
HAL Id: hal-03195756
https://hal.science/hal-03195756v2

Preprint submitted on 15 Apr 2021 (v2), last revised 16 Apr 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparing posit and IEEE-754 hardware cost
Luc Forget, Yohann Uguen, Florent de Dinechin

To cite this version:
Luc Forget, Yohann Uguen, Florent de Dinechin. Comparing posit and IEEE-754 hardware cost.
2021. �hal-03195756v2�

https://hal.science/hal-03195756v2
https://hal.archives-ouvertes.fr


1

Comparing posit and IEEE-754 hardware costs
Luc Forget, Yohann Uguen, Florent de Dinechin

Univ Lyon, INSA Lyon, Inria, CITI, France
first-name.last-name@insa-lyon.fr

Abstract—The posit number system is an elegant encoding
of floating-point values proposed as a drop-in replacement for
the IEEE-754 standard. On the one side, posits sacrifice some
of IEEE-754 complexity (directed rounding modes, infinities,
NaNs). On the other side, their variable-size exponent and
significand fields require extra encoding and decoding steps, and
their higher best-case accuracy requires wider data-paths. The
posit encoding/decoding overhead can be reduced by keeping
posits decoded in processor registers, with the operators suitably
modified to avoid double-rounding issues.

An unbiased quantitative comparison of the hardware costs
of these two encodings is based on an analytical study and an
open-source C++ library suitable for High-Level Synthesis. This
library offers posit and IEEE-754 parametrized operators for
addition/subtraction, multiplication, and exact accumulation, all
developed with the same high design effort and fully compliant
to their respective standards.

This library improves the state of the art of posit hardware
arithmetic, and still, IEEE-754 operators remain between 30%
and 60% faster and smaller than their posit counterparts.

I. INTRODUCTION

The set of real numbers is infinite and uncountable. A
convenient way to manipulate real numbers in a computer
is to define a code size N (a number of bits), then select
a finite subset of the real numbers of at most 2N elements
to be encoded on the 2N available binary codes. Both the
subset and its encoding must be be carefully selected so that
the computations can be efficiently implemented out of the
machine codes. When the exact result of a computation does
not itself belong to the representable subset, a convention
(rounding and overflow management) specifies what to do.

The mainstream example of such a computer-oriented en-
coding of real numbers is the IEEE-754 floating-point stan-
dard [1]. It defines number sets and encoding schemes for
N ∈ {16, 32, 64, 128}, and a versatile set of rounding and
overflow conventions. A recently introduced alternative, for
comparable applications, is the posit encoding scheme [2],
[3]. It is presented as a drop-in replacement of the IEEE-
754 formats providing better performance and accuracy for
the same N thanks to a more efficient encoding [2].

Many works have compared the accuracies of posits and
IEEE floats [4], [5], [6], [7]. The focus of the present article
is the comparison of their hardware implementation cost.

The method for this comparison has been to develop an
open-source1, fully parametric library of hardware operators
called MArTo that covers both IEEE-754 operators and posits
of arbitrary sizes, such that posits can effectively be used as
a drop-in replacement for IEEE floats. This tool will allow

1https://gitlab.inria.fr/lforget/marto

the community to assess their relative speed and cost, just
like software libraries such as SoftFloat and SoftPosit have
enabled like-for-like comparisons in accuracy.

To make this comparison as unbiased as possible, all the
operators are developed with similar design effort using the
same core library of fixed-point components. The common
design goals are 1/ full standard compliance, 2/ combinatorial
designs that can be pipelined for higher frequency, and 3/ area-
oriented designs. Classical techniques that improve latency at
the expense of area, such as dual-path floating-point addition
[8] or hardware speculation [9] are not considered here – as
the reader will see, they can benefit posits as well as IEEE.
However, the datapath sizes are carefully minimized.

The IEEE-754 side of MArTo is a competent reimple-
mentation of the state of the art and will be presented very
briefly. Conversely, posit literature is younger, and this article
discusses in detail all the choices made for posit operators.

The posit system is a clever encoding of a selected subset
from a larger set of floating-point numbers. To compute on
posits, one must first decode them into this larger set [10],
[11], [12]. This set is defined formally in Section II, along with
an hardware-efficient encoding called the Posit Intermediate
Format (PIF).

Section III defines two alternative approaches that can be
used in a Posit Arithmetic Unit (PAU): one that performs posit
encoding and decoding for each operation, and one where the
posit registers hold already decoded PIF data. This second
approach reduces the latency of the operations, but requires
larger registers, and more complex rounding hardware to be
bit-for-bit compatible with the first.

Section IV describes in detail all the hardware blocks that
constitute a PAU in each of these alternatives. Section V
discusses the implementation of exact accumulators [13] for
posits and floating-point.

Finally, Section VI evaluates and compares the costs and
delays of posit and IEEE-754 operators on FPGA hardware.
To ensure an unbiased comparison, we first show that the
proposed posit implementation improves the state of the art,
while the IEEE-754 operators compare favorably to it.

II. ENCODINGS OF BINARY FLOATING-POINT NUMBERS

A. IEEE-754 binary floating-point numbers
An IEEE-754 binary encoding scheme [1] is defined by two

positive integers:
• We, the exponent field width and
• Wf , the fraction field width.

A value is represented by a bit vector of size 1 + We + Wf ,
composed of a sign bit s, an exponent field e of size We, and
a fraction field f of size Wf .

https://gitlab.inria.fr/lforget/marto


2

When the bits of e are not all ones or all zeros, the encoding
represents a normal number with the value

x = (−1)s × 1.f × 2e−Emax (1)

where e is interpreted as a positive binary integer and Emax =
2We−1−1. The constant ‘1’ before the fractional point ensures
the unicity of the representation.

When all the bits of e are zeroes, this implicit leading 1
is replaced by a zero (subnormal numbers), and the value
represented is interpreted as

x = (−1)s × 0.f × 2Emin (2)

with Emin = 1−Emax. Zero is encoded as a subnormal num-
ber with all fraction bits set to zero, entailing the controversial
issue that there are two encodings for zero, differing on the
sign bit.

The encodings when all the bits of e are ones are reserved
for special non-numerical values: infinity if all fraction bits
are zeros, or Not a Number (NaN) if at least one fraction bit
is one. The infinity values are overflow markers used when
the result of an operation is greater than the greatest normal
number. NaNs represent the output of an illegal arithmetic
operation.

B. The posit encoding

The posit number system [2] also encodes floating-point
values. A posit format is defined by two positive integers:
• the word size N ,
• the exponent scale size, Wes

A value x is represented by a bit vector of N bits (see
Figure 1). It starts with the sign bit s. Next comes the regime,
a variable-length field whose length encodes a coarse grain
exponent as detailed below. Then follows the exponent scale
field, es, of at most Wes bits. The remaining bits (if any)
constitute the fraction part.

s regime es f
0 1 1 0 0 1 0 1

s regime es
0 1 1 1 1 1 0 1

Fig. 1: Two posit decomposition examples (N = 8, Wes = 2)

The regime field consists of a sequence of l identical bits
b, and stops at the first bit different from b (Figure 1) or the
end of the word. The value eh encoded by the regime is −l
if the bits of this sequence are equal to s, otherwise l− 1. In
the encoding of Figure 1, top, the sequence consists in two
1s: l = 2, and the sign is 0, therefore eh = 1. The bits of the
es field are xored with s to obtain the lower exponents bits
el. Finally, the exponent E is the concatenation of eh and el:

e = 2Weseh + el (3)

In our example, e = 101 as el = 01.

The remaining bits encode the fractional part f of the
significand. An implicit leading bit i is obtained by negating
s, here i = 1. Finally, the value of the posit is:

x = 2e × (i.f − 2s) . (4)

The value represented by the top example of Figure 1 is

21012 × (1.012 − 2× 0) = 25 × 1.25 = 40.

Note that the regime can extend to the point where there
is no room for f or es. In this case, the shifted out bits are
assumed to be zeros. For instance, in Figure 1, bottom, the
length of the regime is l = 5, hence eh = 4. The exponent shift
value is el = 102 and there is no fraction bit. The represented
value is then

2100102 × (1.0− 2× 0) = 1× 210 = 1024

Posit formats admit two special values, 0 and Not a Real
(NaR). For encoding 0, all the posit fields are null, including
the implicit bit. NaR is the equivalent of IEEE-754 NaN (Not
a Number). Its encoding only has the sign bit set. Overflows
are not encoded: posit arithmetic silently saturates instead.

C. Posit smallest floating-point superset

The sizes of exponent and fraction in a posit value depend
on the regime size. However, the hardware bit-widths cannot
change dynamically, they have to be designed for the worst
case. As (4) shows, posits are an encoding of floating-point
numbers. This worst case therefore corresponds to the smallest
fixed-precision floating-point format that is a superset of
posit numbers. To match (4), this floating-point format only
includes normal numbers with fractions expressed in two’s
complement.

The parameters for the smallest fixed precision floating-
point superset are derived as follows. The the size Wf of a
two’s complement fraction is the maximum precision of a posit
value, obtained for the minimum length l = 2 of the regime,
therefore

Wf = N − (3 + Wes) (5)

The maximal exponent is obtained when the regime length
is N − 1. In this case, all the es and f bits are pushed out by
the regime. Hence, the maximum exponent value is

Emax = (N − 2)2Wes (6)

As the opposite exponent can also be reached, the number of
bits needed to store the exponent is

We = 1 + dlog2

(
(N − 2)2Wes

)
e

= 1 + Wes + dlog2(N − 2)e (7)

The Wes parameter allows trading between the range of the
format and its maximal precision. The posit draft standard [3]
defines four formats with an encoding size N of 8, 16, 32 and
64 respectively, such that

Wes = log2(N)− 3 for standard posits. (8)

These formats are used for evaluation in this paper, although
the MArTo library is fully parameterized in N and Wes.



3

TABLE I: Parameters of standard posit formats.

Standard posit smallest FP superset quire internal formats

N Wes Emax We Wf Wq Wpif Wupif

8 0 6 4 5 32 12 14
16 1 28 6 12 128 21 23
32 2 120 8 27 512 38 40
64 3 496 10 58 2048 71 73

Table I gives, for each of the standard posit formats, the
exponent and fraction sizes of the smallest floating-point
superset.

D. Quire

A posit-compliant environment must also provide a quire,
a fixed point accumulator large enough to allow for the exact
accumulation of posit products. It is based on the floating-point
Kulisch accumulator [13].

The quire bits must cover all the possible products, with
exponents from Pmin = −2× Emax to Pmax = 2× Emax. A
positive number of carry guard bits C can be added to allow
the sum of up to 2C maximal magnitude products before an
overflow occurs. The width of such a quire is then

Wq = Pmax + C − Pmin + 1 (9)

From (6) and (8), one can see that for standard posit formats,
product exponents range from −N2−2N

4 to N2−2N
4 . Hence,

without carry guard bits the quire width would be Wq = N2

2 −
N + 1. The standard motivates that the quire should easily be
transferred to and from memory. To do so, it should have a
size which is a multiple of 8. With the sign bit and the addition
of C = N − 2 carry guard bits, this goal is attained. Hence
the width of the quire is

Wq =
N2

2
for standard posits. (10)

E. The hardware-friendly Posit Intermediate Format recoding

With this smallest posit FP superset, it becomes possible
to define a new intermediate encoding for numbers in this set
that is more adapted to hardware arithmetic operations, in the
sense that all its fields have a fixed width. In this work, this
encoding scheme is denoted Posit Intermediate Format or PIF.

Figure 2 highlights the role of this format in an end-to-
end posit arithmetic operator. Posits are first decoded to PIF.
As PIF can represent all posit values, this operation is exact.
Then, the arithmetic operation is performed on PIF data.
Finally, the result is encoded back to posit. Since rounding
(to an exponent-dependent position) must be performed in
this encoding step, the output format of the PIF operation
must be an Unrounded PIF, which is a PIF extended with
all the additional information needed for standard-compliant
rounding, detailed below in Section II-F.

We believe the 3-step approach of Figure 2 is inevitable
for stand-alone posit operators (except for very small formats
where a simple tabulation may be used). It is followed (more
or less explicitly) by leading hardware posit implementations
[10], [11], [12].

PIF
floating-point

operation

posit to PIF posit to PIF

positN positN

Encode to posit
and round

UPIF

PIF PIF

positN

Fig. 2: Architecture of a posit operator in a PAU that uses
posit registers and posit-to-posit operators.

The PIF should be designed with two objectives in mind:
• Posit to PIF conversion should be as simple as possible,
• Arithmetic operations should be efficiently computed on

this representation.
Because of the second objective, PIF is a simple normalized

floating-point representation that uses the parameters of Ta-
ble I. To address the first objective, the proposed PIF encodes
both the exponent and significand in two’s complement (where
IEEE-754 uses a biased encoding for exponent and a sign-
magnitude representation for the significand). This avoids
two’s complement to sign-magnitude conversions (which may
cost a carry propagation). It also has the side effect of slightly
simplifying PIF addition of values with opposite signs.

Two’s complement encoding for a normalized significand
consists of a sign bit s and a fraction f on Wf bits. The two’s
complement significand value is then

v = −2s + s̄.f . (11)

However, (11) does not allow the encoding of zero. The
proposed PIF encoding scheme introduces an extra bit i which
is one if and only if the represented value is strictly positive.
The significand value becomes

v = −2s + i.f . (12)

Zero is the only posit value whose PIF representation has
both s and i set to zero. This enables efficient zero detection
in arithmetic operators. For non zero values, exactly one of s
or i is set.

PIF also has an extra isNaR bit, set to one if and only if
the represented value is NaR. An alternative option could have
been to use a non-posit value, for instance with both s and
i set to one. This would trade one bit of representation for a
few gates of encoding/decoding logic.

To summarize, the PIF encoding scheme is composed of the
following fields:
• a isNaR flag,
• the sign bit s,
• the exponent e stored in two’s complement on We bits,
• the weight one bit i,
• the fraction bits f on Wf bits.



4

The encoded value is

v =

{
NaR if isNaR is one
(−2 + i + 0.f)× 2e otherwise

(13)

F. Unrounded PIF encoding of the result of basic operations

In the general case, the result of an operation on two
PIF values is not exactly representable as a PIF, and must
be rounded. As PIF is a floating-point format, we may use
textbook techniques [14], [8] for this. For the basic operations
(addition, multiplication, division and square root) the exact
result can always be represented on at most 2Wpif bits, then for
the purpose of rounding the extra Wpif bits can be condensed
into only two bits:

• an extra fraction bit at the LSB, called the round bit;
• a sticky bit, set if and only if the exact value is strictly

greater than what is represented by the fraction f ex-
tended with the round bit (but still smaller than the next
representable value). In other words, a sticky bit of zero
means that the value represented by the extended fraction
is exact.

We define the UPIF (Unrounded PIF) format as a PIF with
these two extra bits.

The floating-point literature often uses a third additional
bit (called the guard bit), useful in the case when a 1-bit
normalization of the significand may be needed. In the big
picture of Figures 2 and 3 , the PIF operator is in charge of
this normalization, so no guard bit is needed in UPIF.

In this paper we only demonstrate the use of the UPIF
format on addition/subtraction and multiplication, but it is
equally suitable for division and square root. Digit recurrence
algorithms [14] compute a remainder along with the quotient
or square root, out of which the round and sticky bits can be
computed. Multiplication-based algorithms [14], [8] also can
output their result in UPIF format – for instance by computing
the remainder.

Table I gives the width for PIF and UPIF associated with
standard posit formats.

G. Saturation management

Posit arithmetic does not offer an overflow detection mech-
anism to the user. When the exact result of an operation
is bigger than the biggest representable value, this biggest
representable value is returned.

This saturation could in principle be handled in a generic
way in the “Encode to posit and round” block of Figure 2, or
in the “UPIF inplace round” block of Figure 3. However, as
each operation leads to different overflow situations, it is more
efficient to manage saturation in each PIF operator. Indeed, the
UPIF specification exposed previously assumes that saturation
has been performed by the operator, otherwise more bits
would be needed. Another advantage is that some saturation
situations may be detected in parallel with computation, thus
reducing latency.

III. ALTERNATIVES FOR A HARDWARE POSIT UNIT

This section describes the two options considered in this
article for a processor supporting posit arithmetic. The detailed
study of the second option is, to the best of our knowledge,
novel. The purpose of this section is to define the hardware
components that will be described in detail in Section IV.

A. Posit-to-posit operators

Figure 2 shows that building posit-to-posit operators con-
sists mainly in three steps:

1) decoding the posit representation to PIF,
2) performing the computation on PIF, and
3) encoding the result back to the nearest posit value.
Here, the middle step is essentially a floating-point operation

on normal numbers, a function that is present in any IEEE-
754 operator. It may therefore build upon the rich floating-
point literature for many tricks and trade-offs between latency
and area, for instance dual-path architectures for addition, or
injection rounding for multiplication. This is not the subject of
the present article, since posit and IEEE-based operators are
equivalent from this point of view.

What is interesting is a comparison of posits and IEEE-754
overhead with respect to this common core processing normal
floating-point numbers.

The main overheads of IEEE-754 are support are the
encoding, decoding, and management of special values, which
is relatively cheap, and subnormal support, which may be quite
expensive.

The main overheads of posits are the slightly larger datapath
of the core unit, summarized in Table I, and the two conversion
steps of Figure 2. As these encoding/decoding blocks involve
leading zero counting (LZC) and shifting, they could in
principle be compared to hardware subnormal support in an
IEEE-754 multiplier (subnormal support in addition is com-
paratively lighter [8]). However, in an IEEE-754 multiplier,
only one subnormal input needs to be considered (the product
of two subnormals is tinier than the tiniest representable
value), whereas both posit inputs must be converted. Besides,
subnormals are part of the floating-point encoding itself, which
allows to hide their latency overhead by speculation. To
the best of our knowledge this is not possible with posits.
Finally, the LZCs and shifters in IEEE-754 only operate on
significands, not on full words.

Expressed differently, the overhead of subnormals is due to
the variable position of their rounding bit with respect to the
leading 1. From this point of view, all posits are as bad as
IEEE-754 subnormals.

B. Posit as a memory-only encoding

An alternative architecture to limit the latency impact of the
posit encoding and decoding steps consists in keeping posits
decoded in the processor: the posit format is used as a storage-
only encoding. This architecture is depicted on Figure 3. The
decoding and encoding blocks are placed on the memory path,
while values in CPU registers are PIF-encoded.

Since multiple operations may occur before the result is
written back to memory, rounding and encoding can no longer



5

positN

posit to PIF

PIF

(a) Memory read

PIF
floating-point

operation

PIF PIF

UPIF
inplace round

UPIF

PIF

(b) Arithmetic operation

PIF

PIF to posit

positN

(c) Memory write

Fig. 3: Architecture of a PAU using posits as a memory-only
encoding, with PIF registers and PIF-to-PIF operators.

be fused. To ensure standard compliance, posit rounding must
occur after each computation, in such a way that the PIF result
exactly represents result of the operation defined by the posit
standard. This is the role of the “UPIF inplace round” box.

In other words, in this architecture, the two conversion
boxes, “posit to PIF” and “PIF to posit” must be exact, while
the rounding and saturation logic must still be performed after
each operation. This will still involve large shifters, however
this logic is potentially cheaper than classical rounding: since
the PIF is kept normalized, what must be shifted is masks
and rounding bits, and these bit vectors that are simpler (more
structured) than arbitrary significands. Details will be given in
Section IV-C.

IV. POSIT HARDWARE DETAILED ARCHITECTURE

This section details the implementation of posit operators
components provided by the MArTo library. The provided
schematics aim at representing the usage of high level prim-
itive inside operator function. As such, it should be easy for
the interested reader to follow and check the library code. In
case of discrepancy, the code is the reference.

A. Posit to PIF decoder

The proposed posit decoder is depicted in Figure 4.
The “LZOC + Shift” block (LZOC stands for “leading

zero/one counter”) counts the range bits while discarding them,
resulting in a normalized fraction.

The most significant exponent bits eh are computed out of
the range count. If the leading bit is equal to s, then eh =
−l(= l̄ + 1); else eh = l − 1. An optimization is to skip the
first range bit when counting, effectively computing l′ = l−1.
Indeed, if the first range bit is equal to s, eh = l′ + 1+1 = l̄′,
or eh = l′ otherwise. This high bit decoding method improves
the state of the art by avoiding an adder to compute −l. The
exponent least significant bits el are obtained by xoring with
s the Wes first bits of the aligned fraction.

The PIF exponent e is the concatenation of eh and el (or
is equal to eh if the corresponding format has Wes = 0). The
decoder is slightly simplified with Wes = 0 posit formats, as it
saves the XOR gates labeled ∗ on Figure 4. The PIF fraction f
consists of the Wf least significant bits of the aligned fraction.

An OR reduction over the N − 1 rightmost bits of the
posit input is used to detect both zero and NaR values, in
conjunction with s.

The weight 0 significand bit i is computed out of s and the
detection of zero value.

The most expensive parts of this architecture are the “OR
reduce” over N − 1 bits to detect NaR numbers, and the
combined leading zero/one counter and shifter.

It is interesting to compare this conversion to the decoding
of special cases from IEEE-754 floats (which similarly must
be performed on the inputs). There, one OR reduction on the
exponent bits is needed to detect subnormals, another one on
the significand bits is needed to detect zeros, and two similar
AND reductions are needed to detect respectively NaN and
infinities. The two OR reductions operate in total on the same
width as the posit OR reduction, so the cost is the same. Then,
subnormal management requires one LZC and one significand
shifter. The latter is smaller than the full-word shifter of a posit
decoder, compensating the overhead of the separate LZC.

In our combined LZOC + shifter implementation, the multi-
plexer at step i is driven by an AND reductions on 2i bits2. The
combined sizes of these AND reduction is N , again matching
the AND of IEEE-754.

In summary, the decoding of one posit is very comparable to
the decoding of an IEEE-754 with subnormal normalization.
This will be supported by the experiments in Section VI.

B. UPIF to posit and PIF to posit

The complete UPIF to posit encoder architecture is shown
in Figure 5.

First, the rounding bit is appended to the fraction, and
the range is computed then prepended. The Shifter+Sticky
component then simultaneously right-shifts this word and ORs
the shifted-out bits into a unique sticky bit, which is then ORed
to the PIF sticky bit to get the final sticky bit.

2Asymptotically faster implementations of LZC exist [8], but the one chosen
here is better on the FPGAs used for our numerical experiments, thanks to
very fast AND/OR reductions through the fast-carry logic.

positN

LZOC + Shift

s

/ N − 1

OR reduce

/ N − 1 / N − 2

eh

l′

∗

el

/ N − 3

/ Wes

f

/Wf

e

/ We

isNaR is

Fig. 4: Architecture of a posit to PIF decoder.



6

esisNaR f round sticky

Shifter + Sticky

∼

/ We
/

Wf

/ Wf + 1

/ N

range

/
Wes

/ Wes + 2

01 10

/
dlog2(N)e

/We −Wes

(M
SB

)

/N + 1 sticky

rnd

LSB

+

round up

+1

/N − 1

/N − 1

/ NNaR

positN

Fig. 5: Architecture of a UPIF to posit encoder.
The PIF to posit encoder is similar, with the round and sticky
logic (including the final adder) removed.

Finally a round-up bit is computed (the right AND of
Figure 5 implementing round to nearest, and the left AND
the “ties to even” rule), and added to the final encoding.

The case Wes = 0 requires additional logic (not shown in
Figure 5) to detect and forbid a special case of rounding up
that would cause the output to round to NaR or 0.

PIF to posit conversion (as in Figure 3) is simpler: it is exact,
thus avoiding the need for the rounding logic. Its complexity
is delegated to the UPIF inplace rounding architecture which
we detail now.

C. UPIF inplace round

When working with posit as a memory format (Figure 3),
the rounding and encoding step are distinct. Indeed, the UPIF
result must be rounded as if it had been converted to posit,
then converted back to PIF.

One option would indeed be to shift the significand, round
it, then shift it back. But then there would be no latency
advantage. A cheaper alternative is to shift the rounding bit
instead, while masking out significand bits that are lost to
rounding.

In details, the last range bit, the es bits, and the fraction are
concatenated, giving a posit stem of width Ws = 1+Wes+Wf .
Then, four masks of Ws bits are computed out of e:
• a round mask, with only the rounding bit set,
• a guard mask, the round mask right-shifted one bit,
• a sticky mask, with all bits below the guard bit set,
• a keep mask, with all bits above the round bit (included)

set.

isNaR0 isNaR1 e0 e1 i0s0 f0 i1s1 f1

>

−

shifter+sticky

/Wf + 2

/Wf + 4

00

/
We + 1

+

/ Wf + 5
/

Wf + 2

LZOC + Shift

/
Wf + 3

−
/

dlog2(Wf + 4)e

/ We

SignificandeisNaR

isNaR e fi round sticky

/ Wf + 4

/
3

/ Wf + 5

/
2 /

1

s

Fig. 6: Architecture of a PIF adder. Exponent comparison
block denoted with “>” also takes the operand i and s bits
to detect zero values, but wires have been omitted here for
clarity.

These masks could be constructed by dedicated shifters,
but our current implementation retrieves them from Look-
Up Tables (LUTs) inputting the exponent. This is extremely
efficient on the LUT-based FPGAs on which we conduct our
quantitative evaluation. When Wes = 0, the same precaution
as for the fused round/encode operator should be taken.

D. PIF floating-point operations

The architectures of the PIF adder/subtracter (Figure 6) and
multiplier (Figure 7) first compute the exact result (top part
of the figures) using the transposition to the PIF format of
classical floating-point algorithms.

Although the adder is a single-path architecture [8], its data-
path can be minimized thanks to the classical observation that
large shifts in the two shifters are mutually exclusive. Indeed,
the normalizing LZOC+Shift of Figure 6 will only perform
a large shift in a cancellation situation, but such a situation
may only occur when the absolute exponent difference is
smaller than 1, which means that the first shift was a very
small one. Conversely, when the first shifter performs a large
shift, the rightmost part of the significand can be immediately
compressed into a sticky bit, since we know that it will not
be shifted back by the second LZOC+Shift. All this allows us
to keep most intermediate signals on Wf + 2 to Wf + 6 bits,
where previous work [10], [11] seem to use datapaths that are
twice as large.

The posit multiplier shown in Figure 7 is straightforward. It
performs the addition of the exponent, the signed product of
the significands, then if necessary normalises the result (one-
bit fraction shift and exponent update). This architecture aims
at minimal area and delay. If energy efficiency is the goal,



7

isNaR0 isNaR1 e0 e1 s0 i0 f0 s1 i1 f1

/ Wf / Wf

Signed product

/ Wf + 2

/ Wf + 2

/ 2Wf + 4

/ 2Wf + 3

/ 2Wf + 2

/ 2Wf + 1

/ 2Wf + 2

� 1Unsigned Adder

/We

/We

e

/We + 1

isNaR s exact product normalized significand

/ 2Wf + 3

/2Wf + 2 / 1

== 0

! = 0

< Emin >= Emax

Saturation ControlisMinPosit

isMaxPosit
e s I

/

N
−

w
e
s
−

3

si
gn

ifi
ca

nd

ro
un

d
st

ic
ky

e s fi round stickyisNaR

Fig. 7: Architecture of a PIF multiplier.

alternative architecture have been proposed that exploit the
relation between exponent magnitude and precision to disable
the computation of unneeded product LSBs [15].

The bottom part of Figures 6 and 7 normalize the exact re-
sult computed by the top parts to a PIF. For both operators, the
exact significand must be realigned, correcting the exponent
accordingly.

V. HARDWARE SUPPORT FOR EXACT ACCUMULATION

The idea of an exact accumulator currently has a lot of
momentum. Several existing machine learning accelerators
[16], [17] already use variations of the exact accumulator to
compute on IEEE-754 16-bit floating-point. Other application-
specific uses have been suggested [18], [19]. For larger sizes,
this could be a useful instance of “dark silicon” [20]. This
trend was also anticipated with the reduction operators in the
IEEE 754-2008 standard, although without the requirement of
exactness.

A. Quire specification and parameters

The posit draft standard [3] currently defines fused opera-
tions as those expressible as sums and differences of the exact

TABLE II: Quire bit-width parameters for standard posit.

Posit Quire sizes

N Wes C Wq WO WR WZ

8 0 6 32 12 13 6
16 1 14 128 42 57 28
32 2 30 512 150 241 120
64 3 62 2048 558 993 496

product of two posits; no other fused operations are allowed.
It also specifies a binary interchange format, which consists in
a fixed point number of size Wq defined by (10). In the sequel,
we discuss the cost of hardware support for a quire (an exact
accumulator of size Wq), but the draft standard formulation
does not prevent cheaper implementations of useful fused
operations such as fused multiply-add [8], complex multipli-
cation [21], or even full convolutions for neural networks.

As the parameter Wq is a storage requirement, it defines
a lower bound of the area cost. Figure 8 shows a high-level
functional description of a quire accumulation, and shows that
there is a Wq-bit addition on the critical path from the quire to
itself, which would also entail a large cycle delay. A technique
that relaxes this constraint is reviewed in Section V-B.

The posit draft standard [3] specifies NaR as a special quire
value. This means that this special value must be tested at each
new quire operation. Instead, we add to the internal quire an
isNaR flag bit, set when a NaR is added to the quire, and
sticky until the quire is cleared. This isNaR bit can be encoded
and decoded only when transferring quire to/from memory,
however we suggest that it could even replace one of the quire
carry bits in the interchange format.

In the posit context, it is natural to use two’s complement
for managing signs in the quire. Some implementations of
Kulisch’s exact accumulator seem to use a sign-magnitude
representation for the accumulator [13], matching the sign-
magnitude representation of IEEE floating-point. However, a
two’s complement representation of the accumulator is more
efficient even in the IEEE-754 context [16], [22].

B. Addition of products to the quire

The posit quire is able to perform exact sums and sums of
products. Therefore, the input format of the quire is defined
as the output of the exact multiplier from Figure 7 (top).

To add a simple posit to the quire, it is first converted to PIF,
then the PIF value is trivially cast to the same exact multiplier
format (the details are skipped for brevity).

The simplest implementation of the quire addition/subtrac-
tion is depicted in Figure 8. An exact posit product fraction
is shifted to the correct place to the quire format according to
its exponent. A large adder then performs the addition with
the previous quire value. The two’s complement subtraction is
performed at the cost of a XOR on the input and a carry-in to
the adder, as in the posit adder/subtracter. For this the shifter
must be a sign-extending one.

The simple architecture of Figure 8 can be used directly
for small sizes (up to posit16). For larger sizes, the long
carry propagation delay of the addition in this architecture



8

isNaR1 e i f isSubQuireisNaR0

shifter

/ Wprod

x+Bias

+

/ Wq

/ Wq

isNaR Quire

/ Wq

Fig. 8: Architecture of a posit quire addition/subtraction.

will restrict the maximum frequency achievable. To address
this, a cost-effective solution [18], [22] is to segment the
quire into smaller words (typically standard 32-bit or 64-
bit words). Carry propagation is then limited to a segment,
and the carries between segments are stored in registers
and propagated to the next segment during the next cycle.
Another point of view is that the quire is kept in a high-radix
carry-save redundant format (radix is 232 or 264). If such a
format is used, its conversion to a non-redundant format will
incur additional overhead to complete carry propagation. Some
hardware can be dedicated to this, but a cheap alternative is
simply to dedicate a few cycles to the completion of the carry
propagation, during which the summand input to the quire is
kept at zero. The number of carry-propagation cycles is Wq/32
for 32-bit segments. These extra cycles are amortized if the
quire is used for summing large numbers of values.

Several variants of unsegmented and segmented quires will
be evaluated in Section VI.

C. Conversion from quire to posit

The conversion of the quire value to a posit is divided in two
steps. The quire is first converted to a UPIF value (architecture
depicted in Figure 10) before the latter is encoded to a posit
(Section IV-B).

There are four distinct cases to take into account when
converting the quire to the UPIF:
• If the quire holds a NaR value, the result is NaR;
• If the quire value is larger in magnitude than the

maximum-magnitude posit (overflow), the latter should
be returned (saturation);

• If the quire value belongs to the representable posit range,
it should be converted;

• If the quire value is smaller in magnitude than the
minimum-magnitude non-zero posit (underflow), the lat-
ter should be returned (saturation);

is
N

aR s posit rangeoverflow underflow

WO

Overflow detect.

WR

Underflow detect.

WZ

’0’ detect.

Fig. 9: The bits of a standard quire.

isNaR s q

/ Wq

/
WZ

! = 0

== 0

/WL −WR/ WR

== −1 ! = 0

/
WO

! = 0
/ WL

LZOC + Shifter

/log2 (WL)

Saturation
control

/ Wf

feisisNaR

! = 0

stickyround

Fig. 10: Architecture of the conversion from quire to UPIF.

Figure 9 illustrates the different interesting zones of a
quire. The values of the parameters appearing in this figure
are determined as follows out of the parameters defined in
Section II-D.

Detection of overflow consists in comparing all the bit in
the overflow zone with the sign bit. If at least one differs,
the posit overflows. The width of the overflow zone WO is
computed as follow:

WO = Qmsb − Emax = Emax + C (14)

For quire values inside the posit range, a normalization
should be performed, which uses a LZOC + shifter of input
width WR, with

WR = Emax − Emin + 1 (15)

Finally, to detect the difference between an underflow value
and a real zero, a wide OR is performed on the underflow zone
of width WZ , with

WZ = Emin −Qlsb = Emax (16)

For standard posit sizes, using (8) yields the following
formula, with the corresponding numerical values reported in
Table II:

WO = N2

8 + 3N
4 − 2 WZ = N2

8 −
N
4

WR = N2

4 −
N
2 + 1



9

VI. EVALUATION

This section introduces the MArTo library, compares it with
the state of the art, then uses it to compare posit and floating-
point operators.

Comparisons of MArTo with other works use the target
and toolchain that is closest to those used in the work being
compared to. All other results in this section are post place and
route, obtained using Vivado HLS and Vivado 2020.1 targeting
a Virtex-7 FPGA (xc7vx330tffg1157-1).

A. The MArTo library of posit and floating-point operators

The architectures described in the previous sections
have been implemented using HLS-compliant templated
C++ code. The library defines parameterized types such
as PositEncoding<N, WES> and IEEENumber<WE,
WF>, and functions to perform arithmetic operations on those
types. The operators are built on top of the HINT library [23]
in order to be compatible with multiple HLS tools, and to ben-
efit from optimised primitives such as the fused LZOC+Shift
of Figure 4 or the fused Shifter+sticky of Figures 5 and 6.

B. Correctness of the operators

In order to verify that the proposed architectures are correct,
the following functional tests were first run in sofware:
• Exhaustive test against softposit of posit8 and posit16 ad-

dition and multiplication, both for Figure 2 and Figure 3;
• Some corner case tests of quire addition/subtraction and

conversion back to posit for posit16.
• Exhaustive test for addition/product of IEEE16 against

SoftFloat, for the five IEEE-754 rounding modes.
Then the VHDL file produced by the Vivado HLS compiler

for a 16-bit posit adder was exhaustively tested using a VHDL
simulator. Scripts and sources to reproduce this experiment are
accessible from the MArTo repository.

Finally, the standard posit16 multiplier was synthesized,
placed and routed for the Zynq FPGA of a Zybo board using
the Vivado HLS toolchain, and the resulting FPGA circuit was
exhaustively checked against softPosit executed on the ARM
core of the Zynq. All these tests were successful.

C. Comparison with the state-of-the-art

As we eventually observe that posits are larger and slower
than IEEE floats, it is important to be convincing that we
are not using a substandard posit implementation. For this
purpose, Table III gathers the results of best-effort comparisons
with the current state of the art in posit hardware. It shows
that MArTo is a definite improvement of this state of the art.

There is less pressure to show that the MArTo implemen-
tation of IEEE floats is efficient. A comparison with Xilinx
implementation of IEEE floats is provided in Table V. There,
the line labeled Xilinx Float corresponds to IP used by Vivado
HLS when using the float and double data types in
the HLS C++ (hence the lack of 16-bit results). This hard
IP is the industry standard when using Vivado, and can be
considered a state-of-the-art implementation of floating-point
for Xilinx FPGAs. It supports some of the IEEE features,

TABLE III: Comparison with state-of-the-art hardware posit
implementations [11], [10], [12], [24]

(a) Comparison with [11] for standard posit addition and
product

Op Format LUT DSP Delay (ns)

[11]
+

<16, 1> 391 0 32.4
<32, 2> 981 0 40.0

× <16,1> 218 1 24.0
<32, 2> 572 4 33.0

MArTo
+

<16, 1> 299 0 24.2
<32, 2> 704 0 33.9

× <16,1> 213 1 19.4
<32, 2> 483 4 28.9

As no sources is provided, we report as-is the figures from [11], obtained for
a Zynq-7000 (xc7z020clg484-1) with Vivado 2017.4. To limit the possible
effect of tool improvement on the synthesis, MArTo synthesis results have
been obtained for the same part with Vivado HLS/Vivado 2018.3, the oldest
version available for download at time of experimentation.

(b) Comparison with [10] on standard posit addition and product

Op Format ALM DSP Cycles FMax
(MHz)

[10]
+

<16, 1> ∼500 0 ∼49 ∼550
<32, 2> ∼1000 0 ∼51 ∼520

× <16, 1> ∼330 1 ∼35 ∼600
<32, 2> ∼600 1 ∼38 ∼550

MArTo
+

<16, 1> 274 0 11 564
<32, 2> 696 0 17 562

× <16, 1> 280 1 15 600
<32, 2> 452 2 21 445

Synthesis reported in [10] trarget Stratix V FPGA. Results are read from a
graphic plot, hence the approximate values. As there is no version of the Intel
HLS toolchain that supports both Stratix V and the C++ 11 standard used
in MArTo, the C++ to HDL compilation is done using Vivado HLS. The
obtained HDL is then synthesised and routed for Stratix V using Quartus.
Despite being baroque, this toolchain seems to give good results, except for
the <32, 2> product where it lacks the knowledge of the target’s DSP possible
configurations. Indeed, the product is computed using a 36x36 configuration
of the DSP block, where a 27x27 configuration would be faster.

(c) Comparison with [12] on posit<32,6> addition and product

Op LUTs DSPs Cycles Delay (ns)

[12] + 946 0 5 4.1
× 854 1 6 4.4

MArTo + 792 0 5 3.9
× 435 2 6 4.1

MArTo synthesis have been performed using Vivado HLS/Vivado 2020.1
using part xc7vx330t-ffg1157-3. Experimental settings of [12] use the same
part, but tool version is not reported.

(d) Comparison with [24] for standard posit addition and
product

Op Format LUT DSP Delay (ns)

[24]
+

<16, 1> 383 0 27.25
<32, 1> 939 0 35.8

× <16,1> 201 1 20.9
<32, 1> 571 4 29.2

MArTo
+

<16, 1> 300 0 25.5
<32, 1> 672 0 34.5

× <16,1> 205 1 19.2
<32, 1> 472 4 28.8

MArTo synthesis have been performed using Vivado HLS/Vivado 2020.1
using part xc7z020clg484-1.



10

TABLE IV: Synthesis results of combinatorial operators

(a) Combinatorial adder

N LUT (ratio) delay (ratio)

16 312 1.33 11.1 ns 1.27
posit→posit 32 647 1.49 15.8 ns 1.33

64 1550 1.59 21.6 ns 1.35

16 237 1.01 9.7 ns 1.10
PIF→PIF 32 562 1.29 12.9 ns 1.08

64 1244 1.27 14.7 ns 0.92

16 234 1 8.8 ns 1
IEEE→IEEE 32 434 1 11.9 ns 1

64 976 1 16.0 ns 1

(b) Combinatorial multiplier

N LUT (ratio) DSP delay (ratio)

16 182 1.03 1 11.3 ns 1.39
posit→posit 32 466 1.37 4 15.8 ns 1.62

64 1213 1.58 16 21.1 ns 1.48

16 120 0.68 1 7.8 ns 0.96
PIF→PIF 32 291 0.86 4 11.5 ns 1.17

64 695 0.90 16 15.3 ns 1.08

16 176 1 1 8.1 ns 1
IEEE→IEEE 32 340 1 2 9.8 ns 1

64 768 1 9 14.3 ns 1

(c) Posit - PIF converting operators

N LUT delay N LUT delay

Posit
to

PIF

16 61 2.59 ns PIF
to

posit

16 41 2.12 ns
32 106 4.74 ns 32 98 2.50 ns
64 278 5.52 ns 64 301 2.83

such as infinity and NaN encoding. However, it is not IEEE-
compliant: although the memory format is that of IEEE floats,
subnormals are flushed to zero to save resources.

Considering that the Xilinx Float adders use DSP blocks to
implement some of the shifters, the hardware costs of Xilinx
adders and IEEE adders (obtained with MArTo) are really
comparable. This illustrates that the overhead of subnormal
handling in floating-point adders is small. Conversely, there
is in Table V a very large difference in the resources used in
multipliers. This demonstrates the cost of hardware subnormal
handling in floating-point multipliers.

The Xilinx IP also seem to have a fixed pipelined, and do not
benefit from a relaxed clock constraint to reduce the latency,
hence their large latency.

Since Xilinx floats lack subnormal support, the following
bases on MArTo only the posit versus IEEE comparisons.

One may wonder if this comparison doesn’t also highlight
some inefficiency of hardware generated using HLS tools, but
recent works [25], [26] suggest that such overhead is becoming
negligible for this class of applications.

D. Comparison between posit and IEEE-754 operators

Table IV compares combinatorial implementations of posits
and floats of the same size on addition and multiplication.
In this table, the “posit→posit” lines present results for the

TABLE V: Synthesis results of pipelined operators

(a) Pipelined adder

N LUT Reg. DSP cycles delay

Posit
16 320 128 0 4 2.69 ns
32 719 460 0 7 2.83 ns
64 1635 1207 0 10 2.93 ns

IEEE
16 193 137 0 4 2.90 ns
32 435 337 0 6 2.88 ns
64 1001 880 0 10 2.99 ns

Xilinx
Float

32 167 355 2 10 2.43 ns
64 628 758 3 10 2.43 ns

(b) Pipelined multiplier

N LUT Reg. DSP cycles delay

Posit
16 213 80 1 4 2.85 ns
32 443 198 4 6 2.93 ns
64 1140 811 16 12 4.10 ns

IEEE
16 189 122 1 4 2.69 ns
32 381 246 2 6 2.74 ns
64 783 801 9 8 2.67 ns

Xilinx
Float

32 82 151 3 5 2.72 ns
64 115 494 11 10 2.75 ns

classical posit operators of Figure 2. The “PIF→PIF” lines
presents results for the posit-compatible PIF operators that
use the architecture of Figure 3b, including the inplace round
component.

A first observation is that posit arithmetic is indisputably
both larger and slower than IEEE-754 arithmetic. This contra-
dicts the comparison in [11], which seems to use a very poor
IEEE implementation.

As expected, the PIF-to-PIF operators are lighter and faster
than the posit-to-posit ones. They still pay the price in area
of a wider significand datapath (see Table I) compared to
IEEE operators: for the adders, PIF-to-PIF consume more
LUTs than IEEE operators; for multipliers, they consume more
DSP blocks (there is a step effect due to the discrete nature
of DSP blocks). Again we observe in the IEEE multipliers
the logic cost of subnormal support, but we also observe a
comparable cost in the PIF multiplier, essentially due to the
inplace round logic. Still, the PIF to PIF operators achieve
delays that are closer to those of IEEE operators than to those
of posit operators, which was their main motivation.

Note that the area cost of PIF/posit conversions (altogether
about half the size of a complete IEEE adder) must still be paid
in a posit arithmetic unit that uses the PIF-to-PIF approach.
Only its delay (altogether about half the delay of a complete
IEEE adder) is avoided. However, there is another advantage
in a PIF-to-PIF PAU: the hardware for these conversions is
naturally shared between different operations (such sharing is
also possible in principle in a posit-to-posit PAU, but then it
will restrict instruction-level parallelism).

Table V compares pipelined versions of the same operators,
targeting a frequency of 333 MHz (3ns cycle time), and
producing one output per clock cycle. As the latency estimated
by the Vivado HLS tool is usually pessimistic, the reported



11

TABLE VI: Synthesis results for a sum of 1000 products (U:
Unsegmented, S32 and S64: Segment sizes of 32 and 64 bits).

LUT Reg. DSP cycles delay

quire 16
U 1200 1026 1 1019 2.70 ns

S32 978 1062 1 1021 2.68 ns
S64 1004 958 1 1019 2.36 ns

quire 32
(512 bits)

U 5884 6235 4 1031 3.65 ns
S32 3641 7237 4 1040 2.89 ns
S64 3513 5189 4 1033 2.78 ns

Kulisch 32 S32 3624 7632 2 1034 2.937
(559 bits) S64 3612 5165 2 1026 2.801

IEEE Float 32 840 711 2 6012 2.92 ns

IEEE Float 64 1798 1723 9 8015 3.33 ns

Xilinx Float 32 445 544 3 6008 2.72 ns

Xilinx Float 64 809 1386 11 8013 2.70 ns

latencies are obtained by an automated exploration that finds
the smallest pipeline depth allowing the design to run with the
target clock period. The script performing this exploration is
open source, and is also accessible from the MArTo repository
for reproducibility.

There is no PIF to PIF line in this table: for this setup, the
PIF to PIF approach fails to provide any latency improvement
(the arithmetic operators require the same number of cycles,
and sometimes require one more cycle). We therefore choose
not to report these results, which we consider synthesis arti-
facts as they are inconsistent with the expectations and with
Table IV.

E. The cost of supporting all rounding modes in IEEE

Tables IV and V report result for IEEE operators that only
support round to nearest, ties to even. Another example of
IEEE complexity that translates to very little hardware cost is
the support of the 5 standard rounding modes. For instance,
adding this support to the 32-bit adder increases its area from
434 to 458 LUTs and actually decreases the delay from 11.9
to 11.7ns (another synthesis artifact). It remains well below
the posit cost.

F. Quire versus standard operations

Synthesis results for the quire are given in Table VI, where
we use MArTo to write a C++ loop that performs the sum
of 1000 products and return the result as a posit. They
are compared to a similar loop using floating-point Kulisch
accumulator, and using regular floating-point hardware.

Quire is presented in unsegmented (U) version along with
two segmented versions (S32 and S64 for segments of 32 or
64 bits). For 32 bits, the unsegmented version is not able to
achieve 3ns cycle time, due to the long carry propagation.

The Kulisch accumulator used here is also based on a 2’s
complement segmented accumulator [22, variant 3], with an
IEEE-compliant final conversion to float (round to nearest,
ties to even). The implementation has been validated against
MFPR [27] simulations.

TABLE VII: Detailed synthesis results of hardware posit quire

po
si

t1
6

LUT Reg. Cycles Delay (ns)

Quire addition
U 618 885 4 2.576

S32 403 585 3 1.886
S64 444 606 3 1.984

Carry prop. S32 6 390 3 1.539
S64 2* 261 2 1.651

Quire to posit 480 166 3 2.735

po
si

t3
2

Quire addition
U 3609 4986 7 3.212

S32 1305 2265 3 2.791
S64 1389 2276 3 2.791

Carry prop. S32 281 2874 8 2.851
S64 189 2391 7 2.183

Quire to posit 1845 1457 17 2.878

Unsurprisingly, the cost and performance of a posit32 quire
and a Kulisch accumulator for 32 bits floats are almost
identical.

An exact accumulator consumes vastly more resources than
standard operators: a factor 10 for 32-bit floats (a smaller
factor for posits, but only due to the higher cost of the standard
operators). Such factors should not come as a surprise: the 512
bits of the posit32 quire are indeed 18 times the 27 bits of the
posit32 significand. This is the price of the accuracy of an
exact accumulator.

Another advantage of exact accumulation is that it offers a
latency reduction proportional to the latency of the floating-
point or posit adder (here a factor 6-7). This is thanks to the
fact that the accumulation loop is 1/ a fixed-point addition and
2/ exact, which offers opportunities to exploit more parallelism
in its computations[16], [19].

Detailed synthesis results of the quire sub-components are
given in Table VII. The quire addition line reports the cost for
the architecture of Figure 8, including the large shifter and the
fixed-point accumulation loop. This component accepts a new
input every cycle. The two other lines describe the conversion
of the quire result back to posit. The carry propagation is a
loop component that adds zeroes, and is mostly merged with
the quire addition component. However, there is an irreducible
latency for the final carry propagation once the accumulation
is over.

The latency overhead of the expensive conversion from
quire to float or posits is easily amortized for large loops.
However, it is also clear that a hardware quire will be very
inefficient when used for small sequences of operations (e.g.
fused multiply and add, complex arithmetic, small matrices or
convolutions, etc).

VII. CONCLUSION

The purpose of this work is to compare the cost of hardware
arithmetic operators for two competing number systems: the
established IEEE-754 system and its posit challenger.

This comparison is performed thanks to a library of opera-
tors for the two systems, providing hardware description that
are state-of-the art for posit, and high quality (if not state of
the art) for IEEE-754. This open-source library is provided



12

as header-only templatized C++, designed for modern High-
Level Synthesis tools.

Posit-to-posit operators are shown to be significantly more
expensive, both in terms of resources and delay, than IEEE
operators for the same input width. For instance, addition and
multiplication on 32-bit standard posits require about 50%
more hardware and about 50% more delay than standard-
compliant addition of binary32 floats. This overhead should be
put in balance with the increased accuracy sometimes offered
by posits. On the example of 32-bit formats, posits offer up
to 3 extra bits of accuracy (a 11% improvement) in a limited
domain of exponents, while degrading the accuracy outside of
this domain due to tapered precision.

An original alternative implementation of posits is proposed:
it keeps posits decoded in a wider intermediate format to avoid
some of the posit encoding overhead. This alternative leads to
operations that are comparable in delay to IEEE floats, but at a
higher cost, all the more as it requires wider internal registers
which also have a system-wide cost.

This article also provides and compares exact accumulators
in both systems, without a clear advantage on a side or the
other.

If there is a take-away message in this study, it would be that
the indisputable complexity of the IEEE-754 standard, much
attacked by posit proponents, does not necessarily translate
into expensive hardware. Among the features that the posit
system discards as useless, most (in particular overflow man-
agement, NaNs, and directed rounding mode) were designed to
be implementable at very little cost. The only really expensive
feature is subnormal support, due to rounding happening in a
variable position of a bit vector. Posit arithmetic, despite the
simplicity and elegance of the number system, involves such
variable-position rounding, and therefore entail an overhead
that is comparable in nature to subnormal support.

This work has framed baseline posit implementations. On
this basis, it is possible to consider many optimizations studied
for floating-point operators (such as dual-path architectures,
leading zero anticipation, or various forms of hardware spec-
ulation). These optimizations will improve delay, but at the
expense of area.

Before that, future work includes completing the library
with missing operations, starting with division and square root.

HLS has the potential of making it very easy to study, at
the application level, the impact of number systems on cost,
performance, and accuracy. This is the long-term goal of the
library presented here.

Acknowledgements

This work was partly funded by the Imprenum project of
Agence Nationale de la Recherche. Many thanks to Orégane
Desrentes for her corrections to some of the figures.

REFERENCES

[1] “IEEE standard for floating-point arithmetic,” IEEE 754-2008, also
ISO/IEC/IEEE 60559:2011, Aug. 2008.

[2] J. L. Gustafson and I. T. Yonemoto, “Beating floating point at its
own game: Posit arithmetic,” Supercomputing Frontiers and Innovations,
vol. 4, no. 2, pp. 71–86, 2017.

[3] “Posit standard documentation,” Jun. 2018, release 3.2-draft.
[4] Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L. Gustafson,

and D. Kudithipudi, “Performance-efficiency trade-off of low-precision
numerical formats in deep neural networks,” in Next Generation Arith-
metic. ACM, 2019, pp. 3:1–3:9.

[5] P. Lindstrom, S. Lloyd, and J. Hittinger, “Universal coding of the reals:
alternatives to IEEE floating point,” in Next Generation Arithmetic.
ACM, 2018.

[6] F. De Dinechin, L. Forget, J.-M. Muller, and Y. Uguen, “Posits: the
good, the bad and the ugly,” in Next Generation Arithmetic. ACM,
2019.

[7] N. Buoncristiani, S. Shah, D. Donofrio, and J. Shalf, “Evaluating the
numerical stability of posit arithmetic,” in International Parallel and
Distributed Processing Symposium. IEEE, 2020, pp. 612–621.

[8] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes,
V. Lefèvre, G. Melquiond, N. Revol, and S. Torres, Handbook of
Floating-Point Arithmetic, 2nd edition. Birkhauser Boston, 2018.

[9] D. R. Lutz, “ARM floating-point 2019: Latency, area, power,” in 26th
Symposium on Computer Arithmetic. IEEE, 2019, pp. 69–76.

[10] A. Podobas and S. Matsuoka, “Hardware implementation of POSITs and
their application in FPGAs,” in International Parallel and Distributed
Processing Symposium. IEEE, 2018, pp. 138–145.

[11] R. Chaurasiya, J. Gustafson, R. Shrestha, J. Neudorfer, S. Nambiar,
K. Niyogi, F. Merchant, and R. Leupers, “Parameterized posit arithmetic
hardware generator,” in 36th International Conference on Computer
Design (ICCD). IEEE, 2018, pp. 334–341.

[12] M. K. Jaiswal and H. K.-H. So, “Pacogen: A hardware posit arithmetic
core generator,” IEEE Access, vol. 7, pp. 74 586–74 601, 2019.

[13] U. W. Kulisch, Advanced Arithmetic for the Digital Computer: Design
of Arithmetic Units. Springer-Verlag, 2002.

[14] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
2004.

[15] H. Zhang and S. Ko, “Design of power efficient posit multiplier,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 5,
pp. 861–865, 2020.

[16] N. Brunie, “Modified Fused Multiply and Add for exact low precision
product accumulation,” in 24th Symposium on Computer Arithmetic
(ARITH-24). IEEE, Jul. 2017.

[17] J. Johnson, “Rethinking floating point for deep learning,” arXiv,
1811.01721, 2018.

[18] F. de Dinechin, B. Pasca, O. Creţ, and R. Tudoran, “An FPGA-specific
approach to floating-point accumulation and sum-of-products,” in Field-
Programmable Technologies. IEEE, 2008, pp. 33–40.

[19] Y. Uguen, F. de Dinechin, V. Lezaud, and S. Derrien, “Application-
specific arithmetic in high-level synthesis tools,” ACM Transactions on
Architecture and Code Optimization, vol. 17, no. 1, 2020.

[20] M. B. Taylor, “Is dark silicon useful? harnessing the four horsemen of
the coming dark silicon apocalypse,” in Design Automation Conference.
ACM, 2012.

[21] H. H. Saleh and E. E. Swartzlander, “A floating-point fused dot-product
unit,” in International Conference on Computer Design (ICCD), 2008,
pp. 426–431.

[22] Y. Uguen and F. de Dinechin, “Design-space exploration for the
Kulisch accumulator ,” Mar. 2017, working paper or preprint. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01488916

[23] L. Forget, Y. Uguen, F. de Dinechin, and D. Thomas, “A type-safe
arbitrary precision arithmetic portability layer for HLS tools,” in Highly
Efficient Accelerators and Reconfigurable Technologies, Jun. 2019.

[24] F. Xiao, F. Liang, B. Wu, J. Liang, S. Cheng, and G. Zhang, “Posit
arithmetic hardware implementations with the minimum cost divider
and square root,” Electronics, vol. 9, no. 10, 2020.

[25] S. Bansal, H. Hsiao, T. Czajkowski, and J. H. Anderson, “High-level
synthesis of software-customizable floating-point cores,” in Design,
Automation & Test in Europe. IEEE, 2018, pp. 37–42.

[26] D. Thomas, “Templatised soft floating-point for high-level synthesis,” in
27th Annual International Symposium on Field-Programmable Custom
Computing Machines. IEEE, 2019.

[27] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“MPFR: A multiple-precision binary floating-point library with correct
rounding,” ACM Transactions on Mathematical Software, vol. 33, no. 2,
2007.

https://hal.archives-ouvertes.fr/hal-01488916

	Introduction
	Encodings of binary floating-point numbers
	IEEE-754 binary floating-point numbers
	The posit encoding
	Posit smallest floating-point superset
	Quire
	The hardware-friendly Posit Intermediate Format recoding
	Unrounded PIF encoding of the result of basic operations
	Saturation management

	Alternatives for a hardware posit unit
	Posit-to-posit operators
	Posit as a memory-only encoding

	Posit hardware detailed architecture 
	Posit to PIF decoder
	UPIF to posit and PIF to posit
	UPIF inplace round
	PIF floating-point operations

	Hardware support for exact accumulation 
	Quire specification and parameters
	Addition of products to the quire
	Conversion from quire to posit

	Evaluation
	The MArTo library of posit and floating-point operators
	Correctness of the operators
	Comparison with the state-of-the-art 
	Comparison between posit and IEEE-754 operators 
	The cost of supporting all rounding modes in IEEE
	Quire versus standard operations

	Conclusion
	References

