
HAL Id: hal-03195346
https://hal.science/hal-03195346v1

Preprint submitted on 11 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance evaluation of feature selection and
tree-based algorithms for traffic classification

Ons Aouedi, Kandaraj Piamrat, Benoît Parrein

To cite this version:
Ons Aouedi, Kandaraj Piamrat, Benoît Parrein. Performance evaluation of feature selection and
tree-based algorithms for traffic classification. 2021. �hal-03195346�

https://hal.science/hal-03195346v1
https://hal.archives-ouvertes.fr

Performance evaluation of feature selection and
tree-based algorithms for traffic classification

Ons Aouedi, Kandaraj Piamrat and Benoı̂t Parrein
University of Nantes, LS2N (UMR 6004)

2 Chemin de la Houssinière
BP 92208, 44322 Nantes Cedex 3, France

{firstname.lastname}@ls2n.fr

Abstract—The rapid development of smart devices triggers
a surge in new traffic and applications. Thus, network traffic
classification has become a challenge in modern communications
and may be applied to a various range of applications ranging
from QoS provisioning to security-related applications. Devel-
oping Machine Learning (ML) methods, which can successfully
distinguish network applications from each other, is one of the
most important tasks. Since ML algorithms are as good as the
quality of data, feature selection has become a crucial step
in the ML process. Therefore, selecting effective and relevant
features for traffic analysis is also another essential issue. In this
paper, we are interested in identifying the most relevant features
to characterize network traffic. Empirical results indicate that
significant input feature selection is important to classify network
traffic. Then, a comparative analysis of various Decision Tree-
based models (both traditional and recent algorithms) has been
conducted with feature selection methods in terms of accuracy,
training, and classification time.

Index Terms—Feature selection, traffic classification, machine
learning, autonomous network, ensembles learning, CatBoost,
XGBoost, LightGBM, Random Forest.

I. INTRODUCTION

Traffic classification is a basic requirement for providing a
good Quality of Service (QoS) in network management. QoS
represents the ability to provide different priority requirements
to different traffic types. To do so, network operators need
to identify and classify different types of traffic. Machine
Learning (ML) can be efficient for that since it can build com-
puter programs that automatically enhance their performance
by experience [1]. Accordingly, ML is a promising solution to
provide us a powerful and automatic traffic classification (both
in terms of accuracy and speed). It started to flourish with net-
work management, through the use of the centralized control
capabilities provided by Software-Defined Networking (SDN).
Several researchers argue that with the arrival of SDN, there is
a high potential for collecting data from forwarding devices,
which need to be handled by ML due to their complexity.
Thus, combining real network data and machine learning with
the benefits of SDN is still an open research area. The main
issue is that a real dataset can have redundant (feature with
predictive ability covered by another) and irrelevant (feature
that provides no useful information) features, which increase
search space and decrease predictive quality [2].

The time complexity of many ML algorithms is polyno-
mial in the data dimensions [3] and SDN is a time-critical

system. Thereby, in classification domains, some features can
hinder the classification process, where the increase in the
data dimensionality may decrease the predictive ability of an
algorithm as well as cause an extra computational cost (e.g.,
storage and processing) [4]. Consequently, in order to perform
a more focused and faster analysis, feature selection can be
used to create an efficient model.

Moreover, several classification algorithms are being ex-
plored continuously by researchers. Despite the fact that
Decision Tree (DT) has been successfully applied in traffic
classification related studies [5]; from a large body of litera-
ture, there is a lack of research comparing the performance
of several DT-based models (both traditional and recent ones)
for network traffic classification based on the same data set.
Inspired by the discussion above and to eliminate this gap in
the literature, a comparative evaluation is necessary. In brief,
the major contributions of this paper are listed as follows:

• Dimensinality Reduction: In an offline manner, we have
applied two feature selection methods in order to find
significant features from the entire dataset. In particular,
we have used correlation filtering to delete the redundant
features. Then, a comparative analysis of Information
Gain Attribute Evaluation (IG) and Recursive Features
Elimination (RFE) has been conducted. The selected
optimal subspace, which represents the lower dimensional
features, is then used in the training and testing phases
of several classifiers.

• Empirical study of ML techniques: To provide useful
insights for researchers into the behavior of several
ML algorithms in traffic classification, we have selected
six representative and well-known Tree-based classifiers.
These classifiers are Random Forest (RF), Decision Tree
(DT), adaptive boosting (Adaboost), and the novel Boost-
ing algorithms, which are eXtreme Gradient Boosting
(XGBoost); as well as two recent classifiers such as
CatBoost and Light Gradient Boosting Machine (Light-
BGM). The performances of the resulting models were
evaluated using accuracy, training, and classification time
with the use of both default and tuned hyper-parameters.

The rest of the paper is organized as follows. Section II pro-
vides related works while Section III introduces our method-
ology for feature selection and supervised learning algorithms

used for network traffic classification. Then, Section IV and
Section V present the dataset used during this work and discuss
the details of the experiments and their corresponding results.
Finally, conclusions are summarized in Section VI.

II. RELATED WORK

Based on continuous changes in the behaviors of the appli-
cations, several approaches have been proposed and used over
the years. In this section, we provide a brief overview of some
representative network traffic classification approaches.

A. Traditional approaches

Port-based classification is the most simple technique. How-
ever, it has some limitations, for example, applications can use
dynamic port number or ports associated with other protocols
to hide from network security tools [6]. To avoid total reliance
on the semantics of port numbers, the DPI technique has been
proposed to inspect the payload of the packets searching for
patterns that identify the application. It checks all packets
data, which consumes a lot of CPU resources and can cause
a scalability problem. Moreover, it fails to classify encrypted
traffic [7].

Due to the complexity of network application behaviors,
these techniques are becoming inefficient solutions for traffic
classification. In this context, ML is used as an alternative
approach to classify the traffic by exploiting different char-
acteristics of applications (i.e., features). As a result, a vast
number of machine learning approaches have been used to
classify traffic.

B. ML-based traffic classification

In [8], two feature selection methods have been used
for traffic classification followed by six supervised learning
methods (Naive Bayes, Bayes Net, Random Forest, Decision
Tree, Naive Bayes Tree, and Multilayer Perceptron). Similarly,
the authors in [9] present a comparative analysis of four
supervised ML models for network traffic classification, which
are Decision Tree (C4.5), SVM, BayesNet and NaiveBayes.
However, these works does not include any of the boosting
algorithms. Moreover, the authors in [10] have used Deep
Learning (DL) as semi-supervised learning for network traffic
classification with the help of dropout and denoising code
hyper-parameters in order to improve the classification per-
formance. However, DL has many hyper-parameters and their
number grows exponentially with the depth of the model.
Therefore, finding suitable architecture (i.e. number of hidden
layers) and identifying optimal hyper-parameters (i.e. learning
rate, loss function, etc.) are difficult tasks. Also, the authors
in [11], proposed an architecture to classify network traffic
with SDN, using unsupervised and supervised ML approaches.
To avoid manual labeling of data, K-Means has been used to
label the dataset. Then, several supervised learning methods
are trained and evaluated individually, which are SVM, Deci-
sion Tree, Random Forest, and KNN. However, the features
used for clustering and classification are selected manually.

There could be found an expanding body of literature about
using tree-based learning algorithms in traffic classification.
However, there are new classification methods (e.g., CatBoost,
LightGBM, etc.) that are not yet applied to this field. Also, it
can be noticed that many works have been investigated using
ML for network traffic classification; however, most of them
used some specific classifiers and no one explores the DT-
based classifiers (i.e., bagging and boosting together) using
real network dataset.

III. METHODOLOGY

Figure 1 describes the methodology followed in this study,
which includes two main processing steps: (i) data prepro-
cessing and (ii) traffic classification. In this context, various
methods of feature selection followed by the classification
have been conducted. These methods are presented below.
The last step consists of performance evaluations of the
classification using accuracy, training and classification time.

A. Data Preprocessing

Data preprocessing is a data mining technique that is used to
transform the data and make it suitable for another processing
use (e.g. classification, clustering). It is a preliminary step
that can be done with several techniques among which data
cleaning and feature selection.

1) Data cleaning: When the dataset has several features of
different types but some ML models can only work with nu-
merical values, it is necessary to convert or reassign numerical
values. In this work, we have converted the initial values of
timestamp and IP address to numerical values. Also, as the
dataset consists of different features with values on different
scales, it needs to be scaled. This can be done by Min-Max
normalization to perform features scaling. It is a technique
that scales every feature of our dataset between 0 and 1, the
maximum value of that feature gets transformed to 1 and the
minimum value gets transformed to 0.

2) Feature Selection: One of the contributions of this paper
is to find the optimum number of features (F) that can provide
the best classification performance in a real dataset. To do
so, we have used features selection methods to identify the
best features set in the offline run. Features selection methods
try to pick a subset of features that are relevant to the target
concept and have become an indispensable component of the
ML process. There are many benefits of feature selection such
as (i) defying the curse of dimensionality to improve the
performance of learning algorithms either in terms of learning
speed and generalization capacity, and (ii) reducing the storage
requirement [12]. In fact, feature selection is a difficult task not
only because of the huge size of the initial dataset but because
it needs to maximize the learning capacity and to reduce the
number of features.

To solve these problems, one of the purposes of this work
is to select the relevant features for classification. This process
can be defined as finding a minimal subset of feature F that
maximizes the performance of ML model M() according to
evaluation metric P (i.e., accuracy). Consequently, in this

Fig. 1. Structure of the experimental methodology

paper, feature selection strategies are implemented by two
phases: correlation filtering and features selection.

- Correlation filtering is used to remove the redundant
features and hence reduce the over-fitting of the classifiers
as well as decrease the complexity of computation. It uses
the correlation coefficient that indicates the linear correlation
between two random features (i.e., variables) fi and fj .

The values of correlation cor range from −1 to 1. Usually, if
|cor| > 0.5, this means that fi and fj have a strong correlation;
if |cor| is close to 0, means that there is no linear correlation
between the features. In fact, features are usually designed
with their unique contributions, and removing any of them may
affect the training accuracy to some degrees [13]. That is why
we have deleted just the redundant features. In other words,
we deleted every one of two features that have a correlation
|cor| = 1, which means that they are totally redundant.

- Feature selection is intended to find the features that can
help the classifier to distinguish better among the applications
(target variable). We have used Information Gain Attribute
Evaluation (IG) as the filter method [14], which is one of the
widely used method [15]. The main concept of this approach
is to rank subsets of attributes by calculating the IG entropy
for each attribute in decreasing order. Each attribute gains a
score from 1 (most relevant) to 0 (least relevant). The entropy
of Y (target variable) is:

H(Y) = −
∑
y∈Y

p(y) log2(p(y)) (1)

Then, IG measures the mutual information provided by X on
Y.

IG = H(Y)−H(Y/X) = H(X)−H(X/Y) (2)

Also, we used Recursive Features Elimination (RFE) [16]
that recursively evaluates alternative sets by running some in-
duction algorithms on the training data and using the estimated
accuracy of the resulting classifier as its metric. Starting from
all the feature sets, the method recursively removes features in
order to maximize accuracy. Then it ranks the features based
on the order of their elimination. The algorithm used here is
the classification and regression tree (CART).

B. Specifications of classification models
Network traffic classification can be broadly divided into

two categories: traditional machine learning and ensemble

learning. This work is developed through the use of these
categories.

Ensemble methodology imitates our nature to seek several
opinions before making any decision where we combine
various individual opinions to find a final decision [17].
Bagging and boosting are the most frequently used ensemble
learning, where bagging is a parallel ensemble, and boosting
algorithm by definition is an ensemble technique of sequence
learning. Similar to simple models, there are no best ensemble
methods as some ensemble methods work better than others
in certain conditions. Therefore, in this work, we will use RF
as a bagging algorithm, AdaBoost, XGBoost, CatBoost, and
LightGBM as boosting learning as well as DT as a single
machine learning models.

In this subsection, as relatively new algorithms, AdaBoost,
LightGBM, CatBoost, and XGBoost are introduced briefly.

- AdaBoost: is a gradient boosting algorithm that increases
the weights of the training examples that had wrong predic-
tions and decreases the weights of the training instances that
had correct predictions. This way, with every new iteration, the
model is restricted to concentrate on those training instances
that had wrong predictions in the previous iteration [18].

- XGBoost: is developed by Chen and Guestrin [19] in 2014
and has been selected as one of the best ML algorithms used
in Kaggle competitions due to its advantages such as easy
parallelism and use as well as high prediction accuracy. It also
uses a regularized technique in order to reduce over-fitting.

- CatBoost: is a gradient boosting algorithm that was
developed by the Russian tech company Yandex in mid-
2017 [20]. It is the best solution for heterogeneous data (i.e.,
categorical and numerical data). Other ML models require pre-
processing steps to convert categorical data into numerical data
but CatBoost requires only the indices of categorical features.

- LightGBM: is a highly efficient gradient boosting decision
tree proposed by Microsoft in 2017 [13]. It uses gradient-based
one-side sampling (GOSS) and exclusive feature bundling
(EFB) algorithms in order to reduce the number of examples
and the number of features.

IV. EXPERIMENT SETUP

The purpose of this experiment is to select relevant features
from the initial dataset to constitute a reduced dataset. Then,
several classifiers have been used for traffic classification. The

comparison was made using hyper-parameters after tuning as
well as the default hyper-parameters. All experiments were
run using four core Intel® Core™ i7-6700 CPU@3.40GHz
processor. Moreover, we have used Python as a programming
language and Scikit − learn was used for the conventional
model. Then, XGBoost1, LightGBM 2, and Catboost3 li-
braries were used for those models.

A. Dataset description

We evaluate the different classifiers on a real-world traffic
dataset. This dataset was presented in a research project and
collected in a network section from Universidad Del Cauca,
Popayán, Colombia 4. It was constructed by performing packet
captures at different hours, during the morning and afternoon
over six days in 2017. It consists of 87 features, 3,577,296
instances, and 78 classes (Facebook, Google, YouTube, Drop-
box, etc.). We chose this dataset because it can be useful to find
many traffic behaviors as it is a real dataset and rich enough in
diversity and quantity. In this experiment, we have separated
the dataset into 80% for training, 10% for validation, and 10%
for testing.

B. Modeling hyper-parameters

Finding relevant features and the choice of the right algo-
rithm is not enough, we should also find the right configuration
of the algorithm for a dataset by tuning its hyper-parameters
(Figure 1), i.e., parameters that will not be learned from the
training process [21]. For more details, Table I presents the
default and the different hyper-parameters’ values explored for
the tuning process of each classifier. The unmentioned hyper-
parameters are set to default values.

V. RESULT ANALYSIS AND DISCUSSION

The first contribution of this paper is to find the optimum
number of features that can provide the best classification in
a real dataset. Then, we compare the efficiency of recently
developed XGBoost, LightGBM, and CatBoost with other DT-
based models include Decision Tree, AdaBoost, and Random
Forest. Another contribution is that we study the impact of the
default and tuned hyper-parameters on these classifiers.

A. Feature selection of network traffic

As RF and DT are the simplest classifiers, we applied
them to train and test the entire and the reduced dataset with
feature selection methods. The obtained results are presented
in Table II as well as in Table III. In the first step, we
evaluated the classifiers with two features selection methods
on different reduced versions of the data. We have tested
feature subsets that contained 10, 15, and 25 features. Then, we
test the accuracy and efficiency of the classification with the
entire data against the best-selected features subsets (reduced
dataset). According to Table II, we can see that DT and

1https://github.com/dmlc/xgboost.
2https://github.com/microsoft/LightGBM/tree/master/python-package.
3https://catboost.ai/docs/concepts/python-installation.html.
4https://www.kaggle.com/jsrojas/ip-network-traffic-flows-labeled-with-87-

apps

TABLE I
DEFAULT AND THE POSSIBLE VALUES FOR EVERY HYPER-PARAMETERS IN

THE DIFFERENT CLASSIFIERS

Hyper-parameters Default
values

The different search values

Decision Tree
max depth Unlimited 10, 15, 20, 25, 30, 35, 40, 45, 50,

unlimited.
min samples split 2 2, 10, 15, 20, 25, 30, 50, 70, 100,

200.
Random Forest
max depth Unlimited 25, 30, 35, 40, 45, 50, unlimited.
min samples split 2 2, 10, 15, 20, 25, 30, 45, 50, 70.
n estimators 10 100, 120.

AdaBoost
max depth 1 1,30, 35.
n estimators 50 50, 170, 250.
learning rate 1 1,0.2.

XGBoost
max depth 6 6, 35.
learning rate 0.3 0.2, 0.3.
n estimators 100 100, 120, 170, 250.

CatBoost
max depth 6 6, 7, 5.
learning rate Var 0.3, 0.2, 0.025, 0.05.
n estimators 1000 1000, 200, 300, 250, 500.

LightGBM
max depth Unlimited 7, 40, 35, 20, 25, 50, unlimited.
boosting type gbdt goss
learning rate 0.1 0.1, 0.01, 0.02, 0.05.
num leaves 31 31, 120, 200, 250, 1000.
top rate 0.2 0.2, 0.6, 0.4, 0.5.
other rate 0.1 0.1, 0.2, 0.3, 0.4, 0.6.
n estimators 100 100, 170, 200, 250.

RF models perform better with the 15-selected feature by
RFE with 82.31% and 85.49% accuracy. Moreover, Table III
indicates that these models can perform better with the reduced
features set than with the entire dataset in term of accuracy,
precision, and recall. A reason for these results is that not all
features in our dataset will help to separate classes during the
classification task.

TABLE II
CLASSIFICATION ACCURACY (%) WITH RFE AND IG ON DIFFERENT

FEATURES SET

Classifiers Top 10 Top 15 Top 25
IG RFE IG RFE IG RFE

DT 81.38 80.18 81.93 82.31 81.58 82.19
RF 85.04 84.69 84.88 85.49 84.27 84.91

In order to illustrate the impact of feature selection on ML
models, Figure 2 and Figure 3 present the training and test
time with the entire and reduced (with features selected by
RFE) dataset of DT and RF respectively. It can be seen that
the feature selection method decreases the time required both
for training and testing (by 72% for training and 6% for
testing with DT; by 40% for training and 20% for testing

Fig. 2. Training time comparison Fig. 3. Classification time comparison

TABLE III
THE ACCURACY, PRECISION, AND RECALL (%) OF THE ENTIRE DATA AND

SELECTED DATA ANALYZED BY DT AND RF

Data size Accuracy Precision Recall
Entire dataset + DT 82.16 81.94 82.16
Reduced dataset (RFE) + DT 82.31 82.13 82.31
Entire dataset + RF 82.52 83.13 82.50
Reduced dataset (RFE) + RF 85.49 85.82 85.49

with RF). Therefore, we can conclude that the classification
performance is better on the reduced dataset as the models use
less computation effort and still give more accurate results. It
can be explained by the fact that this subset is more informa-
tive to characterize our target classes (i.e. applications). For
information, the 15 selected features are listed hereafter : Des-
tinationIP, sourceIP, sourcePort, destinationPort, FlowIATMax, FwdI-
ATTotal, Timestamp, FlowDuration, InitWinBytesBackward, InitWin-
BytesForward, FwdPacketLengthMax, BwdPacketLengthMax, Sub-
flowFwdBytes, BwdPacketLengthMean, FwdPacketLengthStd.

In the following, we will use the selected dataset with RFE
as the input of the other classifiers, in consideration of more
accurate classification of traffic as well as a greatly reduced
training and classification time.

B. Performance analysis of traffic classification

Using the selected 15-features set identified in the feature
selection process, a comparative analysis of six DT-based mod-
els has been performed considering accuracy and computation
time as the classifiers’ efficiency measurement.

Table IV presents the accuracy of the different classifiers
with default hyper-parameters against tuned hyper-parameters.
The best accuracy among all classifiers was the accuracy of
the XGBoost with tuned hyper-parameters model at 89.09%.
Also, the difference between tuned and default settings of
XGBoost, AdaBoost, and especially LightGBM is high while
this is not the case for CatBoost because it performs an internal
adjustment of the learning rate. Moreover, the difference
between tuned and default hyper-parametrizations of RF and
DT is small. Therefore, according to the results presented in
this table, we can remark that the search for optimal hyper-
parameters is necessary to create accurate models especially,
for boosting-based models. Last but not least, the top-3

classifiers having the best accuracy belong to the ensemble
methods namely XGBoost, Random Forest, and AdaBoost
with 89.09%, 85.49%, and 84.57% accuracy.

Moreover, this table also illustrates the model building time
(training time) and the classification time (testing time) using
the default and tuned hyper-parameters. The main deficiency
found in the experiments is the time cost for the training of
the boosting algorithms and online classification. From this
table, we can see how the tuned hyper-parameters increase the
training and classification time for the ensemble learning and
especially for the boosting algorithms. For instance, building
the model (i.e., training time) of Adaboost, XGBoost, and
LightGBM with default hyper-parameters performs respec-
tively 225x, 10x, and 8x faster than they are with tuned
hyper-parameters. Since this incurs significant computation
cost and is therefore unsuitable especially for network traffic
classification systems that require persistent training. Also, we
must consider the time spent to find the optimal set of hyper-
parameters for the boosting algorithms.

C. Concluding remarks

In order to summarize the results obtained, we can no-
tice that XGBoost obtains the best results in generalization
accuracy. LightGBM training is the fastest of all boosting
algorithms and the slowest one for online classification.
Tuned XGBoost and LightGBM perform generally better than
their default versions. Moreover, despite AdaBoost one of
the oldest boosting method, it provides competitive results.
Also, DT accuracy ranges from 81.51% with its default-
parameters to 82.31% with the tuned version. This indicates
that the difference between the default settings of DT and
the tuned version is small and hence it is not impacted by
the hyper-parameters. Furthermore, boosting-based learning
algorithms have limitations, such as the determination of
the optimal hyper-parameters for achieving efficient predicted
model. Another important aspect of the default version of
RF provides competitive results (i.e., accuracy and speed)
without the computational burden of hyper-parameters tuning
and it is usually easier to apply than others. Finally, from
the experiments of this study, the majority of classification
techniques yielded classification performances that are quite

TABLE IV
CLASSIFICATION PERFORMANCE AND COMPUTATIONAL EFFICIENCY OF THE DIFFERENT MODELS (IN SECONDS) USING DEFAULTS AND TUNING

HYPER-PARAMETERS SETTINGS

Classifier
Model

Default Hyper-parameters Tuning hyper-parameters

Accuracy(%) Training Time(s) Classification Time(s) Accuracy(%) Training Time(s) Classification Time(s)

DT 81.51 109.22 12.98 82.31 (↑ 0.8) 104.85 12.75
RF 84.02 190.85 16.36 85.49 (↑ 1.47) 380.51 101.64
AdaBoost 81.54 125.57 13.98 87.32 (↑ 5.78) 28210.26 325.41
XGBoost 71.81 8298.58 59.06 89.09 (↑ 17.28) 85974.89 343.22
CatBoost 75.81 39364.45 14.56 76.97 (↑ 1.16) 61199.98 32.56
LightGBM 42.81 826.29 61.23 84.57 (↑ 41.76) 6292.55 987.50

competitive with each other. It is hence left to the user to adopt
an appropriate algorithm to their requirement and environment.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented data analysis and explo-
ration techniques to select the most relevant features that can
be used for network traffic classification. Then, an empirical
analysis of different DT-based traditional classifiers (DT, RF,
AdaBoost) as well as the recently developed CatBoost, Light-
GBM, and XGBoost classifiers, has been conducted. This com-
parison has been carried out with the data subset selected via
Recursive Features Elimination (RFE). Using RFE, we have
derived a mechanism to identify the best 15 features out of 87
features in our dataset. This has not only significantly reduced
the execution time but also has identified useful features for
network traffic classification in a real-world dataset to increase
the ML models’ accuracy. Furthermore, experimental results
and analysis have shown that more features do not always
improve the classification performance. Moreover, from the
DT-based models’ comparison, we conclude that the hyper-
parameter search is necessary to construct accurate boosting-
based models where this is not the case for DT and especially
RF that generalize well with the default hyper-parameters.

Our future work will focus more on the effect of each
hyper-parameters on the performance (accuracy and speed)
of the classifiers with more datasets. Also, another future
direction that could be conducted, as a result of these findings,
would be to consider a stacking approach for network traffic
classification through the combination of multiple techniques.

REFERENCES

[1] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspec-
tives, and prospects,” Science, vol. 349, pp. 255–260, 2015.

[2] A. Janecek, W. Gansterer, M. Demel, and G. Ecker, “On the relationship
between feature selection and classification accuracy,” vol. 4, pp. 90–
105, 2008.

[3] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, K. Olukotun, and
A. Y. Ng, “Map-reduce for machine learning on multicore,” in Advances
in neural information processing systems, pp. 281–288, 2007.

[4] A. L’heureux, K. Grolinger, H. F. Elyamany, and M. A. Capretz,
“Machine learning with big data: Challenges and approaches,” IEEE
Access, vol. 5, pp. 7776–7797, 2017.

[5] T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” IEEE communications
surveys & tutorials, vol. 10, pp. 56–76, 2008.

[6] S. Sen, O. Spatscheck, and D. Wang, “Accurate, scalable in-network
identification of p2p traffic using application signatures,” in Proceedings
of the 13th international conference on World Wide Web, (New York NY
USA), pp. 512–521, May 2004.

[7] Z. A. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, and G. Noubir,
“Application-awareness in SDN,” in Proceedings of the ACM SIG-
COMM conference on SIGCOMM, (Hong Kong, China), pp. 487–488,
August 2013.

[8] P. Perera, Y.-C. Tian, C. Fidge, and W. Kelly, “A comparison of super-
vised machine learning algorithms for classification of communications
network traffic,” in International Conference on Neural Information
Processing, pp. 445–454, Springer, 2017.

[9] M. Shafiq, X. Yu, A. A. Laghari, L. Yao, N. K. Karn, and F. Abdessamia,
“Network traffic classification techniques and comparative analysis
using machine learning algorithms,” in 2016 2nd IEEE International
Conference on Computer and Communications (ICCC), pp. 2451–2455,
IEEE, 2016.

[10] O. Aouedi, K. Piamrat, and D. Bagadthey, “A semi-supervised stacked
autoencoder approach for network traffic classification,” in Proceedings
of the 28th International Conference on Network Protocols (ICNP),
(Madrid, Spain), October 2020.

[11] M. P. J. Kuranage, K. Piamrat, and S. Hamma, “Network traffic
classification using machine learning for software defined networks,”
in Proceedings of the International Conference on Machine Learning
for Networking, (Paris, France), pp. 28–39, December 2019.

[12] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of machine learning research, vol. 3, pp. 1157–1182,
2003.

[13] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
in Advances in neural information processing systems, pp. 3146–3154,
2017.

[14] J. Novakovic, “Using information gain attribute evaluation to classify
sonar targets,” in Proceedings of the 17th Telecommunications forum,
(Belgrade, Serbia), pp. 1351–1354, November 2009.

[15] F. Salo, A. B. Nassif, and A. Essex, “Dimensionality reduction with ig-
pca and ensemble classifier for network intrusion detection,” Computer
Networks, vol. 148, pp. 164–175, 2019.

[16] G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant features and the subset
selection problem,” in Machine Learning Proceedings 1994, pp. 121–
129, 1994.

[17] R. Polikar, “Ensemble based systems in decision making,” IEEE Circuits
and systems magazine, vol. 6, no. 3, pp. 21–45, 2006.

[18] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of computer
and system sciences, vol. 55, pp. 119–139, 1997.

[19] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pp. 785–794, 2016.

[20] A. V. Dorogush, V. Ershov, and A. Gulin, “Catboost: gradient boosting
with categorical features support,” arXiv:1810.11363, 2018.

[21] A. Zappone, M. Di Renzo, and M. Debbah, “Wireless networks design
in the era of deep learning: Model-based, ai-based, or both?,” IEEE
Transactions on Communications, vol. 67, pp. 7331–7376, 2019.

