N

N

On the Complexity of Extending Ground Resolution
with Symmetry Rules
Thierry Boy de La Tour, Stéphane Demri

» To cite this version:

Thierry Boy de La Tour, Stéphane Demri. On the Complexity of Extending Ground Resolution with
Symmetry Rules. Fourteenth International Joint Conference on Artificial Intelligence, (IJCAI’95),
Aug 1995, Montreal, Canada. pp.289-295. hal-03195326

HAL Id: hal-03195326
https://hal.science/hal-03195326

Submitted on 11 Apr 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03195326
https://hal.archives-ouvertes.fr

On the Complexity of Extending*Ground Resolution
with Symmetry Rules!

Thierry Boy de la Tour

Stéphane Demri

LIFTA-IMAG
46, Av. Félix Viallet, 38031 Grenoble Cedex, France
{Thierry.Boy-de-la-Tour,Stephane. Demri }@imag, fr

Abstract

One important issue of automated theorem
proving is the complexity of the inference rules
used in theorem provers. If Krishnamurty’s
general symmetry rule is to be used, then one
should provide some way of computing non
trivial symmetries. We show that this prob-
lem is NP-complete. But this general rule can
be simplified by restricting it to what we call S-
symmetries, yielding the well-known symmetry
rule. We show that computing S-symmetries
i1s in the same complexity class as the graph
isomorphism problem, which appears to be
neither polynomial nor NP-complete. How-
ever it is sufficient to compute the set of all
S-symmetries at the beginning of the proof
search, and since it is a permutation group,
there exist some efficient techniques from com-
putational group theory to represent this set.
We also show how these techniques can be used
for applying the S-symmetry rule in polynomial
time.

1 Introduction

Symmetries in theorems have long been recognized to
induce symmetries in proofs, and used to avoid the bore-
dom of repetitive arguments. As such, this rule of meta-
reasoning can be considered as a useful trick for writing
proofs, and hence for discovering them, but by no means
is it accredited as a powerful method for gaining deep
knowledge of the problem at hand (except when sym-
metries are the subject of the problem, but this is out of
the scope of our concern). Indeed, when this argument
is invoked (e.g. “case 2 is similar”), the symmetry is
supposed to be self-evident, not deserving any proof.
However, the appearance of computers and their use
to assist in rigorous proofs shed a new light on the sub-
ject. Experience shows that computers never get bored,
Published in the Proceedings of the 14th International

Joint Conference on Artificial Intelligence (1995)
TThis work has been partly supported by CNRS.

even on repetitive work that could be avoided. But expe-
rience also shows that users often get bored when their
computer spends more time than expected for solving
seemingly trivial problems. Hence the necessity to help
computers think twice before doing something, and allow
them to conclude: case 2 is similar.

One way to do this is to reason in a highly expressive
logic, in which symmetry arguments can naturally be
expressed. This is usually the case when all non-logical
symbols can be quantified. However, such higher order
logics are seldom used in Artificial Intelligence. It should
also be noted that specific calculi, or strategies, may not
be able to reach such arguments. Hence the very natural
idea to extend calculi with symmetry rules, and provide
strategies for using them. Indeed, the idea appeared in
the literature as early as 1959, in [Gel59]'. Maybe this
was too early: to our knowledge, this paper has had no
lineage in the following decades. It is written in a setting
that looks weird today, and makes it difficult to read. By
the way, [Gel59] is only concerned with symmetries as
permutations of first-order variables, and gives a rather
complicated algorithm for computing these, which may
appear as a waste of computational time.

It is only 26 years later that Krishnamurty, in [Kri&5],
introduced his symmetry rules (without reference to
[Gel59]) to extend propositional resolution, and showed
on difficult examples how these rules can be used to re-
produce natural arguments. These rules, and the com-
plexity of the problems they involve, are the main con-
cern of the present work, and are defined below. Since
1985, little work has been devoted to this problem (the
implementation of [BS94] is discussed below). This
should be surprising to anyone sharing Slaney’s opinion:
“l consider symmetry to be one of the most important
topics of current research in ground theorem proving”
(see [S1a94]).

In the sequel, we will refer to notions from computa-
tional complexity (see [GJ79]), graph and group theory
(see [Hof81]), which we will introduce when needed. A
clause is a set of literals. A set S of clauses is on a set of

!We thank Ricardo Caferra for pointing us to this paper.

nuerals £y, O £ 18 JU1 O 11 Lle lterdls oCcCurring 1 .o also
occur in L. For [€ L, [¢ is the complementary literal of
l.

Given a resolution derivation of a clause C' from a set
of clauses Sy on Lj (noted S; F ('), one can obtain a
new derivation by substituting new literals to those in
Ly, under the following conditions: the literals resolved
upon should remain complements after the substitution,
and they should occur in the clauses, which means that
they shouldn’t have been resolved away sooner in the
resulting proof. Hence the conditions that a substitu-
tion o, say a function from IL; to Ls, should satisfy:
first, ¢ should preserve complementarity (VI € Lq, if
1 € Ly then o(I°) = o(I)°), and second, it should be
injective. We note Subst(L1, Lo) the set of these func-
tions. Hence for all S; on L1, 0 € Subst(L1, L2), if
S1 b C then o(S1) F o(C). While refuting S, a set
of clauses on Ly, and a clause C being derived from
S1 C S, it is therefore correct to infer o(C) provided
o(S1) C S2. This inference rule depends on the proof
of C'; or more precisely on the hypotheses used in this
proof, and can therefore be formalized in sequent style.
Let Syms, (S1) = {o € Subst(L:,Ls)/o(S1) C Sa2} be
the set of symmetries of Sy in Sa, the general symmetry
rule is:

Sjil—i:(% if S1 C S22 and ¢ € Syms, (S1)

To avoid this dependency, which is not quite in the
“spirit” of resolution, we consider a restriction of this
rule by requiring that S1 = Sy (and Li = La). Let
Syms = {o € Subst(L,L)/a(S) C S} be the set of S-
symmetries, then the S-symmetry rule is:

C
_if
() if o € Syms

It is therefore correct to extend resolution with the
general symmetry rule, which essentially yields Krishna-
murty’s SR-11 symmetric resolution proof system. It is
also correct to extend resolution (on a set of clauses 5)
by the S-symmetry rule, resulting in SR-I. It is doubt-
ful whether SR-1 can polynomially simulate SR-1I, but
it has nice properties: the S-symmetry rule is simple,
S-symmetries can be computed before drawing any in-
ference from S, and Symg forms a permutation group on
the considered set of literals L for .S (the identity is /dy;
the trivial subgroup T is restricted to the identity). This
is obvious since Symg = {o € Subst(L,L)/c(S) = S},
which comes from the fact that the extension of ¢ to
sets of literals (when confusion is possible, this exten-
sion will be noted) is injective since o is injective, hence

lo(S)| = |S|, but ¢(S) C S is finite, hence ¢(S) = S.

2 As noted by a referee, the condition S; C S» is not neces-
sary to the correction of the rule, but elements of Sym s, (.S1)
could not be considered as symmetries without it.

pealllg witll COLIIplexity, we willl reler Lo uvie (erigerd ol
particular objects (sets of clauses, sequences of permuta-
tions. ..), which means the length of the representation
of this object in any reasonable (unspecified) encoding
(see [GJ79]). Given two problems P and Q, we note
P xp Q (P polynomially reduces to Q) when the exis-
tence of a polynomial time algorithm for @ implies the
existence of a polynomial time algorithm for P. =p is
the symmetric closure of xp.

2 Detecting general symmetries

We address the problem of the amount of computa-
tion required in order to apply the general symmetry
rule in a non trivial way. This means the search for
a o € Symsg,(S1) such that ¢(C) # C. The in-
put of this problem is L, Ly, 51,52 and C| such that
L1 C L3, 51 CSy, 5 1s0on Ly and S, C' are on Ly. The
output is a sequence of elements of L; x Ly representing
such a symmetry o. This problem is obviously in NP:
this sequence, which length is polynomial in |L; |, can be
guessed and checked in polynomial time.

In the sequel, we consider the simpler decision prob-
lem Jo € Syms, (S1) such that o # Idy,, which poly-
nomially reduces to the previous one: such a o exists iff
3l € Ly,3c’ € Symg, (S1) such that o' ({L}) # {{}.

2.1 The graph restriction
Let G = (V,E),G' = (V', E’) be two graphs, a homo-

morphism from G to G’ is a function a from V to V’,
such that o(£) C E'. Let Mon(G,G") be the set of in-
jective homomorphisms (monomorphisms) from G to G’.
Also, « is an isomorphism from G to G’ if « is bijective
and a(F) = £’ and Aut(G) is the set of isomorphisms
from G to G (automorphisms). G is a subgraph of G’ if
V C V' and E C E’; this is noted G C G'.

It is clear that a set of edges F can be considered as
a set of clauses on V', and conversely that any set .S of
clauses of length 2 (2-clauses) on L, without negation,
can itself be considered as a set of edges on the vertex
set L, yielding a graph (L, S). Moreover, we have:

LEmMA 2.1 Let G = (V,E) C G = (V' E),
Symg: (E) = Mon(G,G").

Proof. o € Mon(G,G") iff ¢ : V — V' is injective and
o(E) C B, iff o € Subst(V,V') and o(E) C E', iff
o € Symg (E). Q.E.D.

Hence, given any problem P on Syms:(S), with
L, L', S, S" among the input, we can consider its restric-
tion to sets of 2-clauses without negation, and translate
it as a problem on Mon(G,G’), having as input G and
G', and consequent restrictions of the rest of the input
of P. This will be called the graph restriction of P.

As for sets of clauses, the finite nature of graphs im-
plies that Mon(G,G) = Aut(G), thus lemma 2.1 on
G =G'= (V,E) yields Symg = Aut(G). Hence graph
restriction of problems on Symg translate on Aut((G).

then

Lok WVIVNUINUI PSS allu rigiu grapiis

The graph restriction of our problem therefore consists
in detecting the existence of a a € Mon(G, G')\{Idy },
where G = (V, E) is a subgraph of G’. This problem
will be simplified by further restricting it. A graph G is
rigid if Aut(G) = Z; it is connected if any two vertices
are connected by a path (a sequence of adjacent edges).
Any graph can be expressed as a disjoint union (noted
+) of connected graphs, its connected components.
Given a homomorphism « from G to G, it is clear
that if G is connected, then a((G) is connected, and is
a subgraph of a connected component of G'. Also, the
valence of vertices (noted valg(v), the number of edges
of G adjacent to v) increases by a: Vv € V,valg(v) <
valg (a(v)). Moreover, if « is an isomorphism, Yv € V,
valg (a(v)) = valg(v).
LEmMMA 2.2 Let G = (V, E),G' = (V/, E') be two dis-
joint graphs (V NV’ = @), if G is connected, then
Mon(G,G") = Mon(G, G + G\ Aut(G).
Proof. Let o € Mon(G,G"), then o € Mon(G, G+ G'),
and also o ¢ Aut(G) since a is into V'. Conversely,
let &« € Mon(G,G 4+ G') such that o ¢ Aut(G) =
Mon(G,G), hence v € V/a(v) € V. But a(G) is a
subgraph of a connected component of G+ G’, hence of
G’ alone, since G and G’ are disjoint. Hence (V) C V',
and a € Mon(G,G). Q.E.D.
We can now restrict our problem Mon(G,G') # 7 to
the input G,G+ G' (G C G + G’), where G is rigid and
connected: this restriction is equivalent to the problem
Mon(G,G") # 0. We call it the Rigid Connected Graph
Monomorphism problem (RCGM for short), which we
just proved to be polynomially reducible to the search
for non trivial symmetries. RCGM is therefore NP, and
we prove its NP-completeness by reducing CLIQUE to
it.

2.3 Cliques and monomorphisms

The well-known NP-complete CLIQUE problem con-
sists in detecting in G a complete subgraph of k ver-
tices (a k-clique), where G = (V,E), k < |V] are
given. Since a clique is not rigid, we build the graph
Ki = ({(5,5)/0<i<j<k1<j}, KEy), where

((i.0). (7.7 EKE, & (i=i'=0Aj#])
V=4 ni+1=1)

If 1 < i < j < k, then valg, ({i,j)) = 2 and
valg, ((4,7)) = 1. The subgraph of K} generated by
{(0,1),...,(0,k)} is a k-clique (see figure 1).

LeMmma 2.3 Yk > 2, K, is rigid.

Proof. Let o € Aut(Ky), then Vj € {1...k},
valg, ((0,7)) = k > 2, hence 35’ € {1...k}, «({0,7)) =
(0,77, and then Vi € {1...j},a({(i,5)) = (i, j"), but
valg, ((j,J")) = valg, (a((j.7))) = valg, ((,5)) = 1,
hence j = j'. This for all j, hence « is the identity
on the vertex set of Kj,. Q.E.D.

the graph G
{0, v1) o 0,vn)
{1, v1) 1,vg)

Kk, v,

(0)1) o <0)k>
{1, 1) (1, k)
(2,2) .

Liky (ko)

k k

Figure 1: the graphs K} and Gy,

We are now going to embed a k-clique in a graph
G = (V,E) by embedding K in an extension G of
G, defined as follows: Gy = (Vi, Ey) where Vi = {{¢,v)/
i€{0...k},v eV} and

(), @V eby & (i=7=0A(v,v)€EE)
Ve=1v Ai+1=17)

Yv € V, valg, ((k,v)) = 1 and Vi € {1...k — 1},
valg, ((i,v)) = 2. The subgraph of G} generated by
{(0,v)/v € V} is isomorphic to G (see figure 1).

THEOREM 2.4 Let G = (V,E) be a graph and k
such that 2 < k < |V|, G contains a k-clique iff
Mon(Ky,Gg) # 0.

Proof. If G contains a k-clique vy ...vg, it is triv-
1al to build a monomorphism « from K to Gy with
a({0,7)) = (0,v;). Conversely, let « € Mon(Ky, Gy),
since Vj € {1...k},valg, («((0,5))) > k > 2, then
Jv; € V,a((0,7)) = (0,v;). Let G' be the subgraph of
G generated by {vy,..., v }; since « is injective, it has
k distinct vertices, and Vi, j € {1...k},i # j, we have
((0,1),(0, 7)) € KEy, hence ((0,v;),(0,v;)) € Ex, and
(vi,v;) € E, which proves that G’ is a k-clique. Q.E.D.

COROLLARY 2.5 RCGM, and all the intermediate pro-
blems up to the problem of computing a non trivial gen-
eral symmetry, are NP-complete.

3 Detecting S-symmetries

We now address the problem of the complexity of ap-
plying the S-symmetry rule in a non trivial way, which
1s a restriction of the previous one, and is therefore in
NP. We first consider the simpler problem of detecting
non trivial symmetries, i.e. let SYM be the problem
Syms # Z, having L and S on L as input. By lemma
2.1, the graph restriction of SYM is the problem of de-
tecting a non trivial automorphism of a graph, known as
GA. Hence GA xp SYM, and a polynomial algorithm
for SYM would yield one for GA, which is very unlikely
(GA is not even known to be in co-NP).

Before attempting to prove the converse, we should
mention that SYM is not exactly the problem we need
to solve: we are more interested in the associated search
problem S-SYM (to compute a non trivial symmetry if
there is one). But the search problem associated to GA,
say S-GA, may not be polynomially equivalent to GA.

1L WIIL [1OL bE pOssible L0 reprouduce ule argullieilu oL vie
previous section, where the NP-completeness of the de-
cision problem made the associated search problem poly-
nomially equivalent to it. Hence we have to carefully dis-
tinguish the different problems we consider, beginning
with CSYM: given L, S on L and a clause C on L, is
there a o € Symg such that o(C') # C? The associated
search problem S-CSYM is the one needed for non trivial
applications of the S-symmetry rule. The graph restric-
tion of CSYM will be noted CGA: given G = (V, E) and
V' C V, is there a o € Aut(G) such that a(V') £ V’'7

We will frequently refer to the following problem,
noted GI: given two graphs, are they isomorphic? This
is a well-known NP problem that seems to be non NP-
complete (hence the same holds for GA, since GA xp
GI). There are quite a lot of problems polynomially
equivalent to GI, called isomorphism-complete, among
which the associated counting problem (how many iso-
morphisms between two graphs, see [Mat79]), bringing
evidence for the non-NP-completeness of Gl. For deeper
evidence, see [KST92]. Other isomorphism-complete
problems of more direct interest to us refer to group-
theoretic notions on graph automorphisms, or more pre-
cisely on the permutation group Aut(G), notions we
therefore have to introduce.

Given a permutation group ¢ on a permutation do-
main X, the orbit of € X is 29 = {y € X/3p € G,
ze = y} (x¢ is standard notation for ¢(z), as well as
ot for o). The relation {(z,y)/z € y9} is an equiva-
lence relation, and the orbits form a partition of X noted
Part(G). Two literals [,I’ are symmetric if I' € [5v™s.
To any problem P for which the set of solution forms a
permutation group G, we associate the problem O-P of
computing Part(G).

We address the problem of establishing as precisely as
possible the complexity classes of the problems associ-
ated with SYM. The graph restriction trivially yields S-
GA xp S-SYM, O-GA xp O-SYM and CGA xp CSYM.
Apart from SYM and S-SYM, we are going to show that
GI polynomially reduces to all the other problems asso-
ciated with SYM. First, it is proved in [Mat79] that GI
xp O-GA, hence we directly obtain GI xp O-SYM.

Consider the problem 1R-GA (GA with one restric-
tion): given a graph G = (V, E) and v € V, is there a
o € Aut(G) such that «(v) # v? Tt is proved in [Lub81]
that GI ocp 1R-GA. But it is trivial to see that 1R-GA
oxp CGA, since 1R-GA is exactly the restriction of CGA
to the case where |V’/| = 1. Hence GI xp CSYM «p
S-CSYM.

In order to prove these relations in the reverse direc-
tion, we need to establish a kind of converse to lemma
2.1 (restricted to G = G'). Let S be a set of clauses,
we first consider the set of literals Lg defined as the
smallest one for S that is complete for complementarity:
VYl € Lg,l¢ € Lg. Clearly, Ls can be computed in poly-
nomial time in the length of S. For any literal [, [t refers

(L) @n @b anp~—
T {1}

-l

Figure 2: the graph Gg for S = {{l}}

to [stripped of its possible negation, and [~ to (I1)°.

We now consider the graph® Gg = (Vs, Es) such that
Vs =LsUSUN with N = {(i,l)/l € LE,ie {1...4}}
and

(a,) €EEs & (a= (i,)Ab={(i+1,0)
V(e = 4,1y Nb e {l,~l})

Vaebes

We have VI € L, valg,((1,1)) = 1, valg<((2,1)) =
valas((3,1)) = 2, and valgs ((4,1)) = 3 (see figure 2).
LEMMA 3.1 Va € Aut(Gs),VI € LT, we have o(l) € Ls
and Vi € {1...4}, a((i,])) = (i,a(])T).
Proof. Since valg, (a((1,1))) = 1, the first possibility is
a((L,l)) =" with I' € Ls and VC € S,I' ¢ C'. Hence
a({2,1)) = {(4,I't), which is impossible since the valences
of these vertices are different. The second possibility is
a((L,l)) = C = {l'} € 5, hence «((2,1)) = I/, which
therefore should not appear in any other clause, and
hence «((3,1)) = (4,'T), which is impossible.

The only possibility is therefore a((1,1)) = (1,{’) (re-
alized by a = Idy, with I’ = 1), hence a({i, 1)) = (i,1")
for i =1...4, and either a(l) =1 or a(l) = I'. In both
cases I' = a(I)T. Q.E.D.

For all & € Aut(Gs), we note o* the restriction of a
on Lg. We then have:

LEMMA 3.2 Vo € Aut(Gg), then VI € Lg,a*(l¢) =
a*(1)¢ and YC € S, a*(C) = a(C).

Proof. ¥Vl € Lg, let I' = a(lt) € Ls from lemma 3.1,
and also a((4,1)) = {(4,I'F). Since a((3,1%)) = (3,I'F),
and « is bijective, then o(I*) € {I't I'"} = {U',I"‘},
and o(l7) € {I,I"}\{a(IT)}. Hence a*(I¢) = «(I¢) =
a(l)e = a*(l)°.

Hence a(N) = N (lemma 3.1) and a(Ls) = Lg.
Hence VO € S,a(C) € S, and Yl € Ls, a(l) € o(C) &
(a(l),a(C)) € Es & (I,C) € Es & | € C, hence
a(C) ={a(l)/l € C} = a*(C). Q.E.D.
THEOREM 3.3 The function * is an isomorphism from
Aut(Gs) onto Syms.

Proof. By lemma 3.2, * is into Syms: Va € Aut(Gg),
o* is/‘ix complementarity preserving permutation of Lg,
and a* (S) = a(S) = S.

* is onto Symgs: for ¢ € Symg, let a : Vs — Vs such

that VI € LE, Vi € {1...4},a((i,l)) = G o()t), and

*We cannot use the graph construction from [Bas94], al-
though it has similarities with ours, since it is unable to take
account of the double negation law.

Vi < Lg, ukl) = U\L} \IICIICC (83
a(C) = o(C). Of course, a € Aut(Gg): edges on
N, Ls are trivially preserved, and VI € Ls,VC € S,
(,LC) e Es &leC ool edC) o all) € alC)
& (al),a(C) € Es.

* is an homomorphism: Vo, f € Aut(Gs), VIl € Lg, we
have l(af)* = laf = la*p = la*p* (since la* € Lg),
hence (af)* = a*f*.

*

= 0), anu vu < O,

is an isomorphism: let o € Aut(Gg) such that o* =
Idpg, then V(i,l) € Vs, a((i,1)) = (i,a(l)) = (i,1), and

VC € S, by lemma 3.2, we have o(C) = a*(C) = C,
hence oo = I'dy,. This proves Ker* =Z. Q.E.D.

4 Generating S-symmetries

An immediate consequence of theorem 3.3 is SYM xp
GA, since the graph Gg can be constructed in poly-
nomial time in the length of S, and Symg is triv-
ial iff Aut(Gg) is trivial. Hence SYM =p GA. Fur-
thermore, we also have S-SYM op S-GA since for all
a € Aut(Gg)\Z, the non trivial S-symmetry o* can be
computed in polynomial time. Hence S-SYM =p S5-GA.

Similarly, we could prove O-SYM xp O-GA, and use
O-GA xp GI from [Mat79]. However, the reduction in
[Mat79] involves O(n?) calls to GI (where n is the num-
ber of vertices), and therefore does not yield a tractable
algorithm for O-SYM. In this section we focus our atten-
tion on algorithmic issues, in order to provide realistic
reductions from problems for which realistic algorithms
exist. We will especially consider the problem of gener-
ating the group Symg, in a particularly useful way to be
defined below.

4.1 Elements of computational group
theory

The material in this section is mainly taken from [Hof81],
with almost the same notations. Let G be a group with
identity e, and H a subgroup of G, noted # < G. For
a € G, Ha = {ha/h € H} is a right coset of H in G. Tt
is known that |[H#a| = |[H|, and that the right cosets of
H in G form a partition of G, which yields Lagrange’s
theorem: if G is finite, then 3k € IV, |G| = k|H|. Let
ai...ar € G such that {#a;/i =1...k} is the partition
of right cosets of H in G and ¢ # j = Ha; # Haj,
then {a1...ap} is a complete right transversal of H in
G. Since H = He is a right coset, then 3i/Ha; = H, and
{e}U{a1 ... ar}\{a;} is also a complete right transversal
of H in G: we can always choose to include the identity
in complete right transversals.

Given a subset A C G, the subgroup generated by A,
noted <A>, is the smallest subgroup of G containing A;
then A is a generator set for <A>. A malriochka in G
is a finite sequence of subgroups G, < ... < G; < Gy
such that G, = Z and Gy = G. For i € {1...r}, if
U; is a complete right transversal of G; in G;_1, then
Va € G;_1,3b; € U; such that a € G;b;, hence such that
abi_l € G;. By induction we see that Va € G, 3b; € Uy,

ey diUp £ Uy SucCll Llldau dUl "'U?" — €, leuce 4 —
by ... b1. U;:l U; is therefore a computationally useful
generator set for G, provided r and the U;’s are small.

If G is a permutation group on X finite, and Y C X,
the pointwise stabilizer of Y in G is Gy; = {9 € G/
Yy €Y, yp =y} Yisabaseof Gif Gy =7Z. It is
not difficult to show that VY’ C Y, Gv1< Gy, G =9
and Grx] = Z. Hence to any linear ordering (z1,...,x,)
of the elements of X we can associate the matriochka
G < ... < GW, where ¢ = Glyey..c:))- Let U be a
complete right transversal of Q(i) n gii—U fore=1...n.

Yo, € GO we have zjp = 2i¢ < ziop™! = a;
o oyl e G o » e Gy, Hence if 4,4 € U;, then
Y #£ Y S aip £ a2, Since x9) € {x; ... x,}, there are
at most n — 7+ 1 possibilities, hence |U;| <n—i+1, and
[U, Uil < ﬂ”2_+12; we have at most O(n?) generators
for G, and elements of G can be uniquely expressed as
compositions of at most n generators.

A representation matriz is a n X n matrix M such
that M([i, j] either is empty, or if ¢ < j, MJi,j] is a
permutation of X such that Vi’ < i,z M[i, j] = 25 and
ziMi, j] = x5, or if i = j, M[i,j] is Idx. Note that
M is triangular. M then represents the set Y™, where
M = {yMlk,jl/v € T 7 € {koon}, Mk, j] #
empty} and TM = {M][n,n]} = T; permutations are
composed from the n'” line to the first.

For any permutation ¢ of X, ¢ € T/ & Iy € TM,
Jje{l...n}, o= yYyM][L,j]. But 2190 = 219 M][L,j] =
2iMI1,J] = 2, hence ¢ € TM & w1 = 25, M[1j] £
empty and go./\/l[l,j]_1 € TM. Since go./\/l[l,j]_1 can be
computed in time @(n), then by iterating from TM to
TM we have a membership test in time O@(n?) for the
set of permutations represented by M.

Coming back to the matriochka G(*) and the right
transversals U;, we build the following n x n matrix M9:

P if € U; and iy = j > i
M j1=3 Idxy ifi=j
empty otherwise

From what precedes, one easily proves that MY is a rep-
resentation matrix, and that it represents G. Remember
that MY depends on the order 1 ...z, of X, and on
the U;’s. It can also be proved that such a matrix can
be computed in polynomial time from any generator set
for G (see [HofSl]).

4.2 Representation matrix for Syms

We now consider the problem MG-SYM: given S, com-
pute a representation matrix for Symg. From the previ-
ous remark, such a matrix can be computed in polyno-
mial time once a generator set for Symg 1s available, if its
length is polynomial in the length of S. Hence MG-SYM
xp G-SYM, where G-SYM is the problem of computing
such a polynomial length generator set for Syms. The
graph restriction G-GA of G-SYM is well-known: it is

proveu 1 [Viatiy] vllab W-AoaAa (X p Aol yieldlng da gelerd-

tor set of Aut((V, E)) of length O(]V |3). Hence
COROLLARY 4.1 G-SYM xp G-GA

Proof. Given a set of clauses S of length n, we build
the graph G = (Vs, Es) in time O(n). G-GA yields a
generator set A of Aut(Gg) of length O(|Vs|?), hence A*
has length O(n3) and can be computed in time O(n?).
Since * is an isomorphism from Aut(Gs) onto Symg
(theorem 3.3), it is easily shown that A* is a generator
set for Symg, hence G-SYM is solved in polynomial time
with one call to G-GA. Q.E.D.

As a consequence, we have MG-SYM xp GI. In order
to prove that O-SYM and S-CSYM are isomorphism-
complete, there remains to show that O-SYM xp MG-
SYM and S-CSYM xp MG-SYM, which will emphasize
the usefulness of representation matrices.

4.3 Using the matrix

For sake of generality, we show how to compute Part(G)
for any permutation group G on X = {zy ..., }, from a
representation matrix M9 (corresponding to the matri-
ochka g<i>). The algorithm is given in 4 steps; the input
is X, M9, the output is a partition P of X.

1. initialize a n x n boolean matrix B to false

2.Vie{l...n},¥j,pe {i...n},
if v, = 2, M9[i, j] then B[p, q] + true

3. P {{a}.. {zn}}

4. Vp,q € {1...n}, if Blp,q], let O,0" € P such that
2, € 0,2, €0 inP +P\{0,0}U{0OUO0"}

THEOREM 4.2 After step 4, P = Part(G).

Proof. Notice that after step 2, Vp,qg € {1...n},
Blp,q] & Ji,j € {1...n} such that z,M[i,j] = =z,
(which implies that z, € 29).

We prove inductively that P is a refinement of
Part(G): this is true for the initial value of P in step
3, and, in step 4, if dz,2’ € X/O C z9,0' C 29
(induction hypothesis), then O U O’ C 29 = 2'9 since
zp € 29,24 € 2’9 and B[p, ¢] holds.

Conversely, Part(G) is a refinement of P: Vo € X,
let O € P such that « € O. Vy € 29 Jp € G/
yp = a, and then Flj;...j, € {1...n} such that
p = Mn,ju].. ML ji]. Let yo = y and yioy =
yM9[i, j;] for i =n...1. Let O; € P such that y; € O;
fori=mn...0. ThenVie {1...n},ify; =2, y;_1 = 24
then B[p, ¢] holds, hence O; = O;_;1 (by step 4). But
Yo = z, hence O, = O, and y € O. We have proved that
9 CO. Q.E.D.

It is easily seen that the algorithm is in O(n?), hence
we can conclude that O-SYM o«p MG-SYM. We now
give an algorithm for S-CSYM, in the same general set-
ting: given X and MY as above, and Y C X, it computes
a ¥ € G such that Y # Y, if there is one.

1. U <— 14dise

2. Vi<je{l...n},
if YMY9[i, 5] £ Y then b + true;« « M9[i, §]

THEOREM 4.3 After step 2, if b then vy e GAY Y #7Y,
elseVp e G, Yo =Y.

Proof. The case b = true 1s trivial. If b = false, then
Vi<j€e{l...n}, YMY[i,j] =Y, and we easily obtain
VoeG, Yo=Y. Q.E.D.

This algorithm is also in O(n®), hence S-CSYM
xp MG-SYM. As a consequence, the problems C-
SYM, S-CSYM, O-SYM and MG-SYM are isomorphism-
complete. Remember that SYM =p GA and S-SYM =p
S-GA, and of course GA xp S-GA xp GI. In the sequel,
we give some hints on solving MG-SYM as efficiently as
possible, and then analyse the use of these different prob-
lems in automated deduction.

4.4 Algorithmic aspects

As shown previously, a representation matrix for Symg
can be computed from a generator set for Aut(Gg). It
is therefore possible to use known algorithms for general
graphs, some of which can be found in [Hof81]. More pre-
cisely, [Hof81] contains an algorithm for generating the
automorphisms of labelled graphs: 1.e. graphs with labels
attached to vertices, and only label-preserving automor-
phisms are considered. Clearly, the labels of a labelled
graph can be given as a partition of the vertices of an
unlabelled graph. The orbit partition of label-preserving
automorphisms is a refinement of this partition. Given
any graph GG = (V, E/), and a partition P of V such that
Part(Aut(G)) is a refinement of P (or, say, P is com-
patible with G), then any a € Aut(G) is label-preserving
(or, say, P-preserving), and we can therefore use the al-
gorithm in [Hof81] to generate Aut(().

A possible value for P is {V}. For Gs, we can take
P ={N, Lg,S}. The interest of providing a P as fine as
possible is to reduce the search space. Indeed, the algo-
rithm in [Hof81] has worst case complexity O(n®(k!)¢ (n+
k?)), where n = |V| and k = maez{]|0]/O € P}, produc-
ing a generator set K such that |K| < n?(k!)?, which
can be transformed in a representation matrix in time
O(|K|n? + n®). The number of lines of this matrix can
be reduced by considering that L}' is a base of Symg,
hence any ordering of Ls where positive literals precede
negative ones leads to a matrix where the lines corre-
sponding to negative literals only contain Idr ., and can
therefore be removed.

It should be mentioned that using labels makes it
possible to simplify Gg. Consider the initial partition
Ps = {Ls, S} and the graph G = (V{§, EY%) defined as
Vi =LsUS and

(@) eFs & (a,bELsNa=1

VaebesS

e 15 all ISOIIOCpIIsIl 1roll uie group oL /- g-
preserving automorphisms of G’ onto Symg (we leave
this to the reader). We will therefore say that a par-
tition P’ is P-compatible with G if the partition orbit
of the group of P-preserving automorphisms of G is a
refinement of P’.

One natural way of partitioning vertices is based on
valences: since Yo € Aut(G),Vv € V,valg(a(v)) =
valg(v), the valences are labels, and any partition P
can be refined by splitting any O € P into O;...0,
such that Vv € O;,valg(v) = j, resulting in a partition
P-compatible with G.

This way of combining vertex partitioning principles
can be defined in a more formal way. A wvertex classi-
fication into a set A is a function ¢ mapping any graph
G = (V,E) to a function ¢ : V — A. The partition of
V induced by 1 is {t5' (a)/a € A}\{D}; if this partition
is compatible with G, for any graph G, then ¢ is a v-
invariant (from [CKSO])A Hence two v-invariants ¢, v on
A, B can be combined by defining ¢ x v as ¢ X v for any
G = (V,E)and Yv € V, (1g x vg)(v) = (tg(v),ve(v));
the result is a v-invariant into A x B, and the corre-
sponding partition is a refinement of both partitions for
¢ and v.

It is also possible to build a new v-invariant from any
v-invariant ¢ into A, by counting how many adjacent
vertices have the same value by tg: more formally, +°
is defined by: Vv € V,:%(v) = Xa € A5 (v) N V],
where V), is the set of vertices adjacent to v in G. +°
is then a v-invariant into A — INV. The corresponding
partition may not be a refinement of the partition for
¢, but one can combine ¢ x ¢°, ¢ x 1 x 1°° 1+ x 1° x
(¢ x ¢°)°, etc. There are many other v-invariants (see
[CKS80)), related to distance information, connectivity, or
number of small cycles (small cliques) through a vertex
(see also the star partition in [Wei71]). It is sometimes
meaningful to combine v-invariants on a graph and on
its complement.

As an example, val is a v-invariant, and using 1)Lll°G,g

(see [RC77]) corresponds to stating that two literals can
only be symmetric if they appear an equal number of
times in clauses of equal length, and that two clauses
are in the same orbit only if they contain equal number
of literals appearing in equal number of different clauses.
This is a refinement of valgls.

4.5 Symmetries in automated deduction

In this section, we will frequently refer to [BS94], which
describes the only known implementation of Krishna-
murty’s rule. Although this is only a restriction of the
S-symmetry rule (both on €' and ¢), experimentations
display drastic improvements on some examples.

This is not the place to describe precisely the prov-
ing methods used in [BS94]. First, we stress the fact
that only symmetric literals are considered, which means
that the S-symmetry rule is used with unit clauses. The

agavalitage 1Is ulldat SyILIlievry oIl luerals cdll be edaslly
tested once the orbit partition is known. However, the
symmetry test performed in [BS94] only corresponds to
Part(<o>), (since only one ¢ € Symg is computed),
which is a refinement of Part(Syms); hence this test is
correct but not complete. This is the second restriction
of the S-symmetry rule (on ¢); a useless one, as shown
below.

It may be argued that computing a single non triv-
ial symmetry is simpler than computing Part(Syms),
but we show on an example that this is not relevant.
Consider the famous pigeonhole problem with n pigeons
(n > 2), it can be formalized with the following set of
clauses PH,,:

o forie{l...n},P1V...VPip_y
o forke{l...n—1},forl <i<j<n, —FpV-P

P; ; means “the pigeon ¢ is in the hole j7. It is easy
to show that P H,-symmetries correspond to permuta-
tions on pigeons and on holes (independently). Hence
|Sympm, | = n!(n—1)!, which shows that PH, is highly
symmetric, and is therefore a good example to illustrate
the relevance of symmetry rules. Consequently, Sympp,
has only two orbits: the set of positive literals, and the
set of negative ones.

The strategy in [BS94] consists in choosing a clause as
long as possible and using symmetries inside that clause.
In PH,, the longest clauses are the positive ones (if
n > 3). If the symmetry o obtained by S-SYM is a per-
mutation on pigeons, leaving holes unchanged, then no
two literals in a positive clause are symmetric according
to Part(<o>), and there will be no application of the
symmetry rule in this method (leading to an exponential
proof!).

Hence one has to search for a symmetry satisfying a
particular property, depending on the strategy for the
symmetry rule. For example, one property required by
the symmetry searching algorithm in [BS94] is that a cy-
cle of the symmetry should contain a given literal, and be
as long as possible. Tt is easy to show that solving such
a problem allows to solve 1R-GA (by graph restriction),
and is therefore at least as difficult as GI (moreover, re-
strictions on ¢ easily lead to NP-complete problems, see
[Lub81]). Hence the problem of maximizing the length of
a cycle is at least as difficult as O-SYM, but yields only
a refinement of Part(Symg). It should be mentioned
that the algorithm in [BS94] uses a technique for reduc-
ing the search space which corresponds to the v-invariant
valgls. But the reason of its apparent efficiency is that
it 1s allowed to backtrack only a fixed amount of time; it
therefore has a polynomial time complexity (see [RC77]),
and hence cannot be expected to solve S-SYM.

O-SYM is only one example of relevant problems for
implementing symmetry rules, that is solvable in poly-
nomial time from a representation matrix M for Symg.

LlIere Is da1so D-Ud 1 VL, dlld oullers 1lay exisy. rence rep-

resentation matrices are not only useful for proving com-

plexity results, as done above, but also for implementing
extensions of resolution with the symmetry rule. Other
symmetric resolution methods, less restricted than the
one in [BS94], may be designed, and probably may in-
volve problems which can efficiently be solved if the rep-
resentation matrix is available, hence making good use
of the nice group structure of Syms.

References

[Bas94]

[BS94]

[CK80]

[Gel59]

[GJ79]

[Hof81]

[Kri&5]

[KST92]

[Lub81]

[Mat79]

[RCT7]

David Basin. A term equality problem equiv-
alent to graph isomorphism. Information Pro-
cessing Letters, 51:61-66, 1994.

B. Benhamou and L. Sais. Tractability through
symmetries in propositional calculus. Journal
of Automated Reasoning, 12:89-102, 1994.

D. Corneil and D. Kirkpatrick. A theoretical
analysis of various heuristics for the graph iso-
morphism problem. SIAM Journal of Comput-
ing, 9(2):281-297, May 1980.

H. Gelernter. A note on syntactic symmetry
and the manipulation of formal systems by ma-
chine. Information and Control, 2:80-89, 1959.

M. Garey and D. S. Johnson. Computers and
intractability: a guide to the theory of NP-
completeness.

fornia, 1979.

Freeman, San Francisco, Cali-

C. Hoffmann. Group theoretic algorithms and
graph isomorphism. LNCS 136, Springer-
Verlag, 1981.

B. Krishnamurty. Short proofs for tricky for-
mulas. Acta Informatica, 22:253-275, 1985.

J. Kobler, U. Schoning, and J. Toran. Graph
isomorphism is low for PP*. In A. Finkel and
M. Jantzen, editors, 9th Annual Symposium
on Theoretical Aspects of Computer Science,
pages 401-411. LNCS 577, Springer-Verlag,
February 1992.

A. Lubiw. Some np-complete problems sim-
ilar to graph isomorphism. SIAM Journal of
Computing, 10(1):11-21, February 1981.

R. Mathon. A note on the graph isomorphism
counting problem. Information Processing Let-
ters, 8(3):131-132, March 1979.

R. Read and D. Corneil.
morphism disease.
1:339-363, 1977.

The graph iso-
Journal of Graph Theory,

[D1ay4]

[WeiT1]

JOILIL Dlalley. 1I1e Crisis 101 1Ive 1avienidu-
ics: automated reasoning as cause and cure.

In A. Bundy, editor, CADFE-12, Nancy, pages
1-13. Springer Verlag, LNAI 814, July 1994.

P. Weichsel. A note on assymmetric graphs. Is-
real Journal of Mathematics, 10:234-243, 1971.

