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ACCELERATED ITERATIVE REGULARIZATION
VIA DUAL DIAGONAL DESCENT∗

LUCA CALATRONI† , GUILLAUME GARRIGOS‡ , LORENZO ROSASCO§ , AND SILVIA
VILLA¶

Abstract. We propose and analyze an accelerated iterative dual diagonal descent algorithm
for the solution of linear inverse problems with strongly-convex regularization and general data-fit
functions. We develop an inertial approach of which we analyze both convergence and stability
properties. Using tools from inexact proximal calculus, we prove early stopping results with optimal
convergence rates for additive data terms and further consider more general cases, such as the
Kullback-Leibler divergence, for which different type of proximal point approximations hold.
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1. Introduction. We are interested in solving the linear inverse problem:

(1.1) find x̄ ∈ X s.t. Ax̄ = ȳ,

where A : X → Y is a bounded linear operator between two Hilbert spaces X and
Y and ȳ ∈ Y is a given measurement of some unknown quantity x̄ ∈ X we want
to recover. In general, the inverse problem (1.1) is ill-posed as its solution (if it
exists) may lack some fundamental properties like uniqueness or stability. A standard
modeling hypothesis in inverse problems [42, 27] is assuming that the desired x̄ is
well-approximated by x† ∈ X solving:

(P0(ȳ)) find x† ∈ argmin

{
R(x) s.t. x ∈ argmin

x′∈X
`(Ax′; ȳ)

}
.

Here, R is a regularization function enforcing a-priori knowledge on the desired solu-
tion x̄, while ` : Y2 → R∪{+∞} is a data-fit function. In practical situations, the data
is subject to noise due to, e.g., possible transmission and/or acquisition problems. As
a consequence, only an inexact version ŷ of ȳ is accessible. Replacing ŷ in (P0(ȳ)) no
longer provides a suitable solution of problem (1.1), hence a regularization method is
needed. Regularization methods can be seen as a way to explore the space of solutions
X to find a good approximation of x† in the presence of noise. More precisely, they
have the following characteristics:

1. Given any data y ∈ Y, the method generates a regularization path {xp(y)}p∈P
where P ⊂ R is a set of regularization parameters.

2. Given the true data ȳ, there exists an accumulation point p0 of P such
that the regularization path converge to the ideal solution x† of (P0(ȳ)),
i.e. lim

p→p0

xp(ȳ) = x†.
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3. For any given noise level δ > 0 and noisy data ŷ such that ‖ȳ− ŷ‖ ď δ, there
exists a regularization parameter p(δ) ∈ P such that

(1.2) ‖xp(δ)(ŷ)− x†‖ = O(δα), for some α > 0.

The quantity O(δα) is often called the convergence rate of the considered regulariza-
tion method, and the exponent α quantifies its efficiency: the larger is α, the closest
the regularized solution xp(δ)(ŷ) will be to the desired x†, hence less affected by noise.
Convergence and rates depend on the chosen regularization method and the proper-
ties of the considered problem. We briefly review in the following two well-known
families of regularization methods.

Tikhonov regularization. This is the most classical regularization approach, which,
for a given λ > 0, relies on the following family of penalized optimization problems:

(Pλ(ŷ)) find x̂λ ∈ argmin
x∈X

{
pλ(x) := R(x) +

1

λ
`(Ax; ŷ)

}
.

Intuitively, the so-called regularization parameter λ balances the trust in the data ŷ
with the regularization enforced by R. In other words, it parametrizes a regularization
path {xλ(ŷ)}λ>0 along which we look for a good approximation of x† (see Figure 1
for an illustrative example). In practice, this requires two steps. First, problem
(Pλ(ŷ)) needs to be solved for various choices of λ by means of a suitable optimization
algorithm (see e.g. [38]). Second, all the computed solutions are compared using some
validation criterion (e.g. discrepancy principles [42], SURE [56, 40], cross-validation
[57]. . . ) and an optimal parameter λ∗ is computed along with the corresponding
solution x̂λ∗ .

There are a number of related regularization methods based on variational prob-
lems. For instance, one can replace (Pλ(ŷ)) with a constrained formulation, such as
min R(x) subject to `(Ax; y) ď σ, for a given error level σ ě 0, which can be solved
by appropriate optimization methods, see for instance [28, 4]. Next, we discuss a class
of regularization methods based on quite different ideas.

Figure 1: Tikhonov regularization path on a simple problem. After computing the solution
x̂λ := xλ(ŷ) of the problem (Pλ(ŷ)) for several values of λ, the best parameter λ is selected. In this
example, λ ' 10−3 minimizes ‖x̂λ − x†‖.

Iterative regularization. The choice of the optimal parameter λ in a Tikhonov reg-
ularization approach is in general very costly computationally. The family of so-called
iterative regularization methods provides an accurate and more efficient alternative
approach [42, 21, 45]. Iterative regularization methods are regularization methods
for which the regularization path {xk(ŷ)}k is parametrized by the iterate index k of
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algorithms which can easily compute the iterates in terms of R, ` and A. These algo-
rithms are usually designed to iteratively solve (P0(ȳ)) in a stable way with respect to
errors on ȳ. Using these methods, it is therefore possible to find an approximation of
x† given noisy data ŷ by “stopping” the algorithm when close to x† [19, 32, 33, 29] (see
Figure 2). In these methods, the number of iterations plays the role of a regularization
parameter, controlling at the same time the accuracy of the solution and the compu-
tational cost. In practice, the selection of this regularization parameter is made using
the similar validation criterion as the ones described for Tikhonov regularization.

Figure 2: Illustration of two iterative regularization methods (Dual Diagonal Descent (3D) [43]
and its Inertial variant (I3D) proposed in this work) on a simple problem. Left: given the true data
ȳ, the iterates converge to the ideal solution x†. Right: given noisy data ŷ, the iterates xk(ŷ) =: x̂k
approach x† before tending away from it. Regularization holds by early stopping the algorithms at
a suitably chosen iterate k∗. In this example, k∗ ' 2 × 104 (resp. 50) minimizes ‖x̂k − x†‖ for
(3D) (resp. (I3D) ) .

Previous results. For quadratic data-fit terms ` and square-norm regularization
R, both Tikhonov and iterative regularization approaches (such as the Landweber
algorithm) have been shown to be optimal, in the sense that their reconstruction error
in (1.2) has optimal rate O(δ

1
2 ) [42]. Optimal results with possibly fewer iterations

have also been obtained by considering accelerated approaches [42, 52]. For quadratic
data-fit terms and general strongly convex regularizers, an iterative regularization
procedure combined with a Morozov-type discrepancy principle was also shown to
be optimal in [33], and accelerated approaches based on a dual accelerated gradient
descent was shown to be optimal with fewer iterations in [49]. Iterative regularization
methods have been studied also in the case of general convex regularizers in [32]
where estimates in terms of the Bregman distance were proved (see also [33, 19] for
Tikhonov-type approaches), but no explicit rates in the form (1.2) were shown. More
general iterative algorithms defined in Banach spaces have been studied in [46, 47, 31]
for linear and non-linear inverse problems and in [29] for L1 and Total Variation (TV)
regularization. For data-fit terms different from the squared norm, the literature
is more scarce. In the context of iterative regularization methods, we mention [26]
for results in the framework of Bregman distances, and [43] where the (3D) Dual
Diagonal Descent Algorithm is considered. Here, the authors provide convergence
rates for general data-fit terms, but the latter is sub-optimal in the quadratic case.

Contribution and organization of the paper. In this paper, we study a novel ac-
celerated iterative regularization algorithm with strongly convex regularization and
general data-fit terms. To the best of our knowledge, accelerated iterative regular-
ization approaches have not been studied in this general setting. Our Inertial Dual
Diagonal Descent algorithm, dubbed (I3D) , extends the (3D) iterative algorithm
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studied in [43] by introducing an inertial term which yields acceleration.
Our main contribution is the analysis of convergence rates for this method. We

show that these rates depend on how the noise interacts with the data-fit term con-
sidered. By introducing acceleration, we prove that the same or better convergence
rates than those of (3D) can be achieved with much fewer iterations (see Figure 2 for
an illustration). This extends similar observations previously made in the quadratic
case in, e.g., [52, 49]. For the latter case, in particular, we obtain the optimal rate
O(δ

1
2 ). In addition, we show that this rate holds more generally for every additive

data-fit, including, for instance, the `1 data term. From an optimization perspective,
the rationale behind this fact is that inertial dynamics are able to exploit information
in previous iterates to converge faster to an optimal solution. However, as pointed
out in [41], inertial methods suffer from error accumulation that need to be controlled
along the iterations and balanced with the improvement observed in the convergence
speed, which makes their analysis in an inverse problem framework non-trivial.

The paper is organized as follows. In Section 2 we introduce the notation and
the main assumptions. In Section 3 we introduce and analyze the inertial continuous
dynamical system corresponding to (I3D) and, in particular, study its asymptotic be-
havior in Theorem 3.3. In Section 4, we derive the algorithm (I3D) as a discretization
in time of the continuous dynamics. We study its convergence properties in Theo-
rem 4.6, showing fast convergence of the iterates to x† in the noiseless case. In Section
5 we study the stability properties of (I3D) in the presence of errors due to noise,
proving a general abstract stability result in Theorem 5.5. We specialize this result in
Theorems 5.6, 5.7 and 5.8 showing how convergence rates change depending on which
type of error is assumed. Finally, in Section 6, we provide explicit convergence rates
for data-fit terms used in practice, including the Kullback-Leibler divergence.

2. Main assumptions and background on diagonal methods. We begin
fixing the notation. Let H be a Hilbert space with scalar product 〈·, ·〉 and associated
norm ‖ · ‖. Given y ∈ H and % ∈ R+, let B(y, %) be the open ball of center y and
radius %. We denote by Γ0(H) the set of proper, convex and lower semi-continuous
functions from H to ] − ∞,+∞]. We say that f ∈ Γ0(H) is σ-strongly convex if
f−σ‖·‖2/2 ∈ Γ0(H), with σ ∈ ]0,+∞[. We recall that the subdifferential of f ∈ Γ0(H)
is the multi-valued operator ∂f : H → 2H defined by

(2.1) (∀x ∈ H) ∂f(x) := {u ∈ H : f(x′)− f(x)− 〈u, x′ − x〉 ě 0 for all x′ ∈ H} .

If f is Gateaux differentiable at x ∈ H, then ∂f(x) = {∇f(x)}, see, e.g. , [22,
Proposition 17.31 i)]. For all x ∈ H and τ > 0, we also recall the definition of the
proximity operator proxτf : H → H of f ∈ Γ0(H) with parameter τ , which is defined
by:

proxτf (x) = (I + ∂f)−1(x) = argmin
x′∈H

{
f(x′) +

1

2τ
‖x′ − x‖2

}
.

For a given f ∈ Γ0(H), we will then denote by f∗ : H → [−∞,+∞] the Fenchel
conjugate of f , i.e. the function defined by:

(∀u ∈ H) f∗(u) = sup
x∈H
{〈u, x〉 − f(x)} .

The Fenchel conjugate f∗ of f belongs to Γ0(H) and is differentiable at any point
with a σ−1-Lipschitz continuous gradient when f is σ-strongly convex, see, e.g. [22,
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Theorem 18.15]. Furthermore, the following property holds, see [22, Theorem 16.23]:

(∀(x, u) ∈ H2) u ∈ ∂f(x)⇔ x ∈ ∂f∗(u).

Given Ω ⊂ H and q ě 1, we say that f is q-conditioned on Ω if argmin f 6= ∅ and

(∃γ > 0)(∀x ∈ Ω)
γ

q
dist (x, argmin f)q ď f(x)− inf f,

and say that f is globally q-conditioned when it is q-conditioned on H. Further, we say
that f is locally q-conditioned if, for any x̃ ∈ argmin f , it is q-conditioned on B(x̃, %)
for some % ∈ R+. Finally, given two sequences (ak)kě1 and (bk)kě1 of real numbers,
we will write ak = O(bk) whenever there exists a positive constant M > 0 such that
ak ď Mbk for all k ě 1. We will further use the more precise notation ak = Θ(bk)
if both conditions ak = O(bk) and bk = O(ak) hold. Note also that we will use the
notation ‖ · ‖ and 〈·, ·〉 for the norm and the scalar product in all the Hilbert spaces
considered.

2.1. Main assumptions. We make the following assumptions on the data-fit `
and the regularizer R:

(L1) For all y ∈ Y, the function `y := `(·, y) ∈ Γ0(Y) and is coercive.
(L2) For all (y1, y2) ∈ Y2, `(y1, y2) ě 0 and `(y1, y2) = 0 ⇐⇒ y1 = y2.
(L3) For given ‘true’ data ȳ ∈ Y, `ȳ is locally q-conditioned for some q ∈ [1,+∞[.
(R1) R is σ-strongly convex, with σ ∈ ]0,+∞[,
(R2) ∂R(x†) ∩ ImA∗ 6= ∅.

Observe that, in light of assumption (L2), assumption (L3) can be rewritten as:

(∃% > 0)(∃γ > 0)(∀y ∈ B(ȳ, %))
γ

q
‖y − ȳ‖q ď `(y, ȳ).

These assumptions on ` and R cover a wide range of inverse problems, as discussed
next.

Definition 2.1. A data-fit is said to be additive if there exists N ∈ Γ0(Y) such
that

(∀(y1, y2) ∈ Y2) `(y1, y2) = N (y1 − y2).

Example 2.2 (Data-fit functions). For Y = Rd, the additive data-fit functions
defined by the functions N below trivially satisfy (L1)-(L2). In addition, `ȳ satisfies
(L3) if and only if N is locally q-conditioned for some q ě 1. We report here some
examples of locally and globally conditioned functions N . Many of them are indeed
globally conditioned.

• N (y) = 1
2‖y‖

2 is globally 2-conditioned, with γ = 1.
• N (y) = 1

q‖y‖
q
q, for q ě 1, is globally q-conditioned, with γ = dr, where

r = min( 1
q −

1
2 , 0). Note that this includes the case of the `1-norm.

• the weighted sum [44] N (y) = α‖y‖1 + 1
2‖y‖

2
2, for α > 0, is globally 1-

conditioned, with γ = α.

• the Huber data-fit function [35] N (y) =
d∑
i=1

hν(yi), where hν : R→ R+ is the

Huber smoothing function, defined for ν > 0 by

(∀t ∈ R) hν(t) :=

{
1
2ν t

2 if |t| ď ν

|t| − ν
2 otherwise.
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For every % ∈ ]0,+∞[, it is 2-conditioned on B(0, %), with γ = min{ 1
ν ,

2%−ν
%2 }.

• the exact penalization defined by N (y) = 0 if y = 0 and N (y) = +∞ other-
wise, is globally 1-conditioned, with γ = 1.

We also mention here a non-additive data-fit function used in several applications,
which also satisfies assumption (L3):

• the Kullback-Leibler divergence, defined by:

(2.2) `(y2, y1) = KL(y1, y2) :=

d∑
i=1

kl(yi1, y
i
2),

where

(∀(t1, t2) ∈ R2) kl(t1, t2) :=


t1 log

t1
t2
− t1 + t2 if (t1, t2) ∈ ]0,+∞[

2
,

+∞ otherwise.

For every % ∈ ]0,+∞[, `ȳ(·) = KL(ȳ, ·) is 2-conditioned on B(ȳ, %), with
γ = 2

%c2 + 2
%2c ln c

%+c , and c = d‖ȳ‖∞ (see Lemma A.2).

Example 2.3 (Regularizers). A classical regularizer widely used in signal/image
processing as a sparsifying prior is the `1-norm of the coefficients with respect to an
orthonormal basis, or, more generally, of a dictionary. Another popular choice in
imaging is the total variation semi-norm [53], due to its ability to preserve edges,
together with its generalizations [30, 37]. For some specific tasks in computer vision
and machine learning, there is also a need for structured sparsity. This can be enforced
by means of group sparsity inducing norms [60, 18]. While not being strongly convex,
these regularizers can be included in our framework by simply adding a quadratic term
σ
2 ‖·‖

2 where σ is small positive parameter, in the flavor of the elastic net regularization
[62].

2.2. Iterative methods based on continuous and discrete dynamics. It is
useful to review some approaches designed for solving (1.1), the hierarchical problem
(P0(ȳ)) and the Tikhonov-regularized problem (Pλ(ŷ)). In particular, we focus on
approaches based on duality and/or combined with diagonal dynamics.

Mirror descent approaches. A class of methods solving (1.1) consider the problem

find x† ∈ argmin
x∈X

{R(x) + δȳ(Ax)} ,

where the constraint (1.1) is encoded by the indicator function δȳ. Using Fenchel-
Rockafeller duality the corresponding dual problem reads:

(D0) find u† ∈ argmin
u∈Y

{d0(u) := R∗(−A∗u) + 〈ȳ, u〉} .

Since R∗ is smooth (see (ii) in Lemma A.1), a gradient method can be used to solve
(D0), see [25, 49]. This coincides, up to a change of variables, with mirror descent
approaches [23] and linearized Bregman iterations [33, 19], where R plays the role
of the mirror function. However, extending this approach for solving (P0(ȳ)) is not
clear.

Primal diagonal dynamics. A classical approach to solve hierarchical problems
like (P0(ȳ)) is based on the diagonal principle, which essentially states that when
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ŷ = ȳ and λ → 0, problem (Pλ(ŷ)) converges towards (P0(ȳ)) in an appropriate
sense [5, Theorem 2.6]. In this view, diagonal approaches have been considered as non-
autonomous dynamics solving (Pλ(ŷ)) with a parameter λ monotonically decreasing
to zero. The simplest example of a continuous diagonal dynamic is the diagonal
steepest descent differential inclusion defined for an initial t0 > 0, which reads

(PDλ) x(t0) = x0, λ(t)↘ 0, ẋ(t) + ∂pλ(t)(x(t)) 3 0.

where pλ(t)(x(t)) is defined in (Pλ(ŷ)). This dynamic is studied in [11, 13, 7] where
convergence of x(t) to x† was guaranteed provided that λ(t)→ 0 fast enough, i.e. λ ∈
L1/(q−1)([t0,+∞)), where q ∈ [1,+∞) is the exponent in (L3), see [7, Corollary 3.3,
Remark 4.4]. Discrete counterparts of (PDλ) have also been studied [20, 12, 39].
They can be seen as a variant of the Forward-Backward algorithm applied to solve
problem (Pλ(ŷ)), where the penalization parameter tends to zero along the iterations.
A main drawback of this type of algorithms is that they are expensive for non-smooth
data-fit terms, since they require to compute the proximal operator of the composition
`ȳ ◦A. A possible way to overcome this issue consists in applying Fenchel-Rockafellar
duality to (Pλ(ŷ)), thus considering the dual problem (Dλ), where the linear operator
appears only in composition with the smooth function R∗. Then, it is possible to apply
an explicit gradient step to R∗ ◦ (−A∗), while the non-smooth data-fit term can be
cheaply treated via its proximal operator.

Dual diagonal dynamics. The dual problem of (Pλ(ŷ)) is

(Dλ) find uλ ∈ argmin
u∈Y

{
dλ(u) := R∗(−A∗u) +

1

λ
`∗(λu; ŷ)

}
.

Solutions of (Dλ) are related to those of (Pλ(ŷ)) via the formula xλ = ∇R∗(−A∗uλ),
which holds thanks to the strong convexity of R. A natural question is whether
the diagonal principle can be applied on to the dual problem (Dλ) as well. The
corresponding dual diagonal continuous dynamics read

(DDλ) u(t0) = u0, λ(t)↘ 0,

{
x(t) = ∇R∗(−A∗u(t)),

u̇(t) + ∂dλ(t)(u(t)) 3 0.

where, similarly as before, provided that λ ∈ L1/(q−1)([t0,+∞)), the trajectory x(t) is
guaranteed to converge to x†. The discrete counterpart of (DDλ) has been studied in
[43] under the name of Dual Diagonal Descent algorithm (3D) , where its convergence
and stability properties have been investigated. For ŷ ∈ Y such that ‖ŷ − ȳ‖ ď δ and
additive data-fit functions, the authors showed that stopping the algorithm at kδ =
Θ(δ−2/3) guarantees that the convergence rate (1.2) holds with α = 1/3. However,
that this rate is not optimal for quadratic data terms [42]. In this paper, we propose
a dual diagonal approach which, thanks to the use of acceleration, provides optimal
convergence rates and an earlier stopping time.

3. Continuous inertial dual diagonal dynamic. First-order inertial algo-
rithms are popular in optimization due to their faster convergence on smooth and
non-smooth convex problems, see e.g. [51, 24]. In several papers continuous inertial
dynamics have been studied considering appropriate Lyapunov functions [58, 48, 3].
As already discussed, their regularization properties are also known for quadratic
data-fit terms [52, 49]. We propose an inertial approach for general data-fit terms,
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considering a variant of the dynamic in (DDλ). Namely, for a given α > 0 and initial
t0 > 0, we consider
(IDDλ)

(u(t0), u̇(t0)) = (u0, u̇0), λ(t)↘ 0,

{
x(t) = ∇R∗(−A∗u(t)),

ü(t) +
α

t
u̇(t) + ∂dλ(t)(u(t)) 3 0.

The asymptotic behavior of the trajectories of this inertial differential inclusion will be
analyzed next, while its discrete counterpart will be studied in the rest of the paper.

Remark 3.1. The idea of coupling inertia with Tikhonov regularization is not new.
In [9], an inertial variant of the primal dynamic (PDλ) is proposed for R = ‖ · ‖2/2.
The corresponding inertial primal diagonal approach is:

(IPDλ) (x(t0), ẋ(t0)) = (x0, ẋ0), λ(t)↘ 0, ẍ(t) +
α

t
ẋ(t) + λ(t)∂pλ(t)(x(t)) 3 0.

Under a suitable decay assumption on λ(·) the authors guarantee fast convergence and
regularization [9, Section 6]. Compared to (IPDλ), in our dual formulation (IDDλ)
we take advantage of a different scaling between the data-fit and the regularizer.
Indeed, to derive (IDDλ) the data-fit in the primal problem (Pλ(ŷ)) is multiplied by
λ(t)−1 → +∞, while in (IPDλ) the regularizer is multiplied by λ(t)→ 0. For first-
order systems this difference is inessential, the two approaches being equivalent for
an appropriate change of variables [13]. However, for second-order systems these two
scalings describe different dynamics [14, Section 4]. This difference can be understood
looking at the limits (in the Γ-convergence sense) of the corresponding parametrized
functions, which read

if λ↘ 0, pλ → p0 := R+ δargmin `y◦A and λpλ → δdomR + `y ◦A.

3.1. Convergence of the continuous inertial dual diagonal dynamic. In
this section we study the convergence properties of the trajectories of (IDDλ), as-
suming their existence to simplify the analysis. We remark that if dλ is assumed to
be differentiable with a Lipschitz continuous gradient, global existence and unique-
ness results of a classical C2([t0,+∞),R+) solution to (IDDλ) hold by the Cauchy-
Lipschitz theorem. However, this assumption requires the data-fidelity function `ȳ
to be strongly convex (see [22, Theorem 18.15]), which is in general not the case for
most of the data-fit terms, see Example 2.2. We refer to [34, 3] for further details.
In the following Theorem, we show that the inertial term (IDDλ) ensures that the
dual function values dλ(t)(u(t)) tend to inf d0 at a O(t−2) rate as expected for inertial
methods. Further, switching from the dual to the primal problem by means of the
formula x(t) = ∇R∗(−A∗u(t)), we prove the convergence of x(·) to x†. To prove these
results, some assumptions on the decay of λ(·) are needed, as it is usual for dynamics
such as (PDλ) and (IPDλ). We thus consider the following assumption:

(Λ) λ : [0,+∞[ → ]0,+∞[ is a non-increasing differentiable function such that
limt→∞ λ(t) = 0. If q defined in assumption (L3) is strictly greater than 1,
we assume that the quantity Λc :=

∫ +∞
t0

tλ
1
q−1 (t) dt is finite.

Remark 3.2. A sufficient condition ensuring the validity of (Λ) is that λ(·) ∈
L

1
2(q−1) ([t0,+∞)), see Lemma A.4 in the Appendix.

We are now ready to state the main convergence result for continuous dynamics. Note
that Lemma A.1(iii) ensures that the set of solutions of problem (D0) is nonempty.
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To prove fast convergence results of the dual function values, we follow the approach
considered in [8, 58, 3] and define a suitable Lyapunov-type function.

Theorem 3.3. Let the assumptions (L1)-(L3), (R1)-(R2), (Λ) hold true. Let
u† ∈ argmin d0 and assume that λ(t0)‖u†‖ ď γ%q−1/q. Let α ě 3 and let the pair
(x(·), u(·)) be a solution to (IDDλ) in the following sense:

• u ∈ C1([t0,+∞[,Y), and x = ∇R∗ ◦ (−A∗) ◦ u,
• for every T > t0, u̇ and dλ(·) ◦ u are absolutely continuous on [t0, T ],
• for a.e. t ∈ [t0,+∞[, −ü(t)− α

t u̇(t) ∈ ∂dλ(t)(u(t)).
Then, there exists an explicitly computable constant C ∈ ]0,+∞[ such that

∀t > t0 dλ(t)(u(t))− inf d0 ď
C

t2
and ‖x(t)− x†‖ ď

√
2C√
σt
.

Proof. We define the following energy:

(∀t ě t0) E(t) := t2
(
dλ(t)(u(t))− inf d0

)
+

1

2
‖(α− 1)(u(t)− u†) + tu̇(t)‖2.

From now on, we use the following shorthand notation:

(3.1) R∗A := R∗ ◦ (−A∗), `∗ȳ(·) := `(·, ȳ)∗

so that the composite dual function dλ can be written as dλ(u) = R∗A(u)+λ−1`∗ȳ(λu),
for every u ∈ Y. Since ∂dλ(t)(u(t)) = ∇R∗A(u(t)) +∂`∗ȳ(λ(t)u(t)) [22, Proposition 16.6
and Corollary 16.53], the notion of solution introduced entails the existence of some
η : [t0,+∞)→ Y such that

for a.e. t > t0, ü(t) +
α

t
u̇(t) +∇R∗A(u(t)) + η(t) = 0 and η(t) ∈ ∂`∗ȳ(λ(t)u(t)).

We divide the proof in two steps.
Step 1. Fast convergence rates. The function E is differentiable a.e. on [t0,+∞[

since it is absolutely continuous. We thus compute its derivative and obtain:

Ė(t) = 2t
(
dλ(t)(u(t))− inf d0

)
+
t2λ̇(t)

λ2(t)

(
〈η(t), λ(t)u(t)〉 − `∗ȳ(λ(t)u(t))

)
+ t2〈u̇(t), ü(t) +

α

t
u̇(t) +∇R∗A(u(t)) + η(t)〉+ t(α− 1)〈u(t)− u†, α

t
u̇(t) + ü(t)〉.

The second term in the expression above is non-positive because λ is differentiable
and decreasing and, moreover, by convexity of `ȳ(·) together with Lemma A.1(ii),
there holds

`∗ȳ(λ(t)u(t))− 〈η(t), λ(t)u(t)〉 ď `∗ȳ(0) = 0.

Furthermore, the third term is equal to zero a.e. since u(·) is a solution of (IDDλ)
by assumption. We thus deduce that for a.e. t > t0

(3.2) Ė(t) ď 2t
(
dλ(t)(u(t))− inf d0

)
+ t(α− 1)〈u† − u(t),−ü(t)− α

t
u̇(t)〉.

Using that −ü(t)− α
t u̇(t) ∈ ∂dλ(t)(u(t)) and from the convexity of dλ(t)(·) we have:

for a.e. t > t0 〈u† − u(t),−ü(t)− α

t
u̇(t)〉 ď dλ(t)(u

†)− dλ(t)(u(t)).
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We now add and subtract inf d0 = d0(u†) and define rλ(t)(u
†) := dλ(t)(u

†) − inf d0.
We get:

〈u† − u(t),−ü(t)− α

t
u̇(t)〉 ď rλ(t)(u

†) + inf d0 − dλ(t)(u(t)).

Applying this inequality to (3.2), since α ě 3 and dλ(t)(u(t))− inf d0 ě 0 (see Propo-
sition A.1.(iv)), we get:

(3.3) Ė(t) ď t(3− α)
(
dλ(t)(u(t))− inf d0

)
+ t(α− 1)rλ(t)(u

†) ď t(α− 1)rλ(t)(u
†).

To bound the right hand side, we now apply Lemma A.1(vi) and deduce that, since
λ(t) ď λ(t0):

Ė(t) ď c(α− 1)tλ(t)
1
q−1 ,

where the constant c is defined as:

(3.4) c :=

{
0 if q = 1,

(1− (1/q))γ−1/(q−1)‖u†‖q/(q−1) if q > 1,

and is finite in both cases. Since the above inequality holds for a.e. t > t0, assumption
(Λ) yields that for a.e. t > t0:

E(t) = E(t0) +

∫ t

t0

Ė(t) ď E(t0) + c(α− 1)Λc.

By now defining C := E(t0) + c(α− 1)Λc, we derive

(3.5) dλ(t)(u(t))− inf d0 ď
C

t2
.

Step 2. Convergence rate for the primal iterates. From (3.5), used in combination
with Lemma A.1(v), we get
σ

2
‖x(t)− x†‖2 ď d0(u(t))− inf d0 = (d0(u(t))− dλ(t)(u(t))) + (dλ(t)(u(t))− inf d0)

ď (d0(u(t))− dλ(t)(u(t))) +
C

t2
.

The monotonicity property of Lemma A.1(iv) implies that the first term on the right
hand side above is non-positive, whence we get

‖x(t)− x†‖ ď

√
2C√
σt
.

4. Inertial Dual Diagonal Descent (I3D) Algorithm. In this section, we
study the convergence properties of the discrete analogue of (IDDλ), thus deriving
an accelerated version of the (3D) algorithm studied in [43].

4.1. From the continuous dynamic to the discrete algorithm. We follow
here a standard approach for computing the time-discretization of continuous dynam-
ical systems considered, e.g., in [1, 16, 58, 8]. Recalling the notation (3.1), we note
that (IDDλ) can be equivalently written as

(4.1)

{
x(t) = ∇R∗(−A∗u(t)),

ü(t) + α
t u̇(t) + ∂`∗ȳ(λ(t)u(t)) +∇R∗A(u(t)) 3 0.
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We discretize (4.1) explicitly with respect to the smooth component ∇R∗A and semi-
implicitly with respect to the non-smooth term ∂`∗ȳ. In other words, we discretize
implicitly the trajectories, while leaving explicit the dependence on the discretized
values λk. For k ě 0, a fixed time step-size h > 0 and for time discretization points
tk = kh, we set uk := u(tk), λk := λ(tk) and derive the finite difference scheme:{

xk = ∇R∗(−A∗uk),
1
h2 (uk+1 − 2uk + uk−1) + α

kh2 (uk − uk−1) + ∂`∗ȳ(λkuk+1) +∇R∗A(wk) 3 0,

where wk is a linear combination of uk and uk−1 which will be made clear in the
following. After straightforward calculations, we rewrite the system above as{

xk = ∇R∗(−A∗uk),

uk+1 + h2∂`∗ȳ(λkuk+1) 3 uk +
(
1− α

k

)
(uk − uk−1)− h2∇R∗A(wk).

By setting αk = 1− α/k, τ := h2 and wk := uk + αk(uk − uk−1), we get
wk = uk + αk(uk − uk−1),

uk+1 =
(
I + τ

λk
∂`∗ȳ(λk·)

)−1

(wk − τ∇R∗A(wk)) ,

xk+1 = ∇R∗(−A∗uk+1).

Note that the proximal operator of the map `∗ȳ(λk·) with parameter τ/λk appears, in
combination with an explicit gradient step for R∗A. We can thus introduce the Inertial
Dual Diagonal Descent (I3D) algorithm
(I3D)

For u0 = u1 ∈ Y, compute for k ě 1


wk = uk + αk(uk − uk−1),

uk+1 = prox τ
λk
`∗ȳ(λk·) (wk − τ∇R∗A(wk)) ,

xk+1 = ∇R∗(−A∗uk+1).

This algorithm depends on three parameters: the stepsize τ > 0, the relaxation
parameters (λk)k and the friction parameters (αk)k. The stepsize will be chosen
depending on the value of the Lipschitz constant of ∇R∗A. For the choice of the
relaxation parameters, we will consider a discrete analogue of the assumption (Λ)
formulated in the continuous setting. For the friction parameters αk, we will allow
more general values than the ones above.

We gather the requirements on these parameters in the following assumptions:
(P1) τ ∈

(
0, σ2

‖A‖2

]
, where σ > 0 is defined in assumption (R1).

(P2) αk is non-negative and for every k ě 1 and tk := 1 +
∑+∞
i=k

∏i
j=k αj is finite,

with tk = Θ(k).
(P3) (λk) is a strictly positive non-increasing sequence such that limk→∞ λk = 0.

Moreover, by defining

(4.2) Λ :=

{∑
kě1 tk+1λ

1/(q−1)
k if q > 1,

0 if q = 1,

we have that Λ < +∞.
(P4) For u† ∈ argmin d0, we have λ0‖u†‖ ď γ%q−1/q.
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Remark 4.1 (On assumption (P3)). As commented in Remark 3.2, one can check
that a sufficient condition for (P3) to hold is that λ ∈ `

1
2(q−1) (N). In particular, if we

consider a sequence verifying λk = O
(
k−θ

)
for some θ > 0, it is easy to verify that

(P3) holds as long as θ > 2(q−1). For q = 1, (for instance if `(y1, y2) = ‖y1−y2‖1), no
summability condition is required. Roughly speaking, the assumption λ ∈ `

1
2(q−1) (N)

means in this case that λ ∈ `∞(N), which is already implied by limk→∞ λk = 0.

Remark 4.2 (On assumption (P4)). For many choices of data-fits, % = +∞ (see
Example 2.2), in which case the assumption is automatically satisfied. Also, note that
in assumption (P3), we require λk to tend to zero. This means that λK‖u†‖ ď γ%q−1/q
for some K ∈ N. In this case, up to a time rescaling k ← k+K, the require estimates
always hold true.

Following [6], we require the sequence of friction parameters (αk) to satisfy (P2),
a particular summability property guaranteeing a technical condition crucial in the
following proofs. We summarize such a requirement and the resulting condition in
the following lemma.

Lemma 4.3 ([6, Lemma 2.1]). Assume that (αk) is non-negative and satisfies

(4.3)
+∞∑
i=k

i∏
j=k

αj < +∞, for every k ě 1.

Then, the sequence defined by

(4.4) tk := 1 +

+∞∑
i=k

i∏
j=k

αj

is well-defined (P2), and satisfies for every k ě 1 the following properties:

(4.5) 1 + αktk+1 = tk, t2k+1 − t2k ď tk+1.

Remark 4.4 (Classical choices of αk and tk). Definitions (4.3) and (4.4) above
accommodate standard choices of sequences (αk) and (tk). For example, in his seminal
work Nesterov [50] considered

(4.6) αk =
tk − 1

tk+1
and tk+1 =

√
1 + 4t2k + 1

2
, t1 = 1,

which can be shown to verify the two conditions (4.3) and (4.4), as well as k/2 ď tk ď

k. For a given α > 1, the two asymptotically equivalent choices

αk = 1− α

k
, tk+1 =

k

α− 1
, and αk =

k − 1

k + α− 1
, tk+1 =

k + α− 1

α− 1

have been recently considered in [36, 2, 10] and can be shown to satisfy (P2). Note,
that for α = 3 these sequences are asymptotically equivalent to the Nesterov sequences
(4.6).

Remark 4.5 (Splitting of the loss). In [43] the decomposition of the loss function
`ȳ = φȳ � ψȳ was considered, where � is the infimal convolution and ψȳ is the
possible strongly convex component of `ȳ. In such case, the dual function `∗ȳ(·) can be
expressed as `∗ȳ = ψ∗ȳ +φ∗ȳ, where φ∗ȳ is in general non-smooth, while φ∗ȳ has Lipschitz
gradient and can therefore be incorporated with the smooth term R∗A in the dual
function dλ. For several data discrepancies, however, ψȳ = δ{0} (see [43, Section 4.3]).
To simplify the presentation, we do not consider this decomposition in this work.
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4.2. Fast convergence of the algorithm. We now prove the discrete analogue
of Theorem 3.3 for (I3D). We follow the approach considered in [25, 15, 58, 8, 6].

Theorem 4.6 (Fast convergence). Let the assumptions (L1)-(L3), (R1)-(R2),
(P1)-(P4) hold true. Let (xk) and (uk) be the sequences generated by algorithm (I3D).
Then, there exists C ∈ ]0,+∞[ such that

(4.7) dλk(uk)− inf d0 ď
C

t2k
and ‖xk − x†‖ ď

√
2C√
σtk

.

Proof. Let u† ∈ argmin d0 be the minimizer of d0 for which assumption (P4)
holds, and define, for every k ě 1, the discrete Lyapunov energy function:

(4.8) E(k) := t2k

(
dλk(uk)− inf d0

)
+

1

2τ
‖zk − u†‖2,

where zk is defined as:

(4.9) zk := uk−1 + tk(uk − uk−1).

Our goal is to get an estimate on the decay of E along time. In particular, we will
show that for every k ě 1

(4.10) E(k + 1)− E(k) ď tk+1

(
dλk(u†)− inf d0

)
,

which can be seen as a discrete analogue of (3.3), and from which the desired accel-
erated convergence rates will follow in a straightforward manner.

For simplicity, let us denote by `k the function defined by setting

(∀u ∈ Y) `k(u) := λ−1
k `∗ȳ(λku).

To prove (4.10), we define for every k ě 1 the operator Gk : Y → Y as

Gk(z) :=
1

τ

(
z − proxτ`k(z − τ∇R∗A(z))

)
and notice that the proximal step of (I3D) can be written in terms of Gk as uk+1 =
wk − τGk(wk). The descent lemma (see, e.g., [6, 36]) yields

(4.11) dλk(w− τGk(w)) ď dλk(u)+ 〈Gk(w), w−u〉− τ
2
‖Gk(w)‖2, for all w, u ∈ Y.

Evaluating (4.11) for u = uk and w = wk, we get

(4.12) dλk(uk+1) ď dλk(uk) + 〈Gk(wk), wk − uk〉 −
τ

2
‖Gk(wk)‖2.

Similarly, evaluating (4.11) for u = u† and w = wk, we derive

(4.13) dλk(uk+1) ď dλk(u†) + 〈Gk(wk), wk − u†〉 −
τ

2
‖Gk(wk)‖2.

We now multiply (4.12) by tk+1 − 1 and we add it to (4.13), thus obtaining

tk+1dλk(uk+1) ď (tk+1 − 1)dλk(uk) + dλk(u†)

+ 〈Gk(wk), (tk+1 − 1)(wk − uk) + (wk − u†)〉 −
τ

2
tk+1‖Gk(wk)‖2.(4.14)
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As an immediate consequence of Lemma 4.3, we observe that:

(tk+1 − 1)(wk − uk) + wk = uk + tk+1(wk − uk)

= uk + tk+1αk(uk − uk−1)

= uk−1 + (1 + tk+1αk)(uk − uk−1)

= uk−1 + tk(uk − uk−1) = zk.

Thanks to (4.9), the fact that zk− τtk+1Gk(wk) = zk+1 and the previous equality, we
can now reorder the terms in (4.14) and rewrite it as

tk+1(dλk(uk+1)− dλk(u†)) ď (tk+1 − 1)(dλk(uk)− dλk(u†))

+
1

2τtk+1

(
‖zk − u†‖2 − ‖zk+1 − u†‖2

)
.

We now multiply everything by tk+1, re-arrange and get

t2k+1(dλk(uk+1)− dλk(u†)) +
1

2τ
‖zk+1 − u†‖2

ď (t2k+1 − tk+1)(dλk(uk)− dλk(u†)) +
1

2τ
‖zk − u†‖2,

which can be equivalently rewritten as:

t2k+1

(
dλk(uk+1)− dλk(u†)

)
+

1

2τ
‖zk+1 − u†‖2

ď t2k

(
dλk(uk)− dλk(u†)

)
+ (t2k+1 − tk+1 − t2k)

(
dλk(uk)− dλk(u†)

)
+

1

2τ
‖zk − u†‖2.

To get the desired terms, we first use on the left-hand side the monotonicity property
of the function dλk(·) as a function of k (see Lemma A.1(iv)) and then add and
subtract in the parentheses the term inf d0, thus getting:

t2k+1

(
dλk+1

(uk+1)− inf d0

)
+

1

2τ
‖zk+1 − u†‖2

ď t2k

(
dλk(uk)− inf d0

)
+ (t2k+1 − tk+1 − t2k)

(
dλk(uk)− inf d0

)
+ tk+1

(
dλk(u†)− inf d0

)
+

1

2τ
‖zk − u†‖2.

After rearranging and recalling the definition of E in (4.8), we deduce:

E(k + 1) + (t2k + tk+1 − t2k+1)
(
dλk(uk)− inf d0

)
ď E(k) + tk+1

(
dλk(u†)− inf d0

)
.

Thanks to (4.5) and Lemma A.1(iv), we can now neglect the second term on the
left-hand side of the above inequality, finally getting the desired inequality (4.10).
Iterating this inequality recursively entails

E(k) ď E(1) +

k−1∑
j=1

tj+1

(
dλj (u

†)− inf d0

)
.(4.15)

To bound the sum appearing on the right hand side, we need to analyze the residuals
rj := dλj (u

†)− inf d0. Similarly as for the estimation obtained in the continuous case,
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we can use for this purpose the property in Lemma A.1(vi) and get that for some
fixed constant c > 0 independent on j (defined analogously as in (3.4)), we have

rj ď cλ
1
q−1

j , for every j ě 1.

By assumption (P3), with Λ as in (4.2), we thus conclude that

k−1∑
j=1

tj+1rj ď c

k−1∑
j=1

tj+1λ
1
q−1

j ď cΛ < +∞

This allows us to deduce from (4.15) the convergence rate on the dual values in (4.7),
by simply taking C := E(1) + cΛ. Finally, the convergence rate on the primal iterates
in (4.7) follows from Lemma A.1(v).

Remark 4.7 (Nesterov scheme as a special case). Let f be any differentiable
function in Γ0(X ) with Lipschitz-continuous gradient. Take R = f∗, A = −I, ȳ = 0,
and `(y1, y2) = δ0(y2− y1), so that assumptions (L1)-(L3) and (R1)-(R2) are verified.
In that case, d0 = f , and (I3D) reads

u0 = u1 ∈ Y, compute for k ě 1


wk = uk + αk(uk − uk−1),

uk+1 = wk − τ∇f(wk),

xk+1 = ∇f(uk+1),

which in the dual exactly performs Nesterov’s method [51]. From our rates and
Lemma A.1(iv), we deduce that f(uk) − inf f = O(k−2). Furthermore, according to
Nemirovski and Yudin optimality result [51, Theorem 2.1.7], these rates are optimal
over the class of Lipschitz smooth convex functions.

Remark 4.8 (Different growth for tk). In assumption (P2) we require the se-
quence (tk) to satisfy tk = Θ(k), but this is actually not used in the proof of Theorem
4.6. What is crucial there is that tk < +∞, so that Lemma 4.3 can be used. Indeed,
one might ask whether it is possible to require tk = Θ(kβ), with β > 1 to improve
the rates in (3.5). It is a simple exercise to verify that this is not possible, since
(4.5) implies tk ď t1k, hence we must have β ď 1 so that the best rates are actually
achieved for β = 1.

5. Stability properties in the presence of errors. We now study the itera-
tive regularization properties of (I3D) in the presence of noisy data ŷ ∈ Y. We thus
consider:

For û0 = û1 ∈ Y, compute for k ě 1


ŵk = ûk + αk(ûk − ûk−1),

ûk+1 = prox τ
λk
`∗ŷ(λk·) (ŵk − τ∇R∗A(ŵk)) ,

x̂k+1 = ∇R∗(−A∗ûk+1).

A first natural question one may ask is how much the dual and primal iterates ûk
and x̂k are affected by noise in terms of both convergence and stability. We discuss
these issues showing that the noisy perturbation can be interpreted as an error in the
calculation of the proximal step of the (I3D) algorithm. Before starting, we motivate
the following with an example.

Example 5.1. Assume Y = R and ŷ = ȳ + δ, for some ȳ, δ > 0. The (I3D) al-
gorithm makes use of the datum only for the evaluation of the proximal operator
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prox τ
λ `
∗
ŷ(λ·). One possible way to measure the impact of the noise consists then in

finding an upper bound for |prox τ
λ `
∗
ȳ(λ·)(w) − prox τ

λ `
∗
ŷ(λ·)(w)|, for w ∈ Y (see [43,

Lemma 10]). Consider the following two illustrative cases:
• `y = 1

2 | · −y|
2. We have:

sup
ȳ∈Y

sup
w∈Y
|prox τ

λ `
∗
ȳ(λ·)(w)− prox τ

λ `
∗
ŷ(λ·)(w)| = τδ

1 + τλ
.

• `y = kl(y; ·). We have:

sup
ȳ∈Y

sup
w∈Y
|prox τ

λ `
∗
ȳ(λ·)(w)− prox τ

λ `
∗
ŷ(λ·)(w)| =

√
τδ

λ
.

In the former case, the error assumed in the evaluation of ȳ has order δ. However,
a different behavior is observed for the latter example. The square-root dependence
on δ makes the estimate worse in a small noise regime, when δ � 1. Further, notice
that in a diagonal regime the sequence (λk) converges to zero (P3), which makes the
overall error growing fast along the iterations.

Example 5.1 shows that data-fit terms behave differently in the presence of noise.
We thus need to provide an analysis flexible enough to take these differences into
account, and avoid sub-optimal results via worst-case estimates. This is the purpose
of the following discussion, where we will see that additive data terms (in the sense of
Definition 2.1) behave essentially like 1

2 | · −y|
2, while the Kullback-Leibler data term

belongs to a class of less stable losses.

5.1. ε-subdifferentials and inexact proximal calculus. In this section, we
make precise the notion of noise perturbation we intend to use. To do so, we first
recall standard definitions regarding the approximate subdifferential and proximal-
type minimization problems.

Definition 5.2 (ε-subdifferential [61]). Let H be a Hilbert space, f ∈ Γ0(H) and
ε ě 0. The ε-subdifferential of f at x ∈ dom f is the set

∂εf(x) = {u ∈ H : f(x′) ě f(x) + 〈u, x′ − x〉 − ε, for all x′ ∈ H} .

Such a notion generalizes that of the subdifferential recalled in (2.1). In particular, if
ε ě 0, then ∂f(x) ⊂ ∂εf(x) for any x ∈ H, and we have

0 ∈ ∂εf(x) ⇐⇒ x ∈ argminε f = {x′ ∈ H : f(x′) ď inf f + ε}.

We recall now some useful characterizations of the proximal operator of f ∈ Γ0(H)
with parameter η > 0,

(5.1) p = proxηf (x) ⇔ x− p
η
∈ ∂f(p) ⇔ p = argmin

z

{
f(z) +

1

2η
‖z − x‖2

}
.

Next, we introduce notions of approximation of proximal points that can be seen as
relaxed conditions of the characterizations in (5.1) (for details see [54, 17]).

Definition 5.3 (Approximation of proximal points). Let f ∈ Γ0(H), x ∈ H,
η > 0 and p := proxηf (x). We say that p̂ ∈ H is:
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• a type 1 approximation of p with precision ε1, and we write p̂ ≈ε11 p, if:

∃e ∈ H, ∃(ε1, ε2, ε3) ∈ [0,+∞[2, ‖e‖ ď ε3, ε
2
2 + ε2

3 ď ε2
1,

x+ e− p̂
η

∈ ∂ ε22
2η

f(p̂).

• a type 2 approximation of p with precision ε2, and we write p̂ ≈ε22 p, if

∃ε2 ∈ [0,+∞[,
x− p̂
η
∈ ∂ ε22

2η

f(p̂).

• a type 3 approximation of p with precision ε3, and we write p̂ ≈ε33 p, if

∃e ∈ H,∃ε3 ∈ [0,+∞], ‖e‖ ď ε3,
x+ e− p̂

η
∈ ∂f(p̂).

Type 3 approximations simply describe the presence of an additive error in the ar-
gument of the proximal map, i.e. p̂ = proxηf (x + e). We show in Section 6.1 that
this type of error arises naturally when additive data-fit functions are used. Type 2
approximations correspond to the presence of errors in the subdifferential operator.
Type 1 approximations can be seen as a combination of type 2 and 3 approximations,
and the following Lemma provides an easy characterization.

Lemma 5.4 ([55, 54]). Let f ∈ Γ0(H), x ∈ H, η > 0. Then:

p̂ ≈ε11 proxηf (x) ⇔ p̂ ∈ argminε1

{
f(·) +

1

2η
‖ · −x‖2

}
.

We are now ready to study the stability properties of the (I3D) algorithm.

5.2. Stability estimates in the presence of errors. Using the notions in-
troduced in the previous section, we can quantify the error due to the replacement of
ȳ by ŷ. In particular, recalling Definition 5.3, we assume that at each iteration the
proximal step with ŷ is an i-type approximation of the proximal step with ȳ, where
i ∈ {1, 2, 3}:

(Ei) (∀k ě 1)(∃εi,k ě 0) s.t. (∀w ∈ Y) prox τ
λk
`∗ŷ(λ·)(w) ≈εi,ki prox τ

λk
`∗ȳ(λ·)(w).

In Section 6 we show that this is indeed a natural assumption for standard data-fit
terms.

We can now prove our second main result for (I3D) which provide error estimates
under assumption (Ei) with i = 1. Stability results for type 2, 3 approximations are
deduced as particular cases after noticing that for these choices the error terms with
ε3,k and ε2,k vanish, respectively, for every k.

Theorem 5.5 (Error estimates for type 1 errors). Assume that (L1)-(L3), (R1)-
(R2), (P1)-(P4) hold true. Let (x̂k), (ûk) be the sequences generated by (I3D) with
noisy datum ŷ, and suppose that (Ei) holds with i = 1. Then, the following stability
estimate holds true:

(5.2) (∀k ě 1) t2k
στ

2
‖x̂k − x†‖2 ď C +

k−1∑
j=1

t2j+1ε
2
2,j +

5

2

( k−1∑
j=1

tj+1ε3,j

)2

,

where the constant C is defined as C := 2τt21

(
d1(û0)− inf d0

)
+ ‖û0−u†‖2 +Cq, with

Cq :=

{
0 if q = 1,

2τΛ(1− 1
q )γ−1/(q−1)‖u†‖q/(q−1) if q > 1.
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Proof. Following the proof of Theorem 4.6, we define the discrete energy function

(5.3) Ê(k) := t2k

(
dλk(ûk)− inf d0

)
+

1

2τ
‖ẑk − u†‖2,

for k ě 1, where u† ∈ argmin d0 (so that inf d0 = d0(u†)) and ẑk is defined as:

ẑk := ûk−1 + tk(ûk − ûk−1).

Since ûk+1 ≈
ε1,k
1 proxτλ−1

k `∗ŷ(λk ·)(ŵk − τ∇RA(ŵk)), using Definition 5.3, we have

ξk :=
ŵk + ek − ûk+1

τ
, ξk −∇RA(ŵk) ∈ ∂ ε2

2,k
2τ

`∗ŷ(λkûk+1),

where ek ∈ H, ε2
2,k + ε2

3,k ď ε2
1,k and ‖ek‖ ď ε3,k. Without loss of generality, we can

assume that ε2
2,k + ε2

3,k = ε2
1,k. Thus, thanks to the descent lemma proved in [59,

Lemma 4.1] and applied to dλk = RA + λ−1
k `∗ŷ(λk ·), we derive

dλk(ûk+1) ď dλk(u) + 〈ûk+1 − u, ξk〉+
L

2
‖ûk+1 − ŵk‖2 +

ε2
2,k

2τ
, ∀u ∈ Y,

where L = ‖A‖2/σ2. Using the fact that τL ď 1 by (P1), rearranging and neglecting
non-positive quantities, we obtain that for all u ∈ Y:

dλk(ûk+1) ď dλk(u)− 1

τ
‖ûk+1 − ŵk‖2 + 〈ûk+1 − ŵk,

ek
τ
〉+ 〈ŵk − u, ξk〉

+
1

2τ
‖ûk+1 − ŵk‖2 +

ε2
2,k

2τ

= dλk(u) + 〈ŵk − u, ξk〉 −
τ

2
‖ ûk+1 − ŵk

τ
‖2 + τ〈 ûk+1 − ŵk

τ
,
ek
τ
〉+

ε2
2,k

2τ

= dλk(u) + 〈ŵk − u, ξk〉 −
τ

2
‖ξk‖2 +

1

2τ

(
‖ek‖2 + ε2

2,k

)
ď dλk(u) + 〈ŵk − u, ξk〉 −

τ

2
‖ξk‖2 +

ε2
1,k

2τ
,(5.4)

which can be seen as a noisy version of (4.11). We divide the rest of the proof in three
steps. Since the former ones are analogous to the calculations done in the error-free
case, we will skip for those some of the details.

Step 1. We show that for every k ě 1, there holds:

(5.5) Ê(k + 1)− Ê(k) ď tk+1

(
dλk(u†)− inf d0

)
+

tk+1

τ
〈ek, ẑk − u†〉+

t2k+1

2τ
ε2

2,k.

To prove this, we write the descent inequality (5.4) first for u = ûk

(5.6) dλk(ûk+1) ď dλk(ûk) + 〈ŵk − ûk, ξk〉 −
τ

2
‖ξk‖2 +

ε2
1,k

2τ
,

and then for u = u†

(5.7) dλk(ûk+1) ď dλk(u†) + 〈ŵk − u†, ξk〉 −
τ

2
‖ξk‖2 +

ε2
1,k

2τ
.
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We now multiply (5.6) by tk+1 − 1 and add it to (5.7), thus getting:

tk+1dλk(ûk+1) ď (tk+1 − 1)dλk(ûk) + dλk(u†)

+ 〈ξk, (tk+1 − 1)(ŵk − ûk) + ŵk − u†〉 −
tk+1τ

2
‖ξk‖2 +

tk+1

2τ
ε2

1,k.

We apply the property (tk+1 − 1)(ŵk − ûk) + ŵk = ẑk (see (4.9)) and write (3) as

tk+1(dλk(ûk+1)− dλk(u†))

ď (tk+1 − 1)(dλk(ûk)− dλk(u†)) +
1

2τtk+1

(
‖ẑk − u†‖2 − ‖ẑk − u† − τtk+1ξk‖2

)
+
tk+1

2τ
ε2

1,k.

From the identity −τtk+1ξk = ẑk+1 − ẑk − tk+1ek, we deduce:

tk+1(dλk(ûk+1)− dλk(u†)) +
1

2τtk+1
‖ẑk+1 − u†‖2

ď (tk+1 − 1)(dλk(ûk)− dλk(u†)) +
1

2τtk+1
‖ẑk − u†‖2 +

1

τ
〈ẑk+1 − u†, ek〉+

tk+1

2τ

(
ε2

1,k − ‖ek‖2
)
.

= (tk+1 − 1)(dλk(ûk)− dλk(u†)) +
1

2τtk+1
‖ẑk − u†‖2 +

1

τ
〈ẑk+1 − u†, ek〉+

tk+1

2τ
ε2

2,k.

We now multiply everything by tk+1, re-arrange and get

t2k+1

(
dλk(ûk+1)− dλk(u†)

)
+

1

2τ
‖ẑk+1 − u†‖2

ď t2k

(
dλk(ûk)− dλk(u†)

)
+ (t2k+1 − tk+1 − t2k)

(
dλk(ûk)− dλk(u†)

)
+

1

2τ
‖ẑk − u†‖2

+
tk+1

τ
〈ek, ẑk+1 − u†〉+

t2k+1

2τ
ε2

2,k.

Using now that dλk(ûk) ě inf d0 (see Lemma A.1(iv)), adding and subtracting in the
parentheses the term inf d0 and after recalling the definition of E in (5.3), we get:

(5.8) Ê(k + 1) + (t2k + tk+1 − t2k+1)
(
dλk(uk)− inf d0

)
ď Ê(k) + tk+1

(
dλk(u†)− inf d0

)
+

tk+1

τ
〈ek, ẑk − u†〉+

t2k+1

2τ
ε2

2,k,

whence we deduce condition (5.5) since t2k + tk+1 − t2k+1 ě 0 and dλk(u†)− inf d0 ě 0
(see (4.5)). Iterating recursively (5.5), Cauchy-Schwartz inequality yields

Ê(k) ď Ê(1) +

k−1∑
j=1

tj+1

(
dλj (u

†)− inf d0

)
+

k−1∑
j=1

tj+1

τ
ε3,j‖ẑj+1 − u†‖+

k−1∑
j=1

t2j+1

2τ
ε2

2,j ,

(5.9)

which is the starting point used in the following to deduce the desired stability esti-
mate. We now study separately the sums appearing on the right-hand side of (5.9).

Step 2. For the first term in (5.9), following the proof of Theorem 4.6, we get

k−1∑
j=1

tj+1

(
dλj (u

†)− inf d0

)
ď c

k−1∑
j=1

tj+1λ
1
q−1

λj
ď cΛ < +∞.

where c is defined in (3.4), and Λ is finite thanks to assumption (P3).
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Step 3. To bound the second sum in (5.9), we observe that by definition Ê(k) ě
1
2τ ‖ẑk − u

†‖2. Then, we set C” = 2τ(Ê(1) + cΛ) and derive

‖ẑk − u†‖2 ď C +

k−1∑
j=1

t2j+1ε
2
2,j + 2

k−1∑
j=1

tj+1ε3,j‖ẑj+1 − u†‖.

We now recall Lemma A.5, which applied to ak = ‖ẑk − u†‖, bk = 2tk+1ε3,k, ck−1 =

C +
∑k−1
j=1 t

2
j+1ε

2
2,j implies

k−1∑
j=1

tj+1ε3,j‖ẑj+1 − u†‖ ď

( k−1∑
j=1

tj+1ε3,j

)(√√√√C +

k−1∑
j=1

t2j+1ε
2
2,j + 2

k−1∑
j=1

tj+1ε3,j

)
.

Combining altogether in (5.9), we thus deduce

Ê(k) ď
C

2τ
+

k−1∑
j=1

t2j+1

2τ
ε2

2,j +
1

τ

( k−1∑
j=1

tj+1ε3,j

)(√√√√C +

k−1∑
j=1

t2j+1ε
2
2,j + 2

k−1∑
j=1

tj+1ε3,j

)
.

(5.10)

Young’s inequality applied to the product appearing on the right hand side of
(5.10) yields

1

τ

( k−1∑
j=1

tj+1ε3,j

)√√√√C +

k−1∑
j=1

t2j+1ε
2
2,j + 2

k−1∑
j=1

tj+1ε3,j


=

1

τ

( k−1∑
j=1

tj+1ε3,j

)√√√√C +

k−1∑
j=1

t2j+1ε
2
2,j

+
2

τ

( k−1∑
j=1

tj+1ε3,j

)2

ď
5

2τ

k−1∑
j=1

tj+1ε3,j

2

+
C

2τ
+

1

2τ

k−1∑
j=1

t2j+1ε
2
3,j

Hence, we thus obtain from (5.10)

(5.11) Ê(k) ď
C

τ
+

1

τ

k−1∑
j=1

t2j+1ε
2
2,j +

5

2τ

( k−1∑
j=1

tj+1ε3,j

)2

.

To conclude, we use Lemma A.1(v) and deduce

Ê(k) ě t2k(dλk(ûk)− inf d0) ě t2k(d0(ûk)− inf d0) ě
t2kσ

2
‖x̂k − x†‖2,

which combined with (5.11) provides the desired stability estimate (5.2).

5.3. Early stopping. Starting from the stability estimate (5.11), in this section
we provide early stopping results guaranteeing the iterative regularization properties
of (I3D). These results quantify the reconstruction error ‖x̂k(δ) − x†‖ that can be
achieved by stopping the algorithm on noisy data at a suitable early iteration kδ. As
expected, when errors are small we can recover a good reconstruction by stopping the
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algorithm later. On the other hand, when the errors are large, the algorithm needs
be stopped earlier to guarantee a good reconstruction. Note that these errors can
be constant, or even increasing along iterations. We also show that the convergence
rates we obtain depend on the type of error considered (see Definition 5.3). Adapting
Theorem 5.5 to the three cases of assumption (Ei) for i ∈ {1, 2, 3}, we thus derive the
following three Theorems.

Theorem 5.6 (Early stopping for type 1 errors). Assume that (L1)-(L3), (R1)-
(R2), (P1)-(P4) hold true, and suppose that λk = Θ(k−θ) with θ > 2(q − 1). Let (x̂k)
be the sequence generated by (I3D) with noisy datum ŷ, and assume that (Ei) holds
with i = 1, ε2,k = O(δλ−r2k ), ε3,k = O(δλ−r3k ) for some δ > 0 and r2, r3 ě 0. Set:

α := max

{
2

3 + 2r2θ
,

1

2 + r3θ

}
.

Then, any early stopping rule with k(δ) = Θ(δ−α) verifies:

‖x̂k(δ) − x†‖ = O (δα) , for δ ↘ 0.

Proof. We apply the stability estimate (5.2) provided by Theorem 5.5. After
substituting the expression for ε2,k and ε3,k, we get:

t2k‖x̂k−x†‖2 = O
(

1+

k−1∑
j=1

t2j+1ε
2
2,j +

( k−1∑
j=1

tj+1ε3,j

)2)
= O(1+ δ2k3+2r2θ + δ2k4+2r3θ).

In correspondence with the stopping time k(δ), and using the fact that tk(δ) = Θ(k(δ)),
we deduce from above:

‖x̂k(δ) − x†‖2 = O
(
δ2α + δ2−α(1+2r2θ) + δ2−2α(1+r3θ)

)
= O

(
δmin{2α;2−α(1+2r2θ),2−2α(1+r3θ)}

)
.

Let us now define β := min{ 1
2 + r2θ; 1 + r3θ}. We easily see that

min{2− α(1 + 2r2θ); 2− 2α(1 + r3θ)} = 2− 2αβ,

so that min{2α, 2−α(1+2r2θ), 2−2α(1+r3θ)} = min{2α, 2−2αβ}, which is maximal
for α = 1

1+β .

The analogous results for errors of type 2 and 3 are straightforward.

Theorem 5.7 (Early stopping for type 2 errors). Assume that the assumptions
(L1)-(L3), (R1)-(R2), (P1)-(P4) hold true, and suppose that λk = Θ(k−θ) with θ >
2(q−1). Let (x̂k) be the sequence generated by (I3D) with noisy datum ŷ, and assume
that (Ei) holds with i = 2, ε2,k = O(δλ−r2k ) for some δ > 0 and r2 ě 0. Then, any
early stopping rule with k(δ) = Θ(δ−

2
3+2θr ) verifies:

‖x̂k(δ) − x†‖ = O
(
δ

2
3+2θr

)
, for δ ↘ 0.

Proof. For type 2 approximation (5.2) ε3,k ≡ 0, and we get

t2k‖x̂k − x†‖2 = O
(

1 +

k−1∑
j=1

t2j+1ε
2
2,j

)
= O

(
1 +

k−1∑
j=1

δ2j2+2rθ
)

= O(1 + δ2k3+2rθ).
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In correspondence with any stopping time k(δ) = Θ(δ−α), we thus have:

‖x̂k(δ) − x†‖2 = O
(
k(δ)−2 + δ2k(δ)1+2rθ

)
= O

(
δ2α + δ2−α(1+2rθ)

)
.

The term on the right-hand side is minimized when α = 2
3+2θr .

Theorem 5.8 (Early stopping for type 3 errors). Assume that the assumptions
(L1)-(L3), (R1)-(R2), (P1)-(P4) hold true, and suppose that λk = Θ(k−θ) with θ >
2(q−1). Let (x̂k) be the sequence generated by (I3D) with noisy datum ŷ, and assume
that (Ei) holds with i = 3 with ε3,k = O(δλ−r3k ) for some δ > 0 and r3 ě 0. Then,
any early stopping rule with k(δ) = Θ(δ−

1
2+θr ) verifies:

‖x̂k(δ) − x†‖ = O
(
δ

1
2+θr

)
, for δ ↘ 0.

Proof. Assuming type 3 errors means that in the estimate (5.2) ε2,k ≡ 0, so that:

t2k‖x̂k−x†‖2 = O(1)+O
( k−1∑
j=1

tj+1ε3,j

)2

= O(1)+O
( k−1∑
j=1

δj1+rθ
)2

= O(1+δ2k4+2rθ).

In correspondence with the stopping time k(δ) = Θ(δ−α), we thus deduce:

‖x̂k(δ) − x†‖2 = O
(
k(δ)−2 + δ2k(δ)2+2rθ

)
= O

(
δ2α + δ2−2α(1+rθ)

)
.

The term on the right-hand side is minimal whenever α = 1
2+θr .

6. Applications to specific data-fit terms. We now apply the results from
Section 5.3 to some standard data-fit terms relevant in several applications. We
introduce the following definition of noise perturbation.

Definition 6.1 (δ-perturbation). For given ȳ, ŷ ∈ Y and δ ∈ R++, we say that
ŷ is a δ-perturbation of ȳ according to ` if:

`ŷ(ȳ) = `(ȳ, ŷ) ď δq,

where q ∈ [1,+∞) is the conditioning exponent appearing in (L3).

We now show that a δ-perturbation ŷ of ȳ corresponds to consider a proximal map-
ping of `∗ŷ approximating the corresponding proximal mapping of `∗ȳ in the sense of
Definition 5.3 with some precision ε(δ) depending on the noise level δ.

6.1. Additive data-fit terms. For additive data-fit terms (see Example 2.2),
a δ-perturbation corresponds to a type 3 approximation of the proximal mapping.

Proposition 6.2 (Additive data-fit terms lead to type 3 errors). Let N ∈ Γ0(Y)
and assume that `y2(y1) = N (y2 − y1), for every (y1, y2) ∈ Y2. For given (δ, τ, λ) ∈
(0,+∞)3, let ŷ ∈ B(ȳ, %) be a δ-perturbation of ȳ in the sense of Definition 6.1. Then:

(∀z ∈ Y) p̂ = prox τ
λ `
∗
ŷ(λ·)(z) ≈ε3 p̄ = prox τ

λ `
∗
ȳ(λ·)(z).

with precision ε = τδ(q/γ)1/q and where q ě 1 and γ > 0 are the conditioning
parameters appearing in assumption (L3).

Proof. We need to find e ∈ Y and ε ě 0 such that ‖e‖ ď ε and:

(6.1)
z + e− p̂

τ
∈ 1

λ
∂`∗ȳ(λ·)(p̂).
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Due to the special form of the data-fit we start noting that for any u ∈ Y we have

`∗ȳ(u) = N ∗(u) + 〈ȳ, u〉,

and the same holds for `∗ŷ. Then

∂`∗ŷ(λ·)(p̂) = λ∂`∗ŷ(λp̂) = λ∂
(
N ∗ + 〈ŷ, ·〉

)
(λp̂) = λ∂N ∗(λp̂) + λŷ.

By definition of p̂ we have that (z − p̂)/τ ∈ (1/λ)∂`∗ŷ(λ·)(p̂) = ∂N ∗(λp̂) + ŷ, which,
by simple algebraic manipulations, entails the required condition (6.1), since:

z − p̂
τ
∈ ∂N ∗(λp̂) + ȳ+ (ŷ− ȳ) ⇐⇒ z − p̂+ τ(ȳ − ŷ)

τ
∈ ∂N ∗(λp̂) + ȳ =

1

λ
∂`∗ȳ(λ·)(p̂).

By now setting e = τ(ȳ − ŷ), we can find the required value of ε combining the q-
conditioning of the function `ȳ on B(ȳ, %) assumed in (L3) with the δ-perturbation
assumption:

‖e‖ = τ‖ȳ − ŷ‖ ď τ

(
q

γ
`(ŷ, ȳ)

)1/q

ď τ

(
q

γ

)1/q

δ =: ε,

where γ > 0 and q ě 1 are the conditioning parameters. We can thus conclude that
p̂ is a ε-approximation of p̄ with precision ε, as required.

Thanks to Proposition 6.2, we can now derive the early-stopping result for additive
data-fit terms by applying Theorem 5.8 with the above choice of ε.

Corollary 6.3 (Early stopping for additive data-fit terms). Let N ∈ Γ0(Y) and
set `y2

(y1) = N (y2− y1), for every (y1, y2) ∈ Y2. Assume that the assumptions (L1)-
(L3), (R1)-(R2), (P1)-(P4) hold, and that λk = Θ(k−θ) with θ > 2(q − 1). Let (x̂k)
be the sequence generated by (I3D) with ŷ ∈ B(ȳ, %), such that ŷ is a δ-perturbation
of ȳ. Then, any early stopping rule with k(δ) = Θ(δ−1/2) verifies:

(6.2) ‖x̂k(δ) − x†‖ = O(δ
1
2 ), for δ ↘ 0.

Remark 6.4 (Optimality of the rates). The convergence rate in (6.2) is opti-
mal for regularization methods with additive data-fit terms [42]. Among inertial
algorithms, optimal convergence rates for different choices of regularizers but only
quadratic data-fit terms have been proved in [52, 49]. For more general additive data-
fits (e.g. the `1-norm, see Example 2.2), in [26] the authors prove a rate O(δ1/2) in
terms of the Bregman distance, which is different from (6.2). Up to our knowledge,
our result is the first one showing optimal convergence rates for iterative regulariza-
tion methods when general data-fit terms are considered and improving the estimates
obtained in [43] that showed a sub-optimal rate O(δ1/3).

Remark 6.5 (Different growth for tk). As noted in Remark 4.8, if we replace
tk = Θ(tk) by tk = Θ(kβ), then β ď 1, and β = 1 gives the fastest convergence rate
for true datumum ȳ. Corollary 6.3 implies that also for noisy data ŷ, any stopping
rule with k(δ) = Θ(δ−1/(1+β)) verifies ‖x̂k(δ) − x†‖ = O(δ

β
β+1 ) for δ ↘ 0, where again

the best rate is achieved for β = 1.

6.2. KL divergence. We consider the Kullback-Leibler (KL) divergence as an
example of a non-additive data-fit term. KL divergence is often used to the pres-
ence of Poisson noise in the measurements. We show that for the KL divergence,
δ-perturbations lead to type 2 approximations. We recall that the KL divergence is
locally 2-conditioned (see Example 2.2).
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Proposition 6.6. Assume that, `y2
(y1) = KL(y2; y1) for every (y1, y2) ∈ Y2.

For (δ, τ, λ) ∈ (0,+∞)3, let ŷ ∈ B(ȳ, %) be a δ-perturbation of ȳ. Then

(∀z ∈ Y) p̂ = prox τ
λ `
∗
ŷ(λ·)(z) ≈ε2 p̄ = prox τ

λ `
∗
ȳ(λ·)(z).

with ε =
√

2τδ/λ.

Proof. It is enough to prove that for all z ∈ Y

λ(z − p̂)
τ

∈ ∂λε2
2τ

KL∗ȳ(λ·)(p̂) = λ∂λε2
2τ

KL∗ȳ(λp̂), ⇐⇒ z − p̂
τ
∈ ∂λε2

2τ

KL∗ȳ(λp̂).

We set x = (z − p̂)/τ ∈ Y and consider the function g : Y → Rd ∪ {+∞} defined by

(6.3) g(w) =
KLȳ
λ

(w), for all w ∈ Y.

By standard property of convex conjugates we have that for any u ∈ Y

(6.4) g∗(u) =

(
KLȳ
λ

)∗
(u) =

1

λ
KL∗ȳ(λu).

We now claim that x ∈ ∂λε2
2τ

g∗(p̂). To show that, we apply the Young-Fenchel in-
equality (A.4) of Lemma A.6 to g with x∗ = p̂. Our objective is thus to show that:

g(x) + g∗(p̂) ď 〈x, p̂〉+
λε2

2τ
,

which, by definitions (6.3) and (6.4) and upon multiplication by λ, coincides with:

(6.5) KLȳ(x) + KL∗ȳ(λp̂) ď 〈x, λp̂〉+
λ2ε2

2τ
.

Using the expression of KL and of its convex conjugate given by (A.1), we express
the sum on the left hand side of (6.5) as:

(6.6) KLȳ(x) + KL∗ȳ(λp̂) =

d∑
i=1

(
ȳi log

ȳi
xi
− ȳi + xi − ȳi log(1− λp̂i)

)
.

Furthermore, by definition of p̂, we have that component-wise there holds:

λ

τ
(zi − p̂i) ∈ λ∂kl∗ŷi(λp̂i) ⇐⇒ xi ∈ ∂kl∗ŷi(λp̂i),

which, since kl∗ŷi is differentiable (see formula (A.1)), entails that for every i = 1, . . . , d
the element xi can be written as xi = ŷi/1− λp̂i. Substitute this expression in the
formula (6.6) to derive

KLȳ(x) + KL∗ȳ(λp̂) =

d∑
i=1

ȳi log ȳi − ȳi log ŷi − ȳi + ŷi︸ ︷︷ ︸
kl(ȳi;ŷi)

+(((((((
ȳi log(1− λp̂i) +

(
ŷi/(1− λp̂i)

)︸ ︷︷ ︸
xi

λp̂i −(((((((
ȳi log(1− λp̂i)

= KLȳ(ŷ) + 〈x, λp̂〉
ď δ2 + 〈x, λp̂〉,

where the last inequality follows from the perturbation assumption KLȳ(ŷ) ď δ2. We
thus get (6.5) by choosing ε =

√
2τδ/λ, which concludes the proof.
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From Proposition 6.6 and Theorem 5.7, we derive stopping rules for the KL divergence.

Corollary 6.7 (Early stopping for Kullback-Leibler divergence). Let `y2
(y1) =

KL(y2; y1) for every (y1, y2) ∈ Y2. Assume that the assumptions (L1)-(L3), (R1)-
(R2), (P1)-(P4) hold true, and suppose that λk = Θ(k−θ) with θ > 2. Let (x̂k) be the
sequence generated by (I3D) given ŷ, such that ŷ is a δ-perturbation of ȳ in the sense
of Definition 6.1. Then, any early stopping rule with k(δ) = Θ(δ−

2
3+2θ ) verifies

(6.7) ‖x̂k(δ) − x†‖ = O(δ
2

3+2θ ), for δ ↘ 0.

Remark 6.8. It is hard to assess the quality of the rate in (6.7) since the the
notion of optimality in [42] only applies to additive noise. In the context of Bregman
divergences, some analysis has been pursued in [26, Section 4.2, estimate (4.3)]. The
estimates obtained therein lead to a rate of order δ1/4 for suitable choices of the
regularization parameter. In comparison, our estimate (6.7) is sharper and more
explicit. Furthermore, as for additive data-fit terms, the use of inertia improves the
rates in [43].

Remark 6.9 (The Kullback-Leibler divergence does not lead to type 3 errors).
The convergence rates for additive data-fit terms proved in Corollary 6.3 are better
than the rate for the KL divergence, due to the fact that for the KL divergence
we proved that δ-perturbations correspond to type 2 errors, instead of type 3 errors.
Indeed, Lemma A.3 in the Appendix shows that the error in the evaluation of proximal
points for the KL divergence can not be cast in a type 3 approximation.

7. Conclusions and outlook. In this paper we proposed an inertial dual diag-
onal method to solve inverse problems for a wide class of data-fit and regularization
terms, possibly corrupted by noise. On the one hand, we established convergence
results both for continuous and discrete dynamics. On the other hand, we derived
stability results and corresponding early stopping rules, characterizing the regular-
ization properties of the proposed method. A number of open questions are left for
future study. It would be interesting to consider wider class of problems for example
allowing for regularization terms that are convex but not strongly convex, and pos-
sibly non-convex data fidelity terms. From an algorithmic point of view, it would be
interesting to consider alternative approaches, such as stochastic methods. Finally, it
would be interesting to investigate the numerical properties of the proposed method
for practical problems.

Appendix A. Auxiliary results. We gather in this Appendix some relevant
results used in this work.

A.1. Properties of the dual diagonal function. We first consider RA, `∗y
defined in (3.1) and on the diagonal dual function dλ and its limit d0 defined in (Dλ)
and (D0), respectively. For similar results see also [43].

Lemma A.1. Under the assumptions (L1)-(L3) and (R1)-(R2), we have:
(i) RA is differentiable and ∇R∗A is Lipschitz continuous, with Lipschitz constant

equal to σ−1‖A‖2.
(ii) ∀y ∈ Y, `∗y(0) = 0 and ∂`∗y(0) = {y}.
(iii) There holds: argmin d0 6= ∅.
(iv) ∀u ∈ Y, the function λ ∈ [0,+∞) 7→ dλ(u) is nondecreasing.
(v) ∀t > 0,∀u ∈ Y, if x := ∇R∗(−A∗u), then σ

2 ‖x− x
†‖2 ď d0(u)− inf d0.
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(vi) ∀u† ∈ argmin d0, if λ‖u†‖ ď
γ
q %

q−1, then

dλ(u†)− inf d0 ď

{
0 if q = 1,

(1− 1
q )γ−1/(q−1)‖u†‖q/(q−1)λ1/(q−1) if q > 1.

Proof. (i): follows from the strong convexity of R, see, e.g., [22, Theorem 18.15].
(ii): it is a simple consequence of the properties of the Fenchel transform as it can be
found, e.g., in [22, Proposition 13.10(i) & Corollary 16.30].
(iii) and (v): follow from [43, Lemma 5] by simply taking f = R and g = δ{ȳ}, while
property (iv) has been proved in [43, Proposition 2(i)].
(vi): it is enough to verify that `ȳ(·) is q-well-conditioned in the sense of [43, Definition
1], while assumption (L3) holds only locally. To check this, we introduce the function
ψ : R→ R defined for the % > 0 appearing in (L3) by:

ψt 7→

{
γ
q |t|

q if |t| ď %,
γ
q %

q−1|t| if |t| > %.

From (L3), we easily deduce that `ȳ(y) ě ψ(‖y − ȳ‖) for all y ∈ Y (see [61, Corollary
3.4.2]). Note that ψ is not convex for q > 1, so in this case we consider instead the
function

m : R→ R, t 7→


γ
q |t|

q if |t| ď q1/(1−q)%,
γ
q %

q−1|t| − γ

q
q
q−1

%q(1− 1
q ) if |t| > q1/(1−q)%,

and define m := ψ for q = 1. It is an easy exercise to verify that m is indeed a
convex function on R, and that m(w) ď ψ(w) for all w ∈ R. Now, we can make use of
[43, Lemma 2], which tells us that dλ(u)− inf d0 ď λ−1m∗(‖u‖λ). The desired result
now follows from the computation of the Fenchel transform of m. If q = 1, we have
that m(t) = γ|t|, so classic Fenchel calculus entails that m∗ is δ[−γ,γ], the indicator
function of [−γ, γ]. If q > 1, easy computations show that m∗ reads

m∗ : R→ R, s 7→

{
(1− 1

q )γ−1/(q−1)|s|
q
q−1 if |s| ď γ

q %
q−1,

+∞ if |s| > γ
q %

q−1.

By now applying [43, Lemma 2] we conclude.

A.2. Useful tools for KL computations. In this section, we report some
computations and properties concerning the KL divergence defined in (2.2). For
any (u, y) ∈ (Rd)2 we define KL(y, u) as in (2.2). for all i = 1, . . . , d. Consider
now the functions KL and kl with respect to the first argument only, and define
KLy(u) := KL(y;u) and, similarly, its i-th component klyi(ui) for a fixed y ∈ Rd. The
component-wise expression for KL∗y(w) =

∑d
i=1 kl∗yi(wi) can be then simply found by

Fenchel calculus. It reads:

(A.1) kl∗yi(wi) =

{
−yi log(1− wi) if 1− wi > 0

+∞ otherwise.

Proximal maps. For every i = 1, . . . , d, straightforward calculations show that

prox τ
λklyi

(ui) =
1

2

(
ui −

τ

λ
+

√(
ui −

τ

λ

)2

+ 4
τ

λ
yi

)
.
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Furthermore, by applying Moreau’s identity we have:

(A.2) prox τ
λkl∗yi

(λ·)(wi) =
1

2λ

(
(1 + λwi)−

√
(1− λwi)2

+ 4λτyi

)
.

The following lemma implies the q-conditioning of the Kullback-Leibler diver-
gence.

Lemma A.2 (2-conditioning of the KL data-fit). Let ȳ ∈ Rd and % ∈]0,+∞[.
Then,

(∀y ∈ B(ȳ, %)) KL(ȳ, y) ě

(
1

%c2
+

1

%2c
ln

c

%+ c

)
‖y − ȳ‖2, where c = d‖ȳ‖∞.

Proof. Let y ∈ B(ȳ, %). By [43, Lemma 10.2], we have that

(A.3) KL(ȳ, y) ě cm(‖y − ȳ‖), where m(t) = c−1|t| − ln
(
1 + c−1|t|

)
.

To get the desired result, we need to find a quadratic lower bound for m over [−%, %].
For simplicity, let us consider the change of variable s = c−1|t| ∈ [0, c−1%]. Since the
statement is trivially valid for y = ȳ, we can assume that s > 0 and write

s− ln(1 + s) = s2φ(s), where φ(s) :=
s− ln(1 + s)

s2
.

To conclude, we only need to verify that φ is decreasing on ]0,+∞[. Indeed, this
would imply that m(t) ě c−2t2φ(c−1%), which together with (A.3) would complete
the proof. To see that φ is decreasing, we compute explicitly its derivative on ]0,+∞[
and see that φ′(s) ď 0 if and only if ψ(s) := s(s+2)−2(1+s) ln(1+s) ě 0. Combining
this with the fact that ψ(0) = 0, and that ψ′(s) = 2(s− ln(1 + s)) is positive ]0,+∞[
we conclude the proof.

The following result deals with the approximation of proximal points of the dual
of the KL divergence, corresponding to noise-free and noisy data ȳ and ŷ, respectively.
As shown in Proposition 6.6, a type 2 approximation in the sense of Definition 5.3
holds. The following proposition provides a one-dimensional counterexample showing
that a type 3 approximation – for which better convergence rates can be obtained –
cannot hold.

Proposition A.3. Let w ∈ R and ȳ, ŷ ∈]0,+∞[. If proxkl∗ŷ
(w) ≈ε3 proxkl∗ȳ

(w)

holds in the sense of Definition 5.3 for some ε > 0, then

ε ě
2|ŷ − ȳ|

(1− w) +
√

(1− w)2 + 4ŷ
.

In particular, ε→ +∞ when w → +∞.

Proof. Let ε ě 0 such that the type 3 approximation property holds. By Defini-
tion 5.3, there exists e ∈ R such that |e| ď ε and proxkl∗ŷ

(w) = proxkl∗ȳ
(w + e). Using

the formula (A.2), we see that this is equivalent to

1

2

[
(1 + w)−

√
(1− w)2 + 4ŷ

]
=

1

2

[
(1 + w + e)−

√
(1− w − e)2 + 4ȳ

]
.

and we complete the proof by noting that the above equality is equivalent to

e
1

2

[
(1− w) +

√
(1− w)2 + 4ŷ

]
= ȳ − ŷ.
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A.3. Miscellaneous. We here recall some technical lemmas which are used in
several sections of the manuscript. The following Lemma is useful to characterize the
speed of decay of the diagonal term λ(·) in assumption (Λ), see also Remark 3.2.

Lemma A.4. Let λ : R+ → R+ a decreasing function such that
∫
R+
|λ(t)|1/2 dt <

+∞. Then, the function t 7→ tλ(t) is integrable on R+.

Proof. We first show that the function t 7→ t
√
λ(t) tends to zero as t→ +∞. We

have that for every T > 0:∫ +∞

T/2

√
λ(t) dt ě

∫ T

T/2

√
λ(t) dt ě

T

2

√
λ(T ),

where the last inequality follows from the decreasing property of λ in the interval
[T/2, T ]. By taking limits, we get the required property:

limsup
T→+∞

T

2

√
λ(T ) ď lim

T→+∞

∫ +∞

T/2

√
λ(t) dt = 0.

Now, from the observation

lim
t→+∞

tλ(t)√
λ(t)

= lim
t→+∞

t
√
λ(t) = 0,

we deduce that there exists some T > 0 such that tλ(t) ď
√
λ(t) for all t ě T . By

thus taking T > T , we have:∫ T

0

tλ(t) dt =

∫ T

0

tλ(t) dt+

∫ T

T

tλ(t) dt ď

∫ T

0

tλ(t) dt+

∫ T

T

√
λ(t) dt,

which by taking the supremum over all T > T̄ on both sides entails:∫
R+

tλ(t) dt ď

∫ T

0

tλ(t) dt+

∫ +∞

T

√
λ(t) dt < +∞.

Next, we state and prove a variant of [8, Lemma 5.14] which we have used in the
proof of Theorem 5.2 to get the final stability estimate (5.2).

Lemma A.5. Let (ak)k∈N, (bk)k∈N and (ck)k∈N be positive sequences, and assume
that ck is increasing. If

(∀k ∈ N) a2
k ď ck +

k−1∑
j=1

bjaj+1,

then max
j=1,...,k

aj ď
√
ck +

k−1∑
j=1

bj, for every k ∈ N.

Proof. Take k ∈ N, and let Ak := max
m=1,...,k

am. Then, for all 1 ď m ď k:

a2
m ď cm +

m−1∑
j=1

bjaj+1 ď ck +Ak

k−1∑
j=1

bj ,



ACCELERATED ITERATIVE REGULARIZATION VIA DUAL DIAGONAL DESCENT 29

because ck is increasing and bj is positive. Therefore A2
k ď ck + Ak

k−1∑
j=1

bj . Define

Sk =
k−1∑
j=1

bj . By computing and bounding the solutions of the previous inequality we

conclude that

Ak ď
Sk +

√
Sk + 4ck
2

ď Sk +
√
ck.

We recall a useful characterisation of the elements in the ε-subdifferential of a function
in Γ0(H). This property is used to prove Proposition 6.6, see also [61].

Lemma A.6 (Theorem 2.4.2, [61]). Let H be an Hilbert space, let f ∈ Γ0(H), let
(x, u) ∈ H2, and let ε > 0. Then, the following statements are equivalent:

i) u ∈ ∂εf(x);
ii) The following ε-Young-Fenchel inequality holds:

(A.4) f(x) + f∗(u) ď 〈u, x〉+ ε;

iii) x ∈ ∂εf∗(u).
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