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Sequent Calculi for Nominal Tense Logics: A Step Towards Mechanization?

We define sequent-style calculi for nominal tense logics characterized by classes of modal frames that are first-order definable by certain ⇧ 0 1 -formulae and ⇧ 0 2 -formulae. The calculi are based on d'Agostino and Mondadori's calculus KE and therefore they admit a restricted cutrule that is not eliminable. A nice computational property of the restriction is, for instance, that at any stage of the proof, only a finite number of potential cut-formulae needs to be taken under consideration. Although restrictions on the proof search (preserving completeness) are given in the paper and most of them are theoretically appealing, the use of those calculi for mechanization is however doubtful. Indeed, we present sequent calculi for fragments of classical logic that are syntactic variants of the sequent calculi for the nominal tense logics.

Introduction

Background. The nominal tense logics are extensions of Prior tense logics (see e.g. [START_REF] Prior | Time and Modality[END_REF][START_REF] Rescher | Temporal Logic[END_REF]) by adding nominals (also called names) to the language (see e.g. [START_REF] Blackburn | Nominal tense logic[END_REF]). Nominals are understood as atomic propositions that hold true in a unique world of the Kripke-style models. The nominal tense logics are quite expressive since not only do they extend the standard (mono)modal logics by adding a past operator (giving the tense flavour) but they also admit nominals in the language. In spite of the analogy between nominals (in the object language of the logic) and prefixes, also called labels, used in various proof systems for modal logics (see e.g. [START_REF] Fitting | Proof methods for modal and intuitionistic logics[END_REF][START_REF] Wallen | Automated Deduction in Nonclassical Logics[END_REF]), no proof systems for nominal tense logics using this conceptual similarity exist. This is all the more surprising because during the last years, prefixed calculi have regained some interest (see e.g. [START_REF] Ognjanović | A tableau-like proof procedure for normal modal logics[END_REF][START_REF] Massacci | Strongly analytic tableaux for normal modal logics[END_REF][START_REF] Governatori | Labelled tableaux for multi-modal logics[END_REF][START_REF] Russo | Modal logics as labelled deductive systems[END_REF][START_REF] Gabbay | Labelled Deductive Systems[END_REF][START_REF] Basin | Labelled propositional modal logics: Theory and practice[END_REF][START_REF] Beckert | Free variable tableaux for propositional modal logics[END_REF]).

Although designing general frameworks defining proof systems for modal logics is a fundamental task, other works deal with the di cult problem of improving significantly the mechanization of logics by finding refined properties, mostly proof-theoretical, that provide better complexity bounds or that allow the design of e cient decision procedures (see e.g. [START_REF] Hudelmaier | Improved decision procedures for the modal logics K, KT and S4[END_REF][START_REF] Ganzinger | A resolutionbased decision procedure for extensions of K4[END_REF][START_REF] Heuerding | Sequent Calculi for Proof Search in Some Modal Logics[END_REF]). We claim that the latter approach is the most promising for mechanization. As witness, the present paper illustrates that for many nominal tense logics, it is not so di cult to find a general framework for mechanization as long as only qualitative properties (soundness, completeness, . . . ) are investigated. Our contribution. For any nominal tense logic L from the class C ⇧ 0 2 defined in this paper, we define a sequent-style calculus, say GL, that is based on the sequent-style counterpart of the calculus KE defined in [dM94]. Our calculi admit a cut rule satisfying the following nice computational properties. When reading the proof upwards, at any stage of the construction of the proof, (CR1) the number of potential cut-formulae is linear in the size of the part of the proof constructed so far; (CR2) any potential cut-formula can be computed in linear-time in the size of the part of the proof constructed so far. (CR3) the size of any potential cut-formula is linear in the size of the part of the proof constructed so far (consequence of (CR2));

(CR1) means for instance that when growing the proofs upwards, if one decides to apply the cut rule at some stage, only a limited amount of candidate cut formulae could be useful to end the construction of the proof. The non-determinism of the cut rule is therefore weakened. Analycity is however not guaranteed because new nominals shall be introduced during the construction of the proofs. It is known (see e.g. [START_REF] Boolos | Don't eliminate cut[END_REF][START_REF] Agostino | The taming of the cut. Classical refutations with analytic cut[END_REF]) that cut-elimination is not always a guarantee for (e cient) mechanization. The search for some analytic cut rule is often desirable and the calculi defined in this paper follow that line of research. Furthermore, we take advantage of the presence of nominals in the modal language to use "implicit prefixes" in the proof systems. As far as we know, the idea of using such implicit prefixes when nominals are involved is due to Konikowska [START_REF] Konikowska | A logic for reasoning about relative similarity[END_REF]. In [START_REF] Konikowska | A logic for reasoning about relative similarity[END_REF], Rasiowa-Sikorski-style calculi for relative similarity logics are defined. Herein, we generalize the use of implicit prefixes to a class of nominal tense logics and we introduce various restrictions on the applications of the rules while preserving completeness. Although, for some particular logics, decision procedures can be obtained using the restrictions, in the general case, the design of decision procedures (when possible) is not straightforward from our calculi. It is also fair to state that the paper [START_REF] Konikowska | A logic for reasoning about relative similarity[END_REF] has been a source of inspiration in order to develop some of the ideas present in this paper.

In the last part of the paper, we define sequent-style calculi (based on KEQ [d'A90]), say GF OL L , for fragments of the classical logic such that the calculi GL and GF OL L can be clearly viewed as syntactic variants. This allows to observe that GL is first-order in nature and to explain why it is so. Moreover, it clearly raises the questions about the relevancy of defining calculi within a general prooftheoretical framework when mechanization is wanted. Apart from the technical results of the paper, we wish to formally illustrate why numerous calculi for modal logics can be viewed as an encoding into classical logic. Although this fact is widely recognized for particular systems, we want here to propose a more general picture since the class C ⇧ 0 2 is quite large. Related work. Most of the proof systems designed for nominals tense logics are Hilbert-style ones [START_REF] Blackburn | Nominal tense logic[END_REF]. Calculi for (non nominal) tense logics can be for instance found in [RU71,Kra96,Heu98,BG98] but these calculi do not treat the nominal case and they do not consider so large a class of logics as C ⇧ 0 2 . In [START_REF] Demri | Cut-free display calculi for nominal tense logics[END_REF], display calculi for nominal tense logics have been defined and cut is not only eliminable but also a strong normalization theorem is established. For all the calculi designed in the present paper, cut (or equivalently the principle of bivalence) is not eliminable. Furthermore, the sequent calculi defined in the present paper are based on a completely di↵erent approach: we rather use the nominals as "implicit prefixes". In that sense, our calculi are explicit systems following [START_REF] Goré | Tableaux methods for modal and temporal logics[END_REF] but without introducing any extra proof-theoretical device that does not belong to the object modal language. Furthermore, the calculi defined in this paper does not di↵er very much in spirit with those defined in [START_REF] Russo | Modal logics as labelled deductive systems[END_REF][START_REF] Basin | Natural deduction for nonclassical logics[END_REF]. Indeed, we associate syntactically rules to formulas defining relational theories. However, we are able to capture all the conditions on frames for the properly displayable modal logics defined in [START_REF] Kracht | Power and weakness of the modal display calculus[END_REF]. We wish also to thank one of the referees for pointing us to [START_REF] Blackburn | Internalizing labeled deduction[END_REF][START_REF] Tzakova | Tableau calculi for hybrid logics[END_REF] where tableau-style calculi having technical similarities with ours have been defined.

Nominal tense logics

Given a countably infinite set 1

For 0 = {p 0 , p 1 , p 2 , . . .} of atomic propositions and a countably infinite set For N 0 = {i 0 , i 1 , . . .} of names, the formulas 2 NTL(G, H) are inductively defined as follows:

:

:= p k | i k | 1 ^ 2 | 1 ) 2 | ¬ | G | H for p k 2
For 0 and i k 2 For N 0 . Standard abbreviations include ,, F , P . We write | | to denote the length of the formula for some (unspecified) succinct encoding. An occurrence of the formula is said to be a subformula of the formula of secondary disjunctive force def , is a subformula of and is the immediate subformula either of a conjunction in of negative polarity or of an implication in of positive polarity. We use here the usual notion of polarity. For instance, p 0 occurs negatively in (p 1 ^p0 ) ) p 1 . A modal frame F = hW, Ri is a pair such that W is a non-empty set and R is a binary relation on W . We use R(w , is true in all the models based on the frames of C. A formula is said to be L-satisfiable def , ¬ is not L-valid. Now, we define the class C ⇧ 0 2 of nominal tense logics announced in the introduction. First, we need to present preliminary definitions. Here, we consider the fragment of FOL built using the following vocabulary: > is the verum logical constant; {P k : k 2 !} is a countable set of unary predicate symbols; R and = (identity) are the unique binary predicate symbols;

) def = {v 2 W : (w, v) 2 R}. A model M is a structure M = hW,
{a k : k 2 !} is a countable set 2 of individual constants; {x k : k 2 !} [ {y k : k 2 !} is a countable set of individual variables. A ⇧ 0
1formula is a FOL-formula of the form 8x 1 . . . 8x n where is quantifier-free and n 1. A ⇧ 0 2 -formula is a FOL-formula of the form 8x 1 . . . 8x n 9y 1 . . . 9y m where is quantifier-free and n, m 1. A restricted ⇧ 0 2 -formula is defined here as a FOL-formula of the form 8x 1 . . . 8x n 9y 1 . . . 9y m ( 1 ) 2 ) where 1.

is in prenex normal form (PNF) and 1 ) 2 is precisely its matrix; 2. 1 and 2 are formulas built upon the binary predicate symbols R, =, the truth logical constant > and from {x 1 , . . . , x n , y 1 , . . . , y m } (no individual constant occurs in 1 ) 2 ); n 1; m 0; 3. 1 is either the logical constant > or a finite conjunction of literals (atomic formulae or negated atomic formulae) where no y i occurs in 1 ; 4. 2 is a disjunction of conjunctions of literals.

A nominal tense logic L = hNTL(G, H), Ci is an element of the class C ⇧ 0 2 def ,
there is a set3 of restricted ⇧ 0 2 -formulae such that C is exactly the set of frames satisfying each formula from (in the first-order sense). The class C of modal frames is also said to be C ⇧ 0 2 -definable. The class C ⇧ 0 2 is quite large. By manipulation at the first-order level one can show:

1. For any closed (unrestricted) ⇧ 0 2 -formula def = 8x 1 . . . 8x n 9y 1 . . . 9y m ( 1 )
2 ) in PNF such that the only variables in 1 belong to {x 1 , . . . , x n }, there exists a finite conjunction of restricted ⇧ 0 2 -formulae equivalent to . 2. Every primitive first-order formula in the sense of [START_REF] Kracht | Power and weakness of the modal display calculus[END_REF] is logically equivalent to a restricted ⇧ 0 2 -formula. 3. There exist C ⇧ 0 2 -definable classes of frames that contain only infinite frames (see e.g. [START_REF] Blackburn | Nominal tense logic[END_REF]).

Expressivity of the restricted ⇧ 0 2 -formulae is also well-illustrated by the fact that not only are there C ⇧ 0 2 -definable classes of frames that are not modally definable but also all the first-order classes of frames defined by a conjunction of conditions from Figure 2 and Figure 3 in [START_REF] Goré | Tableaux methods for modal and temporal logics[END_REF] are C ⇧ 0 2 -definable. All the first-order definable classes of frames considered in [START_REF] Russo | Modal logics as labelled deductive systems[END_REF][START_REF] Castilho | Modal tableaux with propagation rules and structural rules[END_REF] are C ⇧ 0 2definable and C ⇧ 0 2 contains all the modal logics (in their nominal tense version) defined with Horn clauses from [START_REF] Basin | Natural deduction for nonclassical logics[END_REF]. Furthermore, for any nominal tense logic L = hNTL(G, H), Ci such that C is first-order definable by a finite set of restricted ⇧ 0 2 -formulae, it is known that the L-validity problem can be translated into FOL-validity (using [START_REF] Van Benthem | Modal logic and classical logic[END_REF][START_REF] Gargov | Modal logic with names[END_REF]). However, there is no guarantee that L admits a proof system (based on KE for instance) such that the cut rule satisfies the conditions (CR1), (CR2) and (CR3) -see Section 1. In the present paper, the delimitations of the class C ⇧ 0 2 has been designed in such a way that the sequent calculi (based on KE) admit a cut-rule satisfying the computationnally nice conditions (CR1), (CR2) and (CR3) -other restrictions on the applications of various rules shall be introduced. Those criteria distinguish our work from the standard translation into FOL but other criteria are of course possible as done in [BMV97, Section 4] where enlighting analyses about the behaviour of the falsum ? can be found. To conclude this section, we warn the reader that although C ⇧ 0 2 is undoubtly a very large class, we ignore whether it contains any logic useful in practice.

Sequent-style calculi for nominal tense logics

In this section, L denotes a nominal tense logic hNTL(G, H), Ci in C ⇧ 0 2 characterized by the set of restricted ⇧ 0 2 -formulae.

Preliminaries

Most of the prefixed tableaux calculi for modal logics use prefixes as a compact way to represent sets of positive literals in first-order logic. It partly explains why numerous calculi can be viewed as a "clever translation"4 into classical logic (see e.g. [START_REF] Gent | Analytic proof systems for classical and modal logics of restricted quantification[END_REF]). For instance, in [START_REF] Fitting | Proof methods for modal and intuitionistic logics[END_REF], a prefix is defined as a (non-empty) sequence of natural numbers. A sequence i 1 . . . i n 2 ! ⇤ (n 1) can be understood (for example for the modal logic S4) as the set5 {R(a i1...im , a i1...i m 0 ) : 1  m  m 0  n} of positive literals (the a 's are individual constants). It is therefore inaccurate to believe that since prefixes can be interpreted at the metalevel by worlds, then prefixes and nominals have the same expressive power. Actually, the prefixes are more expressive since the nominals do not contain any information about the accessibility relation. However, formulas involving nominals can encode first-order literals, positive and negative ones as shown below. For any model M = hW, R, mi, it is easy to show that i 1 ) G¬i 2 is true in M i↵ (m(i 1 ), m(i 2 )) 6 2 R. So, i 1 ) G¬i 2 can be used as a negative literal. What seems to be lost here, is a conciseness of the representation: each literal is represented by one nominal tense formula of the same length (modulo some constant) and it is the approach chosen in the calculi defined in Section 3.2. However, since we are dealing with logics whose satisfiability is NP-hard, the following argument shows that conciseness is a secondary issue for mechanization. Indeed, let i 1 . . . i n be a (non-empty) sequence of natural numbers representing a set X of first-order positive literals subset of {R(a i1...im , a i1...i m 0 ) : m, m 0 2 {1, . . . , n}} (it depends on the modal logic we consider but let us treat the general case). The length of i 1 . . . i n , say |i 1 . . . i n |, is naturally defined as the sum of the length (in binary writing) of each natural number occurring in i 1 . . . i n . For instance, |i 1 . . . i n | n and card(X)  n 2 . Let X be the following nominal tense formula V R(ai 1 ...im ,ai 1 ...i m 0 )2X i i1...im ) ¬G¬i i1...i m 0 that encodes the prefix i 1 . . . i n (or equivalently that encodes X). The generalized conjunction V should be here understood as an abbreviation for a certain amount of binary conjunctions.

| X | is in O(|i 1 . . . i n | 3
) and therefore, if a formula has a proof ⇧ with the "concise representation" of the positive literals, then has a proof ⇧ 0 with the representation of literals "in extension" where |⇧ 0 | is in O(|⇧| 3 ). The length of the proof ⇧, denoted |⇧|, is defined as the number of nodes in the tree. In a more general setting, it would be necessary to use a more refined definition of proof complexity which takes into account the length of proof steps. Since the calculi involved in the paper use a very restricted cut-rule (the size of the cut-formula is linear in the size of the conclusion), our definition is su cient for our needs. As no subexponential algorithm for any NP-hard problem is known, such a cubic overhead (| X | 2 O(|i 1 . . . i n | 3 )) is not so significant (even in the worst-case) when dealing with NP-hard problems (and a fortiori with PSPACE-hard problems). Of course, this is highly significant to establish tight complexity upper bounds as done in [START_REF] Hudelmaier | Improved decision procedures for the modal logics K, KT and S4[END_REF]. In [START_REF] Kripke | Semantical analysis of modal logic I: normal modal propositional calculi[END_REF][START_REF] Castilho | Modal tableaux with propagation rules and structural rules[END_REF] and [Heu98, Chapter 4], some of the graphical representations of the sets of (positive) first-order literals enjoy some conciseness property comparable to the one for prefixes.

Definition

The basic syntactic objects in the calculus are sequents. A sequent is an expression of the form ` where and are finite multisets of nominal tense formulae, i.e. unordered collections of formulae that may contain several occurrences of the same formula. We write for { } and let "," denote the multiset union. The length of the sequent ` , denoted | ` |, is the sum of the length of each element from , . The sequent calculus, say GL, for the logic L contains the rules in Figures 123. Other rules depending on are presented when needed. In Figure 2, the rules (ref l), (sym) and (trans) encode properties of identity (reflexivity, symmetry and transitivity). Similarly, the rules (sub `) and (`sub) ("sub" stands for substitution) encode that identical terms can be substituted. The (start)-rule has a special status since in any proof, this rule is applied exactly once, at the root (with the forthcoming restriction (R start )). This initiates the introduction of nominals that behave as prefixes. Observe that i ) is L-valid i↵ is L-valid when i does not occur in .

, i ) ` , i ) (initial sequents) `i ) ` (start) 
For the (start)-rule, i does not occur in . We continue here the definition of GL. Let be a finite sequence of formulas of the form i ) j, i ) ¬G¬j, i ) ¬j, i ) G¬j. Those formulae precisely "encodes" positive and negative first-order literals whose (binary) predicate symbol is either = or R. We define the sequent ( ` ) ⌦ inductively on the length of as follows ( denotes the empty string and ⌦ is simply an operator that inserts formulae in sequents):

-( ` ) ⌦ def = ` ; -( ` ) ⌦ (i ) j). 0 def = ( , i ) j ` ) ⌦ 0 ; -( ` ) ⌦ (i ) G¬j). 0 def = ( , i ) G¬j ` ) ⌦ 0 ; Fig. 2. Common core of (introduction) rules in GL ` , i ) , i ) ` ` (P B) Fig. 3. Principle of bivalence -( ` ) ⌦ (i ) ¬j). 0 def = ( ` , i ) j) ⌦ 0 ; -( ` ) ⌦ (i ) ¬G¬j). 0 def = ( ` , i ) G¬j) ⌦ 0 .
Let be a restricted ⇧ 0 2 -formula of the form

8x 1 , . . . , x n 9y 1 , . . . , y m s 1 0 P 1 0 (z 1 1,0 , z 1 2,0 ) ^. . . ^sl(0) 0 P l(0) 0 (z l(0) 1,0 , z l(0) 2,0 ) ) W k i=1 s 1 i P 1 i (z 1 1,i , z 1 2,i ) ^. . . ^sl(i) 0 P l(i) 0 (z l(i) 1,i , z l(i)
2,i ) where 1. each P j i belongs to {=, R}; each s j i belongs to { , ¬};

2. each z ↵,0 (1  ↵  2, 1   l(0)) belongs to {x 1 , . . . , x n }; 3. each z ↵,i (1  ↵  2, 1  i  k, 1   l(i)) belongs to {x 1 , . . . , x n , y 1 , . . . , y m }.
We shall now define the ( )-rule that mimicks the syntactic structure of . For any i, j 2 For N 0 , for any s, s 0 2 { , ¬} such that s 6 = s 0 and for any P 2 {=, R}, let us define the formula ⌃(sP, i, j) as follows:

⌃(sP, i, j) def = ⇢ i ) s 0 G¬j if P = R; i ) sj otherwise.
Roughly speaking, a literal sP (x k , x k 0 ) in shall be encoded by ⌃(sP, i k , i k 0 ). For any formula in , we add the ( )-rule in Figure 4 to GL. The conditions

( ` ) ⌦ 1 . . . ( ` ) ⌦ k ( ` ) ⌦ 0 ( ) 1. 0 = ⌃(s 1 0 P 1 0 , i 1 1,0 , i 1 2,0 ), . . . , ⌃(s l(0) 0 P l(0) 0 , i l(0) 1,0 , i l(0) 2,0 ); 2. for 1  u  k, u = 0.⌃(s 1 u P 1 u , i 1 1,u , i 1 2,u ). . . . .⌃(s l(u) u P l(u) u , i l(u) 1,u , i l(u)
2,u ); 3. for any ↵, ↵ 0 2 {1, 2}, q, q 0 2 {1, . . . , k}, r 2 {1, . . . .l(q)} and r 0 2 {1, . . . .l(q 0 )}, (a) z r ↵,q = z r 0 ↵ 0 ,q 0 i↵ i r ↵,q = i r 0 ↵ 0 ,q 0 ; (b) if z r ↵,q is equal to some y i , then i r ↵,q does not occur in the conclusion. 1. and 2. in Figure 4 relate the ( )-rule with the structure of (without taking care of the variables). Condition 3.(a) roughly states that each variable occurring in corresponds to a unique nominal in the application of the ( )-rule.

Condition 3.(b) states that the nominals corresponding to the y i 's are new on the branch. The ( )-rule can be viewed as a generalization of the "⇢-rule" in [START_REF] Baldoni | Normal Multimodal Logics: Automated Deduction and Logic Programming[END_REF] and of the "Horn relational rule" in [START_REF] Basin | Labelled propositional modal logics: Theory and practice[END_REF][START_REF] Basin | Natural deduction for nonclassical logics[END_REF]. More generally, the ( )-rules merely encodes the logical consequence relation of the first-order relational theory of L (as also done in [START_REF] Gent | Analytic proof systems for classical and modal logics of restricted quantification[END_REF]). Furthermore, since the definition of the ( )-rules is purely syntactic, it is not guaranteed that for logics L, L 0 in C ⇧ 0 2 characterized by and 0 respectively, if and 0 define the same class of frames, then GL and GL 0 have exactly the same rules. 

` , i ) j, i ) G¬j ` , i ) G¬j ` , i ) G¬j, i ) j ` , i ) j
A proof ⇧ in GL is a tree whose nodes are labelled by sequents satisfying the following conditions: the topmost sequents of ⇧ are initial sequents and every sequent of ⇧, except the lowest one is an upper sequent of an inference whose lower sequent is also in ⇧. A formula is provable in GL def , there is a proof ⇧ in GL such that ` is the lowest sequent of ⇧.

Soundness, restrictions and completeness

Lemma 1. Let ` be a sequent provable in GL. Then, for any L-model M, for all 2 , is true in M implies that 0 is true in M for some 0 2 . The proof is by induction on the length of the derivation. It is more standard to prove soundness by using the notion of satisfiability in a model rather than the notion of truth in a model as done here.

Theorem 1. If 2 NTL(G, H) is provable in GL, then is L-valid.
The system GL is not minimal since for instance, the (`NOM = )-rule, the (NOM H `)-rule and the (NOM G `)-rule are derivable from the rest of GL. These rules are included for the sake of symmetry. The system GL is considerably improved for the mechanization by imposing the restrictions (R init ), (R start ), (R = ), (R no renaming ), (R P B ), (R NOM ), (R witness ), (R sub 0 ) and (R ) for 2 defined below. In the rest of the paper, by GL, we mean the calculus with such restrictions. First, any nominal j that occurs on a branch of a (possibly partial) proof whose root is labeled by is a p-name (standing for "implicit prefix") def , j has been placed on the branch by application of a rule that introduces new nominals. The notion of p-names is similar to that of Skolem constants.

-(R init ) for the initial sequent is: any 0 occurring in , i ) ` , i ) is of the form j ) 00 where j is a p-name, 00 is either a subformula of (syntactically) equal to an atomic proposition in the case when j ) 00 = i ) or a p-name, or a nominal occurring in the root sequent ` or a formula of the form G¬j 0 with j 0 a p-name.

-(R start ) for the (start)-rule is: is not of the form j ) 0 where j is a p-name. -(R = ) concerns the rules (ref l), (sym), (trans), (`sub) and (sub `): all the names i, j, k are p-names.

-(R no renaming ) is: in (`G) and in (`H) is not a negated p-name.

-(R P B ) is: i is a p-name and is either a subformula in of secondary disjunctive force or G¬j with j a p-name or a p-name j.

-(R NOM ) concerns the rules (`NOM = ), (NOM = `), (`NOM G ), (NOM G ), (`NOM H ), (NOM H `): i and i 0 are p-names whereas j is not a p-name.

-(R witness ) concerns the rules (G `) and (H `): i and j are p-names.

-(R sub 0 ) is: in the (sub 0 `)-rule and the (`sub 0 )-rule, i, j and j 0 are p-names.

-The restriction (R ) for the ( )-rule for 2 is: all the nominals occurring in 0 are p-names.

The sequent calculus GL (in its restricted form) has the following separation property: any p-name i occurring in a branch does not occur in a formula j ) occurring on the same branch, except when either j = i or = G¬i or = i. This separation property illustrates the control on the use of nominals imposed by the above restrictions.

Theorem 2. If 2 NTL(G, H) is L-valid, then is provable in GL.
The proof of Theorem 2 (using Schütte's method) is based on a similar proof for classical logic. In Section 4, we formally state in which sense GL is equivalent to a calculus for a fragment of classical logic.

Sequent calculi for fragments of classical logic with relational theories

In this section, we define a first-order Gentzen-style calculus GF OL L (based on the calculus KEQ [d'A90, Section 3.5]) such that GL and GF OL L can be viewed as syntactic variants. This is the opportunity to formally present (once and for all) how a tableaux calculus can be viewed as a translation into classical logic. Let us briefly recall the translation ST ("Standard Translation") defined in [START_REF] Van Benthem | Modal logic and classical logic[END_REF][START_REF] Gargov | Modal logic with names[END_REF] of nominal tense formulae into the first-order language (here t is either a variable or a constant): ST (p j , t)

def = P j (t); ST (i j , t) def = t=a j ; ST (¬ , t) def = ¬ST ( , t); ST ( 0 , t) def = ST ( , t) ST ( 0 , t) for 2 {^, )}; ST (G , t) def = 8 x 0 (R(t, x 0 ) ) ST ( , x 0 )) where x 0 is a new variable; ST (H , t) def = 8 x 0 (R(x 0 , t) ) ST ( , x 0 )) where x 0 is a new variable. It is known that is L-valid i↵ ) 8x 0 ST ( , x 0 ) is FOL-valid.
The previous statement assumes that is a finite conjunction. By contrast, the developments in this section does not assume that is finite. The rules of the calculus GF OL L are those presented in Figure 5 -Figure 6 (other rules are added later on). Like the notion of p-name in GL, an individual constant a occurring on a branch is said to be a p-constant (or Skolem constant) def , a does not occur in the root sequent of the proof (possibly in construction) and it has been introduced on the branch by a rule putting new constants on the branches. We write (a k ) [resp. (x)] to denote the formula whose a k is a p-constant occurring in it [resp. whose x is a free individual variable occurring in it.].

, ` , (initial sequents) under the proviso: any formula 0 in , , is (1) either a subformula 00 (a) of 8x0 ST ( , x0) where a is the unique p-constant in 00 (a) and in the case when = 00 , is atomic (2) or a formula a=b where a is a p-constant and b is either a p-constant or a constant occurring in 8x0 ST ( , x0) (3) or a formula R(a, b) where a and b are p-names.

` , , ` `

(P B)
where either is a formula of secondary disjunctive force occurring below in the proof containing a unique p-constant or is of the form a k =a k 0 or R(a k , a k 0 ) where a k and

a k 0 are p-constants. `ST ( , a k ) `8x0 ST ( , x0) (start) 
the application of (start) is under the proviso that a k does not occur in ST ( , x) (or equivalently, i k does not occur in ) and 8x0 ST ( , x0) does not contain p-constants. For instance, the rules (8 `)1 and (8 `)2 can be seen as derived rules in the calculus KEQ [d'A90] using the rules from KEQ recalled below

, 8x (x), (a) ` , 8x (x) ` , 1 , 2 , ` , 1 , 1 ) 2 , `
This explains why the universal quantification in modal logic can be naturally encoded in KEQ .

Let be a finite sequence of formulas of the form R(a, a 0 ), ¬R(a, a 0 ), a=a 0 , ¬(a=a 0 ). We define the sequent ( ` ) ⌦ 0 inductively as follows:

-( ` ) ⌦ 0 def = ` ; ( ` ) ⌦ 0 a=a 0 . 0 def = ( , a=a 0 ` ) ⌦ 0 0 ; -( ` ) ⌦ 0 ¬R(a, a 0 ). 0 def = ( ` , R(a, a 0 )) ⌦ 0 0 ; -( ` ) ⌦ 0 ¬(a=a 0 ). 0 def = ( ` , a=a 0 ) ⌦ 0 0 ; -( ` ) ⌦ 0 R(a, a 0 ). 0 def = ( , R(a, a 0 ) ` ) ⌦ 0 0 .
Let be a restricted ⇧ 0 2 -formula in (we use the notations from Section 3). The rule associated to is presented in Figure 7.

By construction, the calculi GL and GF OL L have (almost) the same amount of rules and there is a natural correspondence between the rules of GL and GF OL L . For instance, the (8 `)1 -rule in GF OL L correspond to the (G `)-rule in GL and the (sub `)-rule and (sub 0 `)-rule in GL correspond to the (sub f ol )rule in GF OL L .

Let 2 For and ⇧ be a proof of 8x 0 ST ( , x 0 ) in GF OL L . By induction on the length of ⇧ one can show that any formula occurring in ⇧ has at most two p-constants occurring in it. Moreover, if is not an atomic formula and we have been able to consider most of the classes of modal frames first-order definable that can be found in the literature. Using standard correspondences, it is easy to define tableaux calculi for nominal tense logics from our sequent-style calculi. Extensions of the calculi to cope with the logical consequence relations are also possible. Moreover, by appropriately modifying the (start)-rule, one can deal with finite configuration in the sense of [Rus96, Chapters 2 and 3]. Similarly, prefixed calculi (either sequent-based or tableaux-based) could be easily defined for the corresponding (non nominal) tense logics. Because of lack of space, such developments are omitted here but they are not di cult to derive from the present paper. Similarly, the design of decision procedures from our calculi was out of the scope of this paper but it is a question worth being investigated in the future.

The adequateness of our framework for mechanization cannot be stated without further investigations although it seems theoretically appealing (see for instance in Section 3.3 how the application of rules can be restricted). There is no reason to be overly optimistic since we have shown that the non prefixed sequent calculi are syntactic variants of restricted calculi for classical logic (augmented with relational theories). This property is shared by numerous calculi from the literature. As a conclusion, it is an open question whether any general framework defining sequent-style proof systems for modal (or nominal tense, ...) logics characterized by first-order definable classes of modal frames (take for instance C ⇧ 0 2 ) is bound to define syntactic variants of calculi for fragments of classical logic augmented with relational theories.

  R, mi such that hW, Ri is a frame and m is a mapping m : For 0 [For N 0 ! P(W ) where for any i 2 For N 0 , m(i) is a singleton. Let M = hW, R, mi be a model and w 2 W . The formula is satisfied by the world w 2 W in M def , M, w |= where the satisfaction relation |= is inductively defined as follows: M, w |= p def , w 2 m(p), for every p 2 For 0 [ For N 0 ; M, w |= G def , for every w 0 2 R(w), M, w 0 |= ; M, w |= H def , for every w 0 2 R 1 (w), M, w 0 |= (R 1 is the converse of R). We omit the standard conditions for the propositional connectives. A formula is true in a model M (written M |= ) def , for every w 2 W, M, w |= . A formula is true in a frame F (written F |= ) def , is true in every model based on F. In what follows, by a logic L we understand a pair hNTL(H, G), Ci where C is a non-empty class of modal frames. A formula is said to be L-valid def

Fig. 1 .

 1 Fig. 1. Initial sequents and the rule (start)

Fig. 4 .

 4 Fig. 4. ( )-rule for 2

Example 1 .

 1 Let L 6 = def = hNTL(G, H), C 6 = i be the nominal tense logic such that def = {8x, y R(x, y) ) ¬(x=y), 8x, y ¬(x=y) ) R(x, y)}. The tense operators G and H are actually equivalent and G is merely the di↵erence modal operator [6 =]. The rules of GL 6 = are those in Figures 1-3 plus the rules defined from :

Fig. 5 .

 5 Fig. 5. First bunch of rules for GF OLL

The metavariables for atomic propositions [resp. for nominals] are p, q, . . . [resp. i, j, . . .]. When p [resp. i] is subscripted by some natural number, we mean exactly the members from For0 [resp. from For N

The metavariables for individual constants [resp. for individual variables] are a, b, . . . [resp. x, y, . . .]. When a [resp. x and y] are subscripted by some natural numbers we mean exactly the members from {a k : k 2 !} [resp. from {x k : k 2 !}[{y k : k 2 !}].

should be understood as a (possibly infinite) conjunction.

[START_REF] Beckert | Free variable tableaux for propositional modal logics[END_REF] is one of the rare papers where such a relationship is explicitly recognized.

Since ! ⇤ and ! have the same cardinality, without any loss of generality, we can assume that the individual constants and the nominals are respectively of the form a and i where 2 ! ⇤ .
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in (`H) and (`G), j does not occur in the conclusion

under the proviso that b does not occur in the lower sequent.

,

in the above rules, a k 1 and a k 2 are p-constants and a k is not a p-constant.

, a=a ` ` a occurs in , , a=b, b=a, ` , a=b ` , a=b, b=b 0 , a=b 0 , ` , a=b, b=b 0 ` , a=b ` , (a), (b) , a=b ` , (a) (`sub f ol ) , a=b, (a), (b) ` , a=b, (a) ` (sub f ol `)

In the above rules, a, b and b 0 are p-constants Fig. 6. Common core of (introduction rules) for GF OLL

2,0 ) and all the constants in 0 are pconstants; 2. for 1  u  k, u = 0.s

2,u ); 3. for any ↵, ↵ 0 2 {1, 2}, q, q 0 2 {1, . . . , k}, r 2 {1, . . . .l(q)} and r 0 2 {1, . . . .l(q 0 )}, (a) z r ↵,q = z r 0 ↵ 0 ,q 0 i↵ a r ↵,q = a r 0 ↵ 0 ,q 0 ; (b) if z r ↵,q is equal to some y i , then a r ↵,q does not occur in the conclusion. whose predicate symbol is binary, then exactly one p-constant occurs in unless is the root formula 8x 0 ST ( , x 0 ) itself. This is reminiscent of the facts that in standard modal logic, one can deal with only one world at a time and two individual variables are su cient for encoding the quantification 2 in first-order logic. Theorem 3 below helps understanding the relationships between GL and GF OL L .

(II) Let ⇧ be a proof of 8x 0 ST ( , x 0 ) in GF OL L for some nominal tense formula . Then, there is a proof

Concluding remarks

The results of the previous sections can be extended to the polymodal case. Indeed, it is easy to consider for some countable set I of "modal terms", the family {G i : i 2 I} [ {H i : i 2 I} of tense operators by appropriately considering polymodal Kripke models. The class C I ⇧ 2 0 is defined as the class of polymodal logics such that the class of frames is determined by a (possibly infinite) set of restricted ⇧ 0 2 -formulae over the vocabulary containing {R i : i 2 I}. This extension does not generate any new technical problems and it is quite powerful as shown below. Let I 0 = {c 0 , . . . , c i , . . .} be a set of modal constants and I be the set of modal terms t inductively defined as follows: t

We wish to interpret the operators , 1 , [, \ and and the identity constant id as in the Relation Calculus. Although it is known that the Relation Calculus can be translated in classical logic, surprisingly, we can also capture such a semantics in our framework using only restricted ⇧ 0 2 -formulae. So, by using our framework we can deal with nominal (poly)tense logics admitting the operators , 1 , \, [, and this is done uniformly 6 (this list of operators is not exhaustive). By contrast, in [Bal98, Chapter VI], only the operators [ and and the constant id are treated.

In this paper, we defined sequent calculi for nominal tense logics. The idea of using "implicit prefixes" in the calculi, due to [START_REF] Konikowska | A logic for reasoning about relative similarity[END_REF], allows a great flexibility