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Abstract 19 

Hg accumulation in marine organisms depends strongly on in situ water or sediment 20 

biogeochemistry and levels of Hg pollution. To predict the rates of Hg exposure in human 21 

communities, it is important to understand Hg assimilation and processing within 22 

commercially harvested marine fish, like the European seabass Dicentrarchus labrax. 23 

Previously, values of Δ199Hg and δ202Hg in muscle tissue successfully discriminated between 24 

seven populations of European seabass. In the present study, a multi-tissue approach was 25 

developed to assess the underlying processes behind such discrimination. 26 

We determined total Hg content (THg), the proportion of monomethyl-Hg (%MeHg), and Hg 27 

isotopic composition (e.g. Δ199Hg and δ202Hg) in seabass liver. We compared this to the 28 

previously published data on muscle tissue and local anthropogenic Hg inputs. 29 

The first important finding of this study showed an increase of both %MeHg and δ202Hg 30 

values in muscle compared to liver in all populations, suggesting the occurrence of internal 31 

MeHg demethylation in seabass. This is the first evidence of such a process occurring in this 32 

species. Values for mass-dependent (MDF, δ
202Hg) and mass-independent (MIF, Δ199Hg) 33 

isotopic fractionation in liver and muscle accorded with data observed in estuarine fish (MDF, 34 

0-1‰ and MIF, 0-0.7‰). Black Sea seabass stood out from other regions, presenting higher 35 

MIF values (≈1.5‰) in muscle and very low MDF (≈-1‰) in liver. This second finding 36 

suggests that under low Hg bioaccumulation, Hg isotopic composition may allow the 37 

detection of a shift in the habitat use of juvenile fish, such as for first-year Black Sea seabass.  38 

Our study supports the multi-tissue approach as a valid tool for refining the analysis of Hg 39 

sourcing and metabolism in a marine fish. The study’s major outcome indicates that Hg levels 40 

of pollution and fish foraging location are the main factors influencing Hg species 41 

accumulation and isotopic fractionation in the organisms. 42 

 43 
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 45 

Main finding: Our novel results support the occurrence of in vivo MeHg demethylation in 46 

European seabass. They also show that, in this fish, environmental levels of Hg pollution 47 

influence demethylation rates and inter-organ MDF.48 
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Introduction 49 

Monomethyl-Hg (MeHg), the most toxic form of Hg, is readily bioavailable in the marine 50 

environment and bioaccumulates in the food web (Hong et al., 2012; Lang et al., 2017; 51 

Mozaffarian and Rimm, 2008; Renzoni et al., 1998; UNEP, 2018, 2013). Several processes 52 

modulate MeHg bioavailability (Du et al., 2019). In surface waters, sunlight radiation can 53 

control the degradation of methylated Hg species. Several mechanisms are proposed to cause 54 

MeHg photodegradation (Luo et al., 2020). It is generally recognized that this process is 55 

induced by ultraviolet light (UV-A and UV-B, 280-400 nm) (Lehnherr and St. Louis, 2009) 56 

and controlled by the type and abundance of MeHg-binding ligands (e.g. OH-, 1O2, DOM, 57 

organic thiols or chloride complexes) in the water column (Luo et al., 2020; Zhang and Hsu-58 

kim, 2010). In deeper layers, MeHg is mostly processed by microbial activity, either in the 59 

aphotic water column during microbial remineralization of settling organic matter, or in 60 

anoxic conditions at the sea bottom (Gworek et al., 2016; Li et al., 2016; Mason et al., 2001; 61 

Sunderland et al., 2010). Iron- and sulfur-reducing bacteria (IRB and SRB, respectively) as 62 

well as methanogens are the main groups of prokaryotes responsible for Hg processing in 63 

anoxic conditions (Bystrom, 2008; Lu et al., 2016; Regnell and Watras, 2019). 64 

Consequently, local climatic and oceanographic features, combined with growing 65 

anthropogenic activities, might alter the complex Hg cycle, with unknown consequences for 66 

its marine life. Apex predators such as marine mammals, seabirds or carnivorous fish can 67 

accumulate extremely high levels of Hg, being at the top of marine food webs (Sonke et al., 68 

2013). For this reason, understanding Hg uptake and accumulation in these animals is a 69 

priority. Such urgency is also related to the fact that most species of edible carnivorous fish 70 

(tuna, cod, seabass etc.) are commonly consumed by humans (Serrell et al., 2012).  71 

Recently, the use of stable isotopes of Hg was proven useful for discriminating 72 

between potential Hg sources and accumulation in aquatic habitats (Bergquist and Blum, 73 
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2009; Cransveld et al., 2017; Gantner et al., 2009; Gehrke et al., 2011; Kwon et al., 2014a; 74 

Perrot et al., 2010; Point et al., 2011; Senn et al., 2010; Sherman and Blum, 2013; Yin et al., 75 

2016). The seven stable isotopes of Hg (Z = 196, 198, 199, 200, 201, 202 and 204) can 76 

undergo mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) 77 

(Bergquist and Blum, 2009). MDF (mostly represented by δ202Hg) occurs during a variety of 78 

chemical, physical and biological reactions, and has been used to detail the processes 79 

controlling Hg transport, transformation and bioaccumulation (Bergquist and Blum, 2009). 80 

More specifically, MDF can be used to trace Hg transfer from the environment throughout the 81 

food web (Tsui et al., 2019). The latest constraints to the interpretation of MDF data include 82 

its quantification at higher trophic levels, where fractionation rates are complicated by 83 

biotransformation processes occurring within the organisms (e.g. demethylation) (Tsui et al., 84 

2019). MIF is not modified throughout the food web and thus provides a unique fingerprint of 85 

primary Hg sources in the marine environment (Obrist et al., 2018). The occurrence of MIF 86 

(represented mostly by Δ199Hg and Δ201Hg values) has been attributed to all photochemical 87 

reactions, such as photochemical reduction of Hg2+ (Bergquist and Blum, 2007), and 88 

photodemethylation of DOM-associated MeHg in both the water column (Chandan et al., 89 

2015) and marine phytoplankton cells (Kritee et al., 2018). Finally, even-mass isotopes 90 

(Δ200Hg, Δ204Hg) are dependent on the atmospheric cycle of Hg, discriminating for example 91 

between precipitation sources (e.g. snow vs. rain) (Gratz et al., 2010; Sherman et al., 2010). 92 

We recently measured MDF and MIF values in seabass muscle (Dicentrachus labrax) 93 

to discriminate between different sub-populations in Europe and in the Black Sea (Cransveld 94 

et al., 2017). We highlighted a large heterogeneity in Hg MDF and MIF between the seven 95 

sampling regions, and suggested hepatic MeHg demethylation or different Hg sourcing as 96 

potential causes (Cransveld et al., 2017). However, the exclusive use of muscle as the 97 

monitoring tissue did not allow more extensive interpretation. 98 
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Indeed, while Hg monitoring studies often focus on muscle, the analysis of Hg 99 

isotopes and speciation in liver can bring additional perspectives (Tsui et al., 2019). Each 100 

tissue indeed exhibits specific concentrations and proportions of Hg species (Mieiro et al., 101 

2011; Pentreath, 1976), depending on several factors: tissue composition (proteins, lipids, 102 

carbohydrates), turnover rate, and the food regime of fish (Jardine et al., 2006; Maury-Brachet 103 

et al., 2006; Perga and Gerdeaux, 2005; Wang and Wong, 2003). For this reason, the 104 

inclusion of more tissues in the assessment of Hg stable isotopes in a single organism was 105 

proposed as a valid and necessary approach that may offer a more comprehensive picture of 106 

the dynamics of contaminant uptake (Jardine et al., 2006; Tsui et al., 2019) and internal 107 

processing by marine organisms (Kwon et al., 2016, 2012). In this regard, liver is the key 108 

tissue. In marine mammals, aquatic birds and some fish species, the liver is demonstrated to 109 

act as detoxifying organ (Booth and Zeller, 2005; Eagles-Smith et al., 2009; Feng et al., 2015; 110 

Gonzalez et al., 2005; Wagemann et al., 1998). Thus, the combination of stable isotope 111 

analysis in both muscle and liver of marine predators could allow a complete understanding 112 

of MeHg sources and processing in both wildlife and the wider environment. 113 

Therefore, to understand Hg sources and organotropism of this species around Europe, 114 

in this study we compared THg, %MeHg and Hg isotope composition (MIF and MDF) in the 115 

liver of wild seabass Dicentrarchus labrax with previously published muscle data (Cransveld 116 

et al., 2017). Specifically, we wanted to test three distinct hypotheses: (1) The use of a multi-117 

tissue approach improves isotopic tracing of Hg biogeochemical processes and sources 118 

between natural ecosystems, in comparison with the singular analysis of muscle; (2) MeHg 119 

demethylation may occur in seabass liver and its rates can be dependent on the extent of local 120 

mercury pollution; (3) the peculiar biogeochemical settings of each sampling site may 121 

determine the particular sourcing of MeHg in local seabass. 122 

 123 
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Materials and method 124 

Sample collection  125 

Sampling of the seabass Dicentrachus labrax used in the present study has been described 126 

previously (Cransveld et al., 2017). All the biometric information available for the sampled 127 

fish is summarized in Table 1. All fish were juveniles, sampled at their nursery sites. Fish 128 

were collected between 2012 and 2014 from seven coastal sites throughout Europe: the North 129 

Sea (NS), the Northern Aegean Sea (AES), the Seine Estuary (SE), the Northern Adriatic Sea 130 

(NAS), the Turkish coast of the Black Sea (BS), and two different sites at the Ria de Aveiro 131 

in Portugal (a “reference” site and a “contaminated” site – RAR and RAC respectively). 132 

These sites are subjected to different levels of Hg pollution because of their specific industrial 133 

origin. Details about each site are given in Table 1 and in the Supporting Information of 134 

Cransveld et al. (2017). Sites were separated into “low”, “moderate” and “highly” polluted 135 

categories, based on the statistical differences published on muscle concentrations (Cransveld 136 

et al., 2017). Figure S1 shows these three groups as a, b and c. After sampling, fish were kept 137 

in freezers at -20°C. Prior to dissection, fish were measured and weighed. Liver was sampled, 138 

freeze-dried and ground into powder.  139 

Analyses 140 

THg concentrations were determined in the liver of fish through the use of a Milestone Direct 141 

Mercury Analyzer 80 (Habran et al., 2012), using the US EPA Method 7473, validated for 142 

solid samples. THg concentrations are expressed as ng.g-1 dry weight (DW). Quality 143 

assurance methods included measuring blanks (HCl 1%), standard solutions (100 ng Hg.ml-1), 144 

triplicates of samples, and certified reference material NRC-DORM-2 (certified T-Hg value = 145 

4640 ± 260 ng.g-1 dw). CRM recovery percentages ranged from 89% to 110% (Table S1).  146 

MeHg concentrations were determined by isotope dilution-gas chromatography, inductively-147 

coupled-plasma mass spectrometer (ID-GC-ICP-MS), following microwave-assisted 148 

Jo
urn

al 
Pre-

pro
of



 8 

extraction and aqueous phase derivatization, as detailed elsewhere (Cransveld et al., 2017; 149 

Rodríguez Martín-Doimeadios et al., 2002). For the extraction, between 50-100 mg of the 150 

liver sample was weighed. BCR CRM-464 (tuna fish muscle certified for MeHg and THg 151 

concentration) and DOLT-4 (dogfish liver) were used as reference materials. Certified and 152 

obtained THg and MeHg values are shown in Table S2. All solutions were prepared using 153 

ultrapure water (18MΩ cm, Millipore). Trace Metal Grade acids HNO3 and HCl from Fisher 154 

Scientific (Illkirch, France) and ultrapure H2O2 (67-70%, ULTREX® II, J.T.Baker) were used 155 

for the preparation of all the samples, standards and blanks. Between 20 and 570 mg of liver 156 

samples were mineralized in quartz vials with trace metal grade nitric acid (HNO3), using a 157 

HPA High Pressure Asher (Anton Paar, Austria). Then, ultrapure hydrogen peroxide (H2O2) 158 

was added, and samples went through a digestion process for three more hours on a hot block 159 

(80°C) to ensure full mineralization of organic matter. The samples were then diluted to 160 

obtain a final Hg concentration of 1 ng.g-1 in an acid solution, which was adjusted to contain 161 

10% HNO3 and 2% HCl. Blanks were prepared by pouring nitric acid in vials, without 162 

samples. CRM recovery percentages ranged from 74% to 94% (Table S2). 163 

Mercury isotopic composition analysis was performed using cold vapor generation 164 

(CVG) with multi-collector-inductively coupled plasma-mass spectrometer (MC-ICP-MS, Nu 165 

Instruments) (Cransveld et al., 2017). A desolvation / nebulization system from Nu 166 

Instrument was used to introduce NIST-SRM-997 thallium for instrumental mass-bias 167 

correction using the exponential fractionation law. Reference material NIST RM 8610 168 

(former UM-Almaden), ERM-CE-464 and DOLT-4 were used as secondary standards. The 169 

resulting Hg isotopic composition is presented in Table S3.  170 

We used a standard-sample bracketing system to calculate δ values (in ‰) relative to 171 

the reference standard NIST SRM 3133 mercury spectrometric solution. Isotope 198Hg was 172 
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 9 

used as the reference for ratio determination of all other Hg isotopes, using the following 173 

equations: 174 

δxxxHg = [
( Hg/ 

xxx Hg)sample 
198

( Hg/ 
xxx Hg 

198 )NIST 3133

 - 1)] ×1000 

MDF processes will be represented by δ
202Hg values. MIF processes will be calculated and 175 

represented as follows for odd (1 & 2) and even (3 & 4) isotopes: 176 

(1) Δ
199Hg = δ199Hgobserved - δ

199Hgpredicted = δ199Hgobserved - (δ
202Hg × 0.252) 

(2) Δ
201Hg = δ201Hgobserved - δ

201Hgpredicted = δ201Hgobserved - (δ
202Hg × 0.752) 

(3) Δ
200Hg = δ200Hgobserved - δ

200Hgpredicted = δ200Hgobserved - (δ
202Hg × 0.502) 

(4) Δ
204Hg = δ204Hgobserved - δ

204Hgpredicted = δ204Hgobserved - (δ
202Hg × 1.493) 

A more detailed description of Hg speciation and isotope analysis, including quality assurance 177 

and method validation, can be found in the Supporting Information of this work and in 178 

previous literature (Cransveld et al. 2017; Renedo et al. 2018).  179 

Statistics 180 

Since the sampling size was small (n ≤ 12) for each sampling location, we used non-181 

parametric tests for statistical analyses. Statistical significance was set at α = 0.01 (instead of 182 

0.05). Differences between groups with p-values between 0.05 and 0.01 were reported in the 183 

results but not interpreted as effective. To test variance amongst sampling sites, we used the 184 

non-parametric Kruskal-Wallis (K-W) for each parameter separately. We used the 185 

Spearman’s ρ to correlate concentrations and isotopic values. Finally, to test the difference 186 

between variables measured in muscle and in liver, we used the paired samples Wilcoxon test. 187 

 188 

Results 189 
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 10

THg and MeHg concentrations 190 

Concentrations of THg in muscle and liver differed significantly between sampling sites (K-191 

W; H = 50.81; p < 0.0001 and H = 46.60; p < 0.0001) (Table 2). These were separated into 192 

three groups: the most contaminated NAS and RAC, the intermediate RAR, NS and SE, and 193 

the least contaminated AES and BS (Figure S1). In liver, such differences were less 194 

important, but THg and MeHg concentrations followed the same profile (Figure S1-Right and 195 

Table 2).  196 

Liver %MeHg differed significantly between sampling sites (K-W; H = 41.00; p < 0.0001), 197 

ranging from 7% in BS to 82% in NAS (Figure S2b). For the whole dataset (n = 62), THg was 198 

moderately correlated to %MeHg (r = 0.51; p = 0.0001). In muscle, %MeHg varied less, with 199 

a significant difference observed only between SE and NAS and AES (K-W; H = 36.91; p < 200 

0.0001). Percentage values ranged between 71% in NAS and 93% in SE (Figure S2a). No 201 

correlation was found between the %MeHg in muscle and THg levels among regions 202 

(Spearman; r = 0.13; p = 0.324).  203 

 204 

Hg stable isotope composition 205 

Hepatic δ202Hg and Δ199Hg values varied significantly between sampling locations (K-W; H = 206 

50.69; p < 0.0001 and H = 38.55; p < 0.0001, respectively) (Table 2). There was strong 207 

correlation between Δ199Hg and Δ201Hg (Spearman; r = 0.95; p < 0.0001) for all sites, and the 208 

value of the slope of the regression line was 1.30±0.02 (Figure 1a). A positive correlation 209 

between Δ199Hg and δ202Hg values was found only for SE (p = 0.001, ρ = 0.661), BS (p = 210 

0.005, ρ = 0.628) and RAC (p = 0.016, ρ = 0.530) (Figure 1b). Only BS fish showed a 211 

positive correlation between Δ199Hg and δ202Hg values and %MeHg in both tissues 212 

(respectively: p < 0.0001, ρ = 0.767 and p = 0.0013, ρ = 0.698). 213 

Only a weak difference was observed in hepatic Δ
200Hg values (Figure S3a; K-W, H = 14.33 214 
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 11

and p = 0.023), with AES presenting higher even-MIF than RAC and SE. Δ204Hg values 215 

differed slightly more (Figure S3b; K-W, H = 19.83 and p = 0.003) with RAC presenting 216 

significantly smaller MIF than RAR and SE. The great variation found in even-MIF values 217 

did not allow us to discriminate between specific atmospheric sources in seabass populations 218 

and will not be discussed further. Raw data and a short discussion are given in the Supporting 219 

Information (Section S2.a, Table S4, Figure S3a and b). 220 

When compared with muscle results published in Cransveld et al. (2017), the difference 221 

between δ202Hg muscle and δ202Hg liver ranged from 0.04‰ in NAS to 1.08‰ in BS. δ202Hg 222 

values differed significantly between the two tissues only in BS seabass (K-W, H = 84.9, p = 223 

0.003). The difference between Δ199Hg muscle and Δ199Hg liver went from -0.02‰ in NAS to 224 

1.13‰ in BS. As before, Δ199Hg values differed only in BS seabass (K-W, H = 95.5, p < 225 

0.0001).  δ15N, δ13C values and trophic position (TL) in the different seabass populations were 226 

presented elsewhere (Cransveld et al., 2017). No correlation was found between carbon and 227 

nitrogen isotope ratios in seabass muscle and %MeHg in liver. For this reason, we do not 228 

discuss these results further. More details can be found in paragraph S2.b.  229 

 230 

Discussion 231 

Evidence of Hg demethylation in seabass across Europe 232 

The lowest THg muscle and liver concentrations were observed in Greece and the Black Sea 233 

(AES and BS sites), while the highest concentrations were measured in the North Adriatic Sea 234 

and Ria d’Aveiro (NAS and RAC sites; Table 2). Liver %MeHg ranged from 7-10% in BS, 235 

30-40% in the contaminated area of RAC, and up to 70% in NS, SE and AES. On the other 236 

hand, muscle %MeHg was constant around 80-90% across all sites (Cransveld et al., 2017). 237 

The different MeHg profile between muscle and liver is in accordance with previous literature 238 

and the role that these two tissues have in the fish body (Mieiro et al., 2009). Muscle is often 239 
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 12

described as the final Hg storage tissue in marine vertebrates, where dietary MeHg is 240 

accumulated at a high rate and not metabolized further (Oliveira Ribeiro et al., 1999). This is 241 

why %MeHg remains constant. Instead, the extremely variable proportions of MeHg 242 

displayed by liver are thought to be an expression of the protective role of this organ (Mieiro 243 

et al., 2011; Oliveira Ribeiro et al., 1999). Indeed, in this organ, dietary MeHg binds with 244 

Selenium (Se) and is transformed into an inert tiemannite complex (HgSe) (Sonne et al., 245 

2009). In this way, Hg is locally accumulated in a less toxic and non-available inorganic 246 

form. Through the application of Hg stable isotope ratios, there is increasing evidence that the 247 

liver acts as a Hg detoxification center in fish, as it does in marine mammals or seabirds 248 

(Renedo et al., 2021; Wang et al., 2013, 2017).  249 

Hg stable isotopes can undergo MDF during uptake and metabolism of Hg within the 250 

organisms (transfer, transformation and excretion) (Li et al., 2020). Important Hg MDF 251 

related to MeHg demethylation is now also broadly accepted to occur in fish (Man et al., 252 

2019; Wang and Tan, 2019). MeHg demethylation causing MDF preferentially involves 253 

lighter Hg isotopes and generates newly formed iHg, having a lower δ202Hg (Perrot et al., 254 

2015). The remaining non de-methylated MeHg will then have a higher δ202Hg compared to 255 

the initially bioaccumulated MeHg (Perrot et al., 2015). Because most iHg is excreted, the 256 

fractionation (MDF) caused by demethylation is probably more observable in MeHg-rich 257 

tissues like muscle (Gehrke et al., 2011; Kwon et al., 2014a; Sherman and Blum, 2013). Since 258 

liver is the center of in vivo demethylation and therefore contains a lower proportion of 259 

MeHg, it will display lower δ202Hg values than muscle. Consequently, a large shift in δ202Hg 260 

values and %MeHg between muscle and liver tissues of seabass could infer the occurrence of 261 

MeHg demethylation in the liver of the fish (Wang et al., 2013). All our sampling areas 262 

showed a significant difference in %MeHg between muscle and liver (Figure 2). For δ202Hg 263 

values the difference was less striking. A significant statistical difference was found only in 264 
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BS fish (Figure 2a); nevertheless, MDF was higher in muscle than liver for all sites. This 265 

result suggests that MeHg demethylation might indeed be occurring in the livers of European 266 

seabass. This is the first evidence that such a process might occur in this fish species, and 267 

specifically in juvenile individuals. This represents a very important result, considering 268 

existing conflicting literatures about MeHg demethylation capacity in fish organisms. 269 

Regarding the hypothesis that in vivo demethylation was the only process affecting MDF in 270 

seabass, we should expect to have the same δ
202Hg difference between muscle and liver 271 

across all sites. However, this was not the case since BS seabass presented a much larger 272 

δ
202Hg difference than the other sites. Cransveld et al. (2017) proposed that the particular Hg 273 

isotopic composition of the BS subpopulation could be explained by the presence of MeHg 274 

demethylation (Cransveld et al., 2017). Our findings have shown that such a process is 275 

occurring in all the sampled seabass. Therefore, one possibility is that BS seabass might 276 

demethylate MeHg at higher rates, which would lead to a larger difference in δ202Hg values 277 

between muscle and liver. Several processes might determine higher raters of Hg 278 

organotropism and demethylation: the levels of local Hg pollution, fish age, exposure to 279 

different sources of Hg from the environment, fish diet, and finally the particular 280 

biogeochemistry of the studied area, which affects local Hg cycling in the marine 281 

environment. These factors will be analyzed one-by-one in the following paragraphs. 282 

 283 

A higher extent of local Hg pollution hides inter-organ Hg MDF 284 

Previous studies have shown that in highly polluted systems, liver can accumulate iHg 285 

directly from the environment, through the gills or the skin (Feng et al., 2015). For this 286 

reason, hepatic Hg levels and detoxification rates might be affected by levels of Hg pollution 287 

in the environment (Guilherme et al., 2008). Indeed, in areas with higher anthropogenic 288 

pollution discharge, studies have demonstrated a decrease in %MeHg in fish liver (Rua-Ibarz 289 
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et al., 2019). This seems to be primarily due to two different processes: first, the exposure to 290 

higher levels of environmental iHg deriving from anthropogenic activities leads to higher 291 

accumulation of this Hg species in the liver (Gentès et al., 2015); secondly, the higher Hg 292 

intake in the animal (through diet or gills) leads to higher hepatic MeHg demethylation rates 293 

(Cizdziel et al., 2003; Perrot et al., 2015). If this were true, we would observe a larger 294 

difference in %MeHg between muscle and liver tissues in highly polluted areas compared to 295 

unpolluted ones. In the same way, because of the depletion in 202Hg observed during 296 

demethylation of MeHg in liver, we should get a higher difference between muscle δ202Hg 297 

and liver δ202Hg in seabass collected in highly polluted areas. 298 

In our study, the profile of %MeHg in the liver of European seabass indeed reflects the 299 

history of Hg contamination between our sampling sites, with moderately polluted areas such 300 

as NS and SE presenting ≈70% of MeHg in liver and the highly polluted ones like RAC and 301 

NAS presenting ≈40% of MeHg. The Ria d’Aveiro (RAC) has been subjected to Hg effluents 302 

from a chlor-alkali plant for almost five decades (1950-1994). Today, very high Hg 303 

concentrations can still be found in bottom sediments (Coelho et al., 2005; Mieiro et al., 304 

2011). NAS samples were collected in the lagoon of Marano and Grado in the Gulf of Trieste. 305 

This area is known to have a long history of Hg pollution, due to the presence of the Idrija 306 

mercury mine and chlor-alkali plants active between 1949-1984 (Foucher et al., 2009; 307 

Živković et al., 2017). On the other hand, AES samples were collected in the Agiasma 308 

lagoon, which is today a RAMSAR protected area (Table 1). This region is usually associated 309 

with quite low levels of Hg (Christophoridis et al., 2007). This second result suggests that 310 

mercury accumulation and organotropism in European seabass from NAS, NS, SE, AES, 311 

RAR and RAC is governed by the extent of local pollution, and controlled by the protective 312 

role played by the liver. However, this cannot apply to BS, which contrasted with all other 313 

sites, showing the lowest THg levels and %MeHg in liver (around 7%, Table 2). Moreover, 314 
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the difference between δ202Hg in muscle and liver was found to be the greatest in BS fish, 315 

followed by the second least polluted site of AES. Conversely, the moderately and highly 316 

polluted areas did not show any significant differences (Figure S4). This result is in contrast 317 

with our previous observation of larger inter-organ MDF in more polluted areas, supporting 318 

the idea that the larger extent of BS MeHg hepatic demethylation is not governed by Hg 319 

pollution. 320 

A possible factor influencing the rate of MeHg demethylation, and therefore Hg MDF, is fish 321 

age. BS seabass were one year old, while in NAS, SE, NS and AES we sampled two- and 322 

three-year-old fish (Cransveld et al., 2017). Several studies have demonstrated how the 323 

detoxifying activity of liver can change during the lifetime of an organism, due to metabolic 324 

shifts linked with growth rates (Le Croizier et al., 2020). Younger fast-growing animals have 325 

higher metabolic rates, which lead to faster isotopic routing and contaminant accumulation 326 

(Pinzone et al., 2017). Therefore, the large δ
202Hg tissue offset in BS might be due to the fact 327 

that these fish are younger than SE, NS, AES and NAS ones. However, this does not apply to 328 

RAC and RAR fish, which are also one year old, but do not show the same large δ
202Hg offset 329 

between tissues (Figure S4). 330 

The similar age of NAS or RAC and BS fish therefore excludes attributing the difference in 331 

the extent of MeHg demethylation to growing rates. This, in addition to the inconsistency of 332 

BS seabass presenting both the highest inter-organ MDF and lowest Hg pollution, shows that 333 

while the levels of environmental Hg pollution generally influence Hg organotropism in this 334 

species, the inter-organ Hg MDF variability might not result from a difference in 335 

demethylation rates across sites. 336 

It could instead be proposed that the Hg isotopic variability observed in our seven seabass 337 

subpopulations results from the extreme difference in Hg levels between the most polluted 338 

sites NAS and RAC and the least polluted sites of BS and AES. Indeed, in very contaminated 339 
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areas, seabass might be exposed to levels of dietary MeHg so elevated that it can saturate the 340 

organism (Feng et al., 2015). In this situation, differences in Hg levels and isotopic values 341 

between organs might be masked (Havelková et al., 2008). This could be the reason for the 342 

absence of inter-organ MDF offset in seabass from NAS or RAC. On the other hand, we can 343 

readily discriminate Hg inter-organ transfer and demethylation processes in BS seabass 344 

because of the limited Hg pollution in the area. 345 

 346 

Δ
199Hg MIF inter-tissue comparison indicates same Hg origin for all seabass 347 

populations. 348 

If Hg pollution was the only factor influencing seabass Hg isotopic composition, we would 349 

observe the same pattern in both AES and BS, because of their similar Hg levels. However, it 350 

is worth remembering that BS seabass were the only ones in which the δ202Hg offset between 351 

the muscle and liver was significantly different. When comparing BS fish with the rest of the 352 

sampling sites, we can observe that the large difference in δ202Hg is caused by significantly 353 

lower values (≈ -1‰) in liver tissue compared to the other regions (Figure 2a). Muscle δ202Hg 354 

values are instead similar to other regions, in accordance with previous findings in estuarine 355 

biota (Kwon et al., 2014b). Beside metabolic processes, Hg stable isotope MDF can occur 356 

during a variety of biotic and dark abiotic reactions, such as microbial reduction of iHg 357 

(δ202Hg ≈ -1.6‰) or microbial demethylation of MeHg (δ202Hg ≈ -0.4‰) (Tsui et al., 2019). 358 

Therefore, the negative MDF signature of BS fish could reflect the local marine Hg 359 

biochemical cycle. However, the great variability of processes causing MDF complicates the 360 

interpretation of our data. 361 

Hg stable isotope MIF is caused by photochemical processes in the environment and is not 362 

modified by in vivo metabolism (Blum et al., 2014). For this reason, it can be used more 363 

easily to trace Hg sources in marine fish (Zheng and Hintelmann, 2009). Δ199Hg values 364 
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should not differ between muscle and liver tissues when fish are exposed to Hg originating 365 

from a single source point (Perrot et al., 2010). As expected, we found no statistical difference 366 

between liver and muscle Δ199Hg values from all sites, again with the single exception of BS, 367 

whose muscle Δ199Hg values were > 1‰ higher than those for liver (Figure 2b). These values 368 

are also higher than Δ199Hg found in all the other sites. As for δ202Hg values, BS MIF 369 

signature was the only one to correlate positively with %MeHg between tissues, confirming 370 

again that both MDF and MIF in this population depends on Hg species distribution between 371 

muscle and liver. 372 

A first hypothesis is that the two tissues represent two separate endmembers of Hg in this 373 

population. In fish, the liver accumulates Hg in three forms: MeHg from the diet, iHg from 374 

demethylated MeHg, and environmental iHg. While more than 95% of assimilated dietary 375 

MeHg is absorbed and mostly stored in muscle (Maury-Brachet et al., 2006), only 10% of iHg 376 

remains in the organism (Gentès et al., 2015). For this reason, we usually find very low levels 377 

of iHg (Wang and Wong, 2003). In the presence of a local point source of iHg, however, this 378 

form can accumulate at higher rates in both liver and muscle tissue (Feng et al., 2015). 379 

The majority of Hg accumulated in BS liver is in an inorganic form (≈ 90%, Figure 3). Thus, 380 

the near-zero Δ199Hg values presented by BS seabass liver could reflect the isotopic 381 

composition of iHg accumulated directly from the environment (Figure 3b). On the other 382 

hand, BS muscle presents both Hg species, with a majority of MeHg (60-90%). In that case, 383 

Δ
199Hg values in this tissue could represent a mix of multiple sources. Δ199Hg values around 384 

1.5‰ could represent MeHg coming from the diet, whilst lower MIF could be linked to the 385 

remaining 10-40% of iHg. This is confirmed by the positive correlation between Δ199Hg 386 

values and %MeHg in muscle (Figure 3b). 387 

Inorganic Hg coming from industrial sources can have near-zero Δ199Hg, while watershed 388 

loading can even impart negative MIF (Du et al., 2018; Lepak et al., 2015). Therefore, one 389 
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possibility for the low hepatic MIF might be that Hg stored in BS seabass liver comes from a 390 

local point source of industrial origin (Wiederhold et al., 2015). The BS samples were taken 391 

along the northern Turkish coast, between the Sinop peninsula and the Kızılırmak estuary. 392 

This area is known for heavy industrial activity and the input of totally unregulated and 393 

uncontrolled drainage water from upriver mining and agricultural areas (Bat et al., 2010; 394 

Gökkurt et al., 2007). However, recent literature has shown that the amount of freshwater 395 

discharge of particulate Hg in this locality, and its bioaccumulation in marine biota, is 396 

negligible compared to other trace elements (e.g. < 50 ng.g-1 ww in fish liver, < DL in 397 

invertebrates) (Bat et al., 2019, 2018). Therefore, our Black Sea sampling site can be 398 

considered as a relatively unpolluted area with regards to Hg (Table 1), excluding the 399 

hypothesis of a particular point source of anthropogenic origin. Additionally, in Figure 1b we 400 

can see how the values of the Δ
199Hg/Δ201Hg slopes for both liver (1.69±0.03) and muscle 401 

(1.26±0.02) confirm that all Hg accumulated in BS seabass derives from photo-demethylated 402 

MeHg in the water column, in the same way as the other regions. This combination of 403 

evidence excludes our hypothesis of the presence of an additional source of iHg in the Black 404 

Sea population. 405 

 406 

Δ
199Hg MIF of uncontaminated Black Sea waters show short-term ontogenetic shifts in 407 

fish.  408 

Because of their different metabolic roles, muscle and liver tissues integrate different 409 

time periods of the fish life cycle, and therefore also their habitat use and Hg exposure levels 410 

(Madigan et al., 2012). One of the biggest complications in the interpretation of these kinds of 411 

results is that isotopic and elemental uptake and excretion can occur at very different rates 412 

(Carter et al., 2019). To our knowledge, there is no information about isotopic routing in fish 413 

liver yet. However, if we consider that this is an organism where dietary MeHg is quickly 414 
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metabolized and accumulated as inert iHg with time, it is safe to accept that, as for mammals 415 

and birds, it might integrate the entire life of the fish. MeHg half-life in fish muscle is much 416 

shorter, around two years (Kwon et al., 2016; Tollefson and Cordle, 1986). Therefore, we 417 

could propose that liver of BS seabass integrates information about Hg exposure during the 418 

entire life of the fish, while muscle does so only for the last year. If this were the case, we 419 

could hypothesize that the large MDF and MIF offsets between muscle and liver are showing 420 

two separated temporal snapshots of the first year of life of BS seabass. 421 

The seabass is a bentho-pelagic species which undergoes seasonal migrations between 422 

their feeding (offshore) and spawning (estuaries) areas (Pawson et al., 1987). From birth until 423 

their first year, immature fish inhabit their nursery areas (e.g. lagoons, estuaries) (López et al., 424 

2015). In some regions juvenile seabass can already start exploring offshore waters during 425 

their first summer, but they never venture into deeper waters until they reach sexual maturity 426 

(around five years of age) (Jennings et al., 1991). 427 

Hepatic near-zero MIF and negative MDF of BS fish denote a coastal and benthic 428 

habitat use, in accordance with previous literature about the trophic ecology of estuarine fish 429 

(Kwon et al., 2014b; Li et al., 2016; Senn et al., 2010). In these areas, most Hg accumulated 430 

in fish derives from MeHg formed in sediments (Li et al., 2016). The low MDF and MIF 431 

values are a consequence of the reduced amount of photochemical degradation due to the 432 

presence of more suspended particle loads and DOC concentrations that reduce light 433 

penetration (Kwon et al., 2014b). 434 

On the other hand, in marine offshore and pelagic food webs, MeHg derives mostly 435 

from wet precipitation (Δ199Hg = -1 to 1‰) or deposition of gaseous elemental Hg (Δ199Hg = 436 

0.5‰ to 1‰) (Kwon et al., 2020). This results in the high MIF values found in BS seabass 437 

muscle (Figure 3b). Therefore, our findings suggest that in BS seabass, hepatic MIF, mostly 438 

related to the iHg fraction, would represent the period of their life spent in the estuaries 439 
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feeding upon benthic invertebrates in the sediments. On the other hand, muscle—and the 440 

isotopic composition related to MeHg—might show a more recent signature, corresponding to 441 

the first exploratory trips to pelagic waters. 442 

Cransveld et al. (2017) have thoroughly discussed the impact of seabass diet on MeHg 443 

accumulation and Hg MDF and MIF values, integrating fish stomach content analysis with 444 

the measurement of nitrogen and carbon stable isotope ratios (δ15N and δ13C, respectively).  445 

Although they found a difference in fish trophic level (TL, calculated from δ15N values) and 446 

δ
13C values, they did not find any correlation with seabass THg or MeHg concentrations 447 

(Cransveld et al., 2017). Stomach content revealed a similar variety of prey across all sites, 448 

confirming the largely opportunistic feeding behavior of seabass (Cransveld et al., 2017). This 449 

further confirms that the differences in inter-organ MDF and MIF in BS fish, as well as the 450 

other sites, depend more on shifts in habitat use than on diet. 451 

Finally, while the very low contamination levels of the BS site allow the net differentiation of 452 

local seabass from the other regions with regards to inter-tissue fractionation, it also separates 453 

this subpopulation for the large heterogeneity of muscle MDF and MIF values (Figure 2). 454 

This is linked with the unique oceanographic features of the Black Sea (e.g. low salinity, 455 

strong freshwater input, semi-permanent stratification, etc.) (Bakan and Büyükgüngör, 2000; 456 

Capet et al., 2016; Özsoy and Ünlüata, 1997). These features lengthen marine Hg processing 457 

and recycling between water layers, resulting in higher and more diverse Δ199Hg and δ202Hg 458 

values (Blum et al., 2013; Motta et al., 2019). 459 

Our findings underline the necessity of collecting detailed information about the history of Hg 460 

pollution, and its cycling and sourcing in the environment, before studying its accumulation, 461 

organotropism and transformation within marine predatory fish through the analysis of Hg 462 

stable isotope ratios. 463 

  464 
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Conclusion 465 

The main findings of this study can be summarized as follows: 466 

1. The multi-tissue comparison of Hg MDF and MIF signals produced evidence of 467 

MeHg demethylation in the liver of a fish species, as well as trace Hg accumulation 468 

dynamics between different populations of a marine predator; 469 

2. In general, the levels of environmental Hg pollution influence Hg organotropism and 470 

apparently also the extent of hepatic demethylation in marine predatory fish. However, 471 

it is not the only factor contributing to Hg isotopic variability in the European seabass; 472 

3. In highly contaminated areas, inter-organ MDF might get hindered by Hg saturation in 473 

fish tissues. This has to be taken into account in the interpretation of Hg stable 474 

isotopes in further studies. On the other hand, in uncontaminated sites (< 200 ng.g-1 475 

dw in fish) such as the Black Sea, the inter-organ Hg MDF and MIF can trace short-476 

term shifts in fish habitat use;  477 

4. Additionally, the particular oceanographic features of the Black Sea basin influence 478 

Hg cycling and processing in the water column, as highlighted by BS seabass Δ199Hg 479 

and δ202Hg values. 480 
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Figures 757 

 758 

Figure 1. MIF vs. MDF plot (A) and MIF vs. MIF plot (B) of muscle (circle) and liver (triangle) of European seabass (D. labrax) from AES 759 

(blue), NS (green), SE (orange), NAS (violet), BS (black), RAR (light green) and RAC (red). Significant correlation is shown by discontinuous 760 

regression lines.761 
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 762 

Figure 2. δ202Hg (A) and Δ199Hg (B) values vs. % MeHg for all sampling sites of muscle and 763 

liver tissue. AES = Aegean Sea (blue), NS = North Sea (Green), SE = Seine Estuary 764 

(Orange), BS = Black Sea (Black), NAS = North Adriatic Sea (NAS), RAR = Ria d’Aveiro 765 

Reference (Red) and RAC = Ria d’Aveiro Contaminated (Light blue). The dotted ellipse is a 766 

figurative grouping of BS seabass. Muscle values are represented by the circle, and liver 767 

values by the cross. 768 
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 769 

Figure 3. δ202Hg vs. MeHg (A) and Δ199Hg vs. MeHg (B) in muscle (black dots) and liver 770 

(grey triangles) of the Black sea population of seabass D. labrax. MDF and MIF signatures 771 

are shown in per mill (‰), while MeHg proportion is represented in percentage (%). 772 

Significant correlation is represented by a discontinuous regression line.773 
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Tables 774 

 775 

Table 1. Summary of fish biometric information per sampling area. Information about local Hg sources at the sampling sites are extrapolated 776 

from literature and supporting information in Cransveld et al. (2017). Old pollution sources which are not active anymore are shown in italics. 777 

Sampling Site 
Standard length 

(cm)  Body mass (g) Estimated age range (years) Pollution sources Definition* 

AGEAN SEA 
AES 

28 ± 1 
(25 - 30) 

n= 10 

272 ± 48 
(205 - 380) 

n= 10 
2 

Protected by the 
Ramsar convention 

Low Pollution 

NORTH SEA 
NS 

26 ± 6 
(16 - 30) 

n= 10 

192 ± 90 
(43 - 278) 

n= 10 
1 - 3 

Interland industry 
Coastal urbanism 

Moderate 
Pollution 

SEINE ESTUARY 
SE 

33 ± 2 
(30 - 35) 

n= 10 

487 ± 66 
(350 - 563) 

n= 10 
3 - 4 

Interland industry 
Coastal urbanism 

Moderate 
Pollution 

BLACK SEA 
BS 

21 ± 2 
(18 - 24) 

n= 10 

140 ± 24 
(110 - 170) 

n= 10 
1 - 2 

Interland industry and 
agriculture 

Low Pollution 

NORTHERN  
ADRIATIC SEA 

NAS 

22 ± 1 
(20 - 23) 

n= 9 

123 ± 20 
(89 - 149) 

n= 9 
1 

Idrija mercury mine 
Chlor-alkali plant 
Coastal industry 

High Pollution 

RIA DE AVEIRO 
REFERENCE 

RAR 

21 ± 4 
(17 - 26) 

n= 10 

106 ± 60 
(55 - 217) 

n= 10 
1 - 2 

(Lagoon outlet) 
Coastal industry and 
urban development 

Moderate 
Pollution 

RIA DE AVEIRO 
CONTAMINATED 

RAC 

17 ± 1 
(16 - 18) 

n= 12 

59 ± 10 
(45 - 77) 

n= 12 
1 

(Laranjio Basin) 
Chlor-alkali plant 

Coastal industry and 
urban development 

High Pollution 

*We separated the sampling sites into three categories: "Low Pollution" for all the sites presenting THg = < 200ng.g-1 dw, "Moderate Pollution" when THg ranged between 778 

500 and 1500 ng.g-1 dw, and "High Pollution" when THg = >1500 ng.g-1 dw, based on the statistical difference reported for muscle concentrations (a, b and c in Figure S1). 779 
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 781 

Table 2. THg and MeHg concentrations (ng.g-1, dw), %MeHg and Hg isotopic ratios (as δ and Δ values, ‰) in liver of Dicentrarchus labrax 782 

from seven sampling sites across Europe. All values are expressed as mean ± standard deviation (SD), median (minimum-maximum) and n = 783 

number of analyzed samples. 784 

SAMPLING 
SITE [THg] [MeHg] %MeHg δ

202Hg Δ
199Hg Δ

200Hg Δ
201Hg Δ

204Hg 

AGEAN SEA 
AES 

166 ± 37 
182 (101 - 203) 

n= 10 

89 ± 34 
86 (46 - 154) 

n= 9 

52 ± 15 
52 (31 - 83) 

n= 9 

-0.57 ± 0.10 
-0.56 (-0.75 - -0.42) 

n= 10 

0.67 ± 0.17 
0.62 (0.49 - 1.03) 

n= 10 

0.05 ± 0.03 
0.05 (0.00 - 0.09) 

n= 10 

0.39 ± 0.06 
0.40 (0.29 - 0.49) 

n= 10 

-0.12 ± 0.08 
-0.09 (-0.24 - -0.01) 

n= 10 

NORTH SEA 
NS 

840 ± 575 
827 (208 - 1498) 

n= 4 

326 ± 179 
375 (86 -457) 

n= 4 

42 ± 10 
42 (30 - 54) 

n= 4 

-0.53 ± 0.18 
-0.51 (-0.76 - -0.32) 

 n= 4 

0.32 ± 0.16 
0.31 (0.15 - 0.52) 

 n= 4 

0.02 ± 0.03 
0.02 (-0.01 - 0.06) 

 n= 4 

0.12 ± 0.07 
0.15 (0.03 - 0.17) 

n= 4 

-0.03 ± 0.04 
-0.02 (-0.08 - 0.02) 

n= 4 

SEINE 
ESTUARY 

SE 

1031 ± 153 
1016 (769 - 1228) 

n=10 

512 ± 111 
536 (277 - 646) 

n= 10 

50 ± 10 
49 (36 - 70) 

n= 10 

-0.25 ± 0.08 
-0.26 (-0.37 - -0.13) 

n= 10 

0.21 ± 0.08 
0.20 (0.08 - 0.38) 

n= 10 

0.001 ± 0.03 
0.00 (-0.05 - 0.05) 

n= 10 

0.19 ± 0.07 
0.17 (0.12 - 0.36) 

n= 10 

0.01 ± 0.06 
-0.01 (-0.07 - 0.09) 

n= 10 

BLACK SEA 
BS 

180 ± 47 
177 (99 - 268) 

n=9 

13 ± 3 
12 (10 - 20) 

n= 9 

7.5 ± 2.3 
7.3 (4.8 - 

11) 
n=9 

-0.98 ± 0.17 
-0.94 (-1.41 - -0.85) 

n= 9 

0.17 ± 0.05 
0.18 (0.10 - 0.24) 

n= 9 

0.02 ± 0.03 
0.03 (-0.05 - 0.04) 

n= 9 

0.09 ± 0.04 
0.08 (0.05 - 0.17) 

n= 9 

-0.04 ± 0.08 
-0.04 (-0.12 - 0.07) 

n= 9 

NORTHERN  
ADRIATIC 

SEA 
NAS 

1714 ± 1255 
 1174 (884 - 4432) 

n= 8 

1160 ± 883 
877 (506 - 3115) 

n= 8 

67 ± 8.1 
66 (54 - 8) 

n= 8 

-0.01 ± 0.14 
-0.05 (-0.17 - 0.27) 

n= 8 

0.54 ± 0.13 
0.59 (0.37 - 0.69) 

n= 8 

0.01 ± 0.04 
0.02 (-0.07 - 0.07) 

n= 8 

0.40 ± 0.09 
0.42 (0.29 - 0.50) 

n= 8 

0.01 ± 0.21 
0.07 (-0.41 - 0.26) 

n= 8 

RIA DE 
AVEIRO 

REFERENCE 
RAR 

1368 ± 804 
1274 (333 - 2243) 

n= 6 

737 ± 431 
887 (227 - 1122) 

n= 5 

27 ± 21 
20 (10 - 50) 

n=3 

-0.09 ± 0.14 
-0.13 (-0.23 - 0.11) 

n= 6 

0.42 ± 0.10 
0.41 (0.29 - 0.55) 

n= 6 

0.01 ± 0.03 
0.00 (-0.03 - 0.06) 

n= 6 

0.33 ± 0.10 
0.31 (0.19 - 0.46) 

n= 6 

0.13 ± 0.21 
0.20 (-0.17 - 0.34) 

n= 6 

RIA DE 
AVEIRO 

CONTAMINAT
ED 

RAC 

2888 ± 468 
2785 (2309 - 3515) 

n= 10 

1088 ± 680 
1220 (119 - 1903) 

n= 10 

69 ± 7 
67 (57 - 80) 

n= 9 

0.11 ± 0.10 
0.12 (-0.13 - 0.22) 

n= 10 

0.20 ± 0.07 
0.19 (0.03 - 0.30) 

n= 10 

0.002 ± 0.02 
0.01 (-0.03 - 0.03) 

n= 10 

0.14 ± 0.05 
0.14 (0.05 - 0.21) 

n= 10 

-0.17 ± 0.15 
-0.18 (-0.33 - 0.20) 

n= 10 
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Highlights 

• Isotopic ratios trace Hg organotropism and sources in the European seabass; 

• We measured Δ199Hg and δ202Hg values, T-Hg and %MeHg in seabass muscle and liver; 

• Our results suggest the occurrence of in vivo MeHg demethylation in seabass liver; 

• In polluted areas inter-organs MDF gets masked by Hg saturation in fish tissues; 

• In unpolluted sites, Hg MDF and MIF trace short-term shifts in fish habitat use. 
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