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Complementarity relations: reduction of decision rules and informational representability

Introduction

The main objectives of this paper are:

(a) To show how reduction of decision rules and sets of decision rules can be based on an analysis of complementarity of objects defined by means of these rules, (b) To prove the informational representability of relational systems with complementarity relations.

In the paper we consider decision rules determined by a decision table. Each of the rules might be interpreted as a statement defining a decision that depends on properties of an object. We show that the complementarity relations derived from a decision table provide criteria for reduction of both individual rules and sets of rules. It follows that reasoning about complementarity might play an important role in development of decision support systems. Intuitively, two objects are complementary whenever the properties that they possess are negations of each other. For example, if x is green and y is not green, then x and y are complementary. We propose two kinds of structures to model complementarity phenomenon: abstract relational systems, referred to as complementarity frames, where the respective complementarity relations are determined by means of their properties; and 'concrete' structures, where the relations are derived directly from a decision table and are defined in terms of properties of objects. We prove that any abstract complementarity frame is informationally representable. The notion of informational representability of relational systems has been introduced and investigated in [START_REF] Demri | Informational representability of models for information logics[END_REF]. Let a similarity relation 1 in a class C of relational systems be given, for example a relation of 'being isomorphic'. Intuitively, a system K from the class C is informationally 1-representable if there is a decision table and a system K derived from the table such that K is in the class C and K is 1-related to K . The informational representability might be treated as a criterion of adequacy of a formal model in that it shows that the model captures the relevant features of an application domain (see for instance in [7,8] representability results involving similarity structures).

Decision rules and their reduction

By an information system (see e.g. [6]) we mean a pair (OB, AT ) where OB is a non-empty set of objects and AT is a non-empty set of attributes. Each attribute a is a mapping a : OB → P(V al a ) \ {∅}. For each a ∈ AT , the nonempty set V al a is the set of values of the attribute a. In that setting, two objects o 1 , o 2 are said to be indiscernible with respect to a set of attributes A ⊆ AT (in short o 1 ind(A) o 2 ) iff for all a ∈ A, a(o 1 ) = a(o 2 ). Various generalizations of the notion of information system and some other relations between the objects (similarity, weak indiscernibility, . . .) can be found for instance in [4, 9].

An 

Fig. 1. A decision table

In Figure 1, 'not green' stands for V al colour \ {green}. This table generates the following set D(S) of rules: r o1 : (colour, green) & (size, small) → pick it up r o2 : (colour, not green) & (size, small) → pick it up r o3 : (colour, blue) & (size, medium) → do not pick it up Any decision rule can be treated in a natural way as a formula of the classical propositional calculus. For example the rule r o1 from Example 1 corresponds to: if an object is green and small then pick it up. Clearly if S is consistent (respectively inconsistent) then D(S) is consistent (respectively inconsistent) in the propositional calculus.

(comp) Two objects o 1 and o 2 are said to be in relation of complementarity

with respect to A ⊆ AT (o 1 comp(A) o 2 ) iff for all a ∈ A, a(o 1 ) = V al a \ a(o 2 ).
We say that a condition attribute a ∈ AT is redundant in rule r o if there is o ∈ OB such that the following conditions hold:

(red)    (o, o ) ∈ comp({a}), (o, o ) ∈ ind(AT \ {a}), and ∀z, if d(z) = d(o) then ∃b ∈ AT \ {a} such that b(z) = b(o)
In other words, a is redundant in r o whenever decision d(o) does not depend on the condition attribute a. As a consequence, if a is redundant in r o we may delete a part of the rule that refers to the attribute a. Moreover, we may delete from D(S) all the rules r o such that o and o satisfy (red). It is easy to see that this reduction process preserves consistency/inconsistency of the set of decision rules. Traditionally, there are two groups of methods for reduction of decision rules and sets of decision rules: methods that reduce the number of condition attributes in the decision table (based on calculation of reducts) and methods of elimination of redundant conditions in a rule. As shown previously, an analysis of complementarity relations contributes to both kinds of methods. 1 then the rule r o1 would not be reducible. For otherwise, the reduced set of rules would be inconsistent, namely r o1 and r o4 would be contradictory.

Example 2. Consider the decision table from

We conclude that reasoning about indiscernibility and complementarity of objects in a decision table S provides criteria for reduction of both individual decision rules and the set D(S) of rules.

Complementarity frames

By a complementarity frame derived form an information system S = (OB, AT ) (or from a decision table S = (OB, AT, d)) we mean the system (OB, comp(AT )), where comp(AT ) is defined according to condition (comp) from Section 2. It can be observed that comp(AT ) is symmetric, irreflexive and intransitive. This is an example of a concrete structure (derived from user data). Moreover, when o comp(AT ) o holds, then for all a ∈ AT the set V al a is uniquely determined by a(o) and a(o ). Hence, a more subtle characterization of complementarity is needed. This problem has been open until now. The following definition provides hints to solve this problem.

A binary relation R over a set U is said to be a complementarity relation iff -R is symmetric, -R does not contain cycles of odd length and, for all u, v, w, z ∈ U , if (u, v) ∈ R, (v, w) ∈ R and (w, z) ∈ R then (u, z) ∈ R (3-transitivity).

By an abstract complementarity frame we mean a system (U, R) such that U is a nonempty set and R is a complementarity relation over U . We write F to denote the class of complementarity frames. Observe that the class F is not closed under p-morphisms. It follows that F is not modally definable (see [3]). Moreover, F is elementary since the condition of being a complementarity relation can be expressed by a set Γ of formulas from the classical first-order logic. Hence modal logics characterized by complementarity frames might play a special role in modal logic theory. It is easy to see that comp(AT ) is a complementarity relation. In the following section we prove the informational representability of abstract complementarity frames.

Informational representability: a construction

For any binary relation R over the set U , for all u ∈ U we write C u,R to denote the largest subset of U such that u ∈ C u,R and, for all v ∈ C u,R \ {u}, there is a R -path between u and v where R is the symmetric closure of R.

Observe that {C u,R : u ∈ U } is a partition of U . For all u ∈ U , we write C 0 u,R (resp. C 1 u,R ) to denote the largest subset of C u,R such that for all v ∈ C 0 u,R , there is a R -path of even (resp. odd) length between u and v. Moreover for all U ⊆ U , we write

C U u,R to denote C 0 u,R if u ∈ U , C 1 u,R otherwise.
Observe that for all u, v, w ∈ U , and for a complementarity relation R,

if {v, w} ⊆ C u,R then {C 1 v,R , C 0 v,R } = {C 1 w,R , C 0 w,R }.
In particular, if there is a R-path of odd length between v and w then

C 1 v,R = C 0 w,R and C 0 v,R = C 1 w,R otherwise C 0 v,R = C 0 w,R and C 1 v,R = C 1 w,R . Lemma 1. Let R be a complementarity relation over a set U . The set {C i u,R : u ∈ U, i ∈ {0, 1}} is a partition of U .
The proof of Lemma 1 is by an easy verification. It is worth mentioning that although {C u,R : u ∈ U } is a partition of U whatever is the binary relation R, the fact that R is a complementarity relation is a crucial hypothesis in Lemma 1.

Indeed if (u, v) ∈ R 2k (resp. (u, v) ∈ R 2k+1 ) for some k ≥ 0 then for all k ≥ 0, (u, v) ∈ R 2k +1 (resp. (u, v) ∈ R 2k
), otherwise it would exist a cycle of odd length passing through u.

In order to show the informational representability, for all (U, R) ∈ F we construct an information system S g(K) = (U, {at g(K) }) such that g(K) ⊆ P(U ), at g(K) is a mapping from U into P(g(K)) and, -R = comp({at g(K) }).

Let g be the mapping such that for all K = (U, R) ∈ F,

g(K) = { u∈Y C U u,R : ∃U ⊆ U, ∃Y ∈ W } with W = {Y ⊆ U : ∀u, v ∈ Y, C u,R = C v,R , u∈Y C u,R = U }
The set W contains subsets of U with exactly one element for each set in {C u,R : u ∈ U }. Moreover g(K) can be roughly defined as the set of maximal subsets U of U (with respect to inclusion) such that R ∩ U × U = ∅. Figure 2 illustrates the construction with a finite frame (the closure by 3-transitivity and symmetry is omitted in the picture for the sake of readability). 

§ ¦ ¤ ¥ J J J J J J J J J J J J J J J J J J K = (U, R) an element of W An element of g(K) Fig. 2. Example It is easy to show that for all Y 0 ∈ W , g(K) = { u∈Y0 C U u,R : ∃U ⊆ U } and Y ∈g(K) Y = U . For all u ∈ U , C u,R is not empty (u ∈ C u,R ). Let x u be the representative element of C u,R . Hence W is not empty since {x u : u ∈ U } ∈ W . Lemma 3. comp({at g(K) }) = R.
So for any complementarity frame K = (U, R), there exists an information system (U, AT ) such that comp(AT ) = R. Moreover, for any information system (OB, AT ), the structure (OB, comp(AT )) is a complementarity frame. Hence, This informational representability result relates two classes of structures, namely information systems and abstract complementarity frames. This abstract characterization of the relations comp(AT ) might also be useful in mechanizing the reduction process of sets of decision rules that has been intuitively described in Section 2. Namely, the result assures that any inference method designed for a modal logic determined by the class of complementarity frames ([5]) guarantees a logically adequate transformations of sets of decision rules.

Besides, as observed in [START_REF] Duentsch | [END_REF], in the definition for the complementarity relations, the condition on cycles of odd length can be equivalently replaced by the condition that the relation is irreflexive. However it is an open problem whether the representability construction can be carried on without referring to the cycles property.

Concluding remarks

We discussed a formal framework for the development of a method of reduction of decision rules derived from a decision table. We have shown that an analysis of complementarity is useful for that purpose. We formulated and proved the informational representability of relational systems with complementarity relations. Our construction can also be used to characterize the incomplementarity relations between objects. Let S = (OB, AT ) be an information system. Two objects o 1 and o 2 are said to be in relation of incomplementarity with respect to A ⊆ AT (in short o 1 incomp(A) o 2 ) iff for all a ∈ A, (V al a \ a(o 1 )) = a(o 2 ). Let F be the class of frames (U, R) such that the complement of R is a complementarity relation. For any frame K = (U, R) in F we define g (K) = g((U, -R)) where '-' is the complement with respect to U × U . We can easily show that incomp({at g(K) }) = R. Hence {(OB, incomp(AT )) : (OB, AT ) is an information system} provides an informational representation of the class F . This article was processed using the L A T E X macro package with LMAMULT style
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 1 The object o 1 satisfies the condition (red). Hence we can reduce the rule r o1 to: r o1 : (size, small) → pick it up Moreover we remove the rule r o2 from the set D(S). Observe that if a row "| o 4 | blue | small | no |" is added to Table

Corollary 4 .

 4 {(OB, comp(AT )) : (OB, AT, d) is an information system} provides an informational representation of the class F.

  information system S = (OB, AT, d), d ∈ AT , with an additional attribute d, referred to as a decision attribute (or with a finite family of decision attributes) is called a decision table. In the rest of this section, we assume that d(o) is a singleton set for each o ∈ OB. The values d(o) of d for objects o ∈ OB are called decisions. The attributes from AT are called condition attributes. Any decision table S with a finite set AT generates a set D(S) of decision rules. By a rule determined by an object o ∈ OB we mean the following statement. Let AT = {a 1 , ..., a n }. (r o ) If the value of a 1 for o is a 1 (o) and ... and the value of a n for o is a n (o), then decide d(o). We abbreviate such a rule as: (a 1 , a 1 (o)) & ... & (a n , a n (o)) → d(o) We say that a decision table is inconsistent if there are two objects o and o such that (o, o ) ∈ ind(AT ) and d(o) = d(o ). Otherwise, the table is consistent. Example 1. Consider the decision table in Figure 1.

		colour	size d (pick-up)
	o1 green	small	yes
	o2 not green small	yes
	o3	blue medium	no
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Lemma 2. Let K = (U, R) be a frame in F. For all u, v ∈ U , (u, v) ∈ R iff for all Y ∈ g(K), either (u ∈ Y and v ∈ Y ) or (u ∈ Y and v ∈ Y ).

So there is X 0 ∈ g(K) such that {u, v} ⊆ X 0 , which leads to a contradiction. Now assume C u,R = C v,R . Suppose there is a R-path of even length between u and v, say (u 0 , . . . , u n , . . . , u 2×n ) with

So there is X 0 ∈ g(K) such that {u, v} ⊆ X 0 , which leads to a contradiction. So there is a R-path of odd length between u and v, say (u 0 , . . . , u (2×n)+1 ) with u 0 = u and v = u (2×n)+1 .

-If n = 0, then (u, v) ∈ R.

-If n = 1, then by the 3-transitivity condition (u, v) ∈ R.

-Now assume n > 1. By the 3-transitivity condition, (u (2×(n-1)) , u (2×n)+1 ) ∈ R. So there is a path of length (2×(n-1))+1 between u and v. By induction on n one can therefore prove that (u, v) ∈ R.

We write at g(K) to denote the mapping U → P(P(U )) such that for all x ∈ U , at g(K) (x) = {Z : x ∈ Z ∈ g(K)}. Let S g(K) be the structure (U, {at g(K) }). For all x ∈ U , at g(K) (x) = ∅ since Z∈g(K) Z = U . It follows that S g(K) is an information system. It is worth mentioning that for all u, v ∈ U , (∀Y ∈ g(K),

(by definition of comp) iff {Z : u ∈ Z ∈ g(K)} = g(K) \ {Z : v ∈ Z ∈ g(K)} (by definition of at g(K) ) iff {Z :