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Abstract

Hg accumulation in marine organisms depends styomgl in situ water or sediment
biogeochemistry and levels of Hg pollution. To peedhe rates of Hg exposure in human
communities, it is important to understand Hg adaiion and processing within
commercially harvested marine fish, like the Euampeseabas®icentrarchus labrax.
Previously, values af'*Hg and§?°Hg in muscle tissue successfully discriminated leetw
seven populations of European seabass. In thentresaly, a multi-tissue approach was
developed to assess the underlying processes b&inthdliscrimination.

We determined total Hg content (THg), the proportad monomethyl-Hg (%MeHg), and Hg
isotopic composition (e.gA'**Hg and §°°Hg) in seabass liver. We compared this to the
previously published data on muscle tissue and kEr@iropogenic Hg inputs.

The first important finding of this study showed itrease of both %MeHg ar&f’Hg
values in muscle compared to liver in all populasiosuggesting the occurrence of internal
MeHg demethylation in seabass. This is the firdl@we of such a process occurring in this
species. Values for mass-dependent (MB¥Hg) and mass-independent (MIEX**Hg)
isotopic fractionation in liver and muscle accordéth data observed in estuarine fish (MDF,
0-1%0 and MIF, 0-0.7%o). Black Sea seabass stoodroat other regions, presenting higher
MIF values €1.5%0) in muscle and very low MDR{1%o) in liver. This second finding
suggests that under low Hg bioaccumulation, Hgojsiot composition may allow the
detection of a shift in the habitat use of juvefigd, such as for first-year Black Sea seabass.
Our study supports the multi-tissue approach aalid wool for refining the analysis of Hg
sourcing and metabolism in a marine fish. The studhajor outcome indicates that Hg levels
of pollution and fish foraging location are the mafactors influencing Hg species

accumulation and isotopic fractionation in the oigmns.
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Main finding: Our novel results support the occurrencenofivo MeHg demethylation in

European seabass. They also show that, in this distironmental levels of Hg pollution
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Monomethyl-Hg (MeHg), the most toxic form of Hg, risadily bioavailable in the marine
environment and bioaccumulates in the food web (Heh al., 2012; Lang et al., 2017;
Mozaffarian and Rimm, 2008; Renzoni et al., 1998{BP, 2018, 2013). Several processes
modulate MeHg bioavailability (Du et al., 2019). sarface waters, sunlight radiation can
control the degradation of methylated Hg speciesefl mechanisms are proposed to cause
MeHg photodegradation (Luo et al., 2020). It is eratly recognized that this process is
induced by ultraviolet light (UV-A and UV-B, 280-80hm) (Lehnherr and St. Louis, 2009)
and controlled by the type and abundance of Mekgibg ligands (e.g. OH'O,, DOM,
organic thiols or chloride complexes) in the watelumn (Luo et al., 2020; Zhang and Hsu-
kim, 2010). In deeper layers, MeHg is mostly preeelsby microbial activity, either in the
aphotic water column during microbial remineraliaat of settling organic matter, or in
anoxic conditions at the sea bottom (Gworek et2811,6; Li et al., 2016; Mason et al., 2001;
Sunderland et al., 2010). Iron- and sulfur-reduddagteria (IRB and SRB, respectively) as
well as methanogens are the main groups of prokesyesponsible for Hg processing in
anoxic conditions (Bystrom, 2008; Lu et al., 20R&gnell and Watras, 2019).
Consequently, local climatic and oceanographic ufest combined with growing
anthropogenic activities, might alter the complex ¢ycle, with unknown consequences for
its marine life. Apex predators such as marine malepseabirds or carnivorous fish can
accumulate extremely high levels of Hg, being attitp of marine food webs (Sonke et al.,
2013). For this reason, understanding Hg uptake amdimulation in these animals is a
priority. Such urgency is also related to the fhett most species of edible carnivorous fish
(tuna, cod, seabass etc.) are commonly consumbdrbgns (Serrell et al., 2012).

Recently, the use of stable isotopes of Hg was erouseful for discriminating

between potential Hg sources and accumulation umatéx habitats (Bergquist and Blum,
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2009; Cransveld et al., 2017; Gantner et al., 2@hrke et al., 2011; Kwon et al., 2014a;
Perrot et al., 2010; Point et al., 2011; Senn e8l10; Sherman and Blum, 2013; Yin et al.,
2016). The seven stable isotopes of Hg (Z = 198, 199, 200, 201, 202 and 204) can
undergo mass-dependent fractionation (MDF) and nmakependent fractionation (MIF)
(Bergquist and Blum, 2009). MDF (mostly represertigé?°°Hg) occurs during a variety of
chemical, physical and biological reactions, and h&en used to detail the processes
controlling Hg transport, transformation and biaaoalation (Bergquist and Blum, 2009).
More specifically, MDF can be used to trace Hgdfanfrom the environment throughout the
food web (Tsui et al., 2019). The latest constgatntthe interpretation of MDF data include
its quantification at higher trophic levels, whefractionation rates are complicated by
biotransformation processes occurring within thgaaoisms (e.gdemethylation) (Tsui et al.,
2019). MIF is not modified throughout the food waatd thus provides a unique fingerprint of
primary Hg sources in the marine environment (Qleisal., 2018). The occurrence of MIF
(represented mostly hi"**Hg andA?®Hg values) has been attributed to all photochemical
reactions, such as photochemical reduction of*H@ergquist and Blum, 2007), and
photodemethylation of DOM-associated MeHg in bdthe tvater column (Chandan et al.,
2015) and marine phytoplankton cells (Kritee et aD18). Finally, even-mass isotopes
(A*®Hg, A*®*Hg) are dependent on the atmospheric cycle of lgrichinating for example
between precipitation sources (e.g. snawain) (Gratz et al., 2010; Sherman et al., 2010).
We recently measured MDF and MIF values in seatvassle Dicentrachus labrax)

to discriminate between different sub-populatiang&urope and in the Black Sea (Cransveld
et al., 2017). We highlighted a large heterogenieitiig MDF and MIF between the seven
sampling regions, and suggested hepatic MeHg demagtn or different Hg sourcing as
potential causes (Cransveld et al.,, 2017). Howetrez, exclusive use of muscle as the

monitoring tissue did not allow more extensive liptetation.
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Indeed, while Hg monitoring studies often focus mwiscle, the analysis of Hg
isotopes and speciation in liver can bring addaloperspectives (Tsui et al., 2019). Each
tissue indeed exhibits specific concentrations praportions of Hg species (Mieiro et al.,
2011; Pentreath, 1976), depending on several f&ct@msue composition (proteins, lipids,
carbohydrates), turnover rate, and the food regihiish (Jardine et al., 2006; Maury-Brachet
et al.,, 2006; Perga and Gerdeaux, 2005; Wang andgWa003). For this reason, the
inclusion of more tissues in the assessment of thlgles isotopes in a single organism was
proposed as a valid and necessary approach thabfigaya more comprehensive picture of
the dynamics of contaminant uptake (Jardine et28l06; Tsui et al., 2019) and internal
processing by marine organisms (Kwon et al., 2@08,2). In this regard, liver is the key
tissue. In marine mammals, aquatic birds and sashespecies, the liver is demonstrated to
act as detoxifying organ (Booth and Zeller, 200&gles-Smith et al., 2009; Feng et al., 2015;
Gonzalez et al., 2005; Wagemann et al., 1998). ,Tthes combination of stable isotope
analysis in both muscle and liver of marine predatmuld allow a complete understanding
of MeHg sources and processing in both wildlife #relwider environment.

Therefore, to understand Hg sources and organstropf this species around Europe,
in this study we compared THg, %MeHg and Hg isotopmposition (MIF and MDF) in the
liver of wild seabas®icentrarchus labrax with previously published muscle data (Cransveld
et al., 2017). Specifically, we wanted to test ¢hdestinct hypotheses: (1) The use of a multi-
tissue approach improves isotopic tracing of Hggbaxrhemical processes and sources
between natural ecosystems, in comparison withsthgular analysis of muscle; (2) MeHg
demethylation may occur in seabass liver and tessrean be dependent on the extent of local
mercury pollution; (3) the peculiar biogeochemiaattings of each sampling site may

determine the particular sourcing of MeHg in losahbass.
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M aterials and method

Sample collection

Sampling of the seabag&Xcentrachus labrax used in the present study has been described
previously (Cransveld et al., 2017). All the bioneinformation available for the sampled
fish is summarized in Table 1. All fish were juMesi sampled at their nursery sites. Fish
were collected between 2012 and 2014 from sevestalogites throughout Europe: the North
Sea (NS), the Northern Aegean Sea (AES), the S&sheary (SE), the Northern Adriatic Sea
(NAS), the Turkish coast of the Black Sea (BS), amd different sites at the Ria de Aveiro
in Portugal (a “reference” site and a “contaminéatsiie - RAR and RAC respectively).
These sites are subjected to different levels opbliution because of their specific industrial
origin. Details about each site are given in Tabland in the Supporting Information of
Cransveldet al. (2017). Sites were separated into “low”, “modetratad “highly” polluted
categories, based on the statistical differencélighed on muscle concentrations (Cransveld
et al., 2017). Figure S1 shows these three grosipskeandc. After sampling, fish were kept

in freezers at -20°C. Prior to dissection, fishevereasured and weighed. Liver was sampled,

freeze-dried and ground into powder.

Analyses

THg concentrations were determined in the livefigif through the use of a Milestone Direct
Mercury Analyzer 80 (Habran et al., 2012), using hS EPA Method 7473, validated for
solid samples. THg concentrations are expressedigeg’ dry weight (DW). Quality
assurance methods included measuring blanks (H@| dt#hdard solutions (100 ng Hg 1!
triplicates of samples, and certified referenceemat NRC-DORM-2 (certified T-Hg value =
4640 + 260 ng.gdw). CRM recovery percentages ranged from 89% @94 (Table S1).
MeHg concentrations were determined by isotopetiditebgas chromatography, inductively-

coupled-plasma mass spectrometer (ID-GC-ICP-MS)lloviing microwave-assisted
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extraction and aqueous phase derivatization, asledtelsewhere (Cransveld et al., 2017,
Rodriguez Martin-Doimeadios et al., 2002). For é¢xéraction, between 50-100 mg of the
liver sample was weighed. BCR CRM-464 (tuna fishsabel certified for MeHg and THg
concentration) and DOLT-4 (dogfish liver) were usedreference materials. Certified and
obtained THg and MeHg values are shown in TableA2solutions were prepared using
ultrapure water (182 cm, Millipore). Trace Metal Grade acids Hil@nd HCI from Fisher
Scientific (lllkirch, France) and ultrapure®&, (67-70%, ULTREX® Il, J.T.Baker) were used
for the preparation of all the samples, standandstdanks. Between 20 and 570 mg of liver
samples were mineralized in quartz vials with traal grade nitric acid (HN§D using a
HPA High Pressure Asher (Anton Paar, Austria). Themapure hydrogen peroxide {B)
was added, and samples went through a digestiaegsdor three more hours on a hot block
(80°C) to ensure full mineralization of organic teat The samples were then diluted to
obtain a final Hg concentration of 1 ng.in an acid solution, which was adjusted to contain
10% HNQ and 2% HCI. Blanks were prepared by pouring nigd in vials, without
samples. CRM recovery percentages ranged from 8434% (Table S2).

Mercury isotopic composition analysis was performesihg cold vapor generation
(CVG) with multi-collector-inductively coupled plag-mass spectrometer (MC-ICP-MS, Nu
Instruments) (Cransveld et al., 2017). A desolvatib nebulization system from Nu
Instrument was used to introduce NIST-SRM-997 iall for instrumental mass-bias
correction using the exponential fractionation laReference material NIST RM 8610
(former UM-Almaden), ERM-CE-464 and DOLT-4 were ds&s secondary standards. The

resulting Hg isotopic composition is presented abl€ S3.

We used a standard-sample bracketing system talaedé values (in %o0) relative to

the reference standard NIST SRM 3133 mercury speetiric solution. Isotope®Hg was
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used as the reference for ratio determination lobthler Hg isotopes, using the following

equations:

(XXXHg/ 198Hg) sample

8XXXHg — [
(**Hg/198Hg)NisT 3133

-1)] x1000

MDF processes will be represented &{?Hg values. MIF processes will be calculated and

represented as follows for odd (1 & 2) and eve& @ isotopes:

€N A™Hg = 6"*Hobservea~ 0" Hpredicrea= '*Hopservea- (3°Hg x 0.252)
(2 A*"Hg = 8"Hgobserved 8" Hpredictea= 8~ Hbopservea- (8°°°Hg X 0.752)
3 AZOCHQ = 62OcHgobserved' SZOcngredictedz 620CHgobs,erved‘ (6202Hg x 0.502)
4) A*Hg = 8" Hgobserved 8> Hpredictea= 8" Hopservea- (6°°°Hg X 1.493)

A more detailed description of Hg speciation armdape analysis, including quality assurance
and method validation, can be found in the Suppgrinformation of this work and in

previous literature (Cransveld et al. 2017; Renetdal. 2018).

Statistics

Since the sampling size was small £n12) for each sampling location, we used non-
parametric tests for statistical analyses. Stasiksignificance was set at= 0.01 (instead of
0.05). Differences between groups wtivalues between 0.05 and 0.01 were reported in the
results but not interpreted as effective. To testance amongst sampling sites, we used the
non-parametric Kruskal-Wallis (K-W) for each pardere separately. We used the
Spearman’s to correlate concentrations and isotopic valu@sally, to test the difference

between variables measured in muscle and in wensed the paired samples Wilcoxon test.

Results
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THg and MeHg concentrations

Concentrations of THg in muscle and liver diffesagnificantly between sampling sites (K-
W; H = 50.81;p < 0.0001 and H = 46.6@; < 0.0001) (Table 2). These were separated into
three groups: the most contaminated NAS and RA€jritermediate RAR, NS and SE, and
the least contaminated AES and BS (Figure S1).idar,| such differences were less
important, but THg and MeHg concentrations folloviied same profile (Figure S1-Right and
Table 2).

Liver %MeHg differed significantly between samplisges (K-W; H = 41.00p < 0.0001),
ranging from 7% in BS to 82% in NAS (Figure S20r Ehe whole dataset (n = 62), THg was
moderately correlated to %MeHg (r = 0.515 0.0001). In muscle, %MeHg varied less, with
a significant difference observed only between 8& HAS and AES (K-W; H = 36.951 <
0.0001). Percentage values ranged between 71% i &l 93% in SE (Figure S2a). No
correlation was found between the %MeHg in musald aHg levels among regions

(Spearman; r = 0.13 = 0.324).

Hg stable isotope composition

Hepatic5°“°Hg andA™®*Hg values varied significantly between samplingataans (K-W; H =
50.69;p < 0.0001 and H = 38.5% < 0.0001, respectively) (Table 2). There was gjron
correlation betweeA'**Hg andA?®*Hg (Spearman; r = 0.9%;< 0.0001) for all sites, and the
value of the slope of the regression line was 10302 (Figure 1la). A positive correlation
betweenA'*Hg and8?°*Hg values was found only for SE (p = 0.0¢1z 0.661), BS (p =
0.005,p = 0.628) and RAC (p = 0.01¢, = 0.530) (Figure 1b). Only BS fish showed a
positive correlation betweem'**Hg and §*°Hg values and %MeHg in both tissues
(respectively: p < 0.000p,= 0.767 and p = 0.0018,= 0.698).

Only a weak difference was observed in hepaff®Hg values (Figure S3a; K-W, H = 14.33

10
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andp = 0.023), with AES presenting higher even-MIF tHRAC and SEA?*Hg values
differed slightly more (Figure S3b; K-W, H = 19.88dp = 0.003) with RAC presenting
significantly smaller MIF than RAR and SE. The dreariation found in even-MIF values
did not allow us to discriminate between specifim@spheric sources in seabass populations
and will not be discussed further. Raw data ankloat gliscussion are given in the Supporting
Information (Section S2.a, Table S4, Figure S3al@nd

When compared with muscle results published in €reld et al. (2017), the difference
betweend?*Hg musce and 5°°Hg jver ranged from 0.04%o in NAS to 1.08%. in B& Hg
values differed significantly between the two tesswnly in BS seabass (K-W, H=84.9, p =
0.003). The difference betweert*Hg musce and AY*°Hg jver went from -0.02%. in NAS to
1.13%0 in BS. As beforeA®Hg values differed only in BS seabass (K-W, H =59% <
0.0001). 5*°N, 8**C values and trophic position (TL) in the differsebass populations were
presented elsewhere (Cransveld et al., 2017). M@lation was found between carbon and
nitrogen isotope ratios in seabass muscle and %MaeHiger. For this reason, we do not

discuss these results further. More details caioted in paragraph S2.b.

Discussion

Evidence of Hg demethylation in seabass across Europe

The lowest THg muscle and liver concentrations wdrgerved in Greece and the Black Sea
(AES and BS sites), while the highest concentratiware measured in the North Adriatic Sea
and Ria d’Aveiro (NAS and RAC sites; Table 2). LivMeHg ranged from 7-10% in BS,
30-40% in the contaminated area of RAC, and up08&» NS, SE and AES. On the other
hand, muscle %MeHg was constant around 80-90% saalbsites (Cransveld et al., 2017).
The different MeHg profile between muscle and lilgein accordance with previous literature

and the role that these two tissues have in tihebitgly (Mieiro et al., 2009). Muscle is often

11
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described as the final Hg storage tissue in maviedebrates, where dietary MeHg is
accumulated at a high rate and not metabolizetidui(Oliveira Ribeiro et al., 1999). This is
why %MeHg remains constant. Instead, the extremalyiable proportions of MeHg
displayed by liver are thought to be an expressiotme protective role of this organ (Mieiro
et al., 2011; Oliveira Ribeiro et al., 1999). Indeé this organ, dietary MeHg binds with
Selenium (Se) and is transformed into an inert aienite complex (HgSe) (Sonne et al.,
2009). In this way, Hg is locally accumulated irleas toxic and non-available inorganic
form. Through the application of Hg stable isotogios, there is increasing evidence that the
liver acts as a Hg detoxification center in fisl, indoes in marine mammals or seabirds
(Renedo et al., 2021; Wang et al., 2013, 2017).

Hg stable isotopes can undergo MDF during uptake m@etabolism of Hg within the
organisms (transfer, transformation and excreti@n)et al., 2020). Important Hg MDF
related to MeHg demethylation is now also broadigepted to occur in fish (Man et al.,
2019; Wang and Tan, 2019). MeHg demethylation caudiDF preferentially involves
lighter Hg isotopes and generates newly formed iktying a lowers**Hg (Perrot et al.,
2015). The remaining non de-methylated MeHg widirtthave a highei*®Hg compared to
the initially bioaccumulated MeHg (Perrot et alQ18). Because most iHg is excreted, the
fractionation (MDF) caused by demethylation is @ioly more observable in MeHg-rich
tissues like muscle (Gehrke et al., 2011; Kwonl.ef@14a; Sherman and Blum, 2013). Since
liver is the center ofn vivo demethylation and therefore contains a lower pribgorof
MeHg, it will display lowers?®Hg values than muscle. Consequently, a large shift®Hg
values and %MeHg between muscle and liver tisstissabass could infer the occurrence of
MeHg demethylation in the liver of the fish (Wangad., 2013). All our sampling areas
showed a significant difference in %MeHg betweersdiand liver (Figure 2). F&f°Hg

values the difference was less striking. A sigaifit statistical difference was found only in

12
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BS fish (Figure 2a); nevertheless, MDF was higmemiuscle than liver for all sites. This
result suggests that MeHg demethylation might iddee occurring in the livers of European
seabass. This is the first evidence that such eepsomight occur in this fish species, and
specifically in juvenile individuals. This represena very important result, considering
existing conflicting literatures about MeHg deme#ttiypn capacity in fish organisms.
Regarding the hypothesis thatvivo demethylation was the only process affecting MDF i
seabass, we should expect to have the siffffielg difference between muscle and liver
across all sites. However, this was not the caseesBS seabass presented a much larger
8?°Hg difference than the other sites. Cransveld .e28117) proposed that the particular Hg
isotopic composition of the BS subpopulation colbddexplained by the presence of MeHg
demethylation (Cransveld et al., 2017). Our findingave shown that such a process is
occurring in all the sampled seabass. Therefore, possibility is that BS seabass might
demethylate MeHg at higher rates, which would lead larger difference i6***Hg values
between muscle and liver. Several processes migheérmine higher raters of Hg
organotropism and demethylation: the levels of liddg pollution, fish age, exposure to
different sources of Hg from the environment, figlet, and finally the particular
biogeochemistry of the studied area, which affeldsal Hg cycling in the marine

environment. These factors will be analyzed onebg-in the following paragraphs.

A higher extent of local Hg pollution hidesinter-organ Hg MDF

Previous studies have shown that in highly pollussdtems, liver can accumulate iHg
directly from the environment, through the gills thhe skin (Feng et al., 2015). For this
reason, hepatic Hg levels and detoxification rateght be affected by levels of Hg pollution
in the environment (Guilherme et al.,, 2008). Indeedareas with higher anthropogenic

pollution discharge, studies have demonstratedceedse in %MeHg in fish liver (Rua-lbarz
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et al., 2019). This seems to be primarily due to tifferent processes: first, the exposure to
higher levels of environmental iHg deriving fromtlampogenic activities leads to higher
accumulation of this Hg species in the liver (Gengé al., 2015); secondly, the higher Hg
intake in the animal (through diet or gills) leadshigher hepatic MeHg demethylation rates
(Cizdziel et al., 2003; Perrot et al., 2015). Ifstlwere true, we would observe a larger
difference in %MeHg between muscle and liver tissimehighly polluted areas compared to
unpolluted ones. In the same way, because of thpetiten in **Hg observed during
demethylation of MeHg in liver, we should get atwg difference between musd&Hg
and livers®®Hgin seabass collected in highly polluted areas.

In our study, the profile of %MeHg in the liver &uropean seabass indeed reflects the
history of Hg contamination between our samplingssiwith moderately polluted areas such
as NS and SE presentir@0% of MeHg in liver and the highly polluted onédselRAC and
NAS presenting40% of MeHg. The Ria d’Aveiro (RAC) has been sutgddo Hg effluents
from a chlor-alkali plant for almost five decade$¥9%0-1994). Today, very high Hg
concentrations can still be found in bottom sedimgoelho et al., 2005; Mieiro et al.,
2011). NAS samples were collected in the lagooMafano and Grado in the Gulf of Trieste.
This area is known to have a long history of Hglygan, due to the presence of the Idrija
mercury mine and chlor-alkali plants active betwek39-1984 (Foucher et al., 2009;
Zivkovi¢ et al., 2017). On the other hand, AES samples weltected in the Agiasma
lagoon, which is today a RAMSAR protected area ([@4d)). This region is usually associated
with quite low levels of Hg (Christophoridis et,a2007). This second result suggests that
mercury accumulation and organotropism in Europseabass from NAS, NS, SE, AES,
RAR and RAC is governed by the extent of local yadin, and controlled by the protective
role played by the liver. However, this cannot gpa BS, which contrasted with all other

sites, showing the lowest THg levels and %MeHgverl (around 7%, Table 2). Moreover,
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the difference betweed*’Hg in muscle and liver was found to be the greate®S fish,
followed by the second least polluted site of AE®nversely, the moderately and highly
polluted areas did not show any significant differes (Figure S4). This result is in contrast
with our previous observation of larger inter-orgdbF in more polluted areas, supporting
the idea that the larger extent of BS MeHg hepdémethylation is not governed by Hg
pollution.

A possible factor influencing the rate of MeHg ddéimyéation, and therefore Hg MDF, is fish
age. BS seabass were one year old, while in NAS,N&Eand AES we sampled two- and
three-year-old fish (Cransveld et al., 2017). Salvetudies have demonstrated how the
detoxifying activity of liver can change during thietime of an organism, due to metabolic
shifts linked with growth rates (Le Croizier et,&020). Younger fast-growing animals have
higher metabolic rates, which lead to faster ismtoputing and contaminant accumulation
(Pinzone et al., 2017). Therefore, the ladgfHg tissue offset in BS might be due to the fact
that these fish are younger than SE, NS, AES an8 NAes. However, this does not apply to
RAC and RAR fish, which are also one year old,dmhot show the same lar§®&Hg offset
between tissues (Figure S4).

The similar age of NAS or RAC and BS fish therefexeludes attributing the difference in
the extent of MeHg demethylation to growing rafHsis, in addition to the inconsistency of
BS seabass presenting both the highest inter-dvti2ia and lowest Hg pollution, shows that
while the levels of environmental Hg pollution geadly influence Hg organotropism in this
species, the inter-organ Hg MDF variability mighotnresult from a difference in
demethylation rates across sites.

It could instead be proposed that the Hg isotogigability observed in our seven seabass
subpopulations results from the extreme differeimcelg levels between the most polluted

sites NAS and RAC and the least polluted sites®faBd AES. Indeed, in very contaminated
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areas, seabass might be exposed to levels ofyidigtlg so elevated that it can saturate the
organism (Feng et al., 2015). In this situatiorifedences in Hg levels and isotopic values
between organs might be masked (Havelkova et @8} This could be the reason for the
absence of inter-organ MDF offset in seabass frgk® Mr RAC. On the other hand, we can
readily discriminate Hg inter-organ transfer andmdéhylation processes in BS seabass

because of the limited Hg pollution in the area.

A™Hg MIF inter-tissue comparison indicates same Hg origin for all seabass
populations.

If Hg pollution was the only factor influencing $ess Hg isotopic composition, we would
observe the same pattern in both AES and BS, becazHukeir similar Hg levels. However, it
is worth remembering that BS seabass were thean®g in which thé°°Hg offset between
the muscle and liver was significantly differenth#&\ comparing BS fish with the rest of the
sampling sites, we can observe that the largerdiffee in5°°Hg is caused by significantly
lower values # -1%o) in liver tissue compared to the other regi@ffigure 2a). Musclé**Hg
values are instead similar to other regions, iroedance with previous findings in estuarine
biota (Kwon et al., 2014b). Beside metabolic preess Hg stable isotope MDF can occur
during a variety of biotic and dark abiotic reang8p such as microbial reduction of iHg
(6°°*Hg = -1.6%0) or microbial demethylation of MeH§*(*Hg = -0.4%0) (Tsui et al., 2019).
Therefore, the negative MDF signature of BS fishuldoreflect the local marine Hg
biochemical cycle. However, the great variabilifypoocesses causing MDF complicates the
interpretation of our data.

Hg stable isotope MIF is caused by photochemicatgsses in the environment and is not
modified byin vivo metabolism (Blum et al., 2014). For this reasargan be used more

easily to trace Hg sources in marine fish (Zhend dfintelmann, 2009)A**Hg values

16



365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

should not differ between muscle and liver tisswben fish are exposed to Hg originating
from a single source point (Perrot et al., 2013).eXpected, we found no statistical difference
between liver and muscle*®Hg values from all sites, again with the singleeption of BS,
whose muscla'**Hg values were > 1%o higher than those for liveg(fe 2b). These values
are also higher than'®Hg found in all the other sites. As féf°°Hg values, BS MIF
signature was the only one to correlate positiveith %MeHg between tissues, confirming
again that both MDF and MIF in this population deg® on Hg species distribution between
muscle and liver.

A first hypothesis is that the two tissues represeo separate endmembers of Hg in this
population. In fish, the liver accumulates Hg imeh forms: MeHg from the diet, iHg from
demethylated MeHg, and environmental iHg. While entitan 95% of assimilated dietary
MeHg is absorbed and mostly stored in muscle (Mdrachet et al., 2006), only 10% of iHg
remains in the organism (Gentes et al., 2015) tliisrreason, we usually find very low levels
of iIHg (Wang and Wong, 2003). In the presence loical point source of iHg, however, this
form can accumulate at higher rates in both livef muscle tissue (Feng et al., 2015).

The majority of Hg accumulated in BS liver is in iaorganic form £ 90%, Figure 3). Thus,
the near-zeroA'®*Hg values presented by BS seabass liver could cteflee isotopic
composition of iHg accumulated directly from thevieonment (Figure 3b). On the other
hand, BS muscle presents both Hg species, withjarityaof MeHg (60-90%). In that case,
A™Hg values in this tissue could represent a mix aftiple sourcesa*®*Hg values around
1.5%0 could represent MeHg coming from the diet,IstHower MIF could be linked to the
remaining 10-40% of iHg. This is confirmed by thesjtive correlation between'**Hg
values and %MeHg in muscle (Figure 3b).

Inorganic Hg coming from industrial sources caneéhaear-zeraA'**Hg, while watershed

loading can even impart negative MIF (Du et al.1&0Lepak et al., 2015). Therefore, one
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possibility for the low hepatic MIF might be thagldtored in BS seabass liver comes from a
local point source of industrial origin (Wiederhatlal., 2015). The BS samples were taken
along the northern Turkish coast, between the Spmpmnsula and the Kizilirmak estuary.
This area is known for heavy industrial activitydathe input of totally unregulated and
uncontrolled drainage water from upriver mining aagticultural areas (Bat et al., 2010;
Gokkurt et al.,, 2007). However, recent literatuees lshown that the amount of freshwater
discharge of particulate Hg in this locality, and bioaccumulation in marine biota, is
negligible compared to other trace elements (e.§0<ng.g* ww in fish liver, < DL in
invertebrates) (Bat et al.,, 2019, 2018). Therefarer Black Sea sampling site can be
considered as a relatively unpolluted area withardg to Hg (Table 1), excluding the
hypothesis of a particular point source of anthggeoc origin. Additionally, in Figure 1b we
can see how the values of th&”*Hg/A?*Hg slopes for both liver (1.69+0.03) and muscle
(1.26+0.02) confirm that all Hg accumulated in Bflsass derives from photo-demethylated
MeHg in the water column, in the same way as theerotegions. This combination of
evidence excludes our hypothesis of the presenea afdditional source of iHg in the Black

Sea population.

A*™Hg MIF of uncontaminated Black Sea waters show short-term ontogenetic shifts in
fish.

Because of their different metabolic roles, musoid liver tissues integrate different
time periods of the fish life cycle, and therefatso their habitat use and Hg exposure levels
(Madigan et al., 2012). One of the biggest compbee in the interpretation of these kinds of
results is that isotopic and elemental uptake amiledion can occur at very different rates
(Carter et al., 2019). To our knowledge, thereasniormation about isotopic routing in fish

liver yet. However, if we consider that this is arganism where dietary MeHg is quickly
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metabolized and accumulated as inert iHg with tiinis, safe to accept that, as for mammals
and birds, it might integrate the entire life oétfish. MeHg half-life in fish muscle is much
shorter, around two years (Kwon et al., 2016; Tstla and Cordle, 1986). Therefore, we
could propose that liver of BS seabass integratgmation about Hg exposure during the
entire life of the fish, while muscle does so ofdy the last year. If this were the case, we
could hypothesize that the large MDF and MIF ofdstween muscle and liver are showing
two separated temporal snapshots of the first gkelifie of BS seabass.

The seabass is a bentho-pelagic species which gmekeseasonal migrations between
their feeding (offshore) and spawning (estuariesas (Pawson et al., 1987). From birth until

their first year, immature fish inhabit their nungareas (e.g. lagoons, estuaries) (Lopez et al.

2015). In some regions juvenile seabass can alretmt exploring offshore waters during
their first summer, but they never venture intopdevaters until they reach sexual maturity
(around five years of age) (Jennings et al., 1991).

Hepatic near-zero MIF and negative MDF of BS fisnate a coastal and benthic
habitat use, in accordance with previous literatlreut the trophic ecology of estuarine fish
(Kwon et al., 2014b; Li et al., 2016; Senn et 2010). In these areas, most Hg accumulated
in fish derives from MeHg formed in sediments (ltiad., 2016). The low MDF and MIF
values are a consequence of the reduced amourticddbghemical degradation due to the
presence of more suspended particle loads and D@t entrations that reduce light
penetration (Kwon et al., 2014b).

On the other hand, in marine offshore and pelagod fwebs, MeHg derives mostly
from wet precipitation4***Hg = -1 to 1%.) or deposition of gaseous elemeniAt**Hg =
0.5%0 to 1%0) (Kwon et al., 2020). This results ire thigh MIF values found in BS seabass
muscle (Figure 3b). Therefore, our findings sugglest in BS seabass, hepatic MIF, mostly

related to the iHg fraction, would represent theique of their life spent in the estuaries
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feeding upon benthic invertebrates in the sedimedts the other hand, museland the
isotopic composition related to MeHgmight show a more recent signature, corresponaing t
the first exploratory trips to pelagic waters.

Cransveldet al. (2017) have thoroughly discussed the impact obaea diet on MeHg
accumulation and Hg MDF and MIF values, integratiisfp stomach content analysis with
the measurement of nitrogen and carbon stablepeatatios &N and5'°C, respectively).
Although they found a difference in fish trophiwéé (TL, calculated frond*°N values) and
8'3C values, they did not find any correlation withalsass THg or MeHg concentrations
(Cransveld et al., 2017). Stomach content revealsdnilar variety of prey across all sites,
confirming the largely opportunistic feeding belawf seabass (Cransveld et al., 2017). This
further confirms that the differences in inter-argdDF and MIF in BS fish, as well as the
other sites, depend more on shifts in habitat lnge on diet.

Finally, while the very low contamination levelstbke BS site allow the net differentiation of
local seabass from the other regions with regardstér-tissue fractionation, it also separates
this subpopulation fothe large heterogeneity of muscle MDF and MIF val{Eigure 2).
This is linked with the unique oceanographic feaduof the Black Sea (e.g. low salinity,
strong freshwater input, semi-permanent stratiicatetc.) (Bakan and Blyukgungor, 2000;
Capet et al., 2016; Ozsoy and Unliiata, 1997). Thesteres lengthen marine Hg processing
and recycling between water layers, resulting ghli and more diverse*®*Hg ands**Hg
values (Blum et al., 2013; Motta et al., 2019).

Our findings underline the necessity of collectdegailed information about the history of Hg
pollution, and its cycling and sourcing in the eowment, before studying its accumulation,
organotropism and transformation within marine ptedy fish through the analysis of Hg

stable isotope ratios.
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Conclusion

The main findings of this study can be summarizetbows:

1. The multi-tissue comparison of Hg MDF and MIF signaroduced evidence of
MeHg demethylation in the liver of a fish specias,well as trace Hg accumulation
dynamics between different populations of a mapiresiator;

2. In general, the levels of environmental Hg pollatiofluence Hg organotropism and
apparently also the extent of hepatic demethyldtianarine predatory fish. However,
it is not the only factor contributing to Hg isotowariability in the European seabass;

3. In highly contaminated areas, inter-organ MDF miggit hindered by Hg saturation in
fish tissues. This has to be taken into accountha interpretation of Hg stable
isotopes in further studies. On the other handjricontaminated sites (< 200 ng.g
dw in fish) such as the Black Sea, the inter-orgggnMDF and MIF can trace short-
term shifts in fish habitat use;

4. Additionally, the particular oceanographic featuodshe Black Sea basin influence
Hg cycling and processing in the water column, ighllghted by BS seabags *Hg

andd°“Hg values.
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759  Figure 1. MIF vs. MDF plot (A) and MIFvs. MIF plot (B) of muscle (circle) and liver (triangle) of Eur@peseabasd( labrax) from AES

760  (blue), NS (green), SE (orange), NAS (violet), Bfac¢k), RAR (light green) and RAC (red). Signifitaorrelation is shown by discontinuous
761  regression lines.
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Figure 2. 5°Hg (A) andA™*Hg (B) valuesvs. % MeHg for all sampling sites of muscle and
liver tissue. AES = Aegean Sea (blue), NS = Norta §Green), SE = Seine Estuary
(Orange), BS = Black Sea (Black), NAS = North Atdeé&Bea (NAS), RAR = Ria d’Aveiro
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774 Tables
775
776  Table 1. Summary of fish biometric information per sampliawgga. Information about local Hg sources at thepdiag sites are extrapolated
777  from literature and supporting information in Craglsl et al. (2017). Old pollution sources which aot active anymore are shown in italics.
Sampling Site Stand?ércrj])lmgth Body mass(g) Estimated agerange(years)  Pollution sources Definition*
281 272 +48
AEIEAN Sl (25 - 30) (205 - 380) 2 Protected by the -, \\ bjiution
AES _ _ Ramsar convention
n=10 n=10
NORTH SEA 26£6 192+ 90 Interland industry Moderate
NS (16 - 30) (43 -278) 1-3 Coastal urbanism Pollution
n=10 n= 10
SEINE ESTUARY SEC LECE R Interland industry Moderate
SE =g (Bl = Sla, S Coastal urbanism Pollution
n=10 n=10
21+£2 140+ 24 .
PLACK SEA (18 - 24) (110 - 170) 1-2 interland Industty and | ow pollution
n=10 n= 10 9
NORTHERN 22+1 123 +20 Idrija mercury mine
ADRIATIC SEA (20 - 23) (89 - 149) 1 Chlor-alkali plant High Pollution
NAS n=9 n=9 Coastal industry
RIA DE AVEIRO 21+4 106 + 60 (Lagoon outlet) Moderate
REFERENCE (17 - 26) (55 - 217) 1-2 Coastal industry and Pollution
RAR n=10 n=10 urban development
S
CONTAMINATED (16 - 18) (45-77) 1 - High Pollution
RAC n= 12 n= 12 Coastal industry and

urban development

778  *We separated the sampling sites into three caiegioi_Low Pollution” for all the sites presentingdd = < 200ng.g dw, "Moderate Pollution” when THg ranged between
779 500 and 1500 ng’gdw, and "High Pollution” when THg = >1500 nddw, based on the statistical difference reportedrfoscle concentrations,(b andc in Figure S1).

780
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781
782
783
784

785

Table 2. THg and MeHg concentrations (ng,gdw), %MeHg and Hg isotopic ratios (&sandA values, %o) in liver oDicentrarchus labrax
from seven sampling sites across Europe. All valresexpressed as mean + standard deviation (S&jiam (minimum-maximum) and n =
number of analyzed samples.

SAMPLING
S TE [TH(] [MeH(] %MeHg *%Hg A™Hg A™Hg A®Hg A™Hg
AGEAN SEA 166 + 37 89 + 34 52 +15 -0.57 £0.10 0.67 £0.17 0.05 £0.03 0.39 £0.06 -0.12 £ 0.08
AES 182 (101 - 203) 86 (46 - 154) 52 (31-83) -0.56(-0.75--0.42) 0.62(0.49-1.03) 0.05(0.00-0.09) 0.40(0.29-0.49) -0.09 (-0.24 - -0.01)
n=10 n=9 n=9 n=10 n=10 n=10 n=10 n=10
NORTH SEA 840 £ 575 326 +179 42 £10 -0.53+0.18 0.32+£0.16 0.02 £0.03 0.12 £0.07 -0.03+0.04
NS 827 (208 - 1498) 375 (86 -457) 42 (30-54) -0.51(-0.76 --0.32) 0.31(0.15-0.52) 0.02 (-0.01-0.06) 0.15(0.03-0.17) -0.02(-0.08 - 0.02)
n=4 n=4 n=4 n=4 n=4 n=4 n=4 n=4
SEINE 1031 + 153 512 + 111 50+10 -0.25 +0.08 0.21 £0.08 0.001 £0.03 0.19 £0.07 0.01 £0.06
ESTUARY 1016 (769 - 1228) 536 (277 - 646) 49 (36-70) -0.26 (-0.37 --0.13) 0.20 (0.08 - 0.38) 0.00 (-0.05 - 0.05) 0.17 (0.12-0.36) -0.01 (-0.07 - 0.09)
SE n=10 n=10 n=10 n=10 n=10 n=10 n=10 n=10
75+23
BLACK SEA 180 + 47 13+3 7.3(4.8- -0.98 +0.17 0.17 £0.05 0.02 £0.03 0.09 £0.04 -0.04 £ 0.08
BS 177 (99 - 268) 12 (10 - 20) ’ 11)' -0.94 (-1.41 - -0.85) 0.18 (0.10-0.24) 0.03 (-0.05-0.04) 0.08 (0.05-0.17) -0.04 (-0.12-0.07)
n=9 n=9 n=9 n=9 n=9 n=9 n=9 n=9
'\,IO\%T;-II—:'EEN 1714 + 1255 1160 + 883 67 £8.1 -0.01 £0.14 0.54 £0.13 0.01 £0.04 0.40 £0.09 0.01 £0.21
SEA 1174 (884 - 4432) 877 (506 - 3115) 66 (54-8) -0.05(-0.17 -0.27) 0.59 (0.37 -0.69) 0.02 (-0.07 - 0.07) 0.42 (0.29 - 0.50) 0.07 (-0.41 - 0.26)
n=8 n=8 n=8 n=8 n=8 n=8 n=8 n=8
NAS
RIA DE
AVEIRO 1368 + 804 737 +£431 27 +21 -0.09+0.14 0.42 £0.10 0.01 £0.03 0.33+£0.10 0.13+0.21
1274 (333 -2243) 887 (227 -1122) 20(10-50) -0.13(-0.23-0.11) 0.41(0.29-0.55) 0.00 (-0.03-0.06) 0.31(0.19-0.46) 0.20(-0.17 -0.34)
REFERENCE - _ — ~ - a _ =
n==6 n=5 n=3 n==6 n==6 n==6 n==6 n==6
RAR
RIA DE
AVEIRO 2888 + 468 1088 + 680 697 0.11 £0.10 0.20 £0.07 0.002 £0.02 0.14 £0.05 -0.17 £0.15
CONTAMINAT 2785 (2309 - 3515) 1220 (119 -1903) 67 (57 -80) 0.12(-0.13-0.22) 0.19 (0.03-0.30) 0.01 (-0.03-0.03) 0.14 (0.05-0.21) -0.18(-0.33 -0.20)
ED n=10 n=10 n=9 n=10 n=10 n=10 n=10 n=10
RAC
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Highlights

» Isotopic ratios trace Hg organotropism and souitdéise European seabass;

«  We measured'**Hg ands**Hg values, T-Hg and %MeHg in seabass muscle aed liv
» Our results suggest the occurrencenofivo MeHg demethylation in seabass liver;

* In polluted areas inter-organs MDF gets masked ¢pg&turation in fish tissues;

* In unpolluted sites, Hg MDF and MIF trace shortrieshifts in fish habitat use.
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