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We use the Arakawa-Berndt theory of generalized η-functions to prove a conjecture of Lalín, Rodrigue and Rogers concerning the algebraic nature of special values of the secant zeta function.

Introduction

The cotangent and secant zeta functions attached to an algebraic irrational number α are defined, for Re(s) large enough, by the Dirichlet series

ξ(α, s) = ∞ n=1 cot(πnα) n s and ψ(α, s) = ∞ n=1 sec(πnα) n s ,
respectively. The cotangent zeta function was introduced for s = 2k + 1, k ≥ 1 an integer, by Lerch [START_REF] Lerch | Sur une série analogue aux fonctions modulaires[END_REF], and for general s by Berndt [START_REF] Berndt | Dedekind sums and a paper of G[END_REF] in the course of his study of generalized Dedekind sums. Lerch stated (without proof) the following functional equation valid for algebraic irrational α and sufficiently large k = k(α):

(1)

ξ(α, 2k + 1) + α 2k ξ( 1 α , 2k + 1) = (2π) 2k+1 ϕ(α, 2k + 1)
, where

ϕ(α, n) = n+1 j=0 B j B n+1-j j!(n + 1 -j)! α j-1 ,
and

B k is the k-th Bernoulli number. Suppose α = ±1 is a unit in the quadratic field Q( √ d) of discriminant d. Writing α = a+b √ d 2 and defining ε = ±1 by a 2 -b 2 d = ε, we have 1 α = -ε(α -a).
Using the obvious identities ξ(-α, s) = -ξ(α, s) and ξ(α -1, s) = ξ(α, s) together with (1), we deduce the following rationality result:

(2) ξ(α, 2k + 1) (2π) 2k+1 √ d = 1 √ d ϕ(α, 2k + 1) 1 -εα 2k ∈ Q.
Another proof of this result was given by Berndt [4, Theorem 5.2]. More generally, if α is an arbitrary real quadratic irrationality, then Lerch uses the continued fraction expansion of α to conclude that the left hand side of (2) belongs to Q(α) -see [7, (3)].

Lalín, Rodrigue and Rogers conjecture an analogous result for the secant zeta function:

Conjecture 1.1 ([6, Conjecture 1]). Suppose d and k are positive integers such that d is not a square. Then

ψ( √ d, 2k) π 2k ∈ Q.
They prove a functional equation for ψ(α, s) analogous to [START_REF] Arakawa | Generalized eta-functions and certain ray class invariants of real quadratic fields[END_REF] and use it to deduce many instances of Conjecture 1.1 as above. In §2, we show that their functional equation is actually sufficient to prove in general that ψ(α, 2k) ∈ π 2k Q(α) for all real quadratic irrationalities α, not merely those of the form α = √ d. In §3, we relate ψ(α, s) to the generalized η-functions studied by Arakawa [START_REF] Arakawa | Generalized eta-functions and certain ray class invariants of real quadratic fields[END_REF], fascinating objects in their own right. Using this relationship, we leverage Arakawa's results to give an explicit formula for ψ(α, 2k) for real quadratic irrationalities α, yielding another proof of Conjecture 1.1.

The Lalín-Rodrigue-Rogers functional equation

One can prove Conjecture 1.1 following Lerch's approach for the cotangent zeta function. Most of this argument was given in [START_REF] Lalín | Secant zeta functions[END_REF]; we complete their thought. Let A, B ∈ PSL 2 (Z) be defined by

A = 1 2 0 1 , B = 1 0 2 1 .
The following functional equations are established in [6, (4.1), (4.2)]:

ψ(Aα, 2k) = ψ(α, 2k), ψ(Bα, 2k) = (2α + 1) 1-2k ψ(α, 2k) - π 2k (2k)! 2k m=0 (2 m-1 -1)B m E 2k-m 2k m (α + 1) 2k-m (2α + 1) m-2k -(2α + 1) 1-2k .
Here, B n is the n-th Bernoulli number and E n is the n-th Euler number. It follows that if C ∈ A, B then there is a Q(α)-linear relation between ψ(Cα, 2k), ψ(α, 2k) and π 2k . Thus, if there is a matrix

C ∈ A, B such that Cα = α then ψ(α, 2k) ∈ π 2k Q(α). In [6, §4],
several families of examples of such pairs (α, C) are given and the associated linear relations are worked out explicitly. We merely point out that if α is any real quadratic irrationality, then there is always a C ∈ A, B , C = 1 such that Cα = α.

To see this, let α be a real quadratic irrationality and consider the lattice L = Z + Zα ⊂ Q(α). Let O be the order of L:

O = {x ∈ Q(α) : xL ⊂ L}. Then O is an order in Q(α). Let u ∈ O. Writing u • α = aα + b and u • 1 = cα + d with a, b, c, d ∈ Z, we have u α 1 = a b c d α 1 .
Write j(u) for the matrix ( 

Generalized η-functions and secant zeta values

Arakawa [START_REF] Arakawa | Dirichlet series ∞ n=1 cot(πnα)/n s , Dedekind sums, and Hecke L-functions for real quadratic fields[END_REF] gave another proof of (2) by relating ξ(α, s) to generalized η-functions, the theory of which he developed in [START_REF] Arakawa | Generalized eta-functions and certain ray class invariants of real quadratic fields[END_REF]. In turn, Arakawa's work has its foundations in papers of Lewittes [START_REF] Lewittes | Analytic continuation of Eisenstein series[END_REF] and Berndt [START_REF] Bruce | Generalized Dedekind eta-functions and generalized Dedekind sums[END_REF]. We show that Arakawa's method can also be used to analyze the secant zeta function.

For x ∈ R, define x (resp., {x}) by 0 < x ≤ 1 (resp. 0 ≤ {x} < 1) and x -x ∈ Z (resp., x -{x} ∈ Z).

We set e(z) = e 2πiz . Following [START_REF] Arakawa | Generalized eta-functions and certain ray class invariants of real quadratic fields[END_REF], let p, q ∈ R and define

η(α, s, p, q) = ∞ n=1 n s-1 e(n(pα + q)) 1 -e(nα)
H(α, s, p, q) = η(α, s, p , q) + e s 2 η(α, s, -p , -q). Theorem 3.1 ([1, Lemma 1 and Theorem 2]). Suppose

α ∈ R ∩ Q and α / ∈ Q.
Then η(α, s, p, q) is absolutely convergent for (s) < 0. If, in addition,

[Q(α) : Q] = 2 and p, q ∈ Q
then H(α, s, p, q) has analytic continuation to C -{0}, and the singularity at s = 0 is at worst a simple pole.

Remark 3.2. The convergence of η(α, s, p, q) relies on the Thue-Siegel-Roth theorem in much the same way that the convergence of ψ(α, s) does -see [START_REF] Lalín | Secant zeta functions[END_REF]Theorem 1].

An elementary computation yields

ξ(α, s) = -2i H(α, 1 -s, 1, 0) 1 + e( s 2 ) + 1 2 ζ(s) ,
so rationality statements for H(α, 1 -s, 1, 0) for even integral s translate to rationality statements for ξ(α, s) at odd integral s. In contrast, ψ(α, s) does not seem to have a simple expression in terms of H(α, s, p, q). Crucially, however, we still have a relation between certain special values of H and ψ relying on the relation 3 4 = -1 4 + 1 : 

ψ α 2 , 1 -s = ∞ n=1 n s-1 2 e( nα 4 ) + e(-nα 4 

  a b c d ) associated to u above. Then j : O → M 2 (Z) is a ring homomorphism. Since ( α 1 ) is an eigenvector of j(u) for all u ∈ O, we have j(u)α := aα+b cα+d = α when u = 0. By Dirichlet's unit theorem, the group O * + of totally positive units in O is free of rank 1; write O * + = γ . By [9, p. 84], A, B is the principal congruence subgroup Γ(2) ⊂ PSL 2 (Z), this inclusion having index 6. Therefore, C := j(γ 6 ) satisfies C = 1, C ∈ Γ(2) and Cα = α.

Theorem 3 . 4 .

 34 α, s,1 4 , 0) -2η(α, s, -1 4 , 0). If s = 1 -2k, then e( s 2 ) = -1 and we conclude that (3)ψ( α 2 , 2k) = 2H(α, 1 -2k, 1 4 , 0). Suppose α is a real quadratic irrationality and k is a positive integer. Then ψ(α, 2k)π 2k ∈ Q(α). Moreover, if x → x is the nontrivial automorphism of Q(α), then ψ(α, 2k) π 2k = ψ(α , 2k) π 2k .Conjecture 1.1 follows from Theorem 3.4 and the evenness of the secant function.
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For the rest of the paper, suppose that α is a real quadratic irrationality. Formulas of Berndt and Arakawa allow us to evaluate H(α, 1 -2k, 1 4 , 0) rather explicitly. Let

be a matrix such that c > 0 and β := cα + d > 0.

Set (p , q ) = (p, q)V and = {q }c -{p }d.

Theorem 3.3 ([1, Theorem 1 and Eq. (1.19)]). Suppose that p and p are not in Z. Then the following transformation formula holds:

where L(α, s, p , q , c, d) is as in (2) of [START_REF] Bruce | Generalized Dedekind eta-functions and generalized Dedekind sums[END_REF]. If s = -m is a negative integer, then

Here, b is the (normalized) -th Bernoulli polynomial defined by the generating series

By [1, Lemma 4], for any rational numbers p and q there is a totally positive unit β of Q(α) and a matrix V ∈ SL 2 (Z) such that c > 0, (p , q ) := (p, q)V ≡ (p, q) (mod Z 2 ), and

The last condition implies that β = cα + d, consistently with the notation introduced above. Suppose p / ∈ Z . Then p / ∈ Z, too, as p ≡ p (mod Z). Applying Theorem 3.3, observing that H and L only depend on the class of (p, q) ≡ (p , q ) modulo Z 2 , and rearranging terms, we get (β -s -1)H(α, s, p, q) = (2π) -s e(-s 4 )L(α, s, p, q, c, d). By the second part of Theorem 3.3, if s = 1 -2k then ( 4)

Setting (p, q) = ( 1 4 , 0) and using (3), this formula specializes to We conclude :