationally demanding task. For a 3D scene discretised at 
the resolution limit of a finite-size aperture, the number of voxels to be reconstructed can be significant. Sev-
eral techniques can be adopted to reduce the computational complexity of the imaging problem. For example, 
additionally using data from optical sensors (sensor fusion), the field-of-view for a given (microwave) imaging 
problem can be constrained to a volume bounded by the surface of the imaged object32. It is reported in38 that 
adopting such a prior constraint on the imaging problem can reduce the number of voxels to be reconstructed, 
and hence the complexity of the imaging problem, by more than 90%. Another approach includes the paral-
lelization of the image reconstruction algorithm using general-purpose graphics processing units (GPGPUs)39 
and field-programmable-gate-array (FPGA) structures4. However, despite the significant reduction in the size 
of the computational problem enabled by applying the aforementioned techniques, the reconstruction time can 
be on the order of several seconds32.

In view of this, it is evident that additional techniques are needed to further reduce the computational com-
plexity of the imaging problem for real-time operation. Inspired by well-known lossy compression schemes such 
as JPEG or MP3, we hypothesize that a moderate loss of information can be tolerated in order to substantially 
reduce the memory and processing burden. Principal component analysis (PCA) is a mathematical tool that 
can be used in this perspective to decompose a matrix on a set of orthogonal bases40. In the considered imaging 
problem, the sensing matrix links the space to be imaged to the measured signals; by decomposing the sensing 
matrix into its principle components, we can identify independent structures of which the sensing matrix is 
composed and their respective contribution levels. We then select only the most significant principal components 
in order to compute a model of the sensing matrix with reduced dimensions.

Our proposal is distinct from recent ideas in the literature to optimize microwave imaging systems using PCA. 
One such approach, proposed in41 and42, is based on the radiation of illumination patterns specific to each type of 
scene to be imaged, necessarily requiring the use of reconfigurable systems for scene-dependent beam-synthesis. 
Provided a prior knowledge about the nature of the scene to be imaged is available, these authors have shown 
that it is possible to limit the number of sequential captures necessary for image reconstruction compared to the 
use of purely random patterns. Recent work in43 took this idea even further by directly integrating a model of 
the physical layer into an artificial neural network in order to jointly learn optimal measurement and processing 
strategies based on a priori knowledge of scene, task and measurement constraints. Since this "learned sensing" 
strategy enables one to minimize the acquisition of task-irrelevant information, it is highly task-specific and 
requires a supervised learning technique. In contrast to these prior works, the approach we propose here applies 
PCA to the sensing matrix rather than the expected scene. Consequently, our approach is not scene dependent 
and does not require the use of sequential measurements relying on active reconfigurable antennas. We propose 
a system-dependent but scene-independent method relying on a frequency-sweep to generate a succession of 
random illumination patterns that interrogate the scene to be imaged; via PCA we can limit the dimensionality 
of the sensing matrix and thereby the computational complexity of the image reconstruction.

This paper demonstrates that our approach makes it possible to reduce computation times and memory 
consumption for imaging applications while having only a minor impact on the quality of the reconstructed 
images. Our approach allows each application to dispose of a new degree of freedom in image reconstruction by 
moving the constraints to either image quality or numerical performance. The outline of this paper is as follows: 
In “Operation principle” section, we explain the concept of frequency-diverse computational microwave imaging 
and the application of PCA to the sensing matrix. In “Results and discussion” section, we present the images of 
a human-sized object reconstructed with and without PCA-based dimensionality reduction; moreover, we pro-
vide a quantitative analysis of the reconstructed images in terms of imaging quality, mean-square-error (MSE), 
memory consumption, and reconstruction time. Finally, we provide concluding remarks in the last section.

Operation principle
Frequency‑diverse computational microwave imaging.  In frequency-diverse computational imag-
ing, a set of frequency-dependent spatially-varying field patterns are used to interrogate the scene to be imaged. 
Using the first Born approximation, the measured signal is linked to the imaged object by means of the sensing 
matrix (or the transfer function) of the imaging system as follows:

Equation (1) is the integral form of the forward model where g denotes the measurement signal, ρ is the 
imaged scene, i and j are the indices of the transmit and receive frequency-diverse antennas, and ETx and ERx are 
the radiated E-field patterns of the transmit and receive antennas propagated to the scene using the free-space 
Green’s function44. Finally, n(ω) represents additive Gaussian white noise. For the sake of clarity, the principle 
of dimensionality reduction proposed in this paper is implemented within the framework of a scalar wave 
approximation. An adaptation of the studied techniques can nevertheless be carried out to the reconstruction 
of complete susceptibility tensors by means of recent developments in polarimetric computational imaging33,45. 
Under the first Born approximation, the sensing matrix is proportional to the dot product of the transmit and 
receive frequency-diverse antenna fields: H ∝ ETxERx (Fig. 1).

(1)gi,j(ω) =
∫

r

EiTx(r,ω)E
j
Rx(r,ω)ρ(r)dr + n(ω).
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Retrieving an estimate of the reflectivity of the scene ρ̂ is an inverse problem that is solved numerically based 
on a discretized version of the forward model (1). For a frequency-diverse aperture consisting of T transmit 
antennas and R receive antennas, and sampling the frequency band at F frequency points, the total number of 
measurement modes is M = T × R × F . The discretization of the scene is performed at the resolution limit of 
the aperture in the range and cross-range planes. The range resolution is governed by the imaging bandwidth 
B = 9 GHz in the K-band ( 17.5−26.5 GHz): δr = c/2B = 1.67 cm; the cross-range resolution is governed by the 
aperture size D, target distance d, and wavelength � : δcr = �d/D , resulting in δcr = 7 mm cross-range resolution 
for imaging at d = 1 m distance. The M × N sensing matrix H links the N voxels to the M measurement modes. 
The discretized forward model is the following:

In (2), although the field definitions forming the sensing matrix are scalar, bold font is used to denote the vec-
tor and tensor quantities. The sensing matrix H does not have an exact inverse because it is not square ( M  = N ) 
and full rank. Several techniques can be used to retrieve an estimate of the scene information. Among those, 
direct reconstruction techniques can retrieve the scene estimate without the need for additional iteration steps 
as follows:

where H+ denotes the reconstruction operator applied to the measurements in order to retrieve ρ̂.
The simplest techniques, known as matched filtering, consists in using the conjugate transpose of the sensing 

matrix, denoted H† , as reconstruction operator.

Dimensionality reduction with principal component analysis.  As noted above, for imaging prob-
lems with large scenes, such as in security screening, it can be challenging to retrieve the estimate of the scene 
in a timely manner due to the large size of the sensing matrix. In fact, processing a big sensing matrix might not 
even be possible due to a lack of available computational resources. For instance, in security-screening applica-
tions at K-band frequencies, the size of the sensing matrix without the use of any a priori knowledge was shown 
to be as large as 90 Gb38. Therefore, it is evident that additional techniques are needed to solve the inverse prob-
lem of Eq. (2) to retrieve ρ̂ , particularly for real-time applications.

The first step we take to lower the reconstruction problem’s computational complexity is the technique at 
the heart of the present paper: we use PCA to remove insignificant dimensions of the sensing matrix H . PCA 

(2)gM×1 = HM×N ρN×1 + nM×1.

(3)ρ̂ = H+g = H+(Hρ + n) ≈ ρ,

Figure 1.   Illustration of a computational imaging system. The fields radiated in transmission and reception 
by a frequency diverse system interact with a target to be imaged. The scene ρ is interrogated by a succession 
of quasi-random field distributions varying according to the frequency and measurement ports. By means of 
simple frequency sweeps, spatial information is quickly encoded into a set of measurements gathered in g.
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originates from the general context of spectral theory: H can be diagonalized using the singular value decom-
position (SVD) technique46 that factorizes it into three sub-matrices,

In (4), U and V are orthonormal matrices and � is a diagonal matrix whose non-negative coefficients σn are 
organized by convention in descending order. An intuitive illustration of this decomposition is given in Fig. 2. 
The distribution of singular values (also referred to as singular value spectrum) directly reflects the degree of 
correlation between the rows of the sensing matrix47. An ideal imaging system will ensure that each measure-
ment is a new (completely independent) source of information and that the sampling of the reconstructed image 
perfectly matches the resolution limit of this system. Under such ideal conditions, the SVD of the sensing matrix 
yields a decomposition with singular values of identical levels48, reflecting that H carries an optimal amount of 
information in relation to its dimensions. In practice, space and frequency dimensions are often oversampled 
in order to ensure a certain immunity to measurement uncertainties and additive noise. SVD is often used to 
study and improve the conditioning in inverse problems, limiting the amplification of subspaces that are weakly 
contributing and particularly sensitive to the impact of additive noise30,49.

Since the number of reconstructed voxels N is lower than the number of measurement modes M, there are N 
non-zero singular values σn of which K < N are deemed significant. The interaction with the scene to be imaged 
can thus be approximated as follows50:

where the measurement is approximated in the last step by a succession of K < N orthogonal masks applied to 
the scene, neglecting the contribution of the lowest singular values and their associated singular vectors un and 
v†n . Rather than interrogating N voxels of the scene, it is then possible to try to reconstruct only K coefficients 
corresponding to spatial correlations with the masks formed by the most significant singular vectors v†n.

(4)H = U�V†
.

(5)g = U�V†ρ + n

(6)=
N∑
n=1

σnunv
†
nρ + n

(7)g ≈
K∑

n=1

σnunv
†
n ρ,

Figure 2.   Top: Schematic representation of a measurement performed by a computational imaging system. 
The scene to be imaged ρ is multiplied by a pre-determined sensing matrix H . Linear combinations specific to 
the imaging system encode the spatial information into a set of measurements gathered in g . Using information 
from optical sensors (sensor fusion), the model can be reduced on the fly to select only a portion of the region 
of interest, represented by the red rectangle. Bottom: The SVD allows one to have a new perspective on this 
interaction. Each column of V represents a spatial mask whose degree of similarity to the scene ρ is estimated 
by correlation. Each of these masks is multiplied by a singular value that makes it possible to determine their 
level of contribution to the measured vector g , through linear combinations of columns of U . Once again, sensor 
fusion makes it possible to reduce the dimensions of the V matrix by selecting on the fly only useful portions of 
the region of interest.
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We now define a new matrix formalism of the imaging problem by selecting only the first K singular vectors, 
forming Us and Vs , and by creating a new diagonal matrix �s with the K most significant singular values. The 
measurement then takes the following form, revealing the principal components Pc = Us�s in the form of an 
operator interrogating α = V†

s ρ , a vector of K coefficients corresponding to independent linear combinations 
of the information of the scene to be imaged:

The matrix Pc has reduced dimensions M × K and inversion strategies similar to the ones already described 
for H can be implemented to obtain an estimate of the vector α̂ as follows:

Finally, taking advantage of the orthonormal properties of the Vs matrix (�Vi|Vj� = δij) , the scene estimation 
is straightforward:

Rather than storing the matrix H of dimensions M × N for the application of iterative techniques or its recon-
struction operator H+ for direct estimations, it is thus possible to store only two smaller matrices Pc (dimensions: 
M × K ) and Vs (dimensions: N × K ) or their respective reconstruction operators.

Having detailed the PCA-based dimensionality reduction, we now discuss how it can be combined with a 
priori knowledge from optical sensors to reduce the number of voxels to be reconstructed. Prior work32,38,39,51 has 
shown that based on optical sensors the surface boundaries of the object under consideration can be detected 
to define a volume around this surface that constrains the domain for microwave imaging (Fig. 2). Thereby, the 
number of voxels constituting the scene is reduced via support detection to No < N elements, determining a 
new formalism valid for a given position of the target:

It should be carefully noted that, as shown in Fig. 2, the pixel/voxel set No selected based on information from 
optical sensors depends directly on the target position and must be continuously updated from the initial set of 
N elements defining the entire imageable scene.

Only the Vs matrix is impacted by this support detection, reducing the number of reconstructed pixels from 
N to No . One can then estimate ρ̂o in this reduced volume as follows:

Our approach not only greatly reduces the memory consumption of an imaging system, but it also accelerates 
image reconstruction by reducing the number of required computational operations. We note that our approach 
remains fully compatible with the use of a priori knowledge from optical sensors which allows one to reduce 
the reconstructed domain in real time. In the following section, we validate our technique by studying a body 
scanner in a context oriented toward the detection of concealed threats.

Results and discussion
Considered imaging setup.  Figure 3 shows the imaging scenario that we consider in simulation. This 
imaging system consists of 16 transmit and 16 receive metasurface antennas ( 10× 10 cm2 ), arranged in a Mills-
Cross system layout. The latter represents a thinned array architecture while ensuring a similar k-space support 
extent in comparison to populating the entire aperture31,52. A human-sized object is placed at a distance of d = 1 
m from the aperture. The frequency-diverse imager operates at K-band frequencies (17.5–26.5 GHz), sampling 
the 9 GHz bandwidth at 101 frequency points which corresponds to a frequency interval of 90 MHz. We choose 
to work with 101 frequency sampling points based on the upper bound on the number of useful measurement 
modes that a frequency-diverse antenna with a finite quality (Q) factor can provide36, which is given by QB/fc ; 
for our system with antenna quality factor Q = 330 , bandwidth B = 9 GHz and central operating frequency 
fc = 22 GHz, the resulting upper bound is 135 modes. The synthesized frequency-diverse aperture thus pro-
duces M = 25,856 measurement modes. The initial region of interest contains N = 12× 118× 251 = 355,416 
voxels; based on a priori knowledge from optical sensors, we narrow the number of voxels to be reconstructed 
down to No = 16,292.

The gains achievable in numerical performance by applying the dimensionality reduction of the sensing 
matrix that we propose inherently depend on the correlations between the utilized measurement modes. The 
considered imaging hardware has been optimized to generate a quasi-random set of measurement modes, mean-
ing that an effort was made to keep the correlations low. This is evidenced by the singular value spectrum of the 
sensing matrix shown in Fig. 4 which is relatively flat. Therefore, gains in numerical performance achievable via 
dimensionality reduction of the sensing matrix are somewhat limited; nonetheless, even under these (for our 

(8)g ≈ Us�sVs
†ρ

(9)≈ Pcα.

(10)α̂ = Pc
+g.

(11)ρ̂ = Vsα̂

(12)≈ VsVs
†ρ

(13)ρ̂ ≈ ρ.

(14)gM×1 = HoM×No
ρoNo×1 + nM×1.

(15)ρ̂o = Vsoα̂.
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proposal unfavourable) conditions, it is possible to illustrate the benefits of the proposed method. We anticipate 
that systems with lower performance and consequently a higher level of correlation between each measurement 
may benefit more strongly from a greater model reduction with a minor impact on the quality of the recon-
structed images. The reconstructions in the following are performed on a computer with 128 Gb of RAM and 
an Intel Xeon processor with 10 cores running at 2.4 GHz (E5-2640 v4). To provide characteristic computation 
times that do not directly depend on the specifications of the utilized machine, we calculate ratios with respect 
to reference computation times evaluated with the full sensing matrix H.

In the following, two data processing scenarios are studied to illustrate the impact of the proposed technique 
on the quality of the reconstructed images and on the associated computation times. First, we consider a matched 
filter as example of a direct reconstruction technique; second, we consider the generalized minimal residual 
method (GMRES) as example of an iterative reconstruction technique.

Figure 3.   Synthesized composite frequency-diverse Mills-Cross aperture for imaging a human-sized object 
in the scene. The 16 metasurface antennas used in transmission (reception) are shown in orange (blue). The 
rectangular-shaped red volumetric frame represents the complete domain imaged by the H-matrix interrogating 
a set of N = 355,416 voxels. Based on a priori knowledge, No = 16,292 are retained (depicted by red cubes 
forming the human-sized object) in a defined volume encompassing the front surface of the target.
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Figure 4.   Singular value spectrum of the full H-matrix. Imaging results are presented in this section by 
selecting four subsets of principal components, represented by cases A, B, C, and D, corresponding to the 2500, 
5000, 7500, and 10,000 largest singular values, respectively.
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Case 1: direct reconstruction by matched filtering.  The first approach using a matched filter is based 
on a simple phase compensation of the sensing matrix. In the absence of any dimensionality reduction, image 
reconstruction by matched filtering takes the following form:

For reference, we show reconstruction results with matched filtering without the proposed PCA-based dimen-
sionality reduction in Fig. 5, illustrating the difference between reconstructing all N voxels or only reconstructing 
the selected subset of No voxels.

Matched filtering not only has the advantage of reducing the dimensions of the matrices manipulated for 
image reconstruction (in comparison to other techniques), but also of limiting the impact of clutter related to 
imperfect estimations outside of the reduced region of interest. Using this first simple reconstruction method 
as a benchmark, the advantages and disadvantages associated with PCA-based dimensionality reduction are 
now investigated.

A selection of four reconstruction examples with matched filtering is presented in Fig. 6, computed following 
Eqs. (10) and (11). Reconstructions are carried out by calculating ρ̂o(PCA,MF) = Vso Pc

†g . We vary the number 
of principal components (PC) in steps of 500. In each case, the Pc and Vs matrices can be pre-calculated and 
stored in memory to be used on different measurements g ; this reduces the computational burden during opera-
tion since for a given scenario it is not necessary to change the number of selected principle components. The 
reconstructed images are then compared to the reconstructions achieved with Ho

† . It is therefore intuitive that 
beyond a certain number of principal components, the intermediate factorization step ultimately requires more 
calculation than for a unique multiplication by the conjugate-transpose of the sensing matrix. This phenomenon 
is seen in Fig. 6 when more than 5700 PCs (22%) are selected, leading to an average computation time overcom-
ing the 196 ms threshold required to evaluate Eq. (16).

Example B in Fig. 6 requires a reconstruction time slightly below that of the reference case; upon visual 
inspection, the quality of the reconstructed image appears to be comparable to cases C and D which only use 29% 
and 38.7% of the principal components. We evaluate the MSE by taking the reconstruction with the Ho matrix 
as reference in order to assess the loss in image quality. Indeed, the gradient of the MSE curve seen in Fig. 6 is 
very low at the beginning. Thus, by moderately sacrificing the accuracy of the reconstructions it is possible to 
improve the reconstruction speed (and hence refresh rate) with our proposed approach.

An analysis of the achieved reduction of the computational burden for the considered matched-filtering 
technique is shown in Fig. 7 as a function of the number of retained principal components. The SMF curve cor-
responds to the ratio between the raw image-computation time using PCA-based dimensionality reduction of 
the sensing matrix relative to that using the full Ho-matrix. We also plot a second curve, SMFwmi , that in addition 
to the raw computation times accounts for the time it takes to extract the Ho or Vso sub-matrices from H or Vs , 
respectively. As seen in the figure, for the four considered truncations A to D, the gains in computation time 
are comparable with and without accounting for the time that the matrix-indexing takes. Matrix-indexing only 
begins to adversely affect the latency gain once a very large number of singular values is selected. Yet, as seen in 
Fig. 6, the absolute extraction times of the sub-matrices in our study for each new position of the target in the 

(16)ρ̂(MF) = H†g.

Figure 5.   Reference scene reconstructions with matched filtering without the proposed PCA-based 
dimensionality reduction of the sensing matrix. Left: Scene estimate ρ̂ computed for the entire region of interest 
( N = 355,416 voxels). Right: Scene estimate ρ̂o computed only for the voxels selected from optical sensors 
( No = 16,292 voxels). The colormap is given in decibels with normalized data.
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Figure 6.   Study of the impact of dimensional reductions by PCA for direct reconstructions by matched 
filtering. The upper left graph corresponds to the raw image computation time and the upper right one includes, 
in addition to the computation time, the time required to extract the rows corresponding to the reduced region 
of interest from the Vs-matrix according to the target position. The MSE is calculated with each reconstructed 
spatial reflectivity by considering the reconstruction with Ho as benchmark. The averaged computation times are 
represented for each reconstruction and the general trend is highlighted by means of a regression. The dashed 
red line represents the reconstruction time using the Ho

† matrix in both cases. An animation presenting the 
successive reconstructions carried out by gradually increasing the number of principal components is available 
in the Supplemental Materials: https​://bit.ly/3a7GF​Fy.
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Figure 7.   Reduction of the computational burden through PCA-based dimensionality reduction of the sensing 
matrix in direct reconstructions (matched filtering). We plot the reduction in computation time ( SMF , red) and 
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region of interest are not compatible with real-time applications to a moving scene. The reason for this is that we 
performed our study on a CPU with MATLAB which suffers from notoriously poor matrix-indexing efficiency. 
However, space-partitioning strategies associated with the use of GPUs and low-level programming can achieve 
a latency compatible with real-time applications32.

For direct reconstruction techniques like matched filtering, the PCA-based dimensionality reduction also 
yields a much more direct benefit related to memory usage. Real-time applications require the ability to store 
all matrices needed for computations in a fast memory; body-scanning applications are then particularly con-
strained by the volume of data used to calculate each image. The memory saving factor is defined by the following 
equation:

As a reminder, M corresponds to the number of utilized measurement modes, N to the total number of voxels 
and K to the number of selected principal components. We emphasizee that the total number of voxels N is taken 
into account in Eq. (17) so as to not restrict the study to a target specific sub-domain. Based on Eq. (17), we can 
determine a limiting value of K beyond which the memory consumption will exceed the one in case of using 
the entire sensing matrix, that is when GMF < 1 . The latter happens for K > M × N/(M + N) = 24,102 in the 
considered imaging scenario, equivalent 93% of the total number of principle components in the studied case. 
We present the evolution of the memory saving as a function of the number of retained principle components 
in Fig. 7.

The application of our PCA-based dimensionality reduction enabled memory-consumption saving factors 
of 9.6, 4.8, 3.2 and 2.4 in the considered cases A, B, C, and D, respectively. We used complex values coded in 
simple precision on 8 bytes such that H occupies more than 68 Gb, which justifies the usefulness of the proposed 
approach. In conclusion of this first study on a direct reconstruction technique, we have evidenced the possibil-
ity to slightly accelerate the image reconstruction (on average about 148 ms vs 196 ms for the reference) while 
simultaneously significantly reducing the RAM consumption by a factor of 4.8—at the price of a minor image 
degradation that does not hamper potential security-screening applications.

Case 2: iterative reconstruction with GMRES.  Reconstructions by matched filtering have the advan-
tage of being fast; however, they do not allow for the compensation of magnitude terms. More advanced iterative 
techniques that improve the reconstruction quality can be particularly slow, especially when the dimensions of 
the problems to be treated are large. The PCA-based dimensionality reduction is now applied to this new context 
of iterative techniques to study the possible savings in computation time and memory consumption. Specifically, 
the generalized minimal residual method (GMRES) is applied, having yielded good performances in previous 
work30,32. Since this technique requires the use of a square sensing matrix, the Pc† matrix is multiplied to each 
member of (8):

By minimizing ||Pc†g − Pc
†Pcα||2 , this iterative approach enables the reconstruction of the vector α̂ start-

ing from a matched-filtering estimate Pc†g and with use of the correlation matrix of the principal components 
Pc

†Pc . In a similar way to the first study, the performances are studied for a set of reconstructions carried out 
using different amounts of leading singular values. Four examples are more carefully investigated by displaying 
the reconstructed images (Fig. 8).

Compared to reconstructions performed only by matched filtering, magnitude-term compensation provides 
more accurate estimates of the imposed constant reflectivity function over the entire target. However, the specular 
nature of the interaction of waves with the target tends to create shadows that cannot be removed unless the target 
is illuminated from other incident angles. This physical limitation, also affecting conventional imaging systems, 
can nevertheless be mitigated by merging a set of reconstructions from different perspectives32,53.

As in the previous section, we plot the convergence of the reconstruction quality in terms of the MSE for 
the use of different amounts of leading principle components in Fig. 8. The result obtained with only 6.8% of 
the principal components (case A) makes it possible to distinguish the first main structures of the image but 
still remains corrupted by the lack of information. The addition of information to reach 22.7% of the principal 
components allows the reconstruction of a much more exploitable image revealing significantly more detail. 
Once again, it is difficult to discern upon visual inspection the difference between the reconstructions carried 
out with 43% and 100% of the principal components.

The effect of the PCA-based dimensionality reduction on the calculation time depends again on the number of 
selected principal components. Although the results obtained with 100% of the principal components are identi-
cal to those obtained by applying the same technique with the H matrix, the PCA-based approach still requires in 
this case an additional calculation step justifying a longer time beyond a certain number of principal components.

As before, we also compare the memory consumption with and without dimensionality reduction. For 
this purpose, the ratio of matrix sizes required to reconstruct images from frequency measurements alone 
is calculated for the iterative GMRES technique. If the full sensing matrix is used by GMRES, the quantity 
||H†g −H†H ρ||2 is minimized, which requires storage of both H and additionally the correlation matrix H†H . 
The reduction in memory usage achieved by PCA-based dimensionality reduction is thus given by

(17)GMF = size(H)

size(Pc)+ size(Vs)
= M × N

(M + N)× K
.

(18)Pc
†g ≈ Pc

†Pcα.

(19)GGMRES =
size(H†H)+ size(H)

size(Pc
†Pc)+ size(Pc)+ size(Vs)
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Our dimensionality-reduction technique hence enables us to limit memory usage as long as 
K < (

√
M2 + 5N2 + 6MN − (M + N))/2 , or 223,914 principal components in this study (impossible case 

here since we only dispose 25,856 singular values). The memory gain GGMRES , which is thus always greater than 
1, is plotted in Fig. 9.

Having considered a more computationally intensive image reconstruction based on an iterative technique in 
this section, the utility of the proposed approach was even more evident. For example C (see Figs. 8 and 9), the 
calculation time is divided by a factor of 3.5 and the RAM consumption by a factor of 46.5—yielding an image 
with a MSE of −20.3 dB. The lowest achievable MSE of −24.4 dB is only achieved if all principle components 
are used.

Finally, we use the GMRES results to illustrate the impact of the non-orthogonality of Vso . In order to avoid 
a dependence on the position of the target within the region of interest, the singular vectors Vso are extracted 
from the singular vectors Vs corresponding to the full sensing matrix H for the entire region of interest. By 
limiting the support of the reconstruction, the orthogonality of the Vso sub-matrix is not guaranteed, especially 
since the number of reconstructed pixels may be greater than the number of selected principal components. 
This limitation is illustrated in Fig. 10 by comparing the result obtained with GMRES using the matrix Ho and 
the result obtained with GMRES using all principal components in the PCA-based approach. To mitigate the 
negative effect of this spatial filtering, one could compute the pseudo-inverse of Vso for each new target position. 
However, this approach would require an additional calculation step for each reconstructed image, limiting the 
achievable refresh rate of the system under consideration.

Effects of measurement noise.  This study concludes with an analysis of the impact of thermal noise 
usually associated with the use of active receivers. Previous work has highlighted the usefulness of PCA in the 
identification54 and filtering55 of noise components of signals in various imaging applications such as X-ray 

(20)= (N +M)× N

(K +M + N)× K
.
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Figure 8.   Study of the impact of dimensional reductions by PCA for iterative reconstructions by the general 
minimum residual method (GMRES). The upper left graph corresponds to the raw image computation time 
and the upper right one includes in addition the time required to extract the rows corresponding to the 
reduced region of interest from the Vs-matrix according to the target position. The MSE is calculated with each 
reconstructed spatial reflectivity by considering the GMRES reconstruction with the matrix Ho as benchmark. 
The averaged computation times are represented for each reconstruction and the general trend is highlighted 
by means of a regression. The dashed red line represents the reconstruction time with the Ho matrix in both 
cases. An animation presenting the successive reconstructions carried out by gradually increasing the number of 
principal components is available in the Supplemental Materials: https​://bit.ly/2PuiW​Yl.
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tomography56 and magnetic resonance imaging57. The decomposition of linear operators by PCA facilitates the 
study of noise corruption, revealing its impact on the weakest principal components in a degree directly depend-
ent on the signal-to-noise ratio (SNR). The elimination of these weakest components thus leads to the suppres-
sion of noise subspaces, implicitly realizing a regularization by truncated singular value decomposition58.

The previous sections have highlighted the beneficial effects of dimensionality reduction of sensing matrices 
on image computation times and memory consumption. As a continuation of these efforts, it is finally proposed 
to study the effects of additive measurement noise on the proposed PCA-based technique. Following the model 
given by Eq. (2), thermal noise is added to the measurements, following a Gaussian distribution of zero mean 
and standard deviation σn such that n ∼ N (0, σ 2

n ) . The noise standard deviation is determined to reach an 
objective SNR from the measured signal power. It will be considered in the following that the sensing matrix 
can be perfectly determined and will thus be noise-free. This assumption seems reasonable insofar as this matrix 
is measured in a preliminary stage without any specific time constraint, opening the possibility of averaging 
measurements and of increasing integration time of each acquired sample.

For a series of SNRs of noise-corrupted measured signals, a matched-filtering reconstruction is performed. 
The figure of merit is again defined as the MSE for each estimate, considering the noise-free reconstruction with 
Ho

† as a reference. For the different considered SNRs, 10 measurements are simulated to compute the mean and 
standard deviation of the MSE in each case. Figure 11 displays the average and standard deviation of the MSE 
for four considered SNRs as a function of the number of retained principal components. For reference, the MSE 
achieved with the full sensing matrix Ho is also indicated.
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Figure 9.   Reduction of the computational burden through PCA-based dimensionality reduction of the sensing 
matrix in iterative reconstructions (GMRES). We plot the reduction in computation time ( SGMRES , red) and 
memory usage ( GGMRES , blue). The red dashed curve denoted by SGMRESwmi additionally accounts for the 
impact of H and Vs matrix indexing times (wmi stands for “with matrix indexing”).

Figure 10.   Comparison of GMRES-based reconstructions performed using the PCA-based technique with all 
principal components (left) and using the Ho matrix (right).
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As expected, the quality of the PCA-based reconstructions eventually converges to that of reconstructions 
based on the full sensing matrix Ho once a sufficient number of principal components is retained. The latter 
depends on the SNR of the measurements. Indeed, as the noise level increases, a growing number of subspaces 
are corrupted, reducing the overall number of uncorrupted subspaces in Ho that can contribute new information 
to the reconstruction. These results lead to the conclusion that the proposed PCA-based technique is particularly 
suitable for the reconstruction of images from measurements with unfavorable SNR. Under such conditions, 
PCA-based reconstructions can indeed be faster and less memory-intensive with little to no impact on the quality 
of the resulting images compared to results obtained from a full sensing matrix.

Conclusion
Since computational imaging systems typically cannot ensure perfect spatial and spectral orthogonality of the 
utilized measurement modes, there is usually a non-negligible level of correlation between the obtained measure-
ments. These correlations imply that upon a change of basis via singular value decomposition, many components 
of the sensing matrix contribute only weakly; neglecting such insignificant components thus entails only a minor 
deterioration of the imaging quality but offers significant reductions in memory usage and enhancements in 
computation speed. Although the suppression of the least contributing principal components generally results 
in a loss of quality of the reconstructed images, this study also highlighted that many of these suppressed com-
ponents cannot contribute to the reconstruction under realistic operating conditions due to the presence of noise 
anyway. Our study illustrated the proposed dimensionality reduction of the sensing matrix with a case study of a 
specific computational imaging system based on a Mills-Cross aperture composed of metasurface antennas and 
a complex target (a human), considering both direct and iterative image reconstruction techniques. The finite 
spatial extent and intrinsic losses of the considered metasurface antennas result in notable correlations between 
the utilized measurement modes. Our results offer the possibility to trade-off memory needs and computation 
time with the image reconstruction quality, offering a new degree of freedom in computational imaging to place 
the emphasis on either reconstruction quality or numerical performance. Our method can readily be applied to 
other imaging systems and contexts that rely on sensing matrices with inevitable correlations36,59. Finally, we note 
that the reconstruction techniques used in this paper are agnostic to the scene to be imaged, thus imposing no 
restrictions on the nature or on the sparsity of the region of interest. Future efforts may investigate whether the 
presented dimensionality reduction technique can be combined with structure-aware imaging algorithms41–43,60.
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