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We propose and analyze an accelerated iterative dual diagonal descent algorithm for the solution of linear inverse problems with strongly-convex regularization and general data-fit functions. We develop an inertial approach of which we analyze both convergence and stability properties. Using tools from inexact proximal calculus, we prove early stopping results with optimal convergence rates for additive data terms and further consider more general cases, such as the Kullback-Leibler divergence, for which different type of proximal point approximations hold.

1. Introduction. We are interested in solving the linear inverse problem:

(1.1) find x ∈ X s.t. Ax = ȳ,
where A : X → Y is a bounded linear operator between two Hilbert spaces X and Y and ȳ ∈ Y is a given measurement of some unknown quantity x ∈ X we want to recover. In general, the inverse problem (1.1) is ill-posed as its solution (if it exists) may lack some fundamental properties like uniqueness or stability. A standard modeling hypothesis in inverse problems [START_REF] Engl | Regularization of Inverse Problems[END_REF][START_REF] Benning | Modern regularization methods for inverse problems[END_REF] is assuming that the desired x is well-approximated by x † ∈ X solving:

(P 0 (ȳ)) find x † ∈ argmin R(x) s.t. x ∈ argmin

x ∈X (Ax ; ȳ) .

Here, R is a regularization function enforcing a-priori knowledge on the desired solution x, while : Y 2 → R∪{+∞} is a data-fit function. In practical situations, the data is subject to noise due to, e.g., possible transmission and/or acquisition problems. As a consequence, only an inexact version ŷ of ȳ is accessible. Replacing ŷ in (P 0 (ȳ)) no longer provides a suitable solution of problem (1.1), hence a regularization method is needed. Regularization methods can be seen as a way to explore the space of solutions X to find a good approximation of x † in the presence of noise. More precisely, they have the following characteristics: 1. Given any data y ∈ Y, the method generates a regularization path {x p (y)} p∈P where P ⊂ R is a set of regularization parameters. 2. Given the true data ȳ, there exists an accumulation point p 0 of P such that the regularization path converge to the ideal solution x † of (P 0 (ȳ)), i.e. lim p→p0
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3.

For any given noise level δ > 0 and noisy data ŷ such that ȳ -ŷ ď δ, there exists a regularization parameter p(δ) ∈ P such that (1.2)

x p(δ) (ŷ) -x † = O(δ α ), for some α > 0.

The quantity O(δ α ) is often called the convergence rate of the considered regularization method, and the exponent α quantifies its efficiency: the larger is α, the closest the regularized solution x p(δ) (ŷ) will be to the desired x † , hence less affected by noise.

Convergence and rates depend on the chosen regularization method and the properties of the considered problem. We briefly review in the following two well-known families of regularization methods. Tikhonov regularization. This is the most classical regularization approach, which, for a given λ > 0, relies on the following family of penalized optimization problems:

(P λ (ŷ)) find xλ ∈ argmin x∈X p λ (x) := R(x) + 1 λ (Ax; ŷ) .
Intuitively, the so-called regularization parameter λ balances the trust in the data ŷ with the regularization enforced by R. In other words, it parametrizes a regularization path {x λ (ŷ)} λ>0 along which we look for a good approximation of x † (see Figure 1 for an illustrative example). In practice, this requires two steps. First, problem (P λ (ŷ)) needs to be solved for various choices of λ by means of a suitable optimization algorithm (see e.g. [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF]). Second, all the computed solutions are compared using some validation criterion (e.g. discrepancy principles [START_REF] Engl | Regularization of Inverse Problems[END_REF], SURE [START_REF] Stein | Estimation of the mean of a multivariate normal distribution[END_REF][START_REF] Deledalle | Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple parameter selection[END_REF], cross-validation [START_REF] Steinwart | Support Vector Machines[END_REF]. . . ) and an optimal parameter λ * is computed along with the corresponding solution xλ * .

There are a number of related regularization methods based on variational problems. For instance, one can replace (P λ (ŷ)) with a constrained formulation, such as min R(x) subject to (Ax; y) ď σ, for a given error level σ ě 0, which can be solved by appropriate optimization methods, see for instance [START_REF] Berg | Probing the Pareto frontier for basis pursuit solutions[END_REF][START_REF] Aravkin | Level-set methods for convex optimization[END_REF]. Next, we discuss a class of regularization methods based on quite different ideas. Iterative regularization. The choice of the optimal parameter λ in a Tikhonov regularization approach is in general very costly computationally. The family of so-called iterative regularization methods provides an accurate and more efficient alternative approach [START_REF] Engl | Regularization of Inverse Problems[END_REF][START_REF] Bakushinsky | Iterative Methods for Approximate Solution of Inverse Problems[END_REF][START_REF] Kaltenbacher | Iterative Regularization Methods for Nonlinear Ill-Posed Problems[END_REF]. Iterative regularization methods are regularization methods for which the regularization path {x k (ŷ)} k is parametrized by the iterate index k of algorithms which can easily compute the iterates in terms of R, and A. These algorithms are usually designed to iteratively solve (P 0 (ȳ)) in a stable way with respect to errors on ȳ. Using these methods, it is therefore possible to find an approximation of x † given noisy data ŷ by "stopping" the algorithm when close to x † [START_REF] Bachmayr | Iterative total variation schemes for nonlinear inverse problems[END_REF][START_REF] Burger | A Guide to the TV Zoo[END_REF][START_REF] Burger | Error estimation for Bregman iterations and inverse scale space methods in image restoration[END_REF][START_REF] Boţ | Iterative regularization with a general penalty term-theory and application to L1 and TV regularization[END_REF] (see Figure 2). In these methods, the number of iterations plays the role of a regularization parameter, controlling at the same time the accuracy of the solution and the computational cost. In practice, the selection of this regularization parameter is made using the similar validation criterion as the ones described for Tikhonov regularization.

Figure 2: Illustration of two iterative regularization methods (Dual Diagonal Descent (3D) [START_REF] Garrigos | Iterative regularization via dual diagonal descent[END_REF] and its Inertial variant (I3D) proposed in this work) on a simple problem. Left: given the true data ȳ, the iterates converge to the ideal solution x † . Right: given noisy data ŷ, the iterates x k (ŷ) =: xk approach x † before tending away from it. Regularization holds by early stopping the algorithms at a suitably chosen iterate k * . In this example, k * 2 × 10 4 (resp. 50) minimizes xk -x † for (3D) (resp. (I3D) ) .

Previous results. For quadratic data-fit terms and square-norm regularization R, both Tikhonov and iterative regularization approaches (such as the Landweber algorithm) have been shown to be optimal, in the sense that their reconstruction error in (1.2) has optimal rate O(δ 1 2 ) [START_REF] Engl | Regularization of Inverse Problems[END_REF]. Optimal results with possibly fewer iterations have also been obtained by considering accelerated approaches [START_REF] Engl | Regularization of Inverse Problems[END_REF][START_REF] Neubauer | On nesterov acceleration for landweber iteration of linear ill-posed problems[END_REF]. For quadratic data-fit terms and general strongly convex regularizers, an iterative regularization procedure combined with a Morozov-type discrepancy principle was also shown to be optimal in [START_REF] Burger | Error estimation for Bregman iterations and inverse scale space methods in image restoration[END_REF], and accelerated approaches based on a dual accelerated gradient descent was shown to be optimal with fewer iterations in [START_REF] Matet | Don't relax: Early stopping for convex regularization[END_REF]. Iterative regularization methods have been studied also in the case of general convex regularizers in [START_REF] Burger | A Guide to the TV Zoo[END_REF] where estimates in terms of the Bregman distance were proved (see also [START_REF] Burger | Error estimation for Bregman iterations and inverse scale space methods in image restoration[END_REF][START_REF] Bachmayr | Iterative total variation schemes for nonlinear inverse problems[END_REF] for Tikhonov-type approaches), but no explicit rates in the form (1.2) were shown. More general iterative algorithms defined in Banach spaces have been studied in [START_REF] Kaltenbacher | Iterative methods for nonlinear illposed problems in banach spaces: convergence and applications to parameter identification problems[END_REF][START_REF] Kaltenbacher | Convergence rates for an iteratively regularized Newton-Landweber iteration in banach space[END_REF][START_REF] Brianzi | Preconditioned iterative regularization in banach spaces[END_REF] for linear and non-linear inverse problems and in [START_REF] Boţ | Iterative regularization with a general penalty term-theory and application to L1 and TV regularization[END_REF] for L 1 and Total Variation (TV) regularization. For data-fit terms different from the squared norm, the literature is more scarce. In the context of iterative regularization methods, we mention [START_REF] Benning | Error estimates for general fidelities[END_REF] for results in the framework of Bregman distances, and [START_REF] Garrigos | Iterative regularization via dual diagonal descent[END_REF] where the (3D) Dual Diagonal Descent Algorithm is considered. Here, the authors provide convergence rates for general data-fit terms, but the latter is sub-optimal in the quadratic case.

Contribution and organization of the paper. In this paper, we study a novel accelerated iterative regularization algorithm with strongly convex regularization and general data-fit terms. To the best of our knowledge, accelerated iterative regularization approaches have not been studied in this general setting. Our Inertial Dual Diagonal Descent algorithm, dubbed (I3D) , extends the (3D) iterative algorithm studied in [START_REF] Garrigos | Iterative regularization via dual diagonal descent[END_REF] by introducing an inertial term which yields acceleration.

Our main contribution is the analysis of convergence rates for this method. We show that these rates depend on how the noise interacts with the data-fit term considered. By introducing acceleration, we prove that the same or better convergence rates than those of (3D) can be achieved with much fewer iterations (see Figure 2 for an illustration). This extends similar observations previously made in the quadratic case in, e.g., [START_REF] Neubauer | On nesterov acceleration for landweber iteration of linear ill-posed problems[END_REF][START_REF] Matet | Don't relax: Early stopping for convex regularization[END_REF]. For the latter case, in particular, we obtain the optimal rate O(δ 1 2 ). In addition, we show that this rate holds more generally for every additive data-fit, including, for instance, the 1 data term. From an optimization perspective, the rationale behind this fact is that inertial dynamics are able to exploit information in previous iterates to converge faster to an optimal solution. However, as pointed out in [START_REF] Devolder | First-order methods of smooth convex optimization with inexact oracle[END_REF], inertial methods suffer from error accumulation that need to be controlled along the iterations and balanced with the improvement observed in the convergence speed, which makes their analysis in an inverse problem framework non-trivial.

The paper is organized as follows. In Section 2 we introduce the notation and the main assumptions. In Section 3 we introduce and analyze the inertial continuous dynamical system corresponding to (I3D) and, in particular, study its asymptotic behavior in Theorem 3.3. In Section 4, we derive the algorithm (I3D) as a discretization in time of the continuous dynamics. We study its convergence properties in Theorem 4.6, showing fast convergence of the iterates to x † in the noiseless case. In Section 5 we study the stability properties of (I3D) in the presence of errors due to noise, proving a general abstract stability result in Theorem 5.5. We specialize this result in Theorems 5.6, 5.7 and 5.8 showing how convergence rates change depending on which type of error is assumed. Finally, in Section 6, we provide explicit convergence rates for data-fit terms used in practice, including the Kullback-Leibler divergence.

2. Main assumptions and background on diagonal methods. We begin fixing the notation. Let H be a Hilbert space with scalar product •, • and associated norm • . Given y ∈ H and ∈ R + , let B(y, ) be the open ball of center y and radius . We denote by Γ 0 (H) the set of proper, convex and lower semi-continuous functions from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Proposition 17.31 i)]. For all x ∈ H and τ > 0, we also recall the definition of the proximity operator prox τ f : H → H of f ∈ Γ 0 (H) with parameter τ , which is defined by:

H to ] -∞, +∞]. We say that f ∈ Γ 0 (H) is σ-strongly convex if f -σ • 2 /2 ∈ Γ 0 (H), with σ ∈ ]0, +∞[. We recall that the subdifferential of f ∈ Γ 0 (H) is the multi-valued operator ∂f : H → 2 H defined by (2.1) (∀x ∈ H) ∂f (x) := {u ∈ H : f (x ) -f (x) -u, x -x ě 0 for all x ∈ H} . If f is Gateaux differentiable at x ∈ H, then ∂f (x) = {∇f (x)}, see, e.g. ,
prox τ f (x) = (I + ∂f ) -1 (x) = argmin x ∈H f (x ) + 1 2τ x -x 2 .
For a given f ∈ Γ 0 (H), we will then denote by f * : H → [-∞, +∞] the Fenchel conjugate of f , i.e. the function defined by:

(∀u ∈ H) f * (u) = sup x∈H { u, x -f (x)} .
The Fenchel conjugate f * of f belongs to Γ 0 (H) and is differentiable at any point with a σ -1 -Lipschitz continuous gradient when f is σ-strongly convex, see, e.g. [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 18.15]. Furthermore, the following property holds, see [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 16.23]:

(∀(x, u) ∈ H 2 ) u ∈ ∂f (x) ⇔ x ∈ ∂f * (u).
Given Ω ⊂ H and q ě 1, we say that f is q-conditioned on Ω if argmin f = ∅ and

(∃γ > 0)(∀x ∈ Ω) γ q dist (x, argmin f ) q ď f (x) -inf f,
and say that f is globally q-conditioned when it is q-conditioned on H. Further, we say that f is locally q-conditioned if, for any x ∈ argmin f , it is q-conditioned on B(x, ) for some ∈ R + . Finally, given two sequences (a k ) kě1 and (b k ) kě1 of real numbers, we will write a k = O(b k ) whenever there exists a positive constant M > 0 such that a k ď M b k for all k ě 1. We will further use the more precise notation

a k = Θ(b k ) if both conditions a k = O(b k ) and b k = O(a k ) hold.
Note also that we will use the notation • and •, • for the norm and the scalar product in all the Hilbert spaces considered.

2.1. Main assumptions. We make the following assumptions on the data-fit and the regularizer R:

(L 1 ) For all y ∈ Y, the function y := (•, y) ∈ Γ 0 (Y) and is coercive.

(L 2 ) For all (y 1 , y 2 ) ∈ Y 2 , (y 1 , y 2 ) ě 0 and (y 1 , y 2 ) = 0 ⇐⇒ y 1 = y 2 . (L 3 ) For given 'true' data ȳ ∈ Y, ȳ is locally q-conditioned for some q ∈ [1, +∞[. (R 1 ) R is σ-strongly convex, with σ ∈ ]0, +∞[, (R 2 ) ∂R(x † ) ∩ Im A * = ∅.
Observe that, in light of assumption (L 2 ), assumption (L 3 ) can be rewritten as:

(∃ > 0)(∃γ > 0)(∀y ∈ B(ȳ, )) γ q y -ȳ q ď (y, ȳ).
These assumptions on and R cover a wide range of inverse problems, as discussed next.

Definition 2.1. A data-fit is said to be additive if there exists N ∈ Γ 0 (Y) such that

(∀(y 1 , y 2 ) ∈ Y 2 ) (y 1 , y 2 ) = N (y 1 -y 2 ).
Example 2.2 (Data-fit functions). For Y = R d , the additive data-fit functions defined by the functions N below trivially satisfy (L 1 )-(L 2 ). In addition, ȳ satisfies (L 3 ) if and only if N is locally q-conditioned for some q ě 1. We report here some examples of locally and globally conditioned functions N . Many of them are indeed globally conditioned.

• N (y) = 1 2 y 2 is globally 2-conditioned, with γ = 1. • N (y) = 1 q y q q , for q ě 1, is globally q-conditioned, with γ = d r , where r = min( 1 q -1 2 , 0). Note that this includes the case of the 1 -norm. • the weighted sum [START_REF] Hintermüller | Subspace Correction Methods for a Class of Nonsmooth and Nonadditive Convex Variational Problems with Mixed l 1 /l 2 Data-Fidelity in Image Processing[END_REF] N (y) = α y 1 + 1 2 y 2 2 , for α > 0, is globally 1conditioned, with γ = α.

• the Huber data-fit function [START_REF] Calatroni | Infimal convolution of data discrepancies for mixed noise removal[END_REF] 

N (y) = d i=1
h ν (y i ), where h ν : R → R + is the Huber smoothing function, defined for ν > 0 by

(∀t ∈ R) h ν (t) := 1 2ν t 2 if |t| ď ν |t| -ν 2 otherwise.
For every ∈ ]0, +∞[, it is 2-conditioned on B(0, ), with γ = min{ 1 ν , 2 -ν 2 }. • the exact penalization defined by N (y) = 0 if y = 0 and N (y) = +∞ otherwise, is globally 1-conditioned, with γ = 1. We also mention here a non-additive data-fit function used in several applications, which also satisfies assumption (L 3 ):

• the Kullback-Leibler divergence, defined by:

(2.2) (y 2 , y 1 ) = KL(y 1 , y 2 ) := d i=1 kl(y i 1 , y i 2 ),
where

(∀(t 1 , t 2 ) ∈ R 2 ) kl(t 1 , t 2 ) :=      t 1 log t 1 t 2 -t 1 + t 2 if (t 1 , t 2 ) ∈ ]0, +∞[ 2 ,
+∞ otherwise.

For every

∈ ]0, +∞[, ȳ (•) = KL(ȳ, •) is 2-conditioned on B(ȳ, ), with γ = 2 c 2 + 2 2 c ln c +c , and c = d ȳ ∞ (see Lemma A.2). Example 2.

(Regularizers).

A classical regularizer widely used in signal/image processing as a sparsifying prior is the 1 -norm of the coefficients with respect to an orthonormal basis, or, more generally, of a dictionary. Another popular choice in imaging is the total variation semi-norm [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF], due to its ability to preserve edges, together with its generalizations [START_REF] Bredies | Total Generalized Variation[END_REF][START_REF] Chambolle | Image recovery via total variation minimization and related problems[END_REF]. For some specific tasks in computer vision and machine learning, there is also a need for structured sparsity. This can be enforced by means of group sparsity inducing norms [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF][START_REF] Bach | Exploring large feature spaces with hierarchical multiple kernel learning[END_REF]. While not being strongly convex, these regularizers can be included in our framework by simply adding a quadratic term σ 2 • 2 where σ is small positive parameter, in the flavor of the elastic net regularization [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF].

Iterative methods based on continuous and discrete dynamics.

It is useful to review some approaches designed for solving (1.1), the hierarchical problem (P 0 (ȳ)) and the Tikhonov-regularized problem (P λ (ŷ)). In particular, we focus on approaches based on duality and/or combined with diagonal dynamics.

Mirror descent approaches. A class of methods solving (1.1) consider the problem

find x † ∈ argmin x∈X {R(x) + δ ȳ (Ax)} ,
where the constraint (1.1) is encoded by the indicator function δ ȳ . Using Fenchel-Rockafeller duality the corresponding dual problem reads:

(D 0 ) find u † ∈ argmin u∈Y {d 0 (u) := R * (-A * u) + ȳ, u } .
Since R * is smooth (see (ii) in Lemma A.1), a gradient method can be used to solve (D 0 ), see [START_REF] Beck | A fast dual proximal gradient algorithm for convex minimization and applications[END_REF][START_REF] Matet | Don't relax: Early stopping for convex regularization[END_REF]. This coincides, up to a change of variables, with mirror descent approaches [START_REF] Beck | Mirror descent and nonlinear projected subgradient methods for convex optimization[END_REF] and linearized Bregman iterations [START_REF] Burger | Error estimation for Bregman iterations and inverse scale space methods in image restoration[END_REF][START_REF] Bachmayr | Iterative total variation schemes for nonlinear inverse problems[END_REF], where R plays the role of the mirror function. However, extending this approach for solving (P 0 (ȳ)) is not clear. Primal diagonal dynamics. A classical approach to solve hierarchical problems like (P 0 (ȳ)) is based on the diagonal principle, which essentially states that when ŷ = ȳ and λ → 0, problem (P λ (ŷ)) converges towards (P 0 (ȳ)) in an appropriate sense [START_REF] Attouch | Viscosity solutions of minimization problems[END_REF]Theorem 2.6]. In this view, diagonal approaches have been considered as nonautonomous dynamics solving (P λ (ŷ)) with a parameter λ monotonically decreasing to zero. The simplest example of a continuous diagonal dynamic is the diagonal steepest descent differential inclusion defined for an initial t 0 > 0, which reads

(P D λ ) x(t 0 ) = x 0 , λ(t) 0, ẋ(t) + ∂p λ(t) (x(t)) 0.
where p λ(t) (x(t)) is defined in (P λ (ŷ)). This dynamic is studied in [START_REF] Attouch | A Dynamical Approach to Convex Minimization Coupling Approximation with the Steepest Descent Method[END_REF][START_REF] Attouch | Asymptotic behavior of coupled dynamical systems with multiscale aspects[END_REF][START_REF] Attouch | Asymptotic behavior of nonautonomous monotone and subgradient evolution equations[END_REF] where convergence of x(t) to x † was guaranteed provided that λ(t) → 0 fast enough, i.e. λ ∈

L 1/(q-1) ([t 0 , +∞)), where q ∈ [1, +∞) is the exponent in (L 3 ), see [7, Corollary 3.3, Remark 4.4]
. Discrete counterparts of (P D λ ) have also been studied [START_REF] Bahraoui | Convergence of diagonally stationary sequences in convex optimization[END_REF][START_REF] Attouch | Coupling Forward-Backward with Penalty Schemes and Parallel Splitting for Constrained Variational Inequalities[END_REF][START_REF] Czarnecki | Splitting Forward-Backward Penalty Scheme for Constrained Variational Problems[END_REF]. They can be seen as a variant of the Forward-Backward algorithm applied to solve problem (P λ (ŷ)), where the penalization parameter tends to zero along the iterations.

A main drawback of this type of algorithms is that they are expensive for non-smooth data-fit terms, since they require to compute the proximal operator of the composition ȳ • A. A possible way to overcome this issue consists in applying Fenchel-Rockafellar duality to (P λ (ŷ)), thus considering the dual problem (D λ ), where the linear operator appears only in composition with the smooth function R * . Then, it is possible to apply an explicit gradient step to R * • (-A * ), while the non-smooth data-fit term can be cheaply treated via its proximal operator.

Dual diagonal dynamics. The dual problem of (P λ (ŷ)) is

(D λ ) find u λ ∈ argmin u∈Y d λ (u) := R * (-A * u) + 1 λ * (λu; ŷ) .
Solutions of (D λ ) are related to those of (P λ (ŷ)) via the formula x λ = ∇R * (-A * u λ ), which holds thanks to the strong convexity of R. A natural question is whether the diagonal principle can be applied on to the dual problem (D λ ) as well. The corresponding dual diagonal continuous dynamics read

(DD λ ) u(t 0 ) = u 0 , λ(t) 0, x(t) = ∇R * (-A * u(t)), u(t) + ∂d λ(t) (u(t)) 0.
where, similarly as before, provided that λ ∈ L 1/(q-1) ([t 0 , +∞)), the trajectory x(t) is guaranteed to converge to x † . The discrete counterpart of (DD λ ) has been studied in [START_REF] Garrigos | Iterative regularization via dual diagonal descent[END_REF] under the name of Dual Diagonal Descent algorithm (3D) , where its convergence and stability properties have been investigated. For ŷ ∈ Y such that ŷ -ȳ ď δ and additive data-fit functions, the authors showed that stopping the algorithm at k δ = Θ(δ -2/3 ) guarantees that the convergence rate (1.2) holds with α = 1/3. However, that this rate is not optimal for quadratic data terms [START_REF] Engl | Regularization of Inverse Problems[END_REF]. In this paper, we propose a dual diagonal approach which, thanks to the use of acceleration, provides optimal convergence rates and an earlier stopping time.

3. Continuous inertial dual diagonal dynamic. First-order inertial algorithms are popular in optimization due to their faster convergence on smooth and non-smooth convex problems, see e.g. [START_REF] Nesterov | Introductory Lectures on Convex Optimization[END_REF][START_REF] Beck | A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems[END_REF]. In several papers continuous inertial dynamics have been studied considering appropriate Lyapunov functions [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights[END_REF][START_REF] Krichene | Accelerated Mirror Descent in Continuous and Discrete Time[END_REF][START_REF] Apidopoulos | The differential inclusion modeling FISTA algorithm and optimality of convergence rate in the case b ď 3[END_REF]. As already discussed, their regularization properties are also known for quadratic data-fit terms [START_REF] Neubauer | On nesterov acceleration for landweber iteration of linear ill-posed problems[END_REF][START_REF] Matet | Don't relax: Early stopping for convex regularization[END_REF]. We propose an inertial approach for general data-fit terms, considering a variant of the dynamic in (DD λ ). Namely, for a given α > 0 and initial t 0 > 0, we consider

(IDD λ ) (u(t 0 ), u(t 0 )) = (u 0 , u0 ), λ(t) 0, x(t) = ∇R * (-A * u(t)), ü(t) + α t u(t) + ∂d λ(t) (u(t)) 0.
The asymptotic behavior of the trajectories of this inertial differential inclusion will be analyzed next, while its discrete counterpart will be studied in the rest of the paper.

Remark 3.1. The idea of coupling inertia with Tikhonov regularization is not new. In [START_REF] Attouch | Combining fast inertial dynamics for convex optimization with Tikhonov regularization[END_REF], an inertial variant of the primal dynamic

(P D λ ) is proposed for R = • 2 /2.
The corresponding inertial primal diagonal approach is:

(IP D λ ) (x(t 0 ), ẋ(t 0 )) = (x 0 , ẋ0 ), λ(t) 0, ẍ(t) + α t ẋ(t) + λ(t)∂p λ(t) (x(t)) 0.
Under a suitable decay assumption on λ(•) the authors guarantee fast convergence and regularization [START_REF] Attouch | Combining fast inertial dynamics for convex optimization with Tikhonov regularization[END_REF]Section 6]. Compared to (IP D λ ), in our dual formulation (IDD λ ) we take advantage of a different scaling between the data-fit and the regularizer. Indeed, to derive (IDD λ ) the data-fit in the primal problem (P λ (ŷ)) is multiplied by λ(t) -1 → +∞, while in (IP D λ ) the regularizer is multiplied by λ(t) → 0. For firstorder systems this difference is inessential, the two approaches being equivalent for an appropriate change of variables [START_REF] Attouch | Asymptotic behavior of coupled dynamical systems with multiscale aspects[END_REF]. However, for second-order systems these two scalings describe different dynamics [START_REF] Attouch | Asymptotic behavior of gradient-like dynamical systems involving inertia and multiscale aspects[END_REF]Section 4]. This difference can be understood looking at the limits (in the Γ-convergence sense) of the corresponding parametrized functions, which read if λ 0, p λ → p 0 := R + δ argmin y •A and λp λ → δ dom R + y • A.

Convergence of the continuous inertial dual diagonal dynamic.

In this section we study the convergence properties of the trajectories of (IDD λ ), assuming their existence to simplify the analysis. We remark that if d λ is assumed to be differentiable with a Lipschitz continuous gradient, global existence and uniqueness results of a classical C 2 ([t 0 , +∞), R + ) solution to (IDD λ ) hold by the Cauchy-Lipschitz theorem. However, this assumption requires the data-fidelity function ȳ to be strongly convex (see [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 18.15]), which is in general not the case for most of the data-fit terms, see Example 2.2. We refer to [START_REF] Cabot | Asymptotics for some vibro-impact problems with a linear dissipation term[END_REF][START_REF] Apidopoulos | The differential inclusion modeling FISTA algorithm and optimality of convergence rate in the case b ď 3[END_REF] for further details. In the following Theorem, we show that the inertial term (IDD λ ) ensures that the dual function values d λ(t) (u(t)) tend to inf d 0 at a O(t -2 ) rate as expected for inertial methods. Further, switching from the dual to the primal problem by means of the formula x(t) = ∇R * (-A * u(t)), we prove the convergence of x(•) to x † . To prove these results, some assumptions on the decay of λ(•) are needed, as it is usual for dynamics such as (P D λ ) and (IP D λ ). We thus consider the following assumption:

(Λ) λ : [0, +∞[ → ]0, +∞[ is a non-increasing differentiable function such that lim t→∞ λ(t) = 0. If q defined in assumption (L 3 ) is strictly greater than 1, we assume that the quantity Λ c :=

+∞ t0 tλ 1 q-1 (t) dt is finite. Remark 3.2. A sufficient condition ensuring the validity of (Λ) is that λ(•) ∈ L 1 2(q-1) ([t 0 , +∞)), see Lemma A.4 in the Appendix.
We are now ready to state the main convergence result for continuous dynamics. Note that Lemma A.1(iii) ensures that the set of solutions of problem (D 0 ) is nonempty.

To prove fast convergence results of the dual function values, we follow the approach considered in [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity[END_REF][START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights[END_REF][START_REF] Apidopoulos | The differential inclusion modeling FISTA algorithm and optimality of convergence rate in the case b ď 3[END_REF] and define a suitable Lyapunov-type function.

Theorem 3.3. Let the assumptions (L 1 )-(L 3 ), (R 1 )-(R 2 ), (Λ) hold true. Let u † ∈ argmin d 0 and assume that λ(t 0 ) u † ď γ q-1 /q. Let α ě 3 and let the pair (x(•), u(•)) be a solution to (IDD λ ) in the following sense:

• u ∈ C 1 ([t 0 , +∞[, Y), and x = ∇R * • (-A * ) • u,
• for every T > t 0 , u and d λ(•) • u are absolutely continuous on [t 0 , T ],

• for a.e. t ∈ [t 0 , +∞[, -ü(t) -α t u(t) ∈ ∂d λ(t) (u(t)). Then, there exists an explicitly computable constant

C ∈ ]0, +∞[ such that ∀t > t 0 d λ(t) (u(t)) -inf d 0 ď C t 2 and x(t) -x † ď √ 2C √ σt .
Proof. We define the following energy:

(∀t ě t 0 ) E(t) := t 2 d λ(t) (u(t)) -inf d 0 + 1 2 (α -1)(u(t) -u † ) + t u(t) 2 .
From now on, we use the following shorthand notation:

(3.1) R * A := R * • (-A * ), * ȳ (•) := (•, ȳ) *
so that the composite dual function d λ can be written as We divide the proof in two steps.

d λ (u) = R * A (u) + λ -1 * ȳ (λu), for every u ∈ Y. Since ∂d λ(t) (u(t)) = ∇R * A (u(t)) + ∂ * ȳ (λ(t)u(t)) [
Step 1. Fast convergence rates. The function E is differentiable a.e. on [t 0 , +∞[ since it is absolutely continuous. We thus compute its derivative and obtain:

Ė(t) = 2t d λ(t) (u(t)) -inf d 0 + t 2 λ(t) λ 2 (t) η(t), λ(t)u(t) - * ȳ (λ(t)u(t)) + t 2 u(t), ü(t) + α t u(t) + ∇R * A (u(t)) + η(t) + t(α -1) u(t) -u † , α t u(t) + ü(t) .
The second term in the expression above is non-positive because λ is differentiable and decreasing and, moreover, by convexity of ȳ (•) together with Lemma A.1(ii), there holds * ȳ (λ(t)u(t)) -η(t), λ(t)u(t) ď * ȳ (0) = 0. Furthermore, the third term is equal to zero a.e. since u(•) is a solution of (IDD λ ) by assumption. We thus deduce that for a.e. t > t 0

(3.2) Ė(t) ď 2t d λ(t) (u(t)) -inf d 0 + t(α -1) u † -u(t), -ü(t) - α t u(t) .
Using that -ü(t) -α t u(t) ∈ ∂d λ(t) (u(t)) and from the convexity of d λ(t) (•) we have:

for a.e. t > t 0 u † -u(t), -ü(t) - α t u(t) ď d λ(t) (u † ) -d λ(t) (u(t)).
We now add and subtract inf

d 0 = d 0 (u † ) and define r λ(t) (u † ) := d λ(t) (u † ) -inf d 0 .
We get:

u † -u(t), -ü(t) - α t u(t) ď r λ(t) (u † ) + inf d 0 -d λ(t) (u(t)).
Applying this inequality to (3.2), since α ě 3 and d λ(t) (u(t)) -inf d 0 ě 0 (see Proposition A.1.(iv)), we get:

(3.3) Ė(t) ď t(3 -α) d λ(t) (u(t)) -inf d 0 + t(α -1)r λ(t) (u † ) ď t(α -1)r λ(t) (u † ).
To bound the right hand side, we now apply Lemma A.1(vi) and deduce that, since

λ(t) ď λ(t 0 ): Ė(t) ď c(α -1)tλ(t) 1 q-1
, where the constant c is defined as:

(3.4) c := 0 if q = 1, (1 -(1/q))γ -1/(q-1) u † q/(q-1) if q > 1,
and is finite in both cases. Since the above inequality holds for a.e. t > t 0 , assumption (Λ) yields that for a.e. t > t 0 :

E(t) = E(t 0 ) + t t0 Ė(t) ď E(t 0 ) + c(α -1)Λ c .

By now defining

C := E(t 0 ) + c(α -1)Λ c , we derive (3.5) d λ(t) (u(t)) -inf d 0 ď C t 2 .
Step 2. Convergence rate for the primal iterates. From (3.5), used in combination with Lemma A.1(v), we get

σ 2 x(t) -x † 2 ď d 0 (u(t)) -inf d 0 = (d 0 (u(t)) -d λ(t) (u(t))) + (d λ(t) (u(t)) -inf d 0 ) ď (d 0 (u(t)) -d λ(t) (u(t))) + C t 2 .
The monotonicity property of Lemma A.1(iv) implies that the first term on the right hand side above is non-positive, whence we get

x(t) -x † ď √ 2C √ σt .
4. Inertial Dual Diagonal Descent (I3D) Algorithm. In this section, we study the convergence properties of the discrete analogue of (IDD λ ), thus deriving an accelerated version of the (3D) algorithm studied in [START_REF] Garrigos | Iterative regularization via dual diagonal descent[END_REF].

4.1. From the continuous dynamic to the discrete algorithm. We follow here a standard approach for computing the time-discretization of continuous dynamical systems considered, e.g., in [START_REF] Alvarez | On the minimizing property of a second order dissipative system in Hilbert spaces[END_REF][START_REF] Attouch | A dynamical approach to an inertial forwardbackward algorithm for convex minimization[END_REF][START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights[END_REF][START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity[END_REF]. Recalling the notation (3.1), we note that (IDD λ ) can be equivalently written as (4.1)

x(t) = ∇R * (-A * u(t)), ü(t) + α t u(t) + ∂ * ȳ (λ(t)u(t)) + ∇R * A (u(t)) 0.
We discretize (4.1) explicitly with respect to the smooth component ∇R * A and semiimplicitly with respect to the non-smooth term ∂ * ȳ . In other words, we discretize implicitly the trajectories, while leaving explicit the dependence on the discretized values λ k . For k ě 0, a fixed time step-size h > 0 and for time discretization points t k = kh, we set u k := u(t k ), λ k := λ(t k ) and derive the finite difference scheme:

x k = ∇R * (-A * u k ), 1 h 2 (u k+1 -2u k + u k-1 ) + α kh 2 (u k -u k-1 ) + ∂ * ȳ (λ k u k+1 ) + ∇R * A (w k ) 0,
where w k is a linear combination of u k and u k-1 which will be made clear in the following. After straightforward calculations, we rewrite the system above as

x k = ∇R * (-A * u k ), u k+1 + h 2 ∂ * ȳ (λ k u k+1 ) u k + 1 -α k (u k -u k-1 ) -h 2 ∇R * A (w k ).
By setting

α k = 1 -α/k, τ := h 2 and w k := u k + α k (u k -u k-1 ), we get        w k = u k + α k (u k -u k-1 )
,

u k+1 = I + τ λ k ∂ * ȳ (λ k •) -1 (w k -τ ∇R * A (w k )) , x k+1 = ∇R * (-A * u k+1 ).
Note that the proximal operator of the map * ȳ (λ k •) with parameter τ /λ k appears, in combination with an explicit gradient step for R * A . We can thus introduce the Inertial Dual Diagonal Descent (I3D) algorithm (I3D)

For u 0 = u 1 ∈ Y, compute for k ě 1      w k = u k + α k (u k -u k-1 ), u k+1 = prox τ λ k * ȳ (λ k •) (w k -τ ∇R * A (w k )) , x k+1 = ∇R * (-A * u k+1 ).
This algorithm depends on three parameters: the stepsize τ > 0, the relaxation parameters (λ k ) k and the friction parameters (α k ) k . The stepsize will be chosen depending on the value of the Lipschitz constant of ∇R * A . For the choice of the relaxation parameters, we will consider a discrete analogue of the assumption (Λ) formulated in the continuous setting. For the friction parameters α k , we will allow more general values than the ones above.

We gather the requirements on these parameters in the following assumptions:

(P 1 ) τ ∈ 0, σ 2
A 2 , where σ > 0 is defined in assumption (R 1 ). (P 2 ) α k is non-negative and for every k ě 1 and

t k := 1 + +∞ i=k i j=k α j is finite, with t k = Θ(k). (P 3 ) (λ k ) is a strictly positive non-increasing sequence such that lim k→∞ λ k = 0.
Moreover, by defining

(4.2) Λ := kě1 t k+1 λ 1/(q-1) k if q > 1, 0 if q = 1,
we have that Λ < +∞. (P 4 ) For u † ∈ argmin d 0 , we have λ 0 u † ď γ q-1 /q. Remark 4.1 (On assumption (P 3 )). As commented in Remark 3.2, one can check that a sufficient condition for (P 3 ) to hold is that λ ∈ 1 2(q-1) (N). In particular, if we consider a sequence verifying λ k = O k -θ for some θ > 0, it is easy to verify that (P 3 ) holds as long as θ > 2(q -1). For q = 1, (for instance if (y 1 , y 2 ) = y 1 -y 2 1 ), no summability condition is required. Roughly speaking, the assumption λ ∈ 1 2(q-1) (N) means in this case that λ ∈ ∞ (N), which is already implied by lim k→∞ λ k = 0. Remark 4.2 (On assumption (P 4 )). For many choices of data-fits, = +∞ (see Example 2.2), in which case the assumption is automatically satisfied. Also, note that in assumption (P 3 ), we require λ k to tend to zero. This means that λ K u † ď γ q-1 /q for some K ∈ N. In this case, up to a time rescaling k ← k + K, the require estimates always hold true.

Following [START_REF] Attouch | Inertial forward-backward algorithms with perturbations: Application to Tikhonov regularization[END_REF], we require the sequence of friction parameters (α k ) to satisfy (P 2 ), a particular summability property guaranteeing a technical condition crucial in the following proofs. We summarize such a requirement and the resulting condition in the following lemma. Then, the sequence defined by (4.4)

t k := 1 + +∞ i=k i j=k α j
is well-defined (P 2 ), and satisfies for every k ě 1 the following properties: 

(4.5) 1 + α k t k+1 = t k , t 2 
α k = t k -1 t k+1 and t k+1 = 1 + 4t 2 k + 1 2 , t 1 = 1,
which can be shown to verify the two conditions (4.3) and (4.4), as well as k/2 ď t k ď k. For a given α > 1, the two asymptotically equivalent choices

α k = 1 - α k , t k+1 = k α -1
, and

α k = k -1 k + α -1 , t k+1 = k + α -1 α -1
have been recently considered in [START_REF] Chambolle | On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm[END_REF][START_REF] Apidopoulos | Convergence rate of inertial forwardbackward algorithm beyond Nesterov's rule[END_REF][START_REF] Attouch | Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ď 3[END_REF] and can be shown to satisfy (P 2 ). Note, that for α = 3 these sequences are asymptotically equivalent to the Nesterov sequences (4.6).

Remark 4.5 (Splitting of the loss). In [START_REF] Garrigos | Iterative regularization via dual diagonal descent[END_REF] the decomposition of the loss function ȳ = φ ȳ ψ ȳ was considered, where is the infimal convolution and ψ ȳ is the possible strongly convex component of ȳ . In such case, the dual function * ȳ (•) can be expressed as * ȳ = ψ * ȳ + φ * ȳ , where φ * ȳ is in general non-smooth, while φ * ȳ has Lipschitz gradient and can therefore be incorporated with the smooth term R * A in the dual function d λ . For several data discrepancies, however, ψ ȳ = δ {0} (see [START_REF] Garrigos | Iterative regularization via dual diagonal descent[END_REF]Section 4.3]). To simplify the presentation, we do not consider this decomposition in this work.

4.2.

Fast convergence of the algorithm. We now prove the discrete analogue of Theorem 3.3 for (I3D). We follow the approach considered in [START_REF] Beck | A fast dual proximal gradient algorithm for convex minimization and applications[END_REF][START_REF] Attouch | The of convergence of Nesterov's accelerated forwardbackward method is actually faster than 1/k 2[END_REF][START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights[END_REF][START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity[END_REF][START_REF] Attouch | Inertial forward-backward algorithms with perturbations: Application to Tikhonov regularization[END_REF].

Theorem 4.6 (Fast convergence). Let the assumptions (L 1 )-(L 3 ), (R 1 )-(R 2 ), (P 1 )-(P 4 ) hold true. Let (x k ) and (u k ) be the sequences generated by algorithm (I3D). Then, there exists C ∈ ]0, +∞[ such that

(4.7) d λ k (u k ) -inf d 0 ď C t 2 k and x k -x † ď √ 2C √ σt k .
Proof. Let u † ∈ argmin d 0 be the minimizer of d 0 for which assumption (P 4 ) holds, and define, for every k ě 1, the discrete Lyapunov energy function:

(4.8) E(k) := t 2 k d λ k (u k ) -inf d 0 + 1 2τ z k -u † 2 ,
where z k is defined as:

(4.9)

z k := u k-1 + t k (u k -u k-1 ).
Our goal is to get an estimate on the decay of E along time. In particular, we will show that for every k ě 1

(4.10) E(k + 1) -E(k) ď t k+1 d λ k (u † ) -inf d 0 ,
which can be seen as a discrete analogue of (3.3), and from which the desired accelerated convergence rates will follow in a straightforward manner.

For simplicity, let us denote by k the function defined by setting

(∀u ∈ Y) k (u) := λ -1 k * ȳ (λ k u).
To prove (4.10), we define for every k ě 1 the operator G k : Y → Y as

G k (z) := 1 τ z -prox τ k (z -τ ∇R * A (z))
and notice that the proximal step of (I3D) can be written in terms of G k as u k+1 = w k -τ G k (w k ). The descent lemma (see, e.g., [START_REF] Attouch | Inertial forward-backward algorithms with perturbations: Application to Tikhonov regularization[END_REF][START_REF] Chambolle | On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm[END_REF]) yields

(4.11) d λ k (w -τ G k (w)) ď d λ k (u) + G k (w), w -u - τ 2 G k (w) 2 , for all w, u ∈ Y.
Evaluating (4.11) for u = u k and w = w k , we get (4.12)

d λ k (u k+1 ) ď d λ k (u k ) + G k (w k ), w k -u k - τ 2 G k (w k ) 2 .
Similarly, evaluating (4.11) for u = u † and w = w k , we derive (4.13)

d λ k (u k+1 ) ď d λ k (u † ) + G k (w k ), w k -u † - τ 2 G k (w k ) 2 .
We now multiply (4.12) by t k+1 -1 and we add it to (4.13), thus obtaining

t k+1 d λ k (u k+1 ) ď (t k+1 -1)d λ k (u k ) + d λ k (u † ) + G k (w k ), (t k+1 -1)(w k -u k ) + (w k -u † ) - τ 2 t k+1 G k (w k ) 2 . (4.14)
As an immediate consequence of Lemma 4.3, we observe that:

(t k+1 -1)(w k -u k ) + w k = u k + t k+1 (w k -u k ) = u k + t k+1 α k (u k -u k-1 ) = u k-1 + (1 + t k+1 α k )(u k -u k-1 ) = u k-1 + t k (u k -u k-1 ) = z k .
Thanks to (4.9), the fact that z k -τ t k+1 G k (w k ) = z k+1 and the previous equality, we can now reorder the terms in (4.14) and rewrite it as

t k+1 (d λ k (u k+1 ) -d λ k (u † )) ď (t k+1 -1)(d λ k (u k ) -d λ k (u † )) + 1 2τ t k+1 z k -u † 2 -z k+1 -u † 2 .
We now multiply everything by t k+1 , re-arrange and get

t 2 k+1 (d λ k (u k+1 ) -d λ k (u † )) + 1 2τ z k+1 -u † 2 ď (t 2 k+1 -t k+1 )(d λ k (u k ) -d λ k (u † )) + 1 2τ z k -u † 2 ,
which can be equivalently rewritten as:

t 2 k+1 d λ k (u k+1 ) -d λ k (u † ) + 1 2τ z k+1 -u † 2 ď t 2 k d λ k (u k ) -d λ k (u † ) + (t 2 k+1 -t k+1 -t 2 k ) d λ k (u k ) -d λ k (u † ) + 1 2τ z k -u † 2 .
To get the desired terms, we first use on the left-hand side the monotonicity property of the function d λ k (•) as a function of k (see Lemma A.1(iv)) and then add and subtract in the parentheses the term inf d 0 , thus getting:

t 2 k+1 d λ k+1 (u k+1 ) -inf d 0 + 1 2τ z k+1 -u † 2 ď t 2 k d λ k (u k ) -inf d 0 + (t 2 k+1 -t k+1 -t 2 k ) d λ k (u k ) -inf d 0 + t k+1 d λ k (u † ) -inf d 0 + 1 2τ z k -u † 2 .
After rearranging and recalling the definition of E in (4.8), we deduce:

E(k + 1) + (t 2 k + t k+1 -t 2 k+1 ) d λ k (u k ) -inf d 0 ď E(k) + t k+1 d λ k (u † ) -inf d 0 .
Thanks to (4.5) and Lemma A.1(iv), we can now neglect the second term on the left-hand side of the above inequality, finally getting the desired inequality (4.10).

Iterating this inequality recursively entails

E(k) ď E(1) + k-1 j=1 t j+1 d λj (u † ) -inf d 0 . (4.15)
To bound the sum appearing on the right hand side, we need to analyze the residuals r j := d λj (u † ) -inf d 0 . Similarly as for the estimation obtained in the continuous case, we can use for this purpose the property in Lemma A.1(vi) and get that for some fixed constant c > 0 independent on j (defined analogously as in (3.4)), we have

r j ď cλ 1 q-1 j ,
for every j ě 1.

By assumption (P 3 ), with Λ as in (4.2), we thus conclude that

k-1 j=1 t j+1 r j ď c k-1 j=1 t j+1 λ 1 q-1 j ď cΛ < +∞
This allows us to deduce from (4.15) the convergence rate on the dual values in (4.7), by simply taking C := E(1) + cΛ. Finally, the convergence rate on the primal iterates in (4.7) follows from Lemma A.1(v).

Remark 4.7 (Nesterov scheme as a special case). Let f be any differentiable function in Γ 0 (X ) with Lipschitz-continuous gradient. Take R = f * , A = -I, ȳ = 0, and (y 1 , y 2 ) = δ 0 (y 2 -y 1 ), so that assumptions (L 1 )-(L 3 ) and (R 1 )-(R 2 ) are verified. In that case, d 0 = f , and (I3D) reads

u 0 = u 1 ∈ Y, compute for k ě 1      w k = u k + α k (u k -u k-1 ), u k+1 = w k -τ ∇f (w k ), x k+1 = ∇f (u k+1 ),
which in the dual exactly performs Nesterov's method [START_REF] Nesterov | Introductory Lectures on Convex Optimization[END_REF]. From our rates and Lemma A.1(iv), we deduce that f (u k ) -inf f = O(k -2 ). Furthermore, according to Nemirovski and Yudin optimality result [51, Theorem 2.1.7], these rates are optimal over the class of Lipschitz smooth convex functions.

Remark 4.8 (Different growth for t k ). In assumption (P 2 ) we require the sequence (t k ) to satisfy t k = Θ(k), but this is actually not used in the proof of Theorem 4.6. What is crucial there is that t k < +∞, so that Lemma 4.3 can be used. Indeed, one might ask whether it is possible to require t k = Θ(k β ), with β > 1 to improve the rates in (3.5). It is a simple exercise to verify that this is not possible, since (4.5) implies t k ď t 1 k, hence we must have β ď 1 so that the best rates are actually achieved for β = 1.

Stability properties in the presence of errors.

We now study the iterative regularization properties of (I3D) in the presence of noisy data ŷ ∈ Y. We thus consider:

For û0 = û1 ∈ Y, compute for k ě 1      ŵk = ûk + α k (û k -ûk-1 ), ûk+1 = prox τ λ k * ŷ (λ k •) ( ŵk -τ ∇R * A ( ŵk )) , xk+1 = ∇R * (-A * ûk+1 ).
A first natural question one may ask is how much the dual and primal iterates ûk and xk are affected by noise in terms of both convergence and stability. We discuss these issues showing that the noisy perturbation can be interpreted as an error in the calculation of the proximal step of the (I3D) algorithm. Before starting, we motivate the following with an example. [START_REF] Garrigos | Iterative regularization via dual diagonal descent[END_REF]Lemma 10]). Consider the following two illustrative cases:

(λ•) (w) -prox τ λ * ŷ (λ•) (w)|, for w ∈ Y (see
• y = 1 2 | • -y| 2 .
We have:

sup ȳ∈Y sup w∈Y |prox τ λ * ȳ (λ•) (w) -prox τ λ * ŷ (λ•) (w)| = τ δ 1 + τ λ .
• y = kl(y; •). We have:

sup ȳ∈Y sup w∈Y |prox τ λ * ȳ (λ•) (w) -prox τ λ * ŷ (λ•) (w)| = τ δ λ .
In the former case, the error assumed in the evaluation of ȳ has order δ. However, a different behavior is observed for the latter example. The square-root dependence on δ makes the estimate worse in a small noise regime, when δ 1. Further, notice that in a diagonal regime the sequence (λ k ) converges to zero (P 3 ), which makes the overall error growing fast along the iterations.

Example 5.1 shows that data-fit terms behave differently in the presence of noise. We thus need to provide an analysis flexible enough to take these differences into account, and avoid sub-optimal results via worst-case estimates. This is the purpose of the following discussion, where we will see that additive data terms (in the sense of Definition 2.1) behave essentially like 1 2 | • -y| 2 , while the Kullback-Leibler data term belongs to a class of less stable losses.

5.1. ε-subdifferentials and inexact proximal calculus. In this section, we make precise the notion of noise perturbation we intend to use. To do so, we first recall standard definitions regarding the approximate subdifferential and proximaltype minimization problems. Definition 5.2 (ε-subdifferential [START_REF] Zalinescu | Convex Analysis in General Vector Spaces[END_REF]). Let H be a Hilbert space, f ∈ Γ 0 (H) and ε ě 0. The ε-subdifferential of f at x ∈ dom f is the set

∂ ε f (x) = {u ∈ H : f (x ) ě f (x) + u, x -x -ε, for all x ∈ H} .
Such a notion generalizes that of the subdifferential recalled in (2.1). In particular, if ε ě 0, then ∂f (x) ⊂ ∂ ε f (x) for any x ∈ H, and we have

0 ∈ ∂ ε f (x) ⇐⇒ x ∈ argmin ε f = {x ∈ H : f (x ) ď inf f + ε}.
We recall now some useful characterizations of the proximal operator of f ∈ Γ 0 (H) with parameter η > 0,

(5.1) p = prox ηf (x) ⇔ x -p η ∈ ∂f (p) ⇔ p = argmin z f (z) + 1 2η z -x 2 .
Next, we introduce notions of approximation of proximal points that can be seen as relaxed conditions of the characterizations in (5.1) (for details see [START_REF] Salzo | Inexact and accelerated proximal point algorithms[END_REF][START_REF] Aujol | Stability of over-relaxations for the forward-backward algorithm, application to fista[END_REF]).

Definition 5.3 (Approximation of proximal points). Let f ∈ Γ 0 (H), x ∈ H, η > 0 and p := prox ηf (x). We say that p ∈ H is:

• a type 1 approximation of p with precision ε 1 , and we write p ≈ ε1 1 p, if:

∃e ∈ H, ∃(ε 1 , ε 2 , ε 3 ) ∈ [0, +∞[ 2 , e ď ε 3 , ε 2 2 + ε 2 3 ď ε 2 1 , x + e - p η ∈ ∂ ε 2 2 2η
f (p).

• a type 2 approximation of p with precision ε 2 , and we write p ≈ ε2 2 p, if

∃ε 2 ∈ [0, +∞[, x - p η ∈ ∂ ε 2 2 2η
f (p).

• a type 3 approximation of p with precision ε 3 , and we write p

≈ ε3 3 p, if ∃e ∈ H, ∃ε 3 ∈ [0, +∞], e ď ε 3 , x + e - p η ∈ ∂f (p).
Type 3 approximations simply describe the presence of an additive error in the argument of the proximal map, i.e. p = prox ηf (x + e). We show in Section 6.1 that this type of error arises naturally when additive data-fit functions are used. Type 2 approximations correspond to the presence of errors in the subdifferential operator. Type 1 approximations can be seen as a combination of type 2 and 3 approximations, and the following Lemma provides an easy characterization.

Lemma 5.4 ( [START_REF] Schmidt | Convergence rates of inexact proximal-gradient methods for convex optimization[END_REF][START_REF] Salzo | Inexact and accelerated proximal point algorithms[END_REF]). Let f ∈ Γ 0 (H), x ∈ H, η > 0. Then:

p ≈ ε1 1 prox ηf (x) ⇔ p ∈ argmin ε1 f (•) + 1 2η • -x 2 .
We are now ready to study the stability properties of the (I3D) algorithm.

Stability estimates in the presence of errors.

Using the notions introduced in the previous section, we can quantify the error due to the replacement of ȳ by ŷ. In particular, recalling Definition 5.3, we assume that at each iteration the proximal step with ŷ is an i-type approximation of the proximal step with ȳ, where i ∈ {1, 2, 3}:

(E i ) (∀k ě 1)(∃ε i,k ě 0) s.t. (∀w ∈ Y) prox τ λ k * ŷ (λ•) (w) ≈ ε i,k i prox τ λ k * ȳ (λ•) (w).
In Section 6 we show that this is indeed a natural assumption for standard data-fit terms.

We can now prove our second main result for (I3D) which provide error estimates under assumption (E i ) with i = 1. Stability results for type 2, 3 approximations are deduced as particular cases after noticing that for these choices the error terms with ε 3,k and ε 2,k vanish, respectively, for every k.

Theorem 5.5 (Error estimates for type 1 errors). Assume that (L 1 )-(L 3 ), (R 1 )-(R 2 ), (P 1 )-(P 4 ) hold true. Let (x k ), (û k ) be the sequences generated by (I3D) with noisy datum ŷ, and suppose that (E i ) holds with i = 1. Then, the following stability estimate holds true:

(5.2) (∀k ě 1) t 2 k στ 2 xk -x † 2 ď C + k-1 j=1 t 2 j+1 ε 2 2,j + 5 2 k-1 j=1 t j+1 ε 3,j 2 ,
where the constant C is defined as

C := 2τ t 2 1 d 1 (û 0 ) -inf d 0 + û0 -u † 2 + C q , with C q := 0 if q = 1, 2τ Λ(1 -1
q )γ -1/(q-1) u † q/(q-1) if q > 1.

Proof. Following the proof of Theorem 4.6, we define the discrete energy function

(5.3) Ê(k) := t 2 k d λ k (û k ) -inf d 0 + 1 2τ ẑk -u † 2 ,
for k ě 1, where u † ∈ argmin d 0 (so that inf d 0 = d 0 (u † )) and ẑk is defined as:

ẑk := ûk-1 + t k (û k -ûk-1 ). Since ûk+1 ≈ ε 1,k 1 prox τ λ -1 k * ŷ (λ k •) ( ŵk -τ ∇R A ( ŵk ))
, using Definition 5.3, we have

ξ k := ŵk + e k -ûk+1 τ , ξ k -∇R A ( ŵk ) ∈ ∂ ε 2 2,k 2τ * ŷ (λ k ûk+1 ),
where

e k ∈ H, ε 2 2,k + ε 2 3,k ď ε 2 1
,k and e k ď ε 3,k . Without loss of generality, we can assume that ε 2 2,k + ε 2 3,k = ε 2 1,k . Thus, thanks to the descent lemma proved in [59, Lemma 4.1] and applied to

d λ k = R A + λ -1 k * ŷ (λ k •), we derive d λ k (û k+1 ) ď d λ k (u) + ûk+1 -u, ξ k + L 2 ûk+1 -ŵk 2 + ε 2 2,k 2τ , ∀u ∈ Y,
where L = A 2 /σ 2 . Using the fact that τ L ď 1 by (P 1 ), rearranging and neglecting non-positive quantities, we obtain that for all u ∈ Y:

d λ k (û k+1 ) ď d λ k (u) - 1 τ ûk+1 -ŵk 2 + ûk+1 -ŵk , e k τ + ŵk -u, ξ k + 1 2τ ûk+1 -ŵk 2 + ε 2 2,k 2τ = d λ k (u) + ŵk -u, ξ k - τ 2 ûk+1 -ŵk τ 2 + τ ûk+1 -ŵk τ , e k τ + ε 2 2,k 2τ = d λ k (u) + ŵk -u, ξ k - τ 2 ξ k 2 + 1 2τ e k 2 + ε 2 2,k ď d λ k (u) + ŵk -u, ξ k - τ 2 ξ k 2 + ε 2 1,k 2τ , (5.4) 
which can be seen as a noisy version of (4.11). We divide the rest of the proof in three steps. Since the former ones are analogous to the calculations done in the error-free case, we will skip for those some of the details.

Step 1. We show that for every k ě 1, there holds:

(5.5)

Ê(k + 1) -Ê(k) ď t k+1 d λ k (u † ) -inf d 0 + t k+1 τ e k , ẑk -u † + t 2 k+1 2τ ε 2 2,k .
To prove this, we write the descent inequality (5.4) first for u = ûk

(5.6) d λ k (û k+1 ) ď d λ k (û k ) + ŵk -ûk , ξ k - τ 2 ξ k 2 + ε 2 1,k 2τ ,
and then for u = u †

(5.7)

d λ k (û k+1 ) ď d λ k (u † ) + ŵk -u † , ξ k - τ 2 ξ k 2 + ε 2 1,k 2τ 
.

We now multiply (5.6) by t k+1 -1 and add it to (5.7), thus getting:

t k+1 d λ k (û k+1 ) ď (t k+1 -1)d λ k (û k ) + d λ k (u † ) + ξ k , (t k+1 -1)( ŵk -ûk ) + ŵk -u † - t k+1 τ 2 ξ k 2 + t k+1 2τ ε 2 1,k .
We apply the property (t k+1 -1)( ŵk -ûk ) + ŵk = ẑk (see (4.9)) and write (3) as

t k+1 (d λ k (û k+1 ) -d λ k (u † )) ď (t k+1 -1)(d λ k (û k ) -d λ k (u † )) + 1 2τ t k+1 ẑk -u † 2 -ẑk -u † -τ t k+1 ξ k 2 + t k+1 2τ ε 2 1,k .
From the identity -τ t k+1 ξ k = ẑk+1 -ẑk -t k+1 e k , we deduce:

t k+1 (d λ k (û k+1 ) -d λ k (u † )) + 1 2τ t k+1 ẑk+1 -u † 2 ď (t k+1 -1)(d λ k (û k ) -d λ k (u † )) + 1 2τ t k+1 ẑk -u † 2 + 1 τ ẑk+1 -u † , e k + t k+1 2τ ε 2 1,k -e k 2 . = (t k+1 -1)(d λ k (û k ) -d λ k (u † )) + 1 2τ t k+1 ẑk -u † 2 + 1 τ ẑk+1 -u † , e k + t k+1 2τ ε 2 2,k .
We now multiply everything by t k+1 , re-arrange and get

t 2 k+1 d λ k (û k+1 ) -d λ k (u † ) + 1 2τ ẑk+1 -u † 2 ď t 2 k d λ k (û k ) -d λ k (u † ) + (t 2 k+1 -t k+1 -t 2 k ) d λ k (û k ) -d λ k (u † ) + 1 2τ ẑk -u † 2 + t k+1 τ e k , ẑk+1 -u † + t 2 k+1 2τ ε 2 2,k .
Using now that d λ k (û k ) ě inf d 0 (see Lemma A.1(iv)), adding and subtracting in the parentheses the term inf d 0 and after recalling the definition of E in (5.3), we get:

(5.8) Ê(k + 1) + (t 2 k + t k+1 -t 2 k+1 ) d λ k (u k ) -inf d 0 ď Ê(k) + t k+1 d λ k (u † ) -inf d 0 + t k+1 τ e k , ẑk -u † + t 2 k+1 2τ ε 2 2,k ,
whence we deduce condition (5.5) since t 2 k + t k+1 -t 2 k+1 ě 0 and d λ k (u † ) -inf d 0 ě 0 (see (4.5)). Iterating recursively (5.5), Cauchy-Schwartz inequality yields

Ê(k) ď Ê(1) + k-1 j=1 t j+1 d λj (u † ) -inf d 0 + k-1 j=1 t j+1 τ ε 3,j ẑj+1 -u † + k-1 j=1 t 2 j+1 2τ ε 2 2,j , (5.9) 
which is the starting point used in the following to deduce the desired stability estimate. We now study separately the sums appearing on the right-hand side of (5.9).

Step 2. For the first term in (5.9), following the proof of Theorem 4.6, we get

k-1 j=1 t j+1 d λj (u † ) -inf d 0 ď c k-1 j=1 t j+1 λ 1 q-1 λj ď cΛ < +∞.
where c is defined in (3.4), and Λ is finite thanks to assumption (P 3 ).

Step 3. To bound the second sum in (5.9), we observe that by definition Ê(k) ě 1 2τ ẑk -u † 2 . Then, we set C" = 2τ ( Ê(1) + cΛ) and derive

ẑk -u † 2 ď C + k-1 j=1 t 2 j+1 ε 2 2,j + 2 k-1 j=1 t j+1 ε 3,j ẑj+1 -u † .
We now recall Lemma A.5, which applied to

a k = ẑk -u † , b k = 2t k+1 ε 3,k , c k-1 = C + k-1 j=1 t 2 j+1 ε 2 2,j implies k-1 j=1 t j+1 ε 3,j ẑj+1 -u † ď k-1 j=1 t j+1 ε 3,j C + k-1 j=1 t 2 j+1 ε 2 2,j + 2 k-1 j=1 t j+1 ε 3,j .
Combining altogether in (5.9), we thus deduce

Ê(k) ď C 2τ + k-1 j=1 t 2 j+1 2τ ε 2 2,j + 1 τ k-1 j=1 t j+1 ε 3,j C + k-1 j=1 t 2 j+1 ε 2 2,j + 2 k-1 j=1 t j+1 ε 3,j . (5.10) 
Young's inequality applied to the product appearing on the right hand side of (5.10) yields

1 τ k-1 j=1 t j+1 ε 3,j   C + k-1 j=1 t 2 j+1 ε 2 2,j + 2 k-1 j=1 t j+1 ε 3,j   = 1 τ k-1 j=1 t j+1 ε 3,j   C + k-1 j=1 t 2 j+1 ε 2 2,j   + 2 τ k-1 j=1 t j+1 ε 3,j 2 ď 5 2τ   k-1 j=1 t j+1 ε 3,j   2 + C 2τ + 1 2τ k-1 j=1 t 2 j+1 ε 2 3,j
Hence, we thus obtain from (5.10)

(5.11) Ê(k) ď C τ + 1 τ k-1 j=1 t 2 j+1 ε 2 2,j + 5 2τ k-1 j=1 t j+1 ε 3,j 2 .
To conclude, we use Lemma A.1(v) and deduce

Ê(k) ě t 2 k (d λ k (û k ) -inf d 0 ) ě t 2 k (d 0 (û k ) -inf d 0 ) ě t 2 k σ 2 xk -x † 2 ,
which combined with (5.11) provides the desired stability estimate (5.2).

Early stopping.

Starting from the stability estimate (5.11), in this section we provide early stopping results guaranteeing the iterative regularization properties of (I3D). These results quantify the reconstruction error xk(δ) -x † that can be achieved by stopping the algorithm on noisy data at a suitable early iteration k δ . As expected, when errors are small we can recover a good reconstruction by stopping the algorithm later. On the other hand, when the errors are large, the algorithm needs be stopped earlier to guarantee a good reconstruction. Note that these errors can be constant, or even increasing along iterations. We also show that the convergence rates we obtain depend on the type of error considered (see Definition 5.3). Adapting Theorem 5.5 to the three cases of assumption (E i ) for i ∈ {1, 2, 3}, we thus derive the following three Theorems.

Theorem 5.6 (Early stopping for type 1 errors). Assume that (L 1 )-(L 3 ), (R 1 )-(R 2 ), (P 1 )-(P 4 ) hold true, and suppose that λ k = Θ(k -θ ) with θ > 2(q -1). Let (x k ) be the sequence generated by (I3D) with noisy datum ŷ, and assume that

(E i ) holds with i = 1, ε 2,k = O(δλ -r2 k ), ε 3,k = O(δλ -r3 k )
for some δ > 0 and r 2 , r 3 ě 0. Set:

α := max 2 3 + 2r 2 θ , 1 2 + r 3 θ .
Then, any early stopping rule with k(δ) = Θ(δ -α ) verifies:

xk(δ) -x † = O (δ α ) , for δ 0.
Proof. We apply the stability estimate (5.2) provided by Theorem 5.5. After substituting the expression for ε 2,k and ε 3,k , we get:

t 2 k xk -x † 2 = O 1 + k-1 j=1 t 2 j+1 ε 2 2,j + k-1 j=1 t j+1 ε 3,j 2 = O(1 + δ 2 k 3+2r2θ + δ 2 k 4+2r3θ ).
In correspondence with the stopping time k(δ), and using the fact that t k(δ) = Θ(k(δ)), we deduce from above:

xk(δ) -x † 2 = O δ 2α + δ 2-α(1+2r2θ) + δ 2-2α(1+r3θ)
= O δ min{2α;2-α(1+2r2θ),2-2α(1+r3θ)} .

Let us now define β := min{ 1 2 + r 2 θ; 1 + r 3 θ}. We easily see that

min{2 -α(1 + 2r 2 θ); 2 -2α(1 + r 3 θ)} = 2 -2αβ,
so that min{2α, 2-α(1+2r 2 θ), 2-2α(1+r 3 θ)} = min{2α, 2-2αβ}, which is maximal for α = 1 1+β . The analogous results for errors of type 2 and 3 are straightforward.

Theorem 5.7 (Early stopping for type 2 errors). Assume that the assumptions (L 1 )-(L 3 ), (R 1 )-(R 2 ), (P 1 )-(P 4 ) hold true, and suppose that λ k = Θ(k -θ ) with θ > 2(q-1). Let (x k ) be the sequence generated by (I3D) with noisy datum ŷ, and assume that

(E i ) holds with i = 2, ε 2,k = O(δλ -r2
k ) for some δ > 0 and r 2 ě 0. Then, any early stopping rule with k(δ) = Θ(δ -2 3+2θr ) verifies:

xk(δ) -x † = O δ 2 3+2θr
, for δ 0.

Proof. For type 2 approximation (5.2) ε 3,k ≡ 0, and we get

t 2 k xk -x † 2 = O 1 + k-1 j=1 t 2 j+1 ε 2 2,j = O 1 + k-1 j=1 δ 2 j 2+2rθ = O(1 + δ 2 k 3+2rθ ).
In correspondence with any stopping time k(δ) = Θ(δ -α ), we thus have:

xk(δ) -x † 2 = O k(δ) -2 + δ 2 k(δ) 1+2rθ = O δ 2α + δ 2-α(1+2rθ) .
The term on the right-hand side is minimized when α = 2 3+2θr . Theorem 5.8 (Early stopping for type 3 errors). Assume that the assumptions (L 1 )-(L 3 ), (R 1 )-(R 2 ), (P 1 )-(P 4 ) hold true, and suppose that λ k = Θ(k -θ ) with θ > 2(q-1). Let (x k ) be the sequence generated by (I3D) with noisy datum ŷ, and assume that (E i ) holds with i = 3 with ε 3,k = O(δλ -r3 k ) for some δ > 0 and r 3 ě 0. Then, any early stopping rule with k(δ) = Θ(δ -1 2+θr ) verifies:

xk(δ) -x † = O δ 1 2+θr
, for δ 0.

Proof. Assuming type 3 errors means that in the estimate (5.2) ε 2,k ≡ 0, so that:

t 2 k xk -x † 2 = O(1)+O k-1 j=1 t j+1 ε 3,j 2 = O(1)+O k-1 j=1 δj 1+rθ 2 = O(1+δ 2 k 4+2rθ ).
In correspondence with the stopping time k(δ) = Θ(δ -α ), we thus deduce:

xk(δ) -x † 2 = O k(δ) -2 + δ 2 k(δ) 2+2rθ = O δ 2α + δ 2-2α(1+rθ) .
The term on the right-hand side is minimal whenever α = 1 2+θr . 6. Applications to specific data-fit terms. We now apply the results from Section 5.3 to some standard data-fit terms relevant in several applications. We introduce the following definition of noise perturbation. Definition 6.1 (δ-perturbation). For given ȳ, ŷ ∈ Y and δ ∈ R ++ , we say that ŷ is a δ-perturbation of ȳ according to if:

ŷ (ȳ) = (ȳ, ŷ) ď δ q ,
where q ∈ [1, +∞) is the conditioning exponent appearing in (L 3 ).

We now show that a δ-perturbation ŷ of ȳ corresponds to consider a proximal mapping of * ŷ approximating the corresponding proximal mapping of * ȳ in the sense of Definition 5.3 with some precision ε(δ) depending on the noise level δ.

6.1. Additive data-fit terms. For additive data-fit terms (see Example 2.2), a δ-perturbation corresponds to a type 3 approximation of the proximal mapping. Proposition 6.2 (Additive data-fit terms lead to type 3 errors). Let N ∈ Γ 0 (Y) and assume that y2 (y 1 ) = N (y 2 -y 1 ), for every (y 1 , y 2 ) ∈ Y 2 . For given (δ, τ, λ) ∈ (0, +∞) 3 , let ŷ ∈ B(ȳ, ) be a δ-perturbation of ȳ in the sense of Definition 6.1. Then:

(∀z ∈ Y) p = prox τ λ * ŷ (λ•) (z) ≈ ε 3 p = prox τ λ * ȳ (λ•) (z).
with precision ε = τ δ(q/γ) 1/q and where q ě 1 and γ > 0 are the conditioning parameters appearing in assumption (L 3 ).

Proof. We need to find e ∈ Y and ε ě 0 such that e ď ε and:

(6.1) z + e - p τ ∈ 1 λ ∂ * ȳ (λ•)(p).
Due to the special form of the data-fit we start noting that for any u ∈ Y we have * ȳ (u) = N * (u) + ȳ, u , and the same holds for * ŷ . Then

∂ * ŷ (λ•)(p) = λ∂ * ŷ (λp) = λ∂ N * + ŷ, • (λp) = λ∂N * (λp) + λŷ.
By definition of p we have that (z -p)/τ ∈ (1/λ)∂ * ŷ (λ•)(p) = ∂N * (λp) + ŷ, which, by simple algebraic manipulations, entails the required condition (6.1), since:

z - p τ ∈ ∂N * (λp) + ȳ + (ŷ -ȳ) ⇐⇒ z -p + τ (ȳ -ŷ) τ ∈ ∂N * (λp) + ȳ = 1 λ ∂ * ȳ (λ•)(p).
By now setting e = τ (ȳ -ŷ), we can find the required value of ε combining the qconditioning of the function ȳ on B(ȳ, ) assumed in (L 3 ) with the δ-perturbation assumption:

e = τ ȳ -ŷ ď τ q γ (ŷ, ȳ) 1/q ď τ q γ 1/q δ =: ε,
where γ > 0 and q ě 1 are the conditioning parameters. We can thus conclude that p is a ε-approximation of p with precision ε, as required.

Thanks to Proposition 6.2, we can now derive the early-stopping result for additive data-fit terms by applying Theorem 5.8 with the above choice of ε. Corollary 6.3 (Early stopping for additive data-fit terms). Let N ∈ Γ 0 (Y) and set y2 (y 1 ) = N (y 2 -y 1 ), for every (y 1 , y 2 ) ∈ Y 2 . Assume that the assumptions (L 1 )-(L 3 ), (R 1 )-(R 2 ), (P 1 )-(P 4 ) hold, and that λ k = Θ(k -θ ) with θ > 2(q -1). Let (x k ) be the sequence generated by (I3D) with ŷ ∈ B(ȳ, ), such that ŷ is a δ-perturbation of ȳ. Then, any early stopping rule with k(δ) = Θ(δ -1/2 ) verifies:

(6.2) xk(δ) -x † = O(δ 1 
2 ), for δ 0.

Remark 6.4 (Optimality of the rates). The convergence rate in (6.2) is optimal for regularization methods with additive data-fit terms [START_REF] Engl | Regularization of Inverse Problems[END_REF]. Among inertial algorithms, optimal convergence rates for different choices of regularizers but only quadratic data-fit terms have been proved in [START_REF] Neubauer | On nesterov acceleration for landweber iteration of linear ill-posed problems[END_REF][START_REF] Matet | Don't relax: Early stopping for convex regularization[END_REF]. For more general additive datafits (e.g. the 1 -norm, see Example 2.2), in [START_REF] Benning | Error estimates for general fidelities[END_REF] the authors prove a rate O(δ 1/2 ) in terms of the Bregman distance, which is different from (6.2). Up to our knowledge, our result is the first one showing optimal convergence rates for iterative regularization methods when general data-fit terms are considered and improving the estimates obtained in [START_REF] Garrigos | Iterative regularization via dual diagonal descent[END_REF] that showed a sub-optimal rate O(δ 1/3 ). Remark 6.5 (Different growth for t k ). As noted in Remark 4.8, if we replace t k = Θ(t k ) by t k = Θ(k β ), then β ď 1, and β = 1 gives the fastest convergence rate for true datumum ȳ. Corollary 6.3 implies that also for noisy data ŷ, any stopping rule with k(δ) = Θ(δ -1/(1+β) ) verifies xk(δ) -x † = O(δ β β+1 ) for δ 0, where again the best rate is achieved for β = 1.

KL divergence.

We consider the Kullback-Leibler (KL) divergence as an example of a non-additive data-fit term. KL divergence is often used to the presence of Poisson noise in the measurements. We show that for the KL divergence, δ-perturbations lead to type 2 approximations. We recall that the KL divergence is locally 2-conditioned (see Example 2.2). Proposition 6.6. Assume that, y2 (y 1 ) = KL(y 2 ; y 1 ) for every (y 1 , y 2 ) ∈ Y 2 . For (δ, τ, λ) ∈ (0, +∞) 3 , let ŷ ∈ B(ȳ, ) be a δ-perturbation of ȳ. Then

(∀z ∈ Y) p = prox τ λ * ŷ (λ•) (z) ≈ ε 2 p = prox τ λ * ȳ (λ•) (z). with ε = √ 2τ δ/λ. Proof. It is enough to prove that for all z ∈ Y λ(z -p) τ ∈ ∂ λε 2 2τ KL * ȳ (λ•)(p) = λ∂ λε 2 2τ KL * ȳ (λp), ⇐⇒ z - p τ ∈ ∂ λε 2 2τ KL * ȳ (λp).
We set x = (z -p)/τ ∈ Y and consider the function g : Y → R d ∪ {+∞} defined by

(6.3) g(w) = KL ȳ λ (w), for all w ∈ Y.
By standard property of convex conjugates we have that for any u ∈ Y

(6.4) g * (u) = KL ȳ λ * (u) = 1 λ KL * ȳ (λu).
We now claim that x ∈ ∂ λε 2 2τ g * (p). To show that, we apply the Young-Fenchel inequality (A.4) of Lemma A.6 to g with x * = p. Our objective is thus to show that:

g(x) + g * (p) ď x, p + λε 2 2τ ,
which, by definitions (6.3) and (6.4) and upon multiplication by λ, coincides with:

(6.5) KL ȳ (x) + KL * ȳ (λp) ď x, λp + λ 2 ε 2 2τ .
Using the expression of KL and of its convex conjugate given by (A.1), we express the sum on the left hand side of (6.5) as:

(6.6) KL ȳ (x) + KL * ȳ (λp) = d i=1 ȳi log ȳi x i -ȳi + x i -ȳi log(1 -λp i ) .
Furthermore, by definition of p, we have that component-wise there holds:

λ τ (z i -pi ) ∈ λ∂kl * ŷi (λp i ) ⇐⇒ x i ∈ ∂kl * ŷi (λp i ),
which, since kl * ŷi is differentiable (see formula (A.1)), entails that for every i = 1, . . . , d the element x i can be written as x i = ŷi /1 -λp i . Substitute this expression in the formula (6.6) to derive

KL ȳ (x) + KL * ȳ (λp) = d i=1 ȳi log ȳi -ȳi log ŷi -ȳi + ŷi kl(ȳi;ŷi) + ( ( ( ( ( ( ( ȳi log(1 -λp i ) + ŷi /(1 -λp i ) xi λp i - ( ( ( ( ( ( ( ȳi log(1 -λp i ) = KL ȳ (ŷ) + x, λp ď δ 2 + x, λp ,
where the last inequality follows from the perturbation assumption KL ȳ (ŷ) ď δ 2 . We thus get (6.5) by choosing ε = √ 2τ δ/λ, which concludes the proof.

From Proposition and Theorem 5.7, we derive stopping rules for the KL divergence.

Corollary 6.7 (Early stopping for Kullback-Leibler divergence). Let y2 (y 1 ) = KL(y 2 ; y 1 ) for every (y 1 , y 2 ) ∈ Y 2 . Assume that the assumptions (L 1 )-(L 3 ), (R 1 )-(R 2 ), (P 1 )-(P 4 ) hold true, and suppose that λ k = Θ(k -θ ) with θ > 2. Let (x k ) be the sequence generated by (I3D) given ŷ, such that ŷ is a δ-perturbation of ȳ in the sense of Definition 6.1. Then, any early stopping rule with k(δ) = Θ(δ -2 3+2θ ) verifies 3+2θ ), for δ 0.

(6.7) xk(δ) -x † = O(δ 2 
Remark 6.8. It is hard to assess the quality of the rate in (6.7) since the the notion of optimality in [START_REF] Engl | Regularization of Inverse Problems[END_REF] only applies to additive noise. In the context of Bregman divergences, some analysis has been pursued in [26, Section 4.2, estimate (4.3)]. The estimates obtained therein lead to a rate of order δ 1/4 for suitable choices of the regularization parameter. In comparison, our estimate (6.7) is sharper and more explicit. Furthermore, as for additive data-fit terms, the use of inertia improves the rates in [START_REF] Garrigos | Iterative regularization via dual diagonal descent[END_REF]. Remark 6.9 (The Kullback-Leibler divergence does not lead to type 3 errors). The convergence rates for additive data-fit terms proved in Corollary 6.3 are better than the rate for the KL divergence, due to the fact that for the KL divergence we proved that δ-perturbations correspond to type 2 errors, instead of type 3 errors. Indeed, Lemma A.3 in the Appendix shows that the error in the evaluation of proximal points for the KL divergence can not be cast in a type 3 approximation.

Conclusions and outlook.

In this paper we proposed an inertial dual diagonal method to solve inverse problems for a wide class of data-fit and regularization terms, possibly corrupted by noise. On the one hand, we established convergence results both for continuous and discrete dynamics. On the other hand, we derived stability results and corresponding early stopping rules, characterizing the regularization properties of the proposed method. A number of open questions are left for future study. It would be interesting to consider wider class of problems for example allowing for regularization terms that are convex but not strongly convex, and possibly non-convex data fidelity terms. From an algorithmic point of view, it would be interesting to consider alternative approaches, such as stochastic methods. Finally, it would be interesting to investigate the numerical properties of the proposed method for practical problems. Furthermore, by Moreau's identity we have:

(A.2) prox τ λ kl * y i (λ•) (w i ) = 1 2λ (1 + λw i ) -(1 -λw i ) 2 + 4λτ y i .
The following lemma implies the q-conditioning of the Kullback-Leibler divergence. To conclude, we only need to verify that φ is decreasing on ]0, +∞[. Indeed, this would imply that m(t) ě c -2 t 2 φ(c -1 ), which together with (A.3) would complete the proof. To see that φ is decreasing, we compute explicitly its derivative on ]0, +∞[ and see that φ (s) ď 0 if and only if ψ(s) := s(s+2)-2(1+s) ln(1+s) ě 0. Combining this with the fact that ψ(0) = 0, and that ψ (s) = 2(s -ln(1 + s)) is positive ]0, +∞[ we conclude the proof.

The following result deals with the approximation of proximal points of the dual of the KL divergence, corresponding to noise-free and noisy data ȳ and ŷ, respectively. As shown in Proposition 6.6, a type 2 approximation in the sense of Definition 5.3 holds. The following proposition provides a one-dimensional counterexample showing that a type 3 approximation -for which better convergence rates can be obtainedcannot hold. In particular, ε → +∞ when w → +∞.

Proof. Let ε ě 0 such that the type 3 approximation property holds. By Definition 5.3, there exists e ∈ R such that |e| ď ε and prox kl * ŷ (w) = prox kl * ȳ (w + e). Using the formula (A.2), we see that this is equivalent to A.3. Miscellaneous. We here recall some technical lemmas which are used in several sections of the manuscript. The following Lemma is useful to characterize the speed of decay of the diagonal term λ(•) in assumption (Λ), see also Remark 3.2.

Lemma A.4. Let λ : R + → R + a decreasing function such that R+ |λ(t)| 1/2 dt < +∞. Then, the function t → tλ(t) is integrable on R + .

Proof. We first show that the function t → t λ(t) tends to zero as t → +∞. We have that for every T > 0: 

A k ď S k + √ S k + 4c k 2 ď S k + √ c k .
We recall a useful characterisation of the elements in the ε-subdifferential of a function in Γ 0 (H). This property is used to prove Proposition 6.6, see also [START_REF] Zalinescu | Convex Analysis in General Vector Spaces[END_REF].

Lemma A.6 (Theorem 2.4.2, [START_REF] Zalinescu | Convex Analysis in General Vector Spaces[END_REF]). Let H be an Hilbert space, let f ∈ Γ 0 (H), let (x, u) ∈ H 2 , and let ε > 0. Then, the following statements are equivalent: i) u ∈ ∂ ε f (x);

ii) The following ε-Young-Fenchel inequality holds:

(A.4) f (x) + f * (u) ď u, x + ε; iii) x ∈ ∂ ε f * (u).
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 1 Figure 1: Tikhonov regularization path on a simple problem. After computing the solution xλ := x λ (ŷ) of the problem (P λ (ŷ)) for several values of λ, the best parameter λ is selected. In this example, λ 10 -3 minimizes xλ -x † .
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 222 conditioning of the KL data-fit). Let ȳ ∈ R d and ∈]0, +∞[. Then, (∀y ∈ B(ȳ, )) KL(ȳ, y) where c = d ȳ ∞ . Proof. Let y ∈ B(ȳ, ). By [43, Lemma 10.2], we have that (A.3) KL(ȳ, y) ě cm( y -ȳ ), where m(t) = c -1 |t| -ln 1 + c -1 |t| . To get the desired result, we need to find a quadratic lower bound for m over [-, ]. For simplicity, let us consider the change of variable s = c -1 |t| ∈ [0, c -1 ]. Since the statement is trivially valid for y = ȳ, we can assume that s > 0 and write s -ln(1 + s) = s 2 φ(s), where φ(s) := s -ln(1 + s) s 2 .
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 3 Let w ∈ R and ȳ, ŷ ∈]0, +∞[. If prox kl * ŷ (w) ≈ ε 3 prox kl * ȳ(w) holds in the sense of Definition 5.3 for some ε > 0, thenε ě 2|ŷ -ȳ| (1 -w) + (1 -w) 2 + 4ŷ .
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  inequality follows from the decreasing property of λ in the interval [T /2, T ]. By taking limits, we get the required property: t) = 0, we deduce that there exists some T > 0 such that tλ(t) ď λ(t) for all t ě T . By thus taking T > T , we have: dt, which by taking the supremum over all T > T on both sides entails:R+ tλ(t) dt ď T 0 tλ(t) dt + +∞ T λ(t) dt < +∞.Next, we state and prove a variant of [8, Lemma 5.14] which we have used in the proof of Theorem 5.2 to get the final stability estimate (5.2).Lemma A.5. Let (a k ) k∈N , (b k ) k∈N and (c k ) k∈N be positive sequences, and assume that c k is increasing. If(∀k ∈ N) a 2 k ď c k + for every k ∈ N.Proof. Take k ∈ N, and let A k := max m=1,...,k a m . Then, for all 1 ď m ď k:a 2 m ď c m + m-1 j=1 b j a j+1 ď c k + A k k-1 j=1 b j ,because c k is increasing and b j is positive. Therefore A 2 k ď c k + A k j . By computing and bounding the solutions of the previous inequality we conclude that

  22, Proposition 16.6 and Corollary 16.53], the notion of solution introduced entails the existence of some η : [t 0 , +∞) → Y such that

	for a.e. t > t 0 , ü(t) +	α t	u(t) + ∇R

* A (u(t)) + η(t) = 0 and η(t) ∈ ∂ * ȳ (λ(t)u(t)).

  k+1 -t 2 k ď t k+1 . Remark 4.4 (Classical choices of α k and t k ). Definitions (4.3) and (4.4) above accommodate standard choices of sequences (α k ) and (t k ).

	For example, in his seminal
	work Nesterov [50] considered
	(4.6)

Appendix A. Auxiliary results. We gather in this Appendix some relevant results used in this work.

A.1. Properties of the dual diagonal function. We first consider R A , * y defined in (3.1) and on the diagonal dual function d λ and its limit d 0 defined in (D λ ) and (D 0 ), respectively. For similar results see also [START_REF] Garrigos | Iterative regularization via dual diagonal descent[END_REF].

q )γ -1/(q-1) u † q/(q-1) λ 1/(q-1) if q > 1.

Proof. (i): follows from the strong convexity of R, see, e.g., [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 18.15]. (ii): it is a simple consequence of the properties of the Fenchel transform as it can be found, e.g., in [22, (vi): it is enough to verify that ȳ (•) is q-well-conditioned in the sense of [43, Definition 1], while assumption (L 3 ) holds only locally. To check this, we introduce the function ψ : R → R defined for the > 0 appearing in (L 3 ) by:

From (L 3 ), we easily deduce that ȳ (y) ě ψ( y -ȳ ) for all y ∈ Y (see [START_REF] Zalinescu | Convex Analysis in General Vector Spaces[END_REF]Corollary 3.4.2]). Note that ψ is not convex for q > 1, so in this case we consider instead the function

and define m := ψ for q = 1. It is an easy exercise to verify that m is indeed a convex function on R, and that m(w) ď ψ(w) for all w ∈ R. Now, we can make use of [43, Lemma 2], which tells us that d λ (u) -inf d 0 ď λ -1 m * ( u λ). The desired result now follows from the computation of the Fenchel transform of m. If q = 1, we have that m(t) = γ|t|, so classic Fenchel calculus entails that m * is δ [-γ,γ] , the indicator function of [-γ, γ]. If q > 1, easy computations show that m * reads

By now applying [43, Lemma 2] we conclude.

A.2. Useful tools for KL computations. In this section, we report some computations and properties concerning the KL divergence defined in (2.2). For any (u, y) ∈ (R d ) 2 we define KL(y, u) as in (2.2). for all i = 1, . . . , d. Consider now the functions KL and kl with respect to the first argument only, and define KL y (u) := KL(y; u) and, similarly, its i-th component kl yi (u i ) for a fixed y ∈ R d