Henk Stipdonk 
email: henk.stipdonk@swov.nl
  
Jaap Van 
  
Toorenburg Transpute 
  
Johan Van Oldenbarneveldtlaan 
  
H B Amersfoort 
  
The Netherlands 
  
Michiel Postema 
  
  
  
PHASE DIAGRAM DISTORTION FROM TRAFFIC PARAMETER AVERAGING

Motorway traffic congestion is a major bottleneck for economic growth. Therefore research on traffic behaviour is being carried out in many countries. Observations and theories of congested traffic, although well describing the free flow phase as an almost straight line in a density-flow or (k,q)-phase diagram, disagree in the congested flow state. In this paper we investigate the relation between traffic observations and the structure of the phase diagram. It focuses on the way speed observations are averaged, and how this influences the location of the averaged observations in the phase diagram. The analysis implies a phase diagram where the congested phase consists of a straight line. This straight right branch corresponds to upstream moving speed wave regions, called speed waves. The right branch connects the top of the free flow phase line with a point of maximum k and zero q. Its slope corresponds to the speed of the upstream moving speed wave, with a value of -18±1km/h, a value also found by other authors. By simulating traffic on this line, consisting of waves with two different speeds, we show that the location of averaged parameters in the phase diagram lie below this line. We also show that harmonic mean speed is a good indicator for travel time.

Introduction

Traffic and transport are major factors in modern life, and congestion is an important drawback in economic growth. Hence, many countries financially invest in traffic research and optimisation of traffic control. Since Greenshields introduced a simple model to describe traffic behaviour [START_REF] Greenshields | A study of traffic capacity[END_REF]] almost 75 years of research have generated considerable understanding of traffic in general, and motorway traffic in particular. Motorway traffic is usually described by three important quantities: flow q (vehicles per hour per lane), speed v (km per hour) and density k (vehicles per km) [START_REF] Leutzbach | Introduction to the Theory of Traffic Flow[END_REF]]. With any two of these quantities it is possible to describe the traffic state. A common way to do this is by using a phase diagram, where values of the observed or theoretical quantities are plotted. In this paper, we choose q and k, and consequently use the flow-density diagram, or (k,q)-diagram. Such a diagram usually shows traffic in two different phases. One is the free flow phase, represented by an almost straight line between the origin and a point (kcap, qcap), in which qcap equals the maximum flow, also denoted as the road capacity, and kcap equals the corresponding density. The slope of this line represents the mean speed in free flow, vfree. The other phase corresponds to congested flow, for which q<qcap, k>kcap and v<vfree.

Many different theoretical phase diagrams have been proposed since 1934. The differences between these theories essentially occur in the description of the congested phase. Figure 1 shows some of of its empirical and theoretical forms, known from literature [START_REF] Greenshields | A study of traffic capacity[END_REF][START_REF] Nagel | Still flowing approaches to traffic flow and traffic jam modelling[END_REF][START_REF] Ahn | Verification of a simplified carfollowing theory[END_REF][START_REF] Wang | Car-following model for motorway traffic[END_REF], Artimi 2007[START_REF] Bassan | Calibrated time-dependent two-regime traffic flow models[END_REF][START_REF] Kerner | Control of spatiotemporal congested traffic patterns at highway bottlenecks[END_REF], Leclerq 2007[START_REF] Schönhof | Empirical features of congested traffic states and their implications for traffic modelling[END_REF].

Figure 1. Common (k, q)-diagrams of motorway traffic literature [START_REF] Greenshields | A study of traffic capacity[END_REF][START_REF] Nagel | Still flowing approaches to traffic flow and traffic jam modelling[END_REF][START_REF] Ahn | Verification of a simplified carfollowing theory[END_REF][START_REF] Wang | Car-following model for motorway traffic[END_REF], Artimi 2007[START_REF] Bassan | Calibrated time-dependent two-regime traffic flow models[END_REF][START_REF] Kerner | Control of spatiotemporal congested traffic patterns at highway bottlenecks[END_REF], Leclerq 2007[START_REF] Schönhof | Empirical features of congested traffic states and their implications for traffic modelling[END_REF].

This vast amount of different theories is related to the complexity of observed traffic behaviour. As illustrated in Figure 2, plots of 1-minute mean flow and mean density data show a broad variety of patterns, depending on the location along the road. This variety is thought to be caused by different geometrical factors [START_REF] Chung | Relation between traffic density and capacity drop at three freeway bottlenecks[END_REF]], such as noise [START_REF] Daganzo | A variational formulation of kinematic waves: solution methods[END_REF]], from the effect of upstream queuing [START_REF] Cassidy | Bivariate relations in nearly stationary highway traffic[END_REF]] or downstream on-and offramps or bottlenecks, lane-changing [START_REF] Laval | Lane-changing in traffic streams[END_REF]] and other specific behaviour, depending on the location or the composition of traffic.

Phase diagrams are based on single location data. An alternative way to visualise traffic behaviour is by using multi-location data. An often-used method is the velocity field diagram. These are plots where the mean speed is shown in colours, in a time-space or (s,t)-diagram. 9). The panels correspond to consecutive detection locations along the road, between km31.9, left top row panel, and km 22.9, bottom row right panel.

In a velocity field diagram, congested traffic shows as upstream moving regions of slow traffic, which we will call speed waves. Similar speed waves have been found for American [Bickel et al. 2007], Japanese [START_REF] Koshi | Some findings and an overview on vehicular flow characteristics[END_REF], English [START_REF] Wang | Car-following model for motorway traffic[END_REF], Dutch [START_REF] Stipdonk | On the congested motorway traffic paradox[END_REF],

German [START_REF] Bogenberger | Analytische Methoden zur Interpretation von Verkehrsdaten[END_REF]], and Belgian [START_REF] Tampère | Een methodiek voor het vaststellen van de kwetsbare wegvakken in een wegennetwerk[END_REF]] traffic. Inside the speed waves, the vehicle speed is not uniform. Instead, different regions of constant vehicle speed are represented by parallel strips with the same upstream, negative, wave speed of -18±1 km/h [START_REF] Koshi | Some findings and an overview on vehicular flow characteristics[END_REF][START_REF] Kerner | Empirical features of congested patterns at highway bottlenecks[END_REF][START_REF] Wang | Car-following model for motorway traffic[END_REF][START_REF] Bogenberger | Analytische Methoden zur Interpretation von Verkehrsdaten[END_REF], Bickel et al. 2007[START_REF] Schönhof | Empirical features of congested traffic states and their implications for traffic modelling[END_REF][START_REF] Stipdonk | On the congested motorway traffic paradox[END_REF]. Figure 3 shows a typical example of such a velocity field, taken from a Dutch motorway.

Within speed waves, traffic is repetitiously decelerating, driving slowly and subsequently accelerating, while the corresponding traffic state in the phase diagram moves up and down the right branch. This car following behaviour has been proposed in [START_REF] Newell | A simplified car-following model: a lower order model[END_REF]. Figure 4 shows an example of such parallel trajectories and their corresponding velocity field.

The fact that regions with constant vehicle speed all move upstream with the same wave speed is of consequence to the phase diagram. Kinematic wave theory [START_REF] Logghe | Multi-class kinematic wave theory of traffic flow[END_REF] dictates that such traffic must correspond to a congested phase that appears as a straight line in a (q,k)-diagram, its slope equal to the upstream speed of the speed waves Therefore, the observed speed waves should correspond to a straight right branch in a triangular phase diagram as depicted in Figure 1, top left panel, or stated by where the constant kjam is the maximum density at zero speed and flow, and vjam, the negative slope of this line, is the negative wave speed. Paradoxically, such a straight right branch is seldom observed from double loop detector data. By contrast, for single loop detector data the corresponding flow-occupancy diagrams are found to be triangular, but only if data points all stem from homogeneous traffic [START_REF] Cassidy | Bivariate relations in nearly stationary highway traffic[END_REF]].

q = vjam ( k -kjam ), (1) 
In [START_REF] Stipdonk | On the congested motorway traffic paradox[END_REF] we explained the mathematical background underlying this paradox. In this paper, we briefly restate this explanation. After assuming a simple form of congested flow, where waves of only two different speeds occur, we calculate the effect of averaging congested flow. Furthermore, we compare mean speeds as experienced by drivers with the averaged speeds as measured by detectors.

Measuring traffic parameters

The time headway τ of a vehicle is measured using single or double induction loop detectors. The flow of this vehicle follows from

q = τ -1 , ( 2 
)
which is related to the space headway σ of the vehicle through

σ = v τ, (3) 
which follows from simple classic theory of kinematics for bodies moving with constant speed. If speed v is known, eq. ( 3) can be used to calculate space headway σ, whereupon the vehicle density is derived from (5)

k = σ -1 . ( 4 
)
With double loop detectors v is measured directly. With single loop detectors this is not possible. However, from the occupancy f, defined by the fraction of time the induction loop is occupied, the density is found, assuming that the mean observed vehicle length L is constant. Occupancy f and vehicle length L are related through

f = L (L + σ) -1 . (6)
Thus, single loop detectors are used to directly observe an estimate of k, apart from an unknown constant involving vehicle length. From this mean k, an estimation of mean v can be calculated [Bickel et al. 2007].

Eq. ( 5) holds for individual vehicles that pass a fixed detector at some point along the road. It also holds for mean values of q, v and k for sets of vehicles, as long as the speed of these vehicles is uniform. If speed is not uniform, mean speed can be consistently defined using eq. ( 5) and values of mean flow and mean density [START_REF] Logghe | Multi-class kinematic wave theory of traffic flow[END_REF].

Averaging traffic parameters

In practice, traffic is treated as a stochastic process, where for individual vehicles i, values of qi, ki, and vi have to be averaged to be interpreted as traffic parameters [START_REF] Rakha | Calibration procedure for Gipps' car-following model[END_REF]]. For q his is done harmonically, by counting the number of vehicles N that pass the detector during some fixed time T, and calculating mean flow qm using

qm = N T -1 = N (Σi qi -1 ) -1 = N (Σi τi) -1 . (7)
Therefore, qm is not calculated directly from individual qi, but averaged harmonically. Mean speed vm is usually calculated arithmetically, using

vm = N -1 Σi vi . (8) 
Finally, the value for km is found using qm from eq. ( 7), vm from eq. ( 8), and their relation from eq. ( 5):

km = qm vm -1 . ( 9 
)
Arithmetic mean speed is commonly used in practise. In theoretical models, harmonic mean speed vH is also used:

vH = (N -1 (Σi vi -1 )) -1 . ( 10 
)
For double loop detectors, qm and vm are calculated from directly measured qi and vi using eqs ( 7) and ( 8), while mean density km is derived from qm and vm using eq. ( 5). However, when single loop detectors are used and k is derived from occupancy f, a different value ka is calculated using

ka = N -1 Σi ki . ( 11 
)
Under free flow conditions, the differences in vi of vehicles that pass a detector pair during one minute, are negligible. The same holds for individual values of qi. The effect of averaging under free flow conditions is merely a matter of cancelling out extreme values. In congestion, for example, vehicles can decelerate from 100 km/h to stand still in less than 30 seconds, while flow decreases from values near qcap to zero. Thus, the effect of averaging traffic quantities in congestion more strongly depends on the actual distribution of individual values of speed and flow than in a free flow situation. Consequently, the calculated values for km from eq. ( 5) depend on the correlation between q and v, given by eq. ( 1) in the congested phase.

Averaging traffic parameters in a simulated congested phase

To study the effect of averaging traffic parameters in the congested phase, we simulate a congested phase where q depends linearly on k, following eq.

(1). We choose typical values of vjam = -18 km/h and kjam = 150 veh/km/lane. We simulate 1 minute averages.

There are infinitely many ways traffic can accelerate and decelerate, and thus move up and down the congested phase line. We chose a simplified example, in which traffic alternates between two speeds, neglecting the effect of acceleration and deceleration, and assuming instantaneous speed change.

We assume vehicles to move in speed waves with constant speed of either v1 or v2. Every vehicle that enters a wave with speed v1 maintains this speed during an interval T*1, and then changes to speed v2, which is maintained during T*2. We call these speed waves the v1-wave and the v2-wave. The speed waves move upstream with negative speed vjam. The border between these waves are denoted the v1-v2-transition and the v2-v1-transition.

As a reference to the roadside measurements, we first calculate mean speed as experienced by the drivers. If drivers maintain speed v1 during T*1, and then speed v2 during T*2, their mean speed vd equals

vd = (T*1 v1 + T*2 v2) ( T*1 + T*2) -1 . ( 12 
)
If T*1 and T*2 are equal, vd is the arithmetic average of v1 and v2. Mean speed, derived from detectors should preferably lead to comparable values as obtained from eq. ( 11).

The intervals T*1 and T*2 during which vehicles drive at speeds v1 and v2 are shorter than the intervals during which these speeds are measured with the detectors, T1 and T2 respectively. This is because, during the passage of a vehicle through a speed wave, the speed wave moves upstream with vjam.

The detector measures traffic with speed v1 during a time T1, which equals

T1 = T*1(1 -v1 vjam -1 ), or T*1 = T1(1 -v1 vjam -1 ) -1 . ( 13 
)
This can be understood from a hypothetical measurement of a speed wave. We start a measurement at t = 0, the moment that a v2-v1-transition passes a detector. Thus, speed changes from v2 to v1. The vehicle that at that time passes the detector, accelerates instantaneously to speed v1. It maintains this speed during an interval T*1. At t1 = T*1, the vehicle has travelled a distance v1 T*1, where it decelerates from v1 to v2. This means that at that moment it traverses through a v1-v2-transition which, from that point will move upstream and reach the detector at time t2, where t2 -t1 = -v1 T*1 vjam -1 , where vjam is negative. The detector measures vehicles at speed v1 between t0 and t2, which equals an interval T1 = t2 -t0 = -v1 T*1 vjam -1 + v1 T*1. Eq. ( 13) follows from this equality.

As v1 and v2 are unequal, this means that if T1 and T2 are equal, T*1 and T*2 are not.

The arithmetic mean speed vm, measured during T1 + T2 with the detector pair, is calculated by averaging the speeds of every vehicle that passes the detector during T1 + T2. The numbers of vehicles N1 and N2 passing in the v1wave and the v2-wave are given by

N1 = T1 q1; (14) N2 = T2 q2.
The values of q1 and q2 measured by the detector must meet eq. ( 1), combined with eq. ( 5). Substitution of eq. ( 5) into eq. ( 1) gives

q = -vjam v kjam (v -vjam) -1 (15)
With eq. ( 13), q1 and q2 as measured with the detectors, can be calculated. Thus, for the arithmetic mean speed vm as measured by the detectors we find

vm = (T1 q1 v1 + T2 q2 v2) ( T1 q1 + T2 q2) -1 . ( 16 
)
The mean flow qm, simulated for these two speed waves follows from eq. ( 7) as

qm = (N1 + N2) (T1 + T2) -1 . ( 17 
)
Consequently, mean density km follows from vm, qm and eq. ( 9).

In [START_REF] Stipdonk | On the congested motorway traffic paradox[END_REF] we proposed alternative expressions for mean flow and density, that we denote qa and ka. We recommend arithmetic averaging of individual flow and density, as opposed to the common reciprocal or harmonic averaging. We suggest

qm = N -1 Σi qi; (18) km = N -1 Σi ki
for N consecutive vehicles with index i. Application of eq. ( 18) to the v1-wave and the v2-wave provides alternative values for mean flow qa and density ka.

qa = (N1 q1 + N2 q2) (N1 + N2) -1 ; (19) ka = (N1 q1 v1 -1 + N2 q2 v2 -1 ) (N1 + N2) -1 .
These values lead to points of (qa, ka) on the congested phase line given by eq. ( 1). Although they are intuitively illogical, they result in a point in the phase diagram that is consistent with the straight congested phase line describing the individual waves.

Analogous to eq. ( 5), average speed va is found from:

va = qa ka -1 = (N1 q1 + N2 q2) (N1 q1 v1 -1 + N2 q2 v2 -1 ) -1 (20) 
Analogous to eq.( 10), harmonic mean speed of the simulated congested phase vh is given by

vh = (N1 v1 -1 + N2 v2 -1 ) -1 (N1 + N2). ( 21 
)

Examples of averaged traffic parameters in the simulated congested phase

In Table 1, we give three examples of averaging congested traffic. Each example consists of alternating fast (v1-wave) and slow (v2-wave) waves that pass the detector in detector intervals of 30 s (T1 and T2 both equal 30 s). The corresponding values of T*1 and T*2, the intervals during which individual vehicles drive with v1 and v2, deviate from these detector-intervals, depending on v1 and v2. These values are given, and also the mean speed vd as experienced by the driver. Below we give the number of vehicles, the flow and the density of each speed wave as it passes the detector. With these values we give first the common results for mean flow, speed and density, and then the values we proposed in the previous paragraph.

In the first example, we choose a fast wave with v1 = 90 km/h and a slow wave with v2 = 1 km/h. This example is to simulate traffic that is (almost) at rest between waves at high speed. As traffic in rest cannot be measured by detectors (N2 = 0 if v2 = 0), we chose v2 = 1 km/h instead of v2 = 0.

In this example vd appears to be only 14 km/h, whereas vm at the detector suggests the speed to be 85 km/h. This is because only moving vehicles are counted and measured by the detector. In this example, only 1 slow vehicle is detected, as opposed to 19 fast vehicles In case of a complete stand still, the measured speed would equal the speed of the fast wave. The slow wave would go unnoticed, except for one very high time headway.

Table 1 Traffic parameters for three examples of simulated congested traffic, consisting of speed waves, with speeds alternating between v1 and v2.

The value for harmonic mean density km as calculated using eq. ( 9), comes out to be 14 veh/km, which is in strong contrast with the fact that in this example, the corresponding densities of each separate wave are 25 veh/km and 142 veh/km. A mean value of 14 veh/km therefore is misleadingly low, as it is even less than the density in the fast wave. Such a value is suggesting free flow. Also, the resulting point (qm, km) = (1196 veh/h, 14 veh/km) is far away from the congested phase line given by eq. ( 5).

Our proposed values for (qa, ka), i.e. (2125 veh/h, 32veh/km) do lie on the congested phase line. These values, as calculated with eq. ( 18) are the arithmetical averages of the values of q and k in each wave, weighted with the number of vehicles detected. Thus, both mean flow and mean density come out much higher than the common value. The corresponding value of va = 66 km/h calculated from qa and ka and eq. ( 5), is still much higher than vd = 14 km/h. Thus, for a realistic estimation of travel times, va cannot be used. For that purpose the harmonic speed vH = 14 km/h happens to be a very good alternative.

The other two examples strengthen the evidence from the first example. In both cases the common traffic parameters (qm, km) do not lie on the congested phase line, whereas (qa, ka) does. In both cases the resulting densities are extremely low as compared to the densities of each wave separately, even less than the lesser of the two separate values. As for the mean speed: in both examples the harmonic speed equals the driver mean speed exactly. The other values for mean speed are higher, leading to underestimation of travelling time. It can be shown that the equations of vd and vh are equivalent, by substituting eq. ( 14) in ( 12) to get

T*1 = T1 q1 v1 -1 kjam -1 , (22) 
and substitution of eq. ( 22) in eq. ( 11) shows that vd = vh.

Discussion and Conclusions

The common way to average flow, density and speed of motorway traffic generates traffic parameters that obscure the traffic behaviour in congested traffic. When individual vehicles in congested traffic show in the (q, k) phase diagram as a straight line with negative slope vjam, their averages do not lie on this line. This effect was shown to occur even in a simple example of simulated congestion. In this simulated example, traffic alternates between two deterministic speed waves of constant speed, both on a straight right branch of the (q, k)-phase diagram given by eq. ( 1), where every wave passed the detector in 30 s. This effect of averaging seriously interferes with the interpretation of traffic data.

In reality, traffic is certainly more complex, even if the congested phase were well described by eq. ( 1). If, for example, the two speed waves would not take 30 s each to pass the detector, but a different time instead, this would lead to averaged traffic parameters that varied strongly in time, suggesting complex dynamical behaviour of points of (qm, km) in the phase diagram. Also, there is no reason to assume periodicity in the passing of waves with different speed. Moreover, traffic will not jump from one speed to another instantaneously, but instead change speed more or less continuously. A further complexity is that vehicles do not all have a deterministic and identical relation between flow and density, but show a stochastic variation instead. Therefore, mean speed, flow ad density are even harder to predict.

However, we have shown that even in our very simplified case of deterministic congested traffic, the (q, k)-phase diagram of averaged traffic parameters doesn't show the expected triangular shape. Averaged parameters are misleading, even without all possible complicating factors that characterise real traffic.

Current traffic theory is based on measured traffic parameters that are averaged so as to give distorted values during congestion. Even if the congested phase is not conform eq. ( 1), averaging traffic parameters of accelerating or decelerating traffic give rise to serious deformations of the phase diagram, hampering the correct interpretation of the data and theories of traffic flow. Moreover, the current method to obtain averaged speed results in an overestimation of its actual value as experienced by the drivers. For the purpose of estimating mean speed, harmonic mean speed is an alternative which, in the simulated congested phase described here is shown to be exact.

In countries where averaging is carried out in road computers, traffic management systems and research are based on distorted congestion data.

We recommend that the current way to average traffic parameters be altered or extended with the averages proposed in this paper, if averaging is unavoidable. Furthermore, we recommend the introduction of occupancy f to measure and average density directly, instead of through speed.

Finally, we recommend that harmonic mean speed of individual vehicles be used to estimate travel times. However, if speed is zero, vehicles either stand still on top of a detector, or next to it. In the former case, an extremely low speed is detected, whereas in the latter case a very long time headway is detected, causing numerical instabilities for the calculated harmonic mean speed. Hence, care should be taken that vH computations are corrected for these effects to prevent singularities.
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 2 Figure2. Single location (k, q)-diagrams of traffic at the Dutch A27 motorway northbound between Knooppunt Hooipolder (km21) and Knooppunt Gorinchem (km36) on 23/5/2007 from 5:45AM to 9:45AM on 23 may 2007, based on 1-minute averaging of speed and flow data according to eqs (7)..(9). The panels correspond to consecutive detection locations along the road, between km31.9, left top row panel, and km 22.9, bottom row right panel.
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 3 Figure 3. Traffic velocity field measured at the Dutch A27 motorway southbound between Lexmond (km52.8) and Avelingen (km34.7) on Friday 31/3/2006 from 3:00 PM to 7:00PM. Colours correspond to 1-minute arithmetically averaged speeds. Contours denote constant speed of 30 km/h or 70 km/h. Oostveen and Kijk in de Vegte 2006].
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 4 Figure 4. Parallel trajectories, shown as thin curved lines, and their corresponding velocity field, where the colours correspond to those in Figure 3.

  , speed and density are related through q = v k.

wave v 2 -wave v 1 -wave v 2 -wave v 1 -wave v 2 -wave

  

			Units		Example 1	Example 2	Example 3
	Congested phase parameters	v jam k jam	km/h veh/km			-18 150			-18 150			-18 150
	Chosen speed wave parameters Driver interval and speed	v 1 -v 1, v 2 km/h T 1, T 2 s T' 1, T' 2 s km/h v d	90 30 5	14	1 30 28	72 30 6	16	3 30 26	60 30 7	19	6 30 23
	Calculated	N 1, N 2	veh		19		1	18		3	17	6
	speed wave	q 1, q 2	veh/h	2250		142	2160		386	2077	675
	parameters	k 1, k 2	veh/km		25		142	30		129	35	113
	Common	q m	veh/h			1196			1273			1376
	detector	k m	veh/km			14			21			29
	averages	v m	km/h			85			62			47
		q a	veh/h			2125			1891			1733
	Averages proposed in this paper	k a v a	veh/km km/h			32 66			45 42			54 32
		v h	km/h			14			16			19