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Abstract

Let M be a compact smooth manifold of dimension n with or without boundary,
and f : M → R be a smooth Gaussian random field. It is very natural to suppose
that for a large positive real u, the random excursion set {f ≥ u} is mostly composed
of a union of disjoint topological n-balls. Using the constructive part of (stratified)
Morse theory we prove that in average, this intuition is true, and provide for large u
the asymptotic of the expected number of such balls, and so of connected components
of {f ≥ u}, see Theorem 1.2. We similarly show that in average, the high nodal
sets {f = u} are mostly composed of spheres, with the same asymptotic than the
one for excursion set. A refinement of these results using the average of the Euler
characteristic given by [2] provides a striking asymptotic of the constant defined by
F. Nazarov and M. Sodin, again for large u, see Theorem 1.11. This new Morse
theoretical approach of random topology also applies to spherical spin glasses with
large dimension, see Theorem 1.14.

Keywords: Random topology, excursion set, smooth Gaussian field, Morse theory, spin
glasses.
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1 Introduction

1.1 The results

Setting and notations. Let M be a compact smooth manifold with or without bound-
ary, or more generally a compact Whitney stratified set, a family of sets which contains,
for instance, manifolds with corners as affine hypercubes, see Definition 4.1 below. Let
f : M → R be a random centered smooth Gaussian field with constant variance. For any
u ∈ R, denote by Eu(M,f) the excursion set of f over the threshold u, or Eu when f is
implicit, that is

Eu(M,f) = {x ∈M,f(x) ≥ u}.
The sojourn set under u is the sublevel

Su(M,f) = {x ∈M,f(x) ≤ u},

and the nodal set at u is the level set

Zu(M,f) = {x ∈M,f(x) = u}.

The statistical geometric and topological features of these random sets have been studied
since the 50’s, see paragraph 1.2 for a survey of past results in this topic. Topological
observables of interest are the Euler characteristic of the excursion or level set, its number
of connected components, its Betti numbers, or more precisely, the homeomorphic type of
its components. The first is local, as the volume, hence has been studied first. The other
ones are global, hence more difficult to access, and has been studied more recently.

Classical Morse theory allows to understand partially the topology of a differential
manifold M through the critical points of some unique generic function, see Section 2.
Quite surprisingly, it allows to compute the Euler characteristic through a similar Euler-
Morse characteristic involving only critical points, see (2.2). This beautiful equality has
been extensively used in the probabilistic litterature in order to compute the the average
of χ(Eu(M,f)). Morse theory also provides informations about Betti numbers through
so-called Morse inequalities, (see Theorem 2.4 assertion 5). It has also been used to bound
above the mean Betti numbers of Zu(M,f), see § 1.2. In this paper, we apply another
part of Morse theory, which allows to be far more precise, namely to describe the average
topological type of the excursion and nodal sets of random functions for large positive
levels u. Note that for instance, the Euler caracteristic of an circle (and hence of an
annulus or a full torus) vanishes, as it is the case for any oriented closed manifold with
odd dimension.
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The main results. It is very natural to believe that for large positive u, most of con-
nected components of the excursion set Eu are emerging islands, sometimes called bumps
or blobs in the litterature, that is components diffeomorphic to the standard n-ball, if M
has dimension n. In this paper, we prove that this intuition is correct in a quantitatively
way. In order to make the statement more formal, we follow [16]: for any smooth compact
smooth submanifold Σ ⊂ Rn, possibly with boundary, and any subset E of a manifold M ,
we set

NΣ(E) = #{connected components B of E | B is diffeomorphic to Σ}
and N(E) = b0(E) = #{connected components of E}.

We emphasize that in the case where M is a manifold with boundary, we count for N(M)
the components of M touching the boundary as well.

We begin with a corollary. Let M be a compact smooth manifold with or without
boundary and f : M → R be a centered Gaussian field satisfying the hypotheses (1)
(regularity) and (2) (non-degeneracity) given below. Then, f induces a metric over M
by [2, (12.2.1)]:

∀x ∈M,X, Y ∈ TxM, g(X,Y ) = E(df(x)X, df(x)Y ), (1.1)

where df(x) denotes the differential of f at x.

Corollary 1.1 Let M be a compact C3 manifold with or without boundary, and f : M →
R be a random centered Gaussian field satisfying conditions (1) (regularity), (2)(non-
degeneraticity) and (3) (constant variance), and g be de metric defined by (1.1). Then

∀u ∈ R, ENBn(Eu(M,f)) =
1

√
2π

n+1 volg(M)un−1e−
1
2
u2
(

1 +Ou→+∞(
1

u
)

)
.

Here, the error term depends only on the 4-jet of the covariance on the diagonal M ×M .
The same holds for N(Eu), NSn−1(Zu) and N(Zu) instead of NBn(Eu).

Note that this is the first asymptotic for the average number of components of given
diffeomorphism type of random smooth subsets, and the first asymptotic for the number
of components in dimension larger than 2. This corollary is a particular case of a far more
general theorem, which holds for Whitney stratified sets, see Definition 4.1:

Theorem 1.2 Let n be a positive integer, M̃ be a C3 manifold of dimension n, M ⊂ M̃
be a compact C2 Whitney stratified set of dimension n satisfying conditions (6) (gentle

boundaries) and (8) (mild local connectivity). Let f̃ : M̃ → R be a random centered Gaus-
sian field satisfying conditions (1) (regularity), (2) (non-degeneracity) and (3) (constant
variance), f = f̃|M and g be the metric induced by f̃ and defined by (3.3). Then

∀u ∈ R, ENBn(Eu(M,f)) =
1

√
2π

n+1 volg(∂nM)un−1e−
1
2
u2
(

1 +Ou→+∞(
1

u
)

)
. (1.2)

The same holds for N(Eu) instead of NBn(Eu). Here, ∂nM denotes the stratum of maximal
dimension, see (4.1) and the error term depends only on the 4-jet of the covariance on the

diagonal M̃ × M̃ .
If moreover M satisfies the further condition (10) (milder topology), then (1.2) holds

with NSn−1(Zu) and N(Zu) instead of NBn(Eu).
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Since they need a lot of material, we postpone the necessary definitions and conditions
to Section 4 and 5. However, let us say here that stratified sets are decomposed into
submanifolds which are called strata of different dimensions denoted by ∂jM , where j is
the dimension.

Example 1.3 Manifolds with or without boundaries and affine hypercubes satisfy the hy-
potheses of Theorem 1.2. For a manifold without boundary, ∂nM = M and for any
j ≤ n − 1, ∂jM = ∅. For a manifold with boundary, ∂nM = M \ ∂M , ∂n−1M = ∂M
and there is no other strata. For the hypercube [0, 1]n, ∂jM is the union of the faces of

dimension j, and ∂nM =
◦
M . A more exotic example is provided by Figure 1.

Remark 1.4 1. A version of Theorem 1.2 with a precise error bound and for spaces
with positive codimension, that is dimM < dim M̃ , is given by Theorem 5.3.

2. Condition (3) could be dropped, but the formula is more intricated. Since we already
placed this work in the general setting of stratified spaces, we prefered to present this
new application of Morse theory in random topology in this simpler situation.

3. In fact, for NSn−1(Zu), we can improve the topological precision: we can impose that
the spheres belong to different balls of M , in particular we can assume that there
cannot be linked. Indeed, there are boundaries of the distinct balls computed for
NBn(Eu).

4. Note that for u = 0, all the possible affine topologies have uniform positive densities
in the compact algebraic [14] and Riemannian settings [17] (see also [41] and [10]),
see paragraph 1.2.

Betti numbers. Morse theory allows us to obtain estimates for the other Betti number
bi, where for any subset A ⊂ Rn, bi(A) = dimHi(A,R) and b(A) =

∑n
i=0 bi(A).

Theorem 1.5 Under the hypotheses of Theorem 1.2, assume that M satisfies the further
condition (9) (mild local homology). Then, there exists c > 0 such that

∀u ∈ R, Eb(Eu(M,f)) = Eb0(Eu)
(

1 +Ou→+∞(e−cu
2
)
)
.

Remark 1.6 Theorem 1.5 should be true for the nodal set Zu instead of the excursion set
Eu, but the proof would involve tedious algebraic topological complications.

A refinement. If we add a further condition for M , namely to be a locally convex cone
space, see Definitions 5.5 and 5.10, and if we use the main result of [2], we can improve
Theorem 1.2 in two ways: a more precise asymptotic and a better bound, but only for N ,
with the notable exception of the class of closed manifolds, see Corollary 1.10.

Theorem 1.7 Let M̃ be a C3 manifold of dimension n ≥ 1, M ⊂ M̃ be a compact locally
convex C2 cone space of dimension n satisfying condition (7) (very gentle boundaries),

f̃ : M̃ → R be a random centered Gaussian field satisfying conditions (1) (regularity), (2)
(non-degeneracity) and (3) (constant variance), f = f̃|M and g be the metric induced by

f̃ and defined by (3.3). Then, there exists c > 0 such that

∀u ∈ R, EN(Eu(M,f)) =

n∑
k=0

1
√

2π
k+1
LkHk−1(u)e−

u2

2

(
1 +Ou→+∞(e−cu

2
)
)
, (1.3)
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Figure 1: A stratified (pinched) mirror M ⊂ M̃ ⊂ R3 [19, p. 6]. It is the union of a pinched
torus (the frame of the mirror) and the vertical disc. Here, p3 is ∂0M , the boundary of
the vertical mirror without p3 is ∂1M and ∂2M is the rest, that is the union of the frame
without ∂0M and ∂1M and the open vertical mirror. In this case M is a regular cone
space which is not locally convex, see Definition 5.10. The singular point p3 is critical for
any function, and the height is a Morse function f for M in the sense of Definition 4.6,
for which the pi’s are critical. Here the indices (2.1) are ind(p1) = 0, ind(p2) = 0 (since
the stratum of p2 is ∂1M , ind(p4) = 1 and ind(p5) = 2. Two level lines of f are shown.
Stratified Morse theory describes the changes of topology of the sublevel sets of f , see
Theorem 4.12.
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where the constants (Lk)k are defined below by (5.7) and (Hk)k denote the Hermite poly-
nomials, see (5.8). The error term, included c, depends only on the 4-jet of the covariance

on the diagonal M̃ × M̃ .

Example 1.8 All the examples of Example 1.3 are locally convex cones, except the last
one given by Figure 1 which is a cone but which is not locally convex.

Remark 1.9 1. As for Theorem 1.2, a quantitative version of Theorem 1.7 is provided
by Theorem 5.15.

2. It is very likely that the first assertion of Theorem 1.7 is true for NBn , see Re-
mark 5.14.

Corollary 1.10 Let n ≥ 1 be an integer and M be a compact C2 manifold of dimension n
with or without boundary, and f : M → R be a random centered Gaussian field satisfying
conditions (1), (2) and (3). Then, there exists c > 0 such that (1.3) holds.

If M is a closed manifold, then (1.3) writes

∀u ∈ R, EN(Eu(M,f)) =
1

√
2π

n+1 volg(M)Hn−1(u)e−
u2

2

(
1 +Ou→+∞(e−cu

2
)
)
.

Moreover, again if M is closed, this estimate also holds for NBn(Eu), NSn−1(Zu) and
N(Zu) instead of N(Eu).

Nazarov-Sodin constant. For affine stationnary fields, see condition (4), the quan-
titative version of Theorem 1.2 implies the following simple asymptotic for the constant
cZ(u) defined by Nazarov and Sodin in [34]:

cZ(u) ∼
u→+∞

1
√

2π
n+1

√
det d2

x,ye(0)un−1e−
1
2
u2 . (1.4)

Here e denotes the covariance function of the field f , that is

∀(x, y) ∈ (Rn)2, e(x, y) = E(f(x)f(y)).

Roughly speaking, cZ(u) is the volume density of the number of connected components
of Zu(Rn, f). In fact, using the quantitative refinement of Theorem 1.2 given by Theo-
rem 5.15, we obtain a more precise asymptotic with a better error term:

Theorem 1.11 Let f : Rn → R be a centered Gaussian field satisfying conditions (1)(reg-
ularity), (2)(non-degeneraticity), (4)(stationarity) and (5) (ergodicity), and cZ(u) be the
constant defined by Theorem 5.20. Then, there exists c > 0 such that

cZ(u) =
1

√
2π

n+1

√
det d2

x,ye(0)Hn−1(u)e−
1
2
u2(1 +Ou→+∞(e−cu

2
)),

where Hn−1 denotes the (n − 1)-th Hermite polynomial given by (5.8) and the constant
involved in the error term depends only on the 4-jet of e at 0.

Remark 1.12 1. For n = 2, the asymptotic (1.4) is a consequence of Swerling’s esti-
mate (1.6) given below.

2. Note that Theorem 1.11 provides the first asymptotic estimate for these enigmatic
constants in higher dimensions.
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3. The important case u = 0 remains unkwown.

4. Note that the equivalent constant cE(u) for Eu(Rn, f), instead of Zu, has been proven
to exist for n = 2, see [8, Theorem 1.3]. Theorem 1.11 is true for this constant cE
instead of cZ . Notice that it is very likely that cE(u) is well defined for higher
dimensions.

Example 1.13 Recall that d2
x,ye(0) = (∂xi,yje(0))1≤i,j≤n, and let cn =

√
det d2e(0).

• Bargmann-Fock: for e(x, y) = exp(−1
2‖x− y‖

2), cn = 1.

• Random waves: for e(x, y) =
Jn−2

2
(‖x− y‖)

‖x− y‖
n−2
2

, cn = n−
n
2 .

• Full spectral band random waves: for e(x, y) =
Jn

2
(‖x− y‖)
‖x− y‖

n
2

, cn = (n+ 2)−
n+2
2 .

Spin glasses. Finally, constructive Morse theory can be applied the so-called p-spin
spherical spin glass model, in the context of [6]. In this case for any integer n ≥ 1,
M =

√
nSn−1 ⊂ Rn and for any integer p ≥ 2, the Gaussian random field is defined by

∀x = (x1, · · · , xn) ∈
√
nSn−1, fn(x) =

n∑
i1,··· ,ip=1

ai1···ipxi1 · · ·xip , (1.5)

where the coefficients (ai1···ip)i1,··· ,ip are independent centered standard Gaussian random
variables. The covariance e of fn satisfies

∀x, y ∈
√
nSn−1, e(x, y) = n1−p〈x, y〉p.

Here, the regime consists into increasing the dimension n, and looking at the asymptotic
behaviour of the sojourn sets Snu (symetric asymptotics hold for Enu, see Remark 2.1).

Theorem 1.14 For any integer n ≥ 2, let fn :
√
nSn−1 → R be the Gaussian field defined

by (1.5). Then,

∀u < −2

√
p− 1

p
, lim
n→+∞

1

n
logENBn−1

(
Snu(
√
nSn−1, fn)

)
= Θ0,p(u),

where Θ0,p is the function defined by [6, (2.16)]. The same holds for N(Snu) and NSn−2(Znu)
instead of NBn−1(Snu).

The assumptions on the field. We now describe the natural assumptions for f̃ needed
in Theorems 1.2 and 5.16. Let M be a Whitney stratified manifold in a manifold M̃ , see
Definition 4.1, with local coordinates over each stratum (xi)1≤i≤j , and f : M̃ → R be a
centered Gaussian field. The reader only interested in the case where M is a manifold can
assume M̃ = M .

1. (Regularity) The covariance e : M̃ × M̃ → R is C8 in the neighborhood of M2.

2. (Non-degeneracity) For any j ∈ {0, · · · , N}, any x ∈ M̃ and any coordinates
(xi)i∈{1,··· ,n}, the joint distribution of

(∂if(x), ∂2
kjf(x))i,k∈{1,···n}

is non-degenerate.
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3. (Constant variance) The variance of f is constant equal to one, that is ∀x ∈ M̃, e(x, x) =
1.

4. (Stationarity) If M̃ = Rn for n ≥ 1, the covariance e is invariant under translations,
that is

∀(x, y) ∈ (Rn)2, e(x, y) = e(x− y, 0).

5. (Ergodicity) Under the hypotheses of Condition (4), e(x, 0) →
‖x‖→∞

0.

Remark 1.15 By Kolmogorov’s theorem in [34], Condition (1) implies that the field is
almost surely C3, so that the weaker condition of [2, (11.3.1)] is satisfied in coordinates.
As said in Remark 1.4, condition (3) could be dropped, but the formulas are more in-
volved. Moreover, this is a consequence of Condition (4). Condition (5) is only used in
Theorem 1.11 and implies that the action of translations is ergodic.

The assumptions for the stratified set need more definitions and results, hence will be
defined later in Section 5.

1.2 Related results

Connected components and critical points. It seems that the first study of statis-
tics of the number of connected components N(Eu(M,f)) of excursion set or N(Zu) of a
random function f in dimension two is due to P. Swerling [43], in a context of geomor-
phology. In particular, the author gave lower and upper bounds for the mean number of
connected components [43, equation (36)] of these excursion sets, using Morse-like ideas
and estimates of the number of random critical points of given index (maxima, minima
and saddle points). The latter study of critical points of random functions in dimensions
larger or equal to one began at least in the paper of M. S. Longuet-Higgins [28, equation
(58)], in a context of oceanography.

Origins of Morse theory The idea of linking critical points and topology, which is
called now Morse theory, can be drawn back to the beautiful and forgotten 1858 article [39]
by the physicist Frédéric Reech, who computed there the first Morse Euler characteristic
using the topology of level lines of the altitude on the Earth, a theorem which A. F. Möbius
generalized [32] (citing Reech). Then J. C. Maxwell reproved in 1870 in [30], seemingly
unaware of Reech’s and Möbius works.

Euler characteristic. In 1976, the Euler characteristics of the random excursion sets
began to be studied [1] by R. J. Adler and A. M. Hasofer. Note that this invariant is directly
accessible via Morse theory and critical points, or by Gauss-Bonnet-type formulas, which
are local, so that closed formulas can be established through Kac-Rice formulas, on the
contrary to the number of connected components. For spin glasses, more precisely for
isotropic Gaussian random fields over Sn, the study of the Euler characteristics has been
done when the dimension n goes to infinity [6]. Although we won’t use it in this paper,
it is worth mentionning [12], where a central limit theorem was proven for the Euler
characteristic of χ(Z0(M,f)) over larger and larger affine cubes M . On real algebraic
manifolds and for random real polynomials, S. S. Podkorytov on the sphere and then T.
Letendre in a general setting [26] gave the asymptotic of Eχ(Z0). For the proof of the
most precise theorem of this article, see Theorem 5.16, we use a general asymptotic by R.
J. Adler and J.E. Taylor of χ(Eu) for cone spaces, see Theorem 5.18.

8



Large deviations for N(Z0). In 2006, a regain of interest in connected components was
triggered by the work [33] by F. Nazarov and M. Sodin, who proved that in the context
of random eigenfunctions f of the Laplacian over the round 2-sphere S2, N(Z0(S2, f))
has a precise statistics for large eigenvalues. In particular, the average number of N(Z0)
is asymptotic to cL, where c > 0 and L is the increasing eigenvalue. They also proved
a large deviation phenomenon. In 2011, the authors of [13] proved that for M being a
real algebraic surface and P being a random polynomial of large degree d, the probability
that N(Z0(X,P )) is maximal decreases exponentially fast with d (see also [11] and [4]
for recent generalizations and [40] for affine fields ; see also [7] and [35] for estimates of
the variance of N(Z0)). This work was influenced by former works in random complex
algebraic geometry [42]. Note that the latter and [33] were inspired by quantum ergodicity
and Berry’s conjecture.

Betti numbers of Z0. Non-explicit (like o(dn)) upper bounds and then explicit ones
(like cn

√
d
n
) for Ebi (Z0(X,P )) were given in the algebraic context in [15] and [16]. The

authors used Lefschetz and then Morse theory, counting ”flip points” of given index, where
the random zero set is tangent to a given fixed distribution of hyperplanes. As said before,
this trick that was already used (unknown to the authors) in [43] in dimension 2 for the
number of components (then the flip points have index zero or one). When large dimension
n are studied, large deviations happen for the mean number or critical points of various
indexes: the proportion of critical points of indexes close to n/2 tends exponentially fast to
one [16, Theorem 1.6]. Since the Morse-Euler characteristic equals the Euler characteristic
of Z0, weak Morse inequalities (see Thereom 2.4 assertion 5.) indicate that the middle
Betti numbers are preponderant compared to the other ones, a phenomenon which is
already visible numerically in dimension n = 3, see [38, Figure 5.]. In [24] A. Lerario
and E. Lundberg proved that on the sphere, the mean of N(Z0(Sn, P )) has a lower bound
growing like

√
d
n
, in various symmetric models. In [14] and [17], explicit lower bounds for

the Betti numbers were given in algebraic and Riemannian settings. In a different spirit,
[25] dealt with mean Betti numbers of random quadrics with increasing dimension.

Diffeomorphism type of Z0. In 2014, the diffeomorphism type of the random nodal
sets Z0 began to be studied in [14]. The authors proved that for X being an n-dimensional
real algebraic manifold and P being a random polynomial of degree d, for any affine
compact hypersurface Σ ⊂ Rn, the average ENΣ(Z0(X,P )) of the components of Z0

diffeomorphic to Σ also grows at least like cΣ

√
d
n
, where cΣ > 0 can be made explicit.

The same was then proven in [17] for a random sum of eigenfunctions of Laplacian for
eigenvalues up to a large increasing number L.

Asymptotic values. In 2016, F. Nazarov and M. Sodin proved in [34] that in a very
general context, for stationary affine Gaussian random field, 1

vol(BnR)EN(Z0(Bn
R, f)) con-

verges to a positive constant cZ(0) when R grows to infinity, see Theorem 5.20 below. In
2019, P. Sarnak and I. Wigman, and P. Sarnak and Y. Canzani, gave a version of this
result in [41] and [10] for the number NΣ(Z0) defined above, in the Laplacian context.
In [45], I. Wigman gave a version of the Nazarov-Sodin asymptotic for Betti numbers of
the components of Z0(Bn

R, f) which do not intersect the boundary of Bn
R. Note that in the

contrary to i = 0, it could happen that for i ≥ 1, a unique large connected component of
Zu(Bn

R) has a large bi and touches the boundary.
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Estimates in dimension 2. The values of the average of the numbers N(Z0), N(Eu),
NΣ(Eu) or their asymptotics cZ(0) or cE(u) are unkwnon, and the known bounds for
them are related to either critical points, which are far easier to compute, or the barrier
method (see [33]). Until the present work, the dimension n = 2 was the only case where
asymptotics has been done. Indeed in the affine case and for isotropic smooth centered
Gaussian fields, [43, Equation (36)] implies that

∀u ∈ R,
EN(Zu(BR, f))√

det d2
x,ye(0)vol(BR)

=
1
√

2π
3ue

− 1
2
u2
(

1 +Ou→+∞(e−cu
2
)
)

(1.6)

where c > 0 depends only on the 4-jet of e at 0 (see also [8, Corollary 1.12 and Proposition
1.15] for non isotropic fields). Since H1 = Id, this estimate is the same as our Theorem 1.11
for n = 2. Also in dimension 2, T. L. Malevich gave bounds for EN(Z0) in [29], for fields
with positive correlations. The method is more direct there than in Swerling’s paper, but
less precise. In [20], the authors gave an explicit lower bound for cZ(0) in the case of
planar random waves.

Estimates in higher dimensions. In higher dimensions, Nicolaescu [36, Theorem 1.1]
gave a universal upper bound for EN(Z0) in the Riemannian setting, using the number of
local minima. As said before explicit lower bounds for EN(Z0) were given by [14, Corollary
1.3] and [17, Corollary 0.6], and for ENΣ(Z0) for Σ being the sphere or products of spheres
(in order to get higher Betti numbers), in compact algebraic and Laplacian (even elliptic
operators) contexts. For instance, if (M, g) is a compact Riemannian manifold and f is a
random sum of eigenfunctions of the Laplacian with eigenvalue bounded above by L ([17,
Corollary 0.6] and [18, Corollary 0.3]), for L large enough and for any i ∈ {0, · · · , n− 1},

exp(−e312n3/2
) ≤

ENSi×Sn−1−i(Z0)
√
L
n
volg(X)

≤

∫
Sym(i,n−1−i,R) |detA|dµ(A)
√
π
n+1√

(n+ 2)(n+ 4)n−1
≤ exp(−cin2) (1.7)

where dµ(A) is an explicit universal measure (which is for instance GOE in the algebraic
version) and ci > 0. The upper bound in (1.7) given the average of critical points is likely
to have the good order since the Morse-Euler characteristic equal the topological one.
Note also that all of these estimates should be essentially true with similar results in the
affine case, at least for Bargmann-Fock and full band random waves, see Example 1.13
below for the definition, since the compact case converges, after rescaling at order 1/

√
d
n

or 1/
√
L
n/2

near a fixed point, to the affine model. Note also that in principle, these
estimates for the nodal hypersurfaces Z0 should be adapted for the topology of the level
set Zu or Eu with non-zero u.

Bumps and Euler characteristic. In [2], it is given a closed formula the mean Euler
characteristic of Eu, see Theorem 5.18 below. Since the Euler characteristic of a ball is
one, under the belief that most of components of Eu are balls, the estimate for the Euler
characteristic given by Theorem 5.18 should be true for the mean number of connected
components EN(Eu), and even for the mean number ENB(Eu) of components diffeomor-
phic to a ball. We prove that it is true, see Theorem 5.16. As a final remark, note that
the shape near a non-degenerate local maximum is automatically a topological ball. It
has been proven in [3, (6.2.12)] that the shape of this ball is quite precise, but it does not
allow to estimate the number of connected components as in our Theorem 1.2.
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Random topology and cosmology. The topology of random excursion or nodal sets,
in particular Betti numbers, has become a subject of interest in cosmology in the last
decade, at least since [44]. Here, the field is the mass density. We refer to the survey [38]
for references to this subject.

Questions We finish this section with questions that the present work arises.

1. Is there a closed formula for EN(Eu) and its various avatars, at least for affine
isotropic fields?

2. In particular, what is the value of cZ(0)?

3. Is it possible to obtain an asymptotic of ENΣ(Eu) for other manifolds Σ than Bn?

Structure of the article.

• Section 2 is of deterministic nature and recalls the classical main elements of Morse
theory on a compact smooth manifold without boundary, that is how the topology
of the sublevel (sojourn set) Su(M,f) of a Morse function f changes when passing a
critical point. Since the change of topology of the level set (nodal set) Zu(M,f) is in
general not treated, we provide the results we need in the sequel. In this section we
treat the spin glass situation, since the comparison of the average number of critical
points of various indices has been already done in [6].

• Section 3 handles with random Gaussian fields over manifolds and their critical
points. We follow the elegant stochastico-Riemannian setting developped in [2],
where the metric is induced by the random field. Then we compute the average
number of critical points of given indices in the spirit of [3], where it was proven that,
for large u, local maxima predominate exponentially fast amongst critical points of
f in Eu. But here we need and provide a expanded version of it with explicit error
terms and for manifolds.

• Section 4 is of deterministic nature and explains the general setting, that is the
definition of Whitney stratified sets. It then presents the main features of strati-
fied Morse theory, a vast generalization of classical Morse theory developped in the
book [19].

• Section 5 is devoted to the proofs of the theorems for the general Whitney stratified
spaces. We then explain how the full result of [2] for the mean Euler characteristic
can be used for EN(Eu) when we assume that the Whitney space is in fact a locally
convex cone space. We then prove the asymptotic formula of the Nazarov-Sodin
constant cZ(u).

Acknowledgements. The author thanks Antonio Auffinger for his valuable expertise
about [6] and the first part of the proof of Theorem 1.14. He also thanks François Lau-
denbach for the part of Remark 5.14 concerning manifolds with boundary. The research
leading to these results has received funding from the French Agence nationale de la
recherche, ANR-15CE40-0007-01 (Microlocal) and ANR-20-CE40-0017 (Adyct).
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2 Classical Morse theory

2.1 Change of sojourn sets

Classical Morse theory [31] is a way to understand part of the topology of a compact
smooth manifolds using one C2 function on it, as long as its critical points are non-
degenerate, that is its Hessian at these points are definite. As said in the introduction,
it seems that the first occurrence of this circle of ideas draws back to F. Reech [39]. Let
M be a compact smooth n-manifold without boundary, f : M → R be a C2 map and let
u ∈ R. Recall the definition of the sojourn set Su(M,f) = {x ∈ R, f(x) ≤ u}.

Remark 2.1 1. In the Morse theory tradition, Su(M,f) is written Mu or M≤u. Since
f will be random and hence will change, we prefer the probabilistic notation.

2. Note that Su(M,f) = E−u(M,−f). Hence, for centered fields, the law of the subsets
Su(M,f) is the same of the one of the subsets E−u(M,f), so that in particular

∀u ∈ R, ESu(M,f) = EE−u(M,f).

Recall that a critical point p of f is a point of M such that df(x) = 0. At a critical point,
we can define the second differential d2f(x) in any coordinate system. Then, d2f(x) has
a definite signature independent of the coordinates. Define

∀A ∈ Sym(n,R), ind(A) = #Spec(A) ∩ R−, (2.1)

where Sym(n,R) denotes the set of real symmetric matrices of size n and Spec the spec-
trum. For any subset E ⊂ M and i ∈ {0, · · · , n} and f : M → R any Morse function,
let

Criti(E, f) = {x ∈ E, df(x) = 0 and ind(d2f(x)) = i},

Ci(E, f) = #Criti(E, f) and C(E, f) =

dimM∑
i=0

Ci(E, f).

We will omit f when it is tacit. Let for any integer i,

bi(S) = dimHi(S,R)

be the i-th Betti number of S. In particular, b0(S) is the number of connected components
of S.

Definition 2.2 Let M be a C2 manifold and f : M → R be a C2 function. The map f
is said to be Morse if the critical points of f are isolated, and non-degenerate. The latter
means that is its Hessian in coordinates is definite.

This definition does not depend on the chosen coordinates.

Definition 2.3 Let B ⊂ A and S− ⊂ S+ be topological spaces and g : B → S− be a
continuous map, such that the identity map S− ⊂ S− extends to a homeomorphism

S+ ∼ S− ∪g A = S− tA/ ∼,

where for all y ∈ S− and x ∈ B, y ∼ x whenever y = g(x). Then we shall say that S+ is
obtained from S− by attaching the pair (A,B) and we will write

S+ = S− ∪g (A,B).

12



Note that when B = ∅, then S+ = S− tA. For n ∈ N, we will use the notation Dn for the
unit ball Bn ⊂ Rn; to be clear, D0 is a point. By ∂Dn we denote the sphere Sn−1 ⊂ Rn,
so that ∂D1{−1, 1} and ∂D0 = ∅. We now sum up the main features in classical Morse
theory we will use:

Theorem 2.4 Let M be a compact smooth manifold of dimension n and f : M → R be a
Morse function. Then, the following holds:

1. (Invariance between two non-critical values) [31, Theorem 3.1] Let u ≤ v ∈ R be such
that [u, v] does not contain any critical value of f . Then Sv(M,f) is diffeomorphic
(up to boundary) to Su(M,f).

2. (Change at a critical point) [19, Proposition 4.5] Let u ∈ R be such that there is a
unique critical point p ∈M in Zu(M,f), and assume that p has index i ∈ {0, · · · , n}.
Then, for any ε > 0 small enough, the manifold with boundary Su+ε(M,f) is home-
omorphic to

Su−ε(M,f) ∪g (Di ×Dn−i, ∂Di ×Dn−i),

where g : ∂Di × Dn−i → Zu−ε the attaching map is an embedding. In particular
their boundaries are homeomorphic.

3. (Components diffeomorphic to a ball) Let u ∈ R be a non-critical value of f . Then,
any connected component of Su(M,f) containing a unique local minimum and no
other critical point is diffeomorphic to a n-ball Bn.

4. (Killing of a component) Under the hypotheses of assertion 2., for any small enough
positive ε,

b0(Su+ε) ≥ b0(Su−ε)− 1{p∈Crit1(M,f)}.

5. (Weak Morse inequality) [31, Theorem 5.2] For any non-critical level u ∈ R,

∀i ∈ {0, · · · , n}, bi(Su(M,f)) ≤ Ci(Su).

6. (Morse Euler characteristic) [31, Theorem 5.2] For any non-critical level u ∈ R,

χ(Su) =
n∑
i=0

(−1)iCi(Su). (2.2)

As explained in the introduction, F. Reech proved (2.2) in [39] for M = S2.

Corollary 2.5 Under the hypotheses of Theorem 2.4, for any non critical real u ∈ R,

0 ≤ C0(Su(M,f))−N(Su) ≤ C0(Su)−NBn(Su) ≤
∑
i≥1

Ci(Su). (2.3)

Proof. The first inequality is a consequence of Theorem 2.4 assertion 5. for i = 0. The
second one is trivial. For the last one, by assertion 3. any critical point with vanishing
index produces component homeomorphic to a ball, and a critical point of index larger
or equal to 1 can change the topology of at most one component of Su, hence the last
inequality in (2.3). �
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Figure 2: Attaching a handle to Su−ε. In this drawing, n = 2 and the index equals
i = 1. The sojourn set Su+ε (the complementary of the green shaded part of the surface)
is homeomorphic to Su−ε ∪g (D1 ×D1, ∂D1 ×D1).

2.2 Change of nodal sets

The second assertion of Theorem 1.2 about the nodal sets Zu needs the following further
result which we could not find in the litterature (see however [22] for Betti numbers
estimates).

Proposition 2.6 Let M be a compact smooth manifold without boundary and f : M → R
be a Morse function. Then,

1. (Invariance) For any pair of reals u < v such that f has no critical value in [u, v],
Zu(M,f) is diffeomorphic to Zv(M,f).

2. (Change at a critical point) For any u ∈ R, if p is a unique critical point in Zu(M,f)
with value u = f(p), then for ε positive and small enough,

|b0(Zu+ε(M,f))− b0(Zu−ε)| ≤ 6.

3. (Components diffeomorphic to a sphere) Under the hypotheses of assertion 2, if p
has vanishing index, then

Zu+ε ∼diff Zu−ε t Sn−1.

Proof. The first assertion is a direct consequence of Theorem 2.4 assertion 1. The third
one is a consequence of Theorem 2.4 assertion 3. For the second point, assume that the
index of p is i. By Theorem 2.4 assertion 2,

Su+ε ∼homeo S+ = Su−ε ∪g (A,B),

where
(A,B) = (Di ×Dn−i, ∂Di ×Dn−i) and g : B → Su−ε
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is the attaching map, which is an embedding. In particular, since M has no boundary,
∂S+ is homeomorphic to Zu+ε. Let

Z− := Zu−ε \ g(B).

Then ∂S+ ∼ Z− ∪∂g (∂A \ B), where ∂g = g|∂(∂A\B). Put a metric on the handle A and
for η > 0, let

U = {z ∈ ∂A,dist(z,B) ≥ 2η} and V = Z− ∪ {z ∈ ∂A \B, dist(z,B) ≤ 3η}.

For η small enough,

U ∼ ∂A \B = Di × ∂Dn−i and V ∼retract Z−.

By Mayer-Vietoris, since U ∪V = ∂S+ and U ∩V is homeomorphic to ∂B ∼ ∂Di×∂Dn−i,
there exists a long exact sequence

· · · → H0(∂B)
α→ H0(∂A \B)⊕H0(V )→ H0(∂S+)→ 0,

so that
b0(∂S+) = b0(∂A \B) + b0(V )− rank(α). (2.4)

In order to estimate b0(V ), let W be a small tubular neighborhood of g(B) in Zu−ε. Note
that, since g(B) ∼homeo B,

W ∪ V ∼retract Zu−ε and W ∩ V ∼retract ∂B.

Then, again by Mayer-Vietoris,

H0(∂B)
β→ H0(W )⊕H0(V )→ H0(Zu−ε)→ 0,

so that, since W ∼retract g(B) ∼ B,

b0(V ) = b0(Zu−ε) + rank(β)− b0(B).

Finally, by (2.4), we obtain

b0(Zu+ε)− b0(Zu−ε) = b0(∂A \B) + rank(β)− b0(B)− rank(α), (2.5)

where b0(B) ≤ 2 and

rank(α) ≤ b0(∂Di × ∂Dn−i) ≤ 4 and rank(β) ≤ b0(∂Di × ∂Dn−i) ≤ 4.

Hence, b0(Zu+ε)− b0(Zu−ε) ∈ [−6, 6]. which implies the result. �

The following corollary is analogous to Corollary 2.5.

Corollary 2.7 Under the hypotheses of Proposition 2.6, for any non-critical value u ∈ R,

|N(Zu(M,f))− C0(Su)| ≤ 6
n∑
i=1

Ci(Su).

The same holds for NSn−1(Zu) instead of N(Zu).

Proof. This is an immediate consequence of Proposition 2.6. �
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2.3 Spin glasses

We finish this section by proving Theorem 1.14. In the setting explained in the introduc-
tion, two shortcuts happen. First, the field is defined over the sphere, so that we don’t
need stratified Morse theory. Second, the comparison of the average number of critical
points of given index is done in [6]. We begin by recalling the main results of [6] which we
will use.

Theorem 2.8 [6, Theorems 2.1, 2.5 and 2.8] Let n ≥ 1 and p ≥ 2 be integers, and
fn :

√
nSn−1 → R be the Gaussian random field defined by (1.5). Then, for any index

i ∈ {0, · · · , n− 1} and any u ∈ R,

ECi
(
Snu(
√
nSn−1, fn)

)
=

√
8

p
(p− 1)n/2EGOEn

[
e
−n p−2

p
λ2i 1

λi≤
√

p
2(p−1)

u

]
, (2.6)

where the GOEn measure is the classical measure on the space of real symmetric matrices
of size n, see [6, (2.6)] and λ0 ≤ · · · ≤ λn−1 denote the (real) eigenvalues of the random
symmetric matrix. Moreover, for any i ∈ N,

∀u ∈ R, lim
n→+∞

1

n
logECi

(
Snu(
√
nSn−1, fn)

)
= Θi,p(u)

where Θi,p is defined by [6, (2.16)].

Proof of Theorem 1.14. Let i ∈ {1, · · ·n− 1} and u ≤ 0. Then, by (2.6),

ECi(Snu(
√
nSn−1, fn)) ≤

√
8

p
(p− 1)n/2e

−n p−2
4(p−1)

u2PGOEn
[
λi ≤

√
p

2(p− 1)
u

]
≤

√
8

p
(p− 1)n/2e

−n p−2
4(p−1)

u2PGOEn
[
λ1 ≤

√
p

2(p− 1)
u

]
.

Let u ≤ −E∞ < 0, where E∞ = 2
√

p−1
p . By the large deviation result given by [6,

Theorem A.9], and paying attention to the used normalizations [6, Remark 2.4], I1 is the
rate function for u ≤ −E∞. In particular,

∀u ≤ −E∞, lim sup
n→+∞

1

n
logPGOEn

[
λ1 ≤

√
p

2(p− 1)
u

]
= −2I1(u),

where I(1) ≥ 0 is defined by [6, (2.13)] and vanishes only at −E∞. The former inequality,
the latter limit and the definition of Θ1 imply that

lim sup
n→+∞

max
i={1,··· ,n−1}

1

n
logECi(Snu) ≤ Θ1,p(u).

However, ∀u ≤ −E∞, Θ1,p(u) = Θ0,p(u)− I(1), so that by Theorem 2.8,

lim sup
n→+∞

max
i={1,··· ,n−1}

1

n
logECi(Snu) ≤ lim

n→+∞

1

n
logEC0(Snu)− I1(u).

Now, fix u < −E∞. Then, there exists N ∈ N∗, such that

∀n ≥ N, EC0(Snu)−
n−1∑
i=1

ECi(Snu) ≥ EC0(Snu)(1− ne−nI1(u)/2).
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By Corollary 2.5 and Theorem 2.8, this implies that

∀u < −E∞, lim inf
n→+∞

1

n
logENBn−1(Snu) ≥ Θ0,p(u).

By the weak Morse inequality (Theorem 2.4), the latter lim inf is bounded above by Θ0,p(u)
as well, hence the result. The same holds for NSN−2(Zu) instead of NBn−1(Eu) applying
Corollary 2.7 instead of Corollary 2.5. �

3 Gaussian fields over manifolds

3.1 The induced Riemannian geometry

Riemannian generalities. Let (M, g) be a C2 Riemannian manifold. The curvature
operator induced by g is denoted here by R, which is a two-form over M with values in
TM [2, (7.5.1)]. It induces the curvature also written R [2, (7.5.2)]:

∀X,Y, Z,W ∈ TM, R(X,Y, Z,W ) = g(R(X,Y )Z,W ).

Assume now that N ⊂ M is a submanifold of codimension at least 1 (later, N will be a

stratum ∂jM of M for j ≥ 1, or N will be M inside M̃). The second fundamental form
associated to N,M and g is defined by [2, (7.5.8)]:

∀X,Y ∈ TN, S(X,Y ) = PT⊥N (∇XY ), (3.1)

where ∇ denotes the Levi-Civita connection associated to g, see [2, (p.163)], and

PT⊥N : TM|N → T⊥N

denotes the orthogonal projection of TM onto the normal bundle T⊥N over N . Finally,
for ν ∈ T⊥N , we define

Sν : TN2 → R,
∀X,Y ∈ TN, Sν(X,Y ) = g(S(X,Y ), ν). (3.2)

We also define the first fundamental form:

I : TN × TN → R

to be the scalar product g, that is I(X,Y ) = g|N (X,Y ) = g(X,Y ). Recall also that for
f : M → R a C2 map,

∇2f : TM × TM → R

is defined by [2, 12.2.7]

∀X,Y ∈ Γ(TM), ∇2f(X,Y ) = XY f −∇XY f,

where Γ(TM) denotes the set of C2 vector fields. Note that at a critical point,∇2f(X,Y ) =
XY f. Since ∇ is torsion-free, this is a symmetric bilinear form which depends only on
the value of the fields at the point where it is computed. Recall that for a function f ,
df = ∇f .
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Metric induced by a Gaussian field. Let M be a C2 manifold and f : M → R be a
centered Gaussian field satisfying the hypotheses (1) (regularity) and (2) (non-degeneracity
for df). Recall that f induces a metric over M by [2, (12.2.1)]:

∀x ∈M,X, Y ∈ TxM, g(X,Y ) = E(df(x)X, df(x)Y ), (3.3)

where df(x) denotes the differential of f at x.

Example 3.1 If f : Rn → R satisfies condition (4) (stationarity), that is, there exists a
function k : Rn → R, such that is its covariance function e satisfies ∀(x, y) ∈ Rn, e(x, y) =
k(x − y), then the associated metric g satisfies g = −d2k(0). In this case, ∇ = d, R = 0
and Sν = dν.

We present now very useful and elegant computations from [2].

Proposition 3.2 [2, (12.2.13),(12.2.15)] Let M̃ be a C3 Riemannian manifold, M ⊂ M̃
be a C2 submanifold, f̃ : M → R be a Gaussian centered field satisfying conditions (1)
(regularity), (2) (non-degeneraticity) and (3) (constant variance), and g be the metric (3.3)
associated to f̃ . Then, for any x ∈M , ν∗ ∈ T ∗xM , u ∈ R,

E := E
(
∇2f | df = ν∗, f = u

)
= −uI (3.4)

∀X,Y ∈ TM, E (XY f | df = ν∗, f = u) = −ug(X,Y ) + ν∗(∇XY ) (3.5)

E
(
(∇2f − E)2 | df = ν∗, f = u

)
= −(2R+ I2), (3.6)

where everything is computed at x. Moreover, the right-hand side of equation (3.6) is the
covariance of the conditionned second derivative [2, Lemma 12.3.1], and the operators are
restricted to TxM .

In equation (3.6), the square of a 2-tensor P is defined by [2, (7.2.5)]:

∀X,Y, Z,W ∈ TxM, P 2(X,Y, Z,W ) = 2 (P (X,Z)P (Y,W )− P (X,W )P (Y, Z)) .

3.2 Critical points

Critical points are the key elements of Morse theory. Luckily, they are in principle pretty
simple to compute in average, because of the Kac-Rice formula. We establish two related
results, the idea of the third one coming from [3].

Setting and notations. We begin with the general setting of this part. Let M̃ be a C3

manifold of dimension N ≥ 1, M ⊂ M̃ be a C2 submanifold of dimension n ∈ {0, · · · , N}
with compact closure, f̃ : M̃ → R be a Gaussian field satisfying conditions (1), (2) and
(3), and f = f̃|M , and g the metric (3.3) induced by f̃ . For any i ∈ {0, · · · , n}, we denote
by Ci(M) the number of critical points of f of index i.

• Assume first that n ≤ N − 1. For t ∈ R, x ∈ M and ν ∈ T⊥x M , define µt,ν the
Gaussian measure over Sym(n,R) with average −tI + Sν and variance (−2R+ I2),

∀t ∈ R, (x, ν) ∈ T⊥x M, µt,ν ∼ N(−tI + Sν ,−2R+ I2), (3.7)

viewed and restricted to an orthonormal basis for TxM , where Sν was defined
by (3.2). More concretely, for any x ∈ M , we fix (Ei)i∈TxM an orthonormal ba-
sis of (TxM, g) so that (Rn, g0) is identified with (TxM, g) through it, as well as the
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operators I (which becomes the identity matrix), R and Sν . Then, if (Ykl)1≤k,l≤n ∈
Sym(n,R) is equipped with the measure µt,ν , then for all 1 ≤ k, l, k′, l′ ≤ n,

EYkl = δkl + Sν(Ek, El)

and Cov (YklYk′l′) = (−2R+ I2) ((Ek, El), (Ek′ , El′)) .

• Assume now that n = N . In this case, there is no normal bundle. Let us define the
equivalent of µt,ν :

∀t ∈ R, x ∈M, µt ∼ N(−tI,−2R+ I2). (3.8)

The following numbers will quantify the error terms in the main theorems. Let

σ(M) = sup
x∈M

ρ(−2R+ I2), (3.9)

where ρ(P ) denotes the spectral radius of P . which are positive by continuity of the terms
and compacity of M , and where ‖ · ‖ denotes the norm associated to the standard metric
over Rn. Define also

ρ(M) = inf
x∈M
|det(−2R+ I2)|1/2 (3.10)

and

s(M) =

 sup
(x,ν)∈ST⊥M

ρ(Sν) if n ≤ N − 1

0 if n = N,
(3.11)

where ST⊥M is the spherical normal bundle, that is

∀x ∈M, ST⊥x M = {ν ∈ T⊥x M, ‖ν‖g = 1}. (3.12)

The following constant will measure the exponential decay of the critical points which are
non-maxima:

θ−1(M) = max
(
s2 + σ, (s+ 1)2

)
. (3.13)

Define also
u0(M) = (1 + s(M)) max

(
1, σ(M)1/2

)
(3.14)

and

u1(M) = max

(
u0(M),

1

θ
(N2 + 2)

)
. (3.15)

Notice that µt, u0, u1, s, ρ, σ and θ depend only on the 4-jet of e on the diagonal of
M ×M . Indeed, g depends on the 2-jet, and the curvature and second form depend on
the second derivatives of the metric.

We will need a version of the latter parameters not only for submanifolds, but also for
stratified sets. Hence, assume that M ⊂ M̃ is a stratified set of dimension n. For any of
the parameters ϕ defined above, let

ϕ(M) = sup
j∈{0,··· ,n}

ϕ(∂jM) or inf
j∈{0,··· ,n}

ϕ(∂jM) (3.16)

depending of the definition of ϕ.
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A general formula. The following lemma provides a general Kac-Rice formula for the
average of critical points of given index. For this, let n ≥ 1 and

∀1 ≤ i ≤ n, Sym(i, n− i,R) = {A ∈ Sym(n,R), ind(A) = i}, (3.17)

where ind(A) is defined by (2.1). In the sequel, for any topological subspace M ⊂ M̃ ,

∂M = M \M.

Recall that if M is the interior of a submanifold with boundary, this boundary coincides
with the geometrical boundary. If M is the stratum of stratified sets, ∂M can be more
intricated.

Lemma 3.3 Let M̃ a C3 manifold of dimension N , n ∈ {0, · · · , N} be an integer and

M ⊂ M̃ be a C2 n-dimensional submanifold of M , such that ∂M has finite (n − 1)-th

Hausdorff measure. Let f̃ be a centered Gaussian field on M̃ satisfying the conditions (1)
(regularity), (2) (non-degneraticity) and (3) (unit variance), g be the induced metric de-
fined by (3.3), f = f̃|M , and i ∈ {0, · · · , n}. Then,

∀u ∈ R, ECi(Su(M,f)) =
1

√
2π

N+1

∫
(x,ν)∈T⊥M

∫ u

−∞
e−

1
2
t2e−

1
2
‖ν‖2g∫

Y ∈Sym(i,n−i,R)
|detY |dµt,ν(Y )dtdvolg(x, ν),

where dµt,ν is defined by (3.7). If n = N , the integral in ν is removed and µt,ν is replaced
by µt defined by (3.8).

Proof. The Kac-Rice formula given by [2, Theorem 12.1.1] is written for compact mani-
folds but holds for open manifold whose topological boundary has finite (n− 1)-Hausdorff
measure, as in [2, Theorem 11.2.1]. Now, from the proof of [2, Theorem 12.4.2], for all
i ∈ {0 · · · , n} and every u ∈ R, we get

ECi(Su(M,f)) =

∫
(x,ν)∈TM⊥

E
(
| det∇2f|TxM |1f(x)≤u1ind(∇2f|TxM )=i

∣∣∣ df|TxM⊕T⊥x M = (0, ν∗)
)

pdf(x)(0, ν
∗)dvolg(x, ν),

where det∇2f|TxM denotes the determinant of the matrix of the bilinear form ∇2f|TxM
in some orthonormal (for g) basis of TxM , ν∗ = g(ν, ·), and pdf(x) denotes the Gaussian
density of df(x). Using the independence of f(x) and df(x) induced by the constance of
the variance of f , the integrand of the integral over M rewrites

1
√

2π
N+1

∫ u

−∞

∫
ν∈T⊥x M

e−
1
2
t2e−

1
2
‖ν‖2gθx(ν, t)dvolg(ν)dt,

where

θx(ν, t) = E
(
|det∇2f|TM |1ind(∇2f|TM )=i

∣∣∣ f(x) = t, df(x)|TM⊕T⊥M = (0, ν∗)
)
.

By Proposition 3.2,

θx(ν, t) =

∫
Y ∈Sym(i,n−i,R)

| detY |dµt,ν(Y ),

where µt,ν is the Gaussian measure with average −tI + Sν and variance (−2R + I2) at x
and restricted to TxM . The case n = N is the same, except that the ν part is absent. �
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The total number of the critical points. Corollary 3.4 below provides an asymptotic
equivalent of the average sum of critical points, with a quantitative error bound. Before
writing it, under the hypotheses of Lemma 3.3, we define

v(M) =

{
volg(M) if n = N

volg(ST⊥M)
volg0 (SN−n−1)

if n ≤ N − 1
, (3.18)

where g0 denotes the standard metric on RN−n.

Corollary 3.4 Under the hypotheses of Lemma 3.3,

∀u ≤ −1, EC(Su(M,f)) =
1

√
2π

n+1 v(M)|u|n−1e−
1
2
u2 + εn,u,

where v(M) is defined by (3.18) and

∀u ≤ −1, |εn,u| ≤ PN (ρ, σ+)v(M)|u|n−2e−
1
2
u2 . (3.19)

Here, PN is a real polynomial with non-negative coefficients depending only on n, and
ρ, σ+ and s are defined by (3.10), (3.9) and (3.11).

Proof. Assume first that n ≤ N − 1. Let x ∈ M , t ∈ R, ν ∈ T⊥x M and µt,ν defined
by (3.7). Then,∫

Sym(n,R)
| detY |dµt,ν(Y ) =

∫
Sym(n,R)

|det(tI + Y − Sν)|dµ̃(Y ),

where dµ̃ is the centered Gaussian measure with covariance (−2R + I2), see § 3.1 for the
definitions of R, I and Sν . Here, there is an abuse of notation, since I, Sν and R are
considered through a fixed orthonormal basis or TxM . Now for two matrices A,B of size
n and a non negative real t,

|det(tA+B)− tn detA| ≤ n!
n∑
i=1

tn−i‖A‖n−i∞ ‖B‖i∞, (3.20)

where ‖(Akl)1≤k,l≤n‖∞ = mink,l |Akl|. Moreover, by Hölder’s inequality, there exists posi-
tive constant Cn, C

′
n depending only on n such that for any i ∈ {1, · · · , n},∫

Sym(n,R)
‖Y − Sν‖i∞dµ̃(Y ) ≤ Cn

(∫
Sym(n,R)

‖Y ‖i∞dµ̃(Y ) + ‖Sν‖i∞

)
≤ C ′n(σ

i/2
+ + ‖ν‖igsi).

Here, we used that
∀ν ∈ T⊥x M \ {0}, Sν = ‖ν‖gSν/‖ν‖g . (3.21)

Hence, by (3.20) and Lemma 3.3, there exists a polynomial PN depending only on N and
with non-negative coefficients, such that for all u ≤ −1,

EC(Eu)− |u|
n−1e−

1
2
u2

√
2π

N+1

∫
(x,ν)∈T⊥M

e−
1
2
‖ν‖2gdvolg(x, ν)

21



is bounded by |u|n−2e−
1
2
u2PN (ρ, σ+)volg(ST

⊥M). Now using the coarea formula applied
to v 7→ ‖v‖g,∫

ν∈T⊥x M
e−

1
2
‖ν‖2gdvolg(ν) =

∫ +∞

0
tN−n−1e−

1
2
t2dtvolg(SxT

⊥M)

=
√

2π
N−n volg(SxT

⊥M)

volg0(SN−n−1)
.

For n = N , the normal bundle is the zero space, so that the latter integral must be
considered to be equal to 1. �

Non-maxima critical points. We prove now a quantitative version of [3, Theorem
5.2.1] for submanifolds, which can be hence implemented immediatly into the general
context of stratified sets. It says that in average, the proportion of critical points in
Eu(M,f) which are not local maxima decreases exponentially fast with u.

Theorem 3.5 Under the hypotheses of Lemma 3.3,

∀u ≤ −u0, EC(Su(M,f)) = EC0(Su) + ηn,u,

where

∀u ≤ −u0, |ηn,u| ≤
1

ρ
QN (σ1/2, σ−1/2, s)v(M)|u|N2

e−
1
2
u2(1+θ), (3.22)

where v(M) is defined by (3.18), u0 by (3.14), σ by (3.9), ρ by (3.10), s by (3.11), θ
by (3.13) and QN is a real polynomial depending only on N with non-negative coefficients.

Proof. Lemma 3.3 implies that for all u ∈ R,

E(C(Su)− C0(Su)) =
1

√
2π

N+1

∫
(x,ν)∈T⊥M

∫ u

−∞
e−

1
2
t2e−

1
2
‖ν‖2g∫

Y ∈
⋃
i≥1 Sym(i,n−i,R)

|detY |dµt,ν(Y )dvolg(x, ν)dt,

where µt,ν denotes the Gaussian measure on Sym(n,R) given by (3.7). In the sequel, the
scalar product on Sym(n,R) is 〈R,S〉 = tr(RS). Then the integral in Y is bounded by∫

Z∈
⋃
i≥1 Sym(i,n−i,R)+tI−Sν

| det(Z + tI − Sν)|e−
1
2
σ−1
+ ‖Z‖2 dZ

√
2π

n(n+1)/2
ρ
. (3.23)

Now if ρ(S) denotes the spectral radius of S, then

Z ∈
⋃
i≥1

Sym(i, n− i,R) + tI − Sν ⇒ Spec(Z) ∩ (−∞, t+ s‖ν‖g) 6= ∅, (3.24)

where we used (3.21). Moreover by Hölder inequality, there exists a constant Cn > 0
depending only on n, such that

|det(Z + tI − Sν)| ≤
(
ρ(Z) + |t|+ s‖ν‖g)n ≤ Cn(ρn(Z) + |t|n + sn‖ν‖ng

)
.

Let λ1 ≤ · · · ≤ λn be the eigenvalues of Z. By (3.24),

Z ∈
⋃
i≥1

Sym(i, n− i,R) + tI − Sν ⇒ λ1 ≤ t+ s‖ν‖g. (3.25)
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Writing Z as
Z = tPDiag(λ1, · · · , λn)P

with P orthogonal and using the coarea formula [5, Theorem 2.5.2], there exists a constant
C ′n > 0 such that the integral (3.23) is bounded above by

C ′n
ρ

∫
(λi)2≤i≤n∈Rn−1

λ1≤t+s‖ν‖g

(‖λ‖n∞ + |t|n + sn‖ν‖ng )‖λ‖n(n−1)/2
∞ e−

1
2
σ−1‖λ‖22dλ,

where λ = (λ1, (λi)2≤i≤n) and dλ is the associated Lebesgue measure. After the change
of variables

µ = σ−1/2λ,

we see that the integral is bounded by

C ′n
ρ

∫
µ′∈Rn−1

µ1≤σ−1/2(t+s‖ν‖g)

(
σn/2(‖µ′‖n∞ + |µ1|n) + |t|n + sn‖ν‖ng

)(
‖µ′‖n(n−1)/2

∞ + |µ1|n(n−1)/2
)

σn(n−1)/2+n/2e−
1
2
‖µ‖22dµ,

where µ = (µ1, µ
′). Hence, after integrating in µ′, we see that there exists another constant

C ′′n, such that the integral is bounded by

C ′′n
σn

2/2

ρ

∫
µ1≤σ−1/2(t+s‖ν‖g)

(
σn/2(1 + |µ1|n) + |t|n + sn‖ν‖ng

)
(1 + |µ1|n(n−1)/2)e−

1
2
µ21dµ1.

For s > 0, the latter is bounded by C ′′′n
σn

2/2

ρ (σn/2 + |t|n + snrn)(f1 + f2)(r, t), where

f1 = 1σ−1/2(t+sr)≥−1

f2 = |σ−1/2(t+ sr)|n(n+1)/2−1e−
1
2
σ−1(t+sr)21σ−1/2(t+sr)<−1,

where r = ‖ν‖g and C ′′′n depends only on n. We used the fact that for any k ∈ N, there
exists a constant ck depending only on k, such that

∀u ≤ −1,

∫ u

−∞
|x|ke−

1
2
x2dx ≤ ck|u|k−1e−

1
2
u2 .

Consequently, there exists a constant CN depending only on N , such that E(C − C0) is
bounded by

CNvolg(ST
⊥M)

σn
2/2

ρ

∫ u

−∞

∫ ∞
0

e−
1
2

(t2+r2)(σn/2 + |t|n + snrn)(f1 + f2)rN−n−1drdt.

The double integral splits into two sums J1 and J2, one for f1 and the other for f2. Assume
from now on that

u ≤ −u0 = −(1 + s) max(1, σ1/2).

The bound by the σ1/2 term implies that

∀t ≤ u ∀r ≥ 0, σ−1/2(t+ sr) ≥ −1⇒ r ≥ −t/(s+ 1).
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Changing t into −t, there exists DN , D
′
N > 0 depending only on N , such that, using the

bound t ≥ 1 + s and then u ≤ −1,

J1 ≤
∫ ∞
−u

∫ ∞
t/(s+1)

e−
1
2

(t2+r2)(σn/2 + tn + snrn)rN−n−1drdt

≤ DN

∫ ∞
−u

e−
1
2
t2(1+1/(s+1)2))(σn/2 + tn + sn)(t/(s+ 1))N−2dt

≤ D′N (σn/2 + 1 + sn)uN+n−3e
− 1

2
u2(1+ 1

(s+1)2
)
.

The second integral J2 satisfies

J2 ≤
∫ +∞

−u

∫ ∞
0

e−
t2

2
− r

2

2
− 1

2
σ−1(t−sr)2(σn/2 + tn + snrn)

σ−(n2+n)/4(t+ sr)n(n+1)/2rN−n−1drdt,

where we used |σ−1/2(t− sr)|n(n+1)/2−1 ≤ |σ−1/2(t+ sr)|n(n+1)/2 in order to simplify the
power. We write

t2 + r2 + σ−1(t− sr)2 =

(
1 +

σ−1

1 + s2σ−1

)
t2 + (1 + s2σ−1)R2,

with R = |r − sσ−1t|. Using again Hölder, there exists EN , E′N and E′′N depending only
on N such that, using 1 + s2σ−1 ≥ 1 in the exponential,

J2 ≤ ENσ
−n(n+1)/4

∫ ∞
−u

∫ +∞

0
e
− t

2

2
(1+ σ−1

1+s2σ−1 )−(1+s2σ−1)R
2

2 (σn/2 + tn + snRn + s2nσ−ntn)(
(sR)n(n+1)/2 + ((1 + s2σ−1)t)n(n+1)/2

) (
RN−n−1 + (sσ−1t)N−n−1

)
dRdt

≤ E′Nσ
−n(n+1)/4

∫ ∞
−u

e
− t

2

2
(1+ σ−1

1+s2σ−1 )
(
σn/2 + tn + sn + s2nσ−ntn)

)
(
sn(n+1)/2 + ((1 + s2σ−1)t)n(n+1)/2

) (
1 + (sσ−1t)N−n−1

)
dt

≤ E′′Nσ
−n(n+1)/4

(
σn/2 + 1 + sn + s2nσ−n

)
(sn(n+1)/2 + 1 + (s2σ−1)n(n+1)/2)(

1 + (sσ−1)N−n−1
)
|u|n(n+1)/2+N−2(1 + σ−1)n(n+1)/4+N/2e

−u
2

2
(1+ σ−1

1+s2σ−1 )
.

Summing J1 and J2 implies that for u ≤ −u0,

E(C(Su)− C0(Su)) ≤ |u|N2
e
−u

2

2

(
1+min( 1

s2+σ
, 1
(s+1)2

)
)
volg(ST

⊥M)
1

ρ
PN (σ1/2, σ−1/2, s),

where PN is a polynomial depending only on N . �

3.3 The main theorem for manifolds

We can now prove Theorem 1.2 for compact manifolds without boundary, namely Corol-
lary 1.1. In fact, the proof we give is the one of the more precise Theorem 5.3 below, again
for manifolds.

Proof of Corollary 1.1. By Corollary 2.5 and Theorem 5.4, for any u ∈ R,∑
i≥1

ECi(Su(M)) ≤ EC(Su)− EN(Su) ≤ EC(Su)− ENBn(Su) ≤ 2
∑
i≥1

ECi(Su).
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By Theorem 3.5,

u ≤ −u0,
∑
i≥1

ECi(Su) ≤ ηn,u,

where ηn,u satisfies the bound (3.22). Besides, by Corollary 3.4,

∀u ≤ −1, EC(Su(M,f)) =
1

√
2π

n+1 volg(M)|u|n−1e−
1
2
u2 + εn,u,

where εn,u satisfies the bound (3.19). Consequently,

∀u ≤ −u0, ENBn(Su(M,f)) =
1

√
2π

n+1 volg(M)|u|n−1e−
1
2
u2 + δu,

where for u ≤ −u0,

|δu| ≤ |εn,u|+ 2|ηn,u| ≤ QN (ρ−1, ρ, σ−1/2, σ1/2, s)volg(M)(|u|N2
e−θu

2
+ |u|n−2)e−

1
2
u2 ,

where QN is a real polynomial depending only on N and with non-negative coefficients
and θ given by (3.13). Hence the first assertion of Corollary 1.1 is proven.

We turn now to the second assertion concerning NSn−1(Zu(M,f). By Corollary 2.7,
For any u ∈ R,

|EC(Su)− EN(Zu(M))| ≤ 7
n∑
i=1

ECi(Su),

and the same holds for NSn−1 instead of N . We conclude as before. �

4 Stratified Morse theory

We present in this section Morse theory for Whitney stratified set.

4.1 Whitney stratified sets

A stratified set is a disjoint union of manifolds satisfying certain gluing conditions.

Definition 4.1 [2, p. 185],[19, pp. 36–37] Let k ≥ 1 be an integer and M̃ be a Ck

manifold. For 1 ≤ ` ≤ k, a C` stratified space (M,Z) is a pair of a subset M ⊂ M̃
equipped with a locally finite partition Z of M satisfying the following conditions:

1. each piece, or stratum, S ∈ Z is a C` submanifold of M̃ , without boundary and
locally closed;

2. for R,S ∈ Z, if R ∩ S 6= ∅, then R ⊂ S, and R is said to be incident to S.

A stratified space (M,Z) is said to be Whitney if it satisfies the further condition:

3. for any R,S ∈ Z, R incident to S, any x ∈ R, any sequences (xn)n ∈ RN and

(yn)n ∈ SN with xn → x and yn → x, and if ϕ : M̃ → RN is a local chart near x,
the sequence of line segments [ϕ(xn)ϕ(yn)] ∈ RN converges in projective space to a
line ` and the sequence of tangent spaces TxnS converges in the Grassmannian to a

subspace τ ⊂ TxM̃ , then dϕ−1(`) ⊂ τ .
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One can prove that being Whitney does not depend on the chosen chart of its definition.
For any stratification (M,Z), the dimension of M is defined by

dimM = sup
S∈Z

dimS. (4.1)

The union of strata of dimension j ∈ {0, · · · , dimM} is denoted by ∂jM , that is

∂jM =
⋃

S∈Z, dimS=j

S.

Example 4.2 • (Manifolds) If M is a C` submanifold without (resp. with) boundary

of a Ck manifold M̃ , k ≥ `, then M has a natural structure of C` Whitney stratified
space given by Z = {M} (resp. Z = {M \ ∂M, ∂M}.

• (Cubes) If M̃ = Rn and M = [0, 1]n, then M posses a natural smooth Whitney
stratified structure, with Z being the decomposition into the interior M̊ , the interior
of its (n− 1)-faces, etc. The hypercube [0, 1]n has thus n+ 1 strata, with ∂n[0, 1]n =
]0, 1[n and ∂0[0, 1]n = {0, 1}n.

• (Spirals) The Whitney condition in Definition 4.1 is quite subtle: the spiral

{e−t2+it, t > 0} ∪ {0} ⊂ R2

is a Whitney stratified set, but {e−t+it, t ≥ 0} ∪ {0} is not, see [37, 1.4.8]. Both
spirals turn an infinitely number of time around the origin, but the first one is more
straight, in a way, than the second one.

• [37, 1.1.11] For a stratified set L, the topological cone

Cone(L) = ([0, 1[×L)/({0} × L)

has a natural stratification, where the extremity [{0}×L] is a 0-dimensional stratum,
and the other strata are ]0, 1[×S, where S is a stratum of L.

See [2, p. 187] for a list of other examples.

4.2 Morse functions

Definition 4.3 [19, p.6, p.52], [2, p.194] Let 1 ≤ m ≤ ` ≤ k, M̃ be a Ck manifold,

f̃ : M̃ → R be a Ck map, (M,Z) be a C` stratified manifold of dimension n and f := f̃|M .
The function f is said to be Cm over M if for j ∈ {0, · · · , n}, f|∂jM is Cm. Moreover,
a point x ∈ M is a critical point of f if there exists j such that x is a critical point of
f|∂jM . Finally, a critical point x ∈ M of f is said to be nondegenerate if the Hessian of
f|∂jM in a local chart is non-degenerate at x.

Example 4.4 Under the hypotheses of Definition 4.3, any critical point p ∈ M of f̃ in
the classical sense is a critical point for f in this wider setting. If dim M̃ = dimM = n,
a point of ∂nM is critical if and only if it is critical as a point of M̃ . Any point in ∂0M
is critical for any function f .

Definition 4.5 [19, §1.8] Let M ⊂ M̃ be a C1 Whitney stratified set, x ∈ M and R its
stratum.
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Figure 3: The function f is not Morse over the stratified space M , where ∂0M = {p}
and ∂1M is the union of the two open drawn branches. Here, M̃ = R2. Indeed p is a
critical point of f but df(p)(v) vanishes, where v is a limit of tangents on M \ {p}, hence
assertion 3. of Definition 4.6 is not satisfied. See also [19, pp. 13–14]. Rotating a little
the figure makes f Morse.

1. A generalized tangent space T at the point x is any subspace of the form

T = lim
xn→x

TxnS,

where R ⊂ S and (xn)n is a sequence of elements of S converging to x and the limit

holds in the Grassmanian of TM̃ .

2. A cotangent vector ν∗ ∈ T ∗xM̃ is said to be degenerate if there exists a generalized
tangent space T 6= TxR such that ν∗|T = O. Note that in this case, Whitney conditions
imply that ν∗|TxR = 0.

Nondegenerate covectors vanish along TxR but not in other directions linked to M . In
Figure 3, the covector associated to v is degenerate.

Definition 4.6 [19, p.52], [2, Definition 9.3.1] Let M ⊂ M̃ be a C2 stratified manifold

in a C2-manifold, and f̃ : M̃ → R be a C2 map. The restriction f := f̃|M : M → R of f
is said to be a Morse function if the three following conditions are satisfies:

1. the critical values of f are distinct, that is for any pair of distincts critical points
p, q ∈M , f(p) 6= f(q);

2. any critical point of f in the sense of Definition 4.3 is nondegenerate;

3. for any critical point x the covector df̃(x) ∈ T ∗xM̃ is nondegenerate in the sense of
Definition 4.5.

Example 4.7 Figure 3 provides a counter example for condition 3.

Met M ⊂ M̃ be a C1 stratified set of dimension n. For any subset E ⊂ M , any i ∈
{0, · · · , n} let f = f̃|M : M → R be a Morse function. As in § 2.1, denote by Criti(E, f)
the set of critical points of index i of M in the sense of Definition 4.3 and belonging to E,

Ci(E, f) = #Criti(E, f) and C(E, f) =
n∑
i=0

Ci(E, f).
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4.3 Change of sojourn sets

Let M ⊂ M̃ be a C1 Whitney stratified set in a manifold M̃ and x ∈ M . Let Dx ⊂ M̃ a
small submanifold diffeomorphic to a ball, transverse to the stratum S containing x and
such that Dx∩S = {x}. Note that dimDx = dim M̃ −dimS. The associated normal slice
at x and is defined by [19, pp. 7–8]

Nx = Dx ∩M. (4.2)

Example 4.8 If S is a neighborhood (in M) of x, then Nx = {x}. If M is an n-
dimensional manifold with boundary and x ∈ ∂M , then Nx ∼ [0, 1]. For a canonically
stratifed rectangle M ⊂ R2, at a corner x, Dx is a disc and Nx the quarter of the disc
inside M . For the example of Figure 1, Dp1 is a segment and Np1 = {p1}, Dp2 is a 2-disc
and Np2 is the union of three segments glued at p2, Dp3 is a 3-ball and Np3 is a union of
two cones glued at p3 with a top 2-dimensional disc (the part of the mirror itself).

Assume now that M̃ and M are C2 and let g be a metric on M̃ . Let f = f̃|M be a Morse

function, where f̃ : M̃ → R is a C2 function. For any critical point p in M with critical
value v = f(p), we define for 0 < ε� δ:

• [19, Definition 3.5.2] the local Morse data

(A,B)(p, f) =
(
M ∩B(p, δ) ∩ f−1[v − ε, v + ε],M ∩B(p, δ) ∩ f−1{v − ε}

)
, (4.3)

where B(p, δ) is the ball of radius δ in M̃ .

• [19, Definition 3.6.1] The normal Morse data at p is the pair of spaces (AN , BN )

(AN , BN )(p, f) = (Np ∩A,Np ∩B) .

We may think of normal Morse data at p as Morse data for the restriction of f to
the normal slice at p.

• [19, Definition 3.6.1] The tangential Morse data at p to be the pair

(AT , BT )(p, f)(A ∩ S,B ∩ S).

Recall that by Theorem 2.4, if p is a critical point of the restriction of f to the stratum S
of p and of index i ∈ {0, · · · , dimS}, then

(AT , BT )(p, f) ∼hom (Di ×DdimS−i, ∂Di ×DdimS−i).

Finally, recall that the product of two topological spaces A,B ⊂ X is defined by

(A,B)× (A′, B′) := (A×A′, A×B′ ∪B ×A′) ⊂ X2.

One first important result about stratified Morse theory is the following theorem 4.9.

Theorem 4.9 Let f be a Morse function on a Whitney stratified space M and p ∈M be
a critical point of f . Then,

1. [19, Proposition 3.5.3, Theorem 7.5.1] the homeomorphic class of the local Morse
data (A,B)(p, f) depends does not depend on the choices of Riemannian metric and
constants ε� δ.

28



2. [19, Theorem 3.8] The total space AN (p, f) of the normal Morse data is homeomo-
prhic to the normal slice Np.

3. [19, Theorem 7.5.1] the homeomorphic class of the normal Morse data (AN , BN )(p, f)
depends only on the differential of f at p, and not on the choices of Riemannian met-
ric, the transverse ball Dx and constants ε � δ. Moreover, if two differentials are
in the same component of the set of nondegenerate covectors, then their associated
normal Morse data are also homeomorphic.

Assume that the ambient space M̃ is equipped with a metric g, and let M ⊂ (M̃, g) be a
stratified set. The stratified normal bundle [2, p. 195] of M is defined by

T⊥M =
⋃
S∈Z

T⊥S ⊂ TM̃.

Recall that nondegenerate covectors are defined in Definition 4.5.

Remark 4.10 Thanks to Theorem 4.9, for any p ∈M and any vector ν ∈ T⊥p M ⊂ TxM̃ ,
we can associate the normal Morse data (AN , BN )(p, ν). It is defined by any data of a
Morse function having a critical point at p and such that ∇f̃(p) = ν. The fact that the
normal Morse data depends only on the one-jet of f is the reason of the definition (9.2.1)
in [2].

Example 4.11 Let M ⊂ M̃ be a submanifold of dimension n with boundary, equipped
with its canonical stratification. Let x ∈ ∂M , ν ∈ T⊥x ∂M and nx ∈ TxM be a non
vanishing outward normal vector to ∂M . Then{

(AN , BN )(p, ν) ∼ ([0, 1], ∅) if 〈ν, nx〉 < 0
(AN , BN )(p, ν) ∼ ([0, 1], {pt}) if 〈ν, nx〉 > 0,

where (AN , BN )(p, ν) is defined in Remark 4.10.

The generalization of Theorem 2.4 in the stratified setting is the following:

Theorem 4.12 Let M̃ be a C2 manifold, M ⊂ M̃ be a C2 Whitney stratified space,
f̃ : M → R be a C2 map such that f = f̃|M is Morse. Then,

1. (Invariance) [19, p.6, Theorem SMT Part A] Let u ≤ v ∈ R be such that [u, v] does
not contain any critical value of f . Then

Su(M,f) ∼hom Sv(M,f)

and the intersection of Su(M,f) with any stratum S is diffeomorphic (up to bound-
ary) to Sv(M,f) ∩ S.

2. (Local Morse data) [19, §3.3, Theorem 3.5.4] Assume that p ∈M is the only critical
point in its level set Zu(M,f), where f(p) = u. Let (A,B) be the local Morse data
at p. Then, for any ε > 0 small enough, there exists an embedding g : B → Zu−ε
such that

Su+ε(M,f) ∼hom Su−ε(M,f) ∪g (A,B).

3. (Factorization of the local Morse data) [19, p.8, Theorem SMT Part B] Under the
hypotheses of assertion 2.,

(A,B)(p, f) = (AN , BN )× (AT , BT ).
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Lemma 4.13 Under the hypotheses of Theorem 4.12, for a any critical point x ∈ M , A
and AN are contractible in M , where (A,B) and (AN , BN ) are the local and normal Morse
data at x.

Proof. By [19, p. 41], any point of a Whitney stratified set has a neighborhood which
is homeomorphic to the product of a neighborhood of S and a cone, hence contractible in
M . This implies that Nx is contractible as well. By Theorem 4.9 assertion 2, so is AN .
Since AT is contractible as a product of two balls, so is A. �

Example 4.14 • If the stratum S of a critical point p is a neighborhood of p, (AN , BN ) =
({p}, ∅), so that (A,B) = (AT , BT ) and we recover Theorem 2.4.

• If p in the stratum S of dimension j is a local minimum for f|S then the local Morse
data at p is (AN ×Dj , BN ×Dj).

• If p in S of dimension j is a local minimum of f (not only of f|S), then BN = B = ∅
and the local Morse data is (AN ×Dj , ∅), so that

Su+ε ∼hom Su−ε t (AN ×Dj).

• In the case where M has a boundary and p ∈ ∂M is a critical point of index i, then
by Example 4.11 and Theorem 4.12,{

(A,B) ∼ ([0, 1]×AT , [0, 1]×BT ) if 〈∇f(p), np〉 < 0
(A,B) ∼ (([0, 1]×AT ), ([0, 1]×BT ) ∪ ({pt} ×AT )) if 〈∇f(p), np〉 > 0,

In the first case, a handle of dimension i is added to Su−ε, see also [9, Proposition
7.1]. In the second case, Su−ε is a deformation retract of Su+ε [9, Proposition 4.1],
and in fact the are homeomorphic, see Remark 5.14 below. Note that in the latter
case [0, 1]×AT ∼hom Bn.

4.4 Morse inequalities

We could not find any reference for weak Morse inequalities for stratified sets, but it is
quite straightforward from Theorem 4.12. If M is a Whitney stratified set, define:

∀i ∈ {1, · · · , n}, γi = sup
f Morse

x∈Criti(M,f)

bi−1(B(x, f)) ∈ R+ ∪ {+∞}, (4.4)

where (A,B)(x, f) denotes the local Morse data of the critical point x.

Proposition 4.15 (Weak Morse inequalities for stratified sets) Under the hypotheses of
Theorem 4.12, for any non critical value u ∈ R,

b0(Su(M,f)) ≤ C0(Su)

∀i ∈ {1, · · · , n}, bi(Su(M,f)) ≤ γiCi(Su),

where γi is defined by (4.4).
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Figure 4: Adding a handle in the case of a manifold with boundary. Here M is a half
torus with the canonical stratification of a manifold with boundary. The points p and q
are critical for f in the sense of Definition 4.3, with vanishing index, so that the tangent
Morse data is (D0 × D1, ∅) in both cases. The normal Morse data at p is (D1, ∅) and
(D1, D0) at q. Theorem 4.12 asserts that Sc+ε is homeomorphic to Su−ε = ∅ with the
handle (D1 × D1, ∅) attached. In particular, Su−ε ∼hom [0, 1] × [0, 1]. Note that it is
not so clear how to find an homeomorphism between the local Morse data given by Su+ε

and D1 × D1 seing as the product of the tangent handle and the normal data. This is
indeed quite subtle in its full generality and explained in [19, 8.5]. More precisely, this
corresponds to the passage from diagram D6 to diagram D7 in [19, p.104]. At q, the handle
is (D1×D1, D1) and Sd+ε ∼hom Sd−ε. Note that 〈∇f(p), np〉 < 0 and 〈∇f(q), nq〉 > 0, see
Example 4.14.
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Example 4.16 • In the case where M is a n-manifold without boundary and p is a
critical point of f with index i ≥ 1, B(p, f) ∼ ∂Di ×Dn−i so that

∀i ≥ 2, γi = 1

and we recover the classical weak Morse inequality given by Theorem 2.4 for i 6= 1.
For i = 1, our estimate has a superfluous factor 2.

• In the case where M has a boundary and p ∈ ∂M is a critical point of index i, then
by Example 4.14, bi−1(B(p, f)) = bi−1(∂Di) ≤ 2 if 〈∇f(p), nx〉 < 0; if the latter is
positive, then the Betti numbers of the sojour set does not change.

Proposition 4.15 is a consequence of the following:

Lemma 4.17 Under the hypotheses of Theorem 4.12, Let i ∈ {0, · · · , n}, and p be a
critical point of f with critical value u ∈ R and local Morse data (A,B). Then, for ε > 0
small enough,

dimH0(Su+ε, Su−ε) ≤ 1

H1(Su+ε, Su−ε) ↪→ H0(B)

and ∀i ≥ 2, Hi(Su+ε, Su−ε) ' Hi−1(B),

Proof. By the snake lemma, for i ≥ 1,

· · · → Hi(A)→ Hi(A,B)→ Hi−1(B)→ Hi−1(A)→ · · ·

and for i = 0,
· · · → H0(B)→ H0(A)→ H0(A,B)→ 0.

By Lemma 4.13, A is contractible, so that

· · · → Hi({p})→ Hi(A,B)→ Hi−1(B)→ Hi−1({p})→ · · ·

hence for i ≥ 2, Hi(A,B) ' Hi−1(B), for i = 1, H1(A,B) ↪→ H0(B) and for i = 0,
H0({p}) � H0(A,B). Finally, the excision theorem implies that

H∗(Su+ε, Su−ε) ∼ H∗(A,B),

hence the result. �

Proof of Corollary 4.15. Let i ∈ {0, · · · , n}. By [31, Lemma 5.1] applied to S(A,B) =
dimHi(A,B), for any ε > 0 small enough,

dimHi(Su) = dimHi(Su, S−∞) ≤
∑

p∈Criti(Su,f)

dimHi(Sf(p)+ε, Sf(p)−ε).

By Lemma 4.17, we obtain the result. �

We provide now the equivalent of Corollary 2.5. For this, define

β0(M) = sup
f Morse

x∈Crit(M,f)

b0(B(x, f)) ∈ R+ ∪ {+∞}. (4.5)
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Corollary 4.18 Under the hypotheses of Theorem 4.12, for any non-critical u ∈ R,

C0(Su(∂nM))−β0(M) (C(Su(M))− C0(Su(∂nM))) ≤ NBn(Su(M)) ≤ N(Su(M)) ≤ C0(M),

where β0 is defined by (4.5).

Proof. Let x be a critical point of f in the sense of Definition 3.5 with f(x) = u. Then,
by Theorem 4.12, for 0 < ε� δ small enough,

Su+ε ∼hom Su−ε ∪g (A,B)(x, f).

In particular, at most b0(B(x, f)) components of Su−ε can be changed. This implies

NBn(Su+ε) ≥ NBn(Su−ε)− b0(B(x, f)),

and the same holds with N instead of N . If p is a critical point with vanishing index in
∂nB, then by Example 4.14 and Theorem 2.4 assertion 3,

NBn(Su+ε) = NBn(Su−ε) + 1.

This equality and the former inequality imply the first inequality of the corollary. The
second one is trivial, and the last one is due to the first assertion of Corollary 4.15. �

The next lemma compares two global measures of Morse complexity by a geometrical local
one:

Lemma 4.19 Let M ⊂ (M̃, g) be a Whitney stratified set in a Riemannian manifold.
Then β0 and (γi)i satisfy the following bounds:

β0 ≤ 2 + sup
(x,ν)∈T⊥M

b0(BN (x, ν)) (4.6)

∀i ∈ {1, · · · , n}, γi ≤ 2 + sup
(x,ν)∈T⊥M

(2bi−1 + bi−2)(BN (x, ν)), (4.7)

where BN (x, ν) is defined in Remark 4.10.

Proof. Let x be a critical point of f . By Theorem 4.12,

B(x, f) ∼hom (AN ×BT ) ∪ (BN ×AT ).

Furthermore, if the index of x equal i ∈ {1, · · · , n},

(AN ×BT ) ∩ (BN ×AT ) = BN × (∂Di ×Dn−i),

which retracts onto BN × Si−1. Now, by Mayer-Vitoris,

· · · → Hi−1(Si−1)⊕Hi−1(BN )→ Hi−1(B)→ Hi−2(BN × Si−1)→ · · ·

Hence, bi−1(B) ≤ dimHi−1(Si−1)+dimHi−1(BN )+dimHi−2(Si−1×BN ). By the Künneth
formula,

bi−2(Si−1 ×BN ) ≤ bi−2(BN )

so that bi−1(B) ≤ 2 + (2bi−1 + bi−2)(BN ).
We also have

· · · → H0(Si−1)⊕H0(BN )→ H0(B)→ 0,

which implies b0(B) ≤ 2 + b0(BN ). �
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Figure 5: The figure [19, p. 96]. Here, r is the distance to the critical point x and
f(x) = u. It shows that Su+ε (the subspace above the horiztonal upper line) is isotopic
to Su−ε ∪g (A,B)(x, f). The dashed paths show the isotopy between the definition of
the two subsets. The same argument proves that Zu+ε is homeomorphic to the union of
Zu−ε \B(0, δ) (the upper segment till δ) with A ∩ S(0, δ) (the vertical segment) and with
Zu+ε ∩B(0, δ) (the lower horizontal semi-line).

4.5 Change of nodal sets

In this paragraph we prove a generalization of Proposition 2.6 in the case of manifolds
with boundary. We will need a lemma of [19] which can be viewed as a nodal version of
Theorem 4.12 assertion 2:

Lemma 4.20 Let M ⊂ M̃ be a C2 Whitney stratified subset, f : M → R be a Morse
function and x ∈M be a critical point of f with f(x) = u. Then, for any 0 < ε� δ small
enough,

Zu+ε ∼homeo (Zu−ε \B(x, δ))
⋃(

(f−1(u+ ε) ∩B(x, δ)) ∪ (f−1[u− ε, u+ ε] ∩ S(x, δ))
)
,

where S(0, δ) is the sphere of radius δ centered on x.

Figure 5 shows graphically the proof.

Proof of Lemma 4.20. The proof is a consequence of [19, §7.6]. There, it is proven
assertion 2. of Theorem 4.12, that is

Su+ε ∼hom Su−ε ∪g (A,B),

where (A,B) is the local Morse data given by (4.3). But more is proven. From the proof
we see that Zu+ε is homeomorphic (even isotopic) to the union of Zu+ε ∩ B(0, δ) (the
upper horizontal segment in Figure 5) with A ∩ S(0, δ) (the vertical segment) and with
Zu−ε \B(0, δ) (the lower horizontal semi-line). Hence, the result. �

In Lemma 4.19, using Remark 4.10, we bounded parameters involving all Morse func-
tions by ones involving only B(x, ν) for vectors orthogonal vectors ν, that is replacing the
general Morse functions by a family of finite dimension (fν)ν∈T⊥x M . For nodal sets, would
like to do the same, that is replacing the family of Morse functions for a given x ∈M by
a family of finite dimension. For this, let x ∈M belonging to the stratum S of dimension
j. Choose (xi)i∈{1,··· ,j} be local coordinates of S near x and (yi)i∈{j+1,···n} be orthogonal

coordinates in M̃ . For i ∈ {0, · · · , j} and any ν ∈ T⊥x M , let

fi,ν = −x2
1 − · · · − x2

i + x2
i+1 + · · ·+ x2

j + ν∗, (4.8)

34



where ∀y ∈ {j + 1, · · · , N}, ν∗(y) = g(y, ν).

Lemma 4.21 Let M ⊂ M̃ be a C2 Whitney stratified subset, f : M → R be a Morse
function, x ∈M be a critical point of f of index i, and ν = ∇f(x). Then,

Zu+ε(M,f) ∼hom (Zu−ε(M,f) \B(0, δ))
⋃(

(f−1
i,ν (ε) ∩B(0, δ)) ∪ (f−1

i,ν [−ε, ε] ∩ S(0, δ))
)
,

where fi,ν is defined by (4.8).

Proof. This is a consequence of [19, Theorem 7.4.1], which asserts that if two Morse
functions are isotopic among Morse functions with a unique non-degenerate critical point
(here x), then their local Morse data are homeomorphic. Here the two functions are f
and fi,ν , and it is immediate to check that they satisfy the latter condition. �

Now, let

ζ0(M) := sup
(x,ν)∈T⊥M,i∈N

b0

(
(f−1
i,ν (ε) ∩B(0, δ)) ∪ (f−1

i,ν [−ε, ε] ∩ S(0, δ)
)

(4.9)

+ b0(f−1
i,ν (−ε) ∩ S(0, δ)) + b0(B(x, ν)) ∈ R+ ∪ {+∞}.

Here 0 < ε � δ are small enough constants depending on x. By § 4.3, ζ0 does not
depend on them. The reason of this parameter is given by the following proposition which
generalizes Proposition 2.6.

Proposition 4.22 Let M ⊂ M̃ be a Whitney stratified set. Let f : M → R be a Morse
function in the sense of Definition 4.6.

1. (Invariance) For any pair of reals u < v such that f has no critical value in [u, v],
Zu(M,f) is homeomorphic to Zv.

2. (Change at a critical point) For any u ∈ R, if p is a unique critical point, in the
sense of Definition 4.3, in Zu(M,f), such that u = f(p), then for ε positive and
small enough,

|b0(Zu+ε)− b0(Zu−ε)| ≤ ζ0,

where ζ0 is defined by (4.9).

Proof. The first point is a consequence of Theorem 4.12 assertion 1. The second assertion
follows the global lines of the one of Proposition 2.6. In the sequel, all the subsets involved
should be enlarged a little in order to fit the conditions of Mayer-Vitoris. Since we already
wrote a similar proof for Proposition 2.6, we prefer to keep the subsets. Let

Z− = Zu−ε \B(0, δ).

Then, by Lemma 4.21,
Zu+ε = Z− ∪ Ui,ν ,

where
Ui,ν =

(
(f−1
i,ν (ε) ∩B(0, δ)) ∪ (f−1

i,ν [−ε, ε] ∩ S(0, δ))
)
,

and ν = ∇f(x). Then,
Ui,ν ∩ Z− = Vi,ν ,

where
Vi,ν = f−1

i,ν (−ε) ∩ S(0, δ),
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so that by Mayer-Vitoris,

H0(Vi,ν)
α→ H0(Z−)⊕H0(Ui,ν)→ H0(Zu+ε)→ 0,

so that
b0(Zu+ε) = b0(Ui,ν) + b0(Z−)− rank(α)

In order to bound estimate b0(Z−), we note that

Zu−ε = Z− ∪
(
f−1
i,ν (−ε) ∩B(0, δ)

)
.

Recall that fi,ν(−ε) ∩ B(0, δ) = B(x, ν) and note that B(x, ν) ∩ Z− = Vi,ν . Hence, again
by Mayer-Vitoris,

H0(Vi,ν)
β→ H0(B)⊕H0(Z−)→ H0(Zu−ε)→ 0,

so that
b0(Z−) = b0(Zu−ε)− b0(B) + rank(β)

Finally
|b0(Zu+ε)− b0(Zu−ε)| ≤ b0(Ui,ν) + 2b0(Vi,ν) + b0(B(x, ν)) ≤ ζ0,

hence the result. �

The next corollary is the equivalent of Corollary 2.7.

Corollary 4.23 Under the hypotheses of Theorem 4.12,

∀u ∈ R, |N(Zu(M,f))− C0(∂nM)| ≤ ζ0(C(Su)− C0(Su(∂nM)),

where ζ0 is defined by (4.9). The same holds for NSn−1 instead of N .

Proof. By Example 4.14 and By Proposition 2.6 assertion 3, any element of C0(∂nM)
creates a new component to Zu(M,f) diffeomorphic to Bn−1. By Proposition 4.22, any
other type of critical point can modify the topology of at moste B(x, f) components of
Zu−ε, and can create at most ζ0 new components. �

We finish this paragraphe proving that for manifolds with boudary, ζ0 is finite.

Proposition 4.24 Let n ∈ N∗. There exists Cn ≥ 0 such that for any C2 manifold M of
dimension n and with boundary, ζ0(M) ≤ Cn.

We will need for this the following lemma:

Lemma 4.25 [21, Lemma 3.2] Let M be a C2 n-manifold with boundary, f : M → R be
a Morse function in the sense of Definition 4.6, and x ∈ ∂M be a critical point of f , of
index i ∈ {0, · · · , n− 1}. Then, there exists a neighborhood U of x in M and a coordinate
system (xi)i∈{1,··· ,n} over U such that

• ∀p ∈ U , f(p) = xn(p);

• ∂M ∩ U = {x ∈ Rn, xn = −x2
1 − · · · − x2

i + x2
i+1 + · · ·+ x2

n−1}.

Proof of Proposition 4.24. By Lemma 4.25, there exists a coordinate system near x
such that f = xn and ∂M ∩ U = {(xi)1≤i≤n ∈ x(U), xn = qi(x1, · · · , xn−1)}, where q is
a quadratic polynomial depending only on the index. Since inside this ball f is algebraic,
all the subsets defining ζ0 in (4.9) are semialgebraic (here we use the standard metric on
Rn, so that the ball and spheres are algebraic), hence by [27], their number of components
are finite. �
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5 Gaussian fields over Whitney stratified sets

The conditions for the stratified set. In order to apply our results about critical
points of random functions to stratified sets and Morse theory to random functions, we
will need mild conditions for the stratified set. Let M ⊂ (M̃, g) be Whitney stratified set
in a Riemannian manifold. We sum up all the conditions we need in the article.

6. (gentle boundaries) For any stratum S of dimension j, the (j−1)-Hausdorff measure
of ∂S is finite.

7. (very gentle boundaries)[2, Definition 9.2.1] If S is a stratum of M , and p ∈ ∂S,
then the set Tp = {limpn→p TpnS} of generalized tangent spaces coming from S
(see Definition 4.5) has finite Hausdorff dimension less or equal to dimS − 1 in the
appropriate Grassmannian.

8. (mild local connectivity) sup
(x,ν)∈T⊥M

b0(BN (x, ν)) is finite.

9. (mild local homology) sup
i∈{0,··· ,n}

sup
(x,ν)∈T⊥M

bi(BN (x, ν)) is finite.

10. (mild nodal topology) ζ0 defined by (4.9) is finite.

Remark 5.1 Condition (6) is needed for the Kac-Rice formula, see [2, Theorem 11.2.1],
hence is ubiquitous as far as random critical points are involved. Condition (7) implies
condition (6) above, and is needed only in the refinement Theorem 5.15 and Theorem 5.18
from [2]. Condition (8) is needed for Theorem 1.2 and its quantitative version 5.3 below.
Condition (10) is only needed for the nodal versions of the theorems. Condition (9) is only
needed for Theorem 1.5.

Example 5.2 For a manifold M with boundary and p ∈ ∂M , Tp = {TpM}. The spiral
given by Example 4.2 does not satisfy condition (7) but satisfies condition (6).

5.1 The main theorem for stratified sets

The following result is the quantitative version of Theorem 1.2:

Theorem 5.3 Let 1 ≤ n ≤ N be integers, M̃ be a C3 manifold of dimension N , M ⊂ M̃
be a compact dimension n C2 Whitney stratified set satisfying conditions (6) (gentle bound-

aries) and (8) (mild local connectivity), f̃ : M̃ → R be a random centered Gaussian field
satisfying conditions (1) (regularity), (2) (non-degeneraticity) and (3) (constant variance),
and f = f̃|M . Then there exists a polynomial QN depending only on N and with non-
negative coefficients, such that

∀u ≥ u1, ENBn(Eu(M,f)) =
1

√
2π

n+1 v(∂nM)un−1e−
1
2
u2 + δu,

where v(M) is defined by (3.18) and

∀u ≥ u1, |δu| ≤ (1 + β0)QN (ρ−1, ρ, σ−1/2, σ1/2, s) max
1≤j≤n

v(∂jM)un−2e−
1
2
u2 . (5.1)

The result holds for N(Eu) instead of NBn. Here, β0, u1, σ, ρ, s and θ are positive
constants depending only on M and e given respectively by (4.5), (3.15), (3.9), (3.10),
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(3.11) and (3.13). Besides, the volume is computed with respect to the restriction to the
j-stratum ∂jM of the metric g (3.3).

If M satisfies the further condition (10) (mild local nodal topology), then the same
estimate for NSn−1(Zu) and N(Zu) instead of NBn(Eu), after changing the polynomial QN
and β0 into ζ0 given by (4.9).

We will need a theorem which asserts that under simple hypotheses, a Gaussian random
field is almost surely Morse.

Theorem 5.4 [2, Corollary 11.3.5] Let M̃ be a C3 manifold and M be a compact C2

Whitney stratified set, f̃ : M̃ → R a Gaussian random centered field and f = f̃|M . Then,
if f satisfies conditions (1) (regularity) and (2) (non-degeneracity), then f is almost surely
Morse over M in the sense of Definition 4.6.

Proof. Corollary 11.3.5 in [2] implies the result if every stratum has a countable atlas.
Since M is a Whitney stratified set, then locally there is only a finite number of strata.
Moreover, for any stratum S, there is an exhaustion of S by a sequence of compacts of S,
which are all covered by a finite number of charts, hence the result. �

Proof of Theorem 5.3. The proof is almost the same as in the case of a closed
manifold. By Corollary 4.18 and Theorem 5.4,

EC0(Su(∂nM))−β0E (C(Su(M))− C0(Su(∂nM))) ≤ ENBn(Su(M)) ≤ EN(Su) ≤ EC0(Su).

This implies that

max (|EN(Su(M))− EC(Su(∂nM))|, |ENBn(Su(M))− EC(Su(∂nM))|)

is bounded by

|EC0(Su(M))− EC(Su(∂nM))| + |EC0(Su(∂nM))− EC(Su(∂nM))|
+ β0|EC(Su(M))− EC0(Su(∂nM))|,

where β0 is defined by (4.5). By Condition (8) and Lemma 4.19, β0 is finite. The first
term is bounded by

|EC0(Su(M))− EC(Su(M))|+ |EC(Su(M))− EC(Su(∂nM))|,

where the third term is bounded by

β0(|EC(Su(M))− EC(Su(∂nM))|+ |EC(Su(∂nM))− EC0(Su(∂nM))|).

By Corollary 3.5, for u ≤ −u0(M), the terms involving a difference C −C0 for M or ∂nM
are bounded by

∑
j |ηj,u|, where ηj,u satisfies the bound (3.22). This sum is bounded by

1

ρ
RN (σ1/2, σ−1/2, s)

∑
j≤n

v(∂jM)|u|N2
e−

1
2
u2(1+θ),

where RN is a real polynomial with non-negative coefficients and depending only on N ,
and σ, ρ, s and θ defined by (3.9), (3.10), (3.11), (3.13), (??) and v(M) by (3.18). By
Corollary 3.4, the terms involving a difference C(Su(M))− C(Su(∂nM)) are bounded by
for u ≤ −1 by ∑

j≤n−1

(
v(∂jM)
√

2π
j+1
|u|j−1e−u

2/2 + εj,u

)
,
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where εj,u satisfies the bound (3.19). This sum is bounded by

QN (ρ, σ) max
j≤n−1

v(∂jM)|u|n−2e−
1
2
u2 ,

where QN is a polynomial depending only on N . Now using that ∀x ≥ 1, log x ≥ x,

∀u ∈ R, |u| ≥ max

(
1,

1

θ
(N2 − n+ 2)

)
⇒ |u|N2

e−θu
2 ≤ |u|n−2, (5.2)

the two former bounds imply the first part of Theorem 5.3.
We turn now to the second assertion concerning NSn−1(Zu(M,f)). By Corollary 4.23,

|Eb0(Zu(M,f))− EC0(∂nM)| ≤ ζ0|E(C(M)− C0(∂nM)|,

where ζ0 is defined by (4.9). By Condition (10) and Lemma 4.19, ζ0 is finite. The rest of
the proof is the same as above. �

Proof of Corollary 1.1. The proof for a closed manifold has been done in § 3.3.
If M is a C2 compact manifold with boundary, it satisfies condition (6), since ∂M is a
compact (n − 1)-dimensional manifold. By Example 4.11, BN = ∅ or is a point, so that
M satisfies Condition (8). By Proposition 4.24, M satisfies condition (10). We can thus
apply Theorem 5.3. �

Proof of Theorem 1.5. By Corollary 4.15, for any Morse function f : M → R, for
any non-critical u ∈ R,

∀i ∈ {1, · · · , n}, bi(Su(M,f)) ≤ γiCi(Su).

Condition (9) and Lemma 4.19 imply that γi is finite. By Theorem 3.5, this implies that

∀u ≥ −u0, 0 ≤ Eb(Su(M,f))− Eb0(Su) =
n∑
i=1

Ebi(Su) ≤
n∑
i=1

γi
∑
j≤n
|ηj,u|,

where ηj,u satisfies the bound (3.22). Now by Theorem 5.3,

Eb0(Su(M,f)) =
1

√
2π

n+1 v(∂nM)|u|n−1e−
1
2
u2 + δu,

where δu satisfies (5.1) and v(M) is defined by (3.18). Hence, there exists u2 ∈ R depending
on M and f such that

∀u ≤ −u2,
∑
j≤n−1

γi|ηj,u| ≤ Eb0(Su)e−
1
4
θu2 .

�

5.2 Cone spaces

In [2], the results for the Euler characteristic hold for a particular type of Whitney stratified
sets, the cone spaces. We recall it its definition in a bit more explicit way than the one
given by [2, 8.3.1], which is a bit stronger than the one given by [37, 3.10.1]:

Definition 5.5 Let 1 ≤ ` ≤ k ∈ N and M̃ be a Ck manifold.
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• A cone space M ⊂ M̃ of class C` and depth 0 is the topological sum of countably
many C` connected submanifolds (without boundary) of M̃ together with the strat-
ification Z, the strata of which are given by the union of connected components of
equal dimension.

• For d ∈ N, a cone space of class ` and depth d+ 1 is a stratified space M ⊂ M̃ such
that for all x ∈ M in its stratum S, there exist a connected neighborhood U of x in
M̃ , N ∈ N, a compact cone space L ⊂ SN−1 ⊂ RN of class ` and depth d and finally
a C` diffeomorphism ϕ : U → U ∩ S × BN ′ such that

ϕ(U ∩M) = (U ∩ S)× Cone(L)),

where Cone(L) = {tx ∈ RN , t ∈ [0, 1], x ∈ L}. We also impose that ϕ|U∩M sends
the strata of M homeomorphically onto the natural stratification given by the one of
Cone L.

Theorem 5.6 [37, Theorem 3.10.4] A C` cone space is a C` Whitney stratified space.

Example 5.7 The cusp M = {(x, y) ∈ R2, y2 = x3} ⊂ M̃ = R2 cannot be a C1 cone
set. However it is homeomophic to Cone({±1}) and is a Whitney stratified space. A C`

manifold of dimension n is a C` cone space of vanishing depth. If M has a boundary and
x ∈ ∂M , x then M is locally the product of ∂M and [0, 1] which is Cone({1}), hence is a
cone space of depth 1. A neighborhood of a vertex of a square is a cone over a quarter of
a circle. Using the two first examples, this proves that the square is a smooth cone space.
Similarly, a affine cubes are smooth cone spaces, see [2] for other examples.

5.3 Locally convex sets

Manifolds with or without boundary and convex polytopes, in particular cubes, belong
to a subfamily of Whitney stratified sets and cone spaces which are called in [2] locally
convex stratified sets. For these spaces, Morse theory is a bit more explicit. We need
further notations. Let M ⊂ M̃ be any subset of a manifold M̃ , and x ∈ M . Then, the
support cone SxM is defined by [2, (8.2.1)]:

SxM =
{
v ∈ TxM̃, ∃ε > 0, | ∃c ∈ C1([0, ε], M̃) ∩ C0([0, ε],M), c′(0) = v

}
.

Roughly speaking SxM is the set of directions pointing inwards M from x.

Lemma 5.8 Let M ⊂ M̃ be a C1 cone subspace. Then, for any x ∈ M , there exists an
integer N , a connected neighborhood U 3 x in M̃ , a diffeomorphism ϕ : U → BN and a
connected neighborhood 0 ∈ V ⊂ TxS such that

ϕ(U ∩M) = (V ∩ TxS)× (Sx ∩ BN ). (5.3)

Proof. By Definition 5.5, the conclusion of Lemma 5.8 holds except that

ϕ(U ∩M) = (U ∩ S)× (Cone(L)).

Since S is locally diffeomorphic to TxS, we can change in the latter S into TxS. Moreover,

SxM = TxS × {tz, t ∈ R≥0, z ∈ L} ⊂ TxM̃ ⊕ RN ,

so that by definition of Cone(L), (5.3) holds. �
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Assume that the ambient space M̃ is equipped with a metric g, and let M ⊂ (M̃, g)
be a stratified set. The normal cone of M at x ∈M is defined by [2, (8.2.3)]:

NxM := {w ∈ TxM̃, ∀v ∈ SxM, 〈v, w〉 ≤ 0}. (5.4)

Example 5.9 • If M ⊂ M̃ is a submanifold, then SxM = TxM and NxM ⊂ TxM̃
is the normal bundle of M at x. In particular, if M of vanishing codimension, then
NxM = {0}.

• If M ⊂ M̃ is a submanifold with boundary and if x ∈ ∂M , then SxM is the half-
space in TxM delimited by Tx∂M in the inward direction, and NxM is the convex
cone generated by an outward normal vector nx in TxM (orthogonal to Tx∂M) and

the normal bundle of M at x in M̃ . In particular, if M is of vanishing codimension,
NxM = R≥0nx.

• If M ⊂ R2 is a rectangle and x is a vertex, then SxM is the the cone of directions
parallel to the inner quartant at x, and NxM = −SxM .

Definition 5.10 [2, Definition 8.2.1] A Whitney stratified set M is locally convex if for
any x ∈M , SxM is convex.

Example 5.11 Manifolds with or without boundary and affine convex polytope are locally
convex. Note that a plane polytope with a concave angle is not locally convex at the concave
summit, but is a smooth cone space.

The following lemma generalizes Example 4.11 in this particular subfamily of stratified
sets.

Lemma 5.12 Let M ⊂ (M̃, g) be a locally convex C1 cone space of dimension n, x ∈ S ⊂
M , and ν ∈ T⊥x M . Then,{

(AN , BN )(x, ν) ∼hom (Bn−dimS , ∅) if − ν ∈ NxM
(AN , BN )(x, ν) ∼hom (Bn−dimS ,Bn−dimS−1) if − ν /∈ NxM.

If p is a critical point for f with f(p) = u, then
(A,B) ∼hom (Bn,Bn−dimS ×BT ) if −∇f(p) ∈ NxM
(A,B) ∼hom

(
Bn, (Bn−dimS ×BT ) ∪ (Bn−dimS−1 ×AT )

)
and b0(Su+ε) = b0(Su−ε) if −∇f(p) /∈ NxM.

In particular, if p has vanishing (tangent) index, then{
(A,B) ∼hom (Bn, ∅) and Su+ε ∼hom Su−ε t Bn if −∇f(p) ∈ NxM
(A,B) ∼hom (Bn,Bn−1) and b0(Su+ε) = b0(Su−ε) if −∇f(p) /∈ NxM.

In Figure 4, q is an example of the last situation, and p for the penultimate situation.

Proof. By Lemma 5.8, we can assume that M = RdimS × Sx ⊂ RdimS+N equipped
with the standard scalar product in the neighborhood of x. Let fν(y) = 〈y, ν〉. Then,
dfν(0) = ν∗, and f−1[−ε, ε] is a linear band, hence convex, of vanishing codimension
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containing 0 in its interior. Hence, since Sx has interior being of dimension n− dimS and
is convex, as any transverse ball Dx (see paragraph 4.3), so that

f−1
ν [−ε, ε] ∩Nx ∩B(0, δ)

is a convex subset of RdimS+N with non-empty interior containing a ball of dimension
n− dimS, so that it is homeomorphic to a ball of dimension n− dimS. Hence, for any ν,

AN (x, ν) ∼hom Bn−dimS .

Assume now that ν ∈ −NxM . Then, 〈ν, v〉 ≥ 0 for any v ∈ SxM . This implies that
{y ∈ RdimS+N , 〈y, ν〉 < 0} is a half space whose intersection with SxM is empty. In
particular, BN (x, ν) = ∅.

Assume next that ν /∈ −NxM . Then, there exists v ∈ SxM , such that 〈ν, v〉 < 0.
Hence, for any ε > 0, the affine hyperplane {y ∈ RdimS+N , 〈y, ν〉 = −ε} intersects SxM in
its interior. By the same arguments given for AN , this implies that

f−1
ν (−ε) ∩Nx ∩B(0, δ)

is homeomorphic to a ball of dimension n− dimS − 1, hence the same for BN (x, ν).
The two first general assertion concerning (A,B) are now a direct consequence of its

definition, as the first of the last pair of assertions. The last assertion is due to the fact
that the connected handle A is attached through B which is connected. �

The following corollary is a generalization of Corollary 2.5.

Corollary 5.13 Let M ⊂ (M̃, g) be a locally convex C2 cone space of dimension n. Then,
for any Morse function f : M → R and any real u which is not a critical value of f ,

0 ≤
∑

x∈Crit0(Su(M,f))

1{−∇f(x)∈NxM} −N(Su(M,f)) ≤
∑
i≥1

Ci(Su(M,f)).

Remark 5.14 1. If M is a manifold with boundary, F. Laudenbach explained us how
to use use [23] to prove that at a critical point p on the boundary with ∇f(x) in the
direction of nx, then Sf(p)+ε ∼homeo Sf(p)−ε, so that Corollary 5.13 should hold for
NB (more correctly, an homeomorphic version of it) instead of N(Su). It is very
likely that the same holds for general locally convex cone sets.

2. Corollary 5.13 is not true for NSn−1(Zu) or N(Zu) for stratified sets which are not
compact manifolds without boundaries. Indeed in the example of Figure 1, passing
the critical point q, where the gradient points outwards, changes Zd−ε ∼ S1 but
Zd+ε ∼ [0, 1]. Moreover b0(Zu) jumps from 1 to 0 after the highest critical point.

Proof of Corollary 5.13. By Lemma 5.12, any local minimum in its stratum creates
a connected component of Su if −∇f(x) ∈ NxM , and in this case the component is
homeomorphic to a ball of maximal dimension, and in the other case, the number of
components of the upper level is the same as the lower level. Moreover, any critical point
of positive index cannot create a component, since B 6= ∅ in this case. Hence,

N(Su) ≤
∑

x∈Crit0(Su)

1{−∇f(x)∈NxM}.

By Lemma 4.17, a critical point can kill at most one connected component. Hence,

N(Su) ≥
∑

x∈Crit0(Su)

1{−∇f∈NxM} −
∑
i≥1

Ci(Su).

These two pairs of inequalities prove the result. �
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5.4 The refinement

In this paragraph we want to prove the following quantitative version of Theorem 1.7,
which is a improvement of Theorem 5.3. On the contrary to the latter, Theorem 5.15 uses
the main result of [2], holds only for locally convex cone spaces.

Theorem 5.15 Let M̃ be a C3 manifold of dimension n ≥ 1, M ⊂ M̃ be a compact locally
convex C2 cone space of dimension n satisfying condition (7) (very gentle boundaries),

f̃ : M̃ → R be a random centered Gaussian field satisfying conditions (1) (regularity), (2)
(non-degeneracity) and (3) (constant variance) defined below, f = f̃|M and g be the metric
induced by f and defined by (3.3). Then,

∀u ≥ u1, EN(Eu(M,f)) =

n∑
i=0

1
√

2π
i+1
LiHi−1(u)e−

u2

2 ,+ru,

where the constants (Lk)k and the Hermite polynomials (Hk)k are defined below by (5.7)
and (5.8), and where

∀u ≥ u1, |ru| ≤
1

ρ
QN (σ1/2, σ−1/2, s) sup

0≤j≤n
v(∂jM)uN

2
e−

1
2
u2(1+θ). (5.5)

Here v(M), u1, σ, ρ, θ are defined by (3.18), (3.15), (3.9), (3.10), (3.13), (??) and
(3.16) and QN is a polynomial depending only on N with non-negative coefficients.

If M is a compact C2 manifold without boundary, the same holds for NBn(Eu(M,f)),
NSn−1(Zu) and N(Zu) instead of N(Eu), after changing the polynomial QN .

Theorem 5.15 is a consequence of the following Theorem 5.16 and the main result
of [2], namely Theorem 5.18 below.

Theorem 5.16 Under the hypotheses of Theorem 5.15, then

∀u ≥ u0, EN(Eu(M,f)) = Eχ(Eu) + ru

where

∀u ≥ u0, |ru| ≤
1

ρ
QN (σ1/2, σ−1/2, s) sup

0≤j≤n
v(∂jM)|u|N2

e−
1
2
u2(1+θ). (5.6)

Here, u0 and s are defined by (3.16), and ρ, σ−1 and θ by (??).
If M is a compact manifold without boundary, the same holds for NBn(Eu), NSn−1(Zu)

and N(Zu) instead of N(Eu), after changing the polynomial QN .

Lemma 5.17 [2, Corollary 9.3.3] Under the hypotheses of Theorem 5.15, for any Morse
function f : M → R and any non-critical u ∈ R,

χ(Su(M,f)) =
n∑
j=0

∑
x∈Crit(Su(∂jM,f))

(−1)ind(x)1{∇f(x)∈−NxM},

where Nx is defined by (5.4).

This equality is the locally convex stratified version of (2.2).

Proof of Theorem 5.16. By Corollary 5.13,

0 ≤
n∑
j=0

∑
x∈Crit0(∂jM,f)

1{−∇f∈NxM} −N(Su(M,f)) ≤
∑
i≥1

Ci(Su(M,f)),
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so that by Lemma 5.17∣∣χ(Su)−N(Su(M,f))
∣∣ ≤ 2

∑
i≥1

Ci(Su(M,f)).

By Corollary 3.5, for u ≤ −u0, the right-hand side is bounded by

2

ρ
QN (σ1/2, σ−1/2, s)

n∑
j=0

v(∂jM)|u|N2
e−

1
2
u2(1+θ),

where ρ, σ−1 and θ are given by (3.16) and QN is a polynomial depending only on N .
Hence, the result.

Assume now that M is a manifold without boundary. Then, for any critical point of
f , since Nx is the normal bundle at x, −∇f(x) ∈ Nx so that

1{x∈Crit(M,f), −∇f∈NxM} = 1x∈Crit(M,f).

Moreover by Corollary 2.5,

0 ≤ C0(M)−NBn(Su(M,f)) ≤
∑
i≥1

Ci(Su).

The sequel is the same as above in the general case. Corollary 2.7 provides the analogous
argument for Zu. �

Theorem 5.16 must be associated to the following Theorem 5.18, which is a exact
formula computing the average Euler characteristic of Eu(M,f) in this context of a a
regular locally convex cone space:

Theorem 5.18 [2, Theorem 12.4.2 and Remark 12.4.3] Under the hypotheses of Theo-
rem 5.15,

∀u ∈ R, Eχ(Eu(M,f)) =
n∑
j=0

1
√

2π
j+1
LjHj−1(u)e−

u2

2 .

Here, for every k ∈ {0, · · · , n}, the Lipschitz-Killing curvature Lk is defined by

Lk(M) =
n∑
j=k

1
√

2π
j−k

b(j−k)/2c∑
`=0

Cn−j,j−k−2`
(−1)`

`!(j − k − 2`)!
(5.7)∫

x∈∂jM

∫
νn−j∈S(Tx∂jM⊥)

1{νn−j∈−Nx}tr
Tx∂jM

(
R`Sj−k−2`

νn−j

)
dvoln−j−1(νn−j)dvolg(x).

Let us explain the notations of Theorem 5.18. First, Hj is the jth Hermite polynomial,
that is:

∀x ∈ R, H−1(x) =
√

2πΨ(x)ex
2/2 and ∀j ≥ 0, Hj(x) = (−1)jex

2/2 d
j

dxj
(e−x

2/2), (5.8)

where Ψ(x) = 1√
2π

∫∞
x e−

1
2
u2du. Note that

∀j ≥ 1, Hj(x) = j!

bj/2c∑
`=0

(−1)`xj−2`

`!(j − 2`)!2`
,
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so that ∀j ≥ 0, Hj(u) ∼
u→+∞

uj . Moreover,

∀m, i ∈ N, Cm,i =

{
(2π)i/2

sm+i
if m > 0

1 if m = 0
,

where sm =
2π

m
2

Γ(m2 )
= volg0Sm−1.

Proof of Theorem 5.15. This is an immediate consequence of Theorems 5.16
and 5.18. �

Example 5.19 Let f : Rn → R be a centered Gaussian field satisfying conditions (1)(reg-
ularity), (2)(non-degeneraticity) and (4) (stationarity), and M be a compact open set with
smooth boundary ∂M . In this case, R = 0 and for any x ∈ ∂M , 1Nx = 1ν1=nx, where nx
denotes the outward unit normal vector to ∂M . Then,

Ln(M) = volgM

and ∀k ∈ {0, · · · , n− 1}, Lk(M) =
1

sn−k

1

(n− 1− k)!

∫
∂M

trTx∂M
(
Sn−1−k
−nx

)
dvolg(x).

5.5 The asymptotic of cZ(u)

Fix n ∈ N∗. In the sequel, ∀r > 0, Br = rBn ⊂ Rn. We begin by recall the main result
of [34].

Theorem 5.20 [34, Theorem 1.1] Let f : Rn → R be a random centered Gaussian field
satisfying conditions (1) (regularity), (2) (non-degeneraticity), (4) (stationarity) and (5)
(ergodicity). Then, there exists a non negative constant cZ(u) such that

EN(Zu(Br, f))

volg0(Br)
→

r→+∞
cZ(u).

The conditions for this theorem are in fact milder, see [34]. The proof of Theorem 1.11 is
not a direct consequence of Theorem 5.16. Indeed, the latter holds for Eu but not for Zu.
For the proof of Theorem 1.11, we will need the following simple lemma.

Lemma 5.21 Let M ⊂ Rn be a C2 compact codimension 0 submanifold with C2 boundary
∂M. Assume that Rn is equipped with a stationary metric g. For any r > 0, let Mr = rM
and

Sr : T∂Mr × T∂Mr → T⊥∂Mr (5.9)

be the second fundamental form associated to the pair (∂Mr,Rn), defined by (3.1), where
the affine space is equipped with the metric g. Then,

∀r > 0, x ∈M, Sr(rx) =
1

r
S1(x),

where we identify Trx∂Mr with Tx∂M . In particular, for all r > 0, s(Mr) = 1
rs(M), where

s is defined by (3.11).

Proof. Since g a constant metric over Rn, ∇ = d. Let x ∈ ∂M and X,Y : ∂M → Rn
two tangent vector fields of T∂M near x. Fix r > 0. Then, Xr(·) := X(·/r) and Yr(·) :=
Yr(·/r)) are tangent vector fields of ∂Mr near rx, and

∇XY (x) = rdXrYr(x) = r∇XrYr(rx),
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so that if PT⊥∂rM : Rn → T⊥∂Mr denotes the orthogonal (for g) projection onto the
normal bundle of ∂Mr, then

S1(X,Y ) = PT⊥M∇XY (x) = rPT⊥∂rM∇XrYr(rx) = rSr(Xr, Yr) = rSr(X,Y ),

where we identified X and Y with Xr and Yr as vectors. Hence, the result. �

Proof of Theorem 1.11. Recall that Br = rBn ⊂ Rn. By Lemma 5.21,

∀r > 0, sr =
1

r
s1.

Moreover since R = 0, ρ defined by (3.10) is equal to 1, and σ−1 defined by (3.9) equal to
1 as well. In particular,

∀r ≥ 1, u0(Br) = (1 + s1/r) ≤ 1 + s1, (5.10)

where u0 is defined by (3.14), and

θ(Br) =
1

(1 + s1/r)2
≥ 1

(1 + s1)2
,

where θ is defined by (3.13). Hence,

u1(Br) ≤ (n2 + 2)(1 + s1)2,

where u1 is defined by (3.15). Since g = d2e(0),

dvolg = (det d2e(0))1/2dvolg0 ,

where the determinant is computed in the standard basis of Rn. Recall that Br is stratified
as Br ∪ ∂Br. By Corollary 4.23,

∀u ∈ R, |b0(Zu(Br))− C0(Su(Br))| ≤ ζ0(C(Su(Br))− C0(Su(Br)), (5.11)

where ζ0 is defined by (4.9). By Proposition 4.24, ζ0 is bounded by a constant depending
only on n. Moreover by Lemma 5.17

∀u ∈ R, |χ(Su(Br))− C0(Su(Br))| ≤ +C(Su(∂Br)) +
n∑
i=1

Ci(Su(Br)). (5.12)

Using Theorem 5.18 and Example 5.19, (5.11) and (5.13) imply that for any u ∈ R,

EN(Zu(Br))

volgBr
=

1
√

2π
n+1Hn−1(u)e−

1
2
u2 + e−

1
2
u2 (5.13)

n−1∑
k=0

1
√

2π
k+1

Hk−1(u)
1

sn−k

1

(n− 1− k)!

∫
∂Br

trTx∂Br
(
Sn−1−k
r|−nx

) dvolg(x)

volgBr
+ µu,

(5.14)

where Sr is defined by (5.9) and

|µu| ≤
1 + ζ0

volgBr

(
EC(∂Br) +

n∑
i=1

ECi(Br)

)
. (5.15)
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By Lemma 5.21, for any r ≥ 1,

trTx∂Br(Sn−1−k
r|−nx ) = trTx∂Br

1

rn−1−k (Sn−1−k
1|−nx ).

Hence, taking r → +∞ in (5.13) kills the sum of boundary terms in the above equation.
By Theorem 3.5 applied to Br and Proposition 3.4 applied to ∂Br, for r ≥ 1, (5.15) gives,
using (5.10),

∀u ≤ −(1 + s1),
|µu|

1 + ζ0
≤ Qn(1, 1, 0)|u|n2

e−
1
2
u2(1+θ)+

2volg(∂Br)

volgBr
|u|n−3e−

1
2
u2
(
|u|√
2π

n + Pn(1, 1, s1)

)
.

When r goes to +∞, the second term vanishes, hence the result. �
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de l’École polytechnique 37 (1858), 169–178.

[40] Alejandro Rivera and Hugo Vanneuville, Quasi-independence for nodal lines, An-
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