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SIGN-CHANGING BLOW-UP FOR THE

MOSER–TRUDINGER EQUATION

LUCA MARTINAZZI, PIERRE-DAMIEN THIZY, AND JÉRÔME VÉTOIS

Abstract. Given a sufficiently symmetric domain Ω b R2, for any k ∈ N \ {0} and
β > 4πk we construct blowing-up solutions (uε) ⊂ H1

0 (Ω) to the Moser–Trudinger

equation such that as ε ↓ 0, we have ‖∇uε‖2L2 → β, uε ⇀ u0 in H1
0 where u0 is a sign-

changing solution of the Moser–Trudinger equation and uε develops k positive spherical

bubbles, all concentrating at 0 ∈ Ω. These 3 features (lack of quantization, non-zero
weak limit and bubble clustering) stand in sharp contrast to the positive case (uε > 0)

studied by the second author and Druet [8].

1. Introduction and main result

Given a smooth, bounded domain Ω ⊂ R2 and a smooth, positive function h on Ω, we
consider the Moser–Trudinger functional Ih : H1

0 (Ω)→ R defined as

Ih (u) :=

∫
Ω

h exp
(
u2
)
dx ∀u ∈ H1

0 (Ω) .

For any β > 0, let Eh,β be the set of all the critical points u ∈ H1
0 (Ω) of Ih under the

constraint ‖∇u‖2L2 = β. Note that u ∈ Eh,β if and only if u is a solution of the problem{
∆u = λhf (u) in Ω

u = 0 on ∂Ω,
(Eh,β)

where we use the notation ∆ := −∂2
x1
− ∂2

x2
,

f (u) := u exp
(
u2
)

and λ :=
2β

DIh (u) .u
=

β∫
Ω
hu2 exp (u2) dx

. (1.1)

We first introduce the following definition in the spirit of [13, Chapter 5] (see also Re-
mark 4.8):

Definition 1.1. We say that β > 0 is a stable energy level of Ih if, for all (hε), (βε) and
(λε) such that hε → h in C2(Ω̄) and βε → β with λε = O(1), any family (uε) such that uε
solves (Ehε,βε) with λ = λε for all ε converges in C2(Ω̄) to some u solving (Eh,β) as ε→ 0,
up to a subsequence. We say that β > 0 is a positively stable energy level of Ih if the same
holds true with uε ≥ 0.

As a consequence of the Moser–Trudinger inequality [17,22], every β ∈ (0, 4π) is a stable
energy level of Ih. Druet–Thizy [8] obtained that every β ∈ (0,∞) \4πN? (N? := N \ {0})
is a positively stable energy level of Ih. In contrast to this result, we obtain in this paper
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that every β ≥ 4π is an unstable energy level provided Ω and h are such that 0 ∈ Ω and the
following symmetric condition holds true for some even number l ∈ 2N?:

(A) Ω is symmetric and h is even with respect to the lines

`j :=

{(
t cos

(
jπ

2l

)
, t sin

(
jπ

2l

))
: t ∈ R

}
, 0 ≤ j ≤ 2l − 1.

Under this assumption, we obtain the following:

Theorem 1.2. Let Ω ⊂ R2 be a smooth, bounded domain, l ∈ 2N∗, α ∈ (0, 1) and h ∈
Cl−2,α (Ω) ∩ C2

(
Ω
)

be a positive function such that 0 ∈ Ω and (A) holds true. Then every
β ≥ 4π is an unstable energy level of Ih.

In order to prove Theorem 1.2 we will construct a sign-changing weak limit w0 with
arbitrary energy β0 ∈ (0, 8πl) and use a Lyapunov-Schmidt procedure to glue to w0 an
arbitrary number k ∈ N∗ of bubbles, all concentrating at the origin. This is in sharp
contrast to the positive case studied by Druet–Thizy [8], in which blow-up can happen only
at energy levels β ∈ 4πN?, the weak limit vanishes and the bubbles blow up at distinct
points. See also [5, 6, 9] for the constructive counterpart of [8].

To be more concrete, given h ∈ Cl−2,α (Ω) ∩ C2
(
Ω
)

and β0 > 0, using the symmetry of
Ω and h, we will construct w0 ∈ Eh,β0

such that

w0 (x1, 0) ∼ a0x
l
1, as x1 → 0, for some a0 > 0. (1.2)

Up to a perturbation and a diagonal argument, we can assume that w0 is non degenerate,
and construct families hε → h in C2

(
Ω
)
, βε → β0 and wε, 0 ≤ ε ≤ ε0, smooth with respect

to ε such that wε ∈ Ehε,βε and 0 > wε (0) ↑ 0 as ε→ 0. The behaviour (1.2) of the weak limit
w0 near the origin will be crucial to glue bubbles and the value of wε (0) ↑ 0 will determine
the parameter γε →∞ (see (3.6)), which is the approximate height of the bubbles.

In fact, if Bγ is the radial solution to ∆Bγ = f
(
Bγ
)

with Bγ (0) = γ, we will attach

to the function wε a fixed number k of perturbations of Bγε along the x1 axis, at points
(τε,1, 0) , . . . , (τε,k, 0). The centers (τε,i, 0) of the bubbles will satisfy for some δ ∈ (0, 1),

−kdε
δ

< τε,1 < · · · < τε,k <
kdε
δ
, |τε,i − τε,j | > δdε, dε := γ−1/l

ε → 0, (1.3)

and, up to scaling, (τε,1/dε, . . . , τε,k/dε) will converge to a zero of N = (N1, . . . , Nk), defined
in a suitable convex subset of Rk as

N i (y1, . . . , yk) := a0ly
l−1
i −

∑
j 6=i

2

yi − yj
. (1.4)

Note that, contrary to the case studied in [5, 6, 8], the function h (more specifically, its
gradient) plays no role in (1.4), hence at main order it does not influence the location of the
bubbles, which instead depends on a0 > 0 and l as in (1.2) and on k.

A diagonal argument allows to treat the case β0 = 0. Thus we finally obtain:

Theorem 1.3. Given Ω, l, α and h as in Theorem 1.2 and β ≥ 4π, k ∈ N∗, β0 ≥ 0 such
that β = β0 + 4πk, there exist w0 ∈ Eh,β0

and ε0 > 0 such that for every ε ∈ (0, ε0), we

can find hε → h in C2(Ω), β′ε → β0, as ε → 0, wε ∈ Ehε,β′ε as in (1.2), numbers βε → β,

γε →∞, γε, τε, θε ∈ Rk, with γε,i ∼ γε, θε,i → 0 as ε→ 0, τε,i as in (1.3), and a function
uε ∈ Ehε,βε of the form

uε = wε +

k∑
i=1

(1 + θε,i)Bε,γε,i,τε,i + Ψε,γε,τε + Φε,γε,θε,τε , (1.5)
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where the approximate bubble Bε,γε,i,τε,i ∈ H1
0 (Ω) is as in Section 3.1 and the remainder

H1
0 (Ω)-terms Ψε,γε,τε and Φε,γε,θε,τε are given by Propositions 3.2 and 4.2. In particular,

‖∇Ψε,γε,τε‖L2 = o(1), ‖∇Φε,γε,θε,τε‖L2 = o(1), as ε→ 0.

In contrast with several other works constructing blowing-up solutions to the Moser–
Trudinger equation, starting with del Pino–Musso–Ruf [5,6], our Lyapunov-Schmidt reduc-
tion will be performed in H1

0 (Ω), avoiding the use of weighted C0-norms. While this is more
in the spirit of the seminal work of Rey [19], the elegance of working with the Hilbert space
H1

0 (Ω) requires a very precise ansatz (see Section 3), and a very sharp analysis of the radial
bubble Bγ , as obtained in [8, 14, 15] and further extended in our Section 6. In fact, we will
construct the ansatz in two steps. First we construct the approximate solution

Uε,γ,τ = wε +

k∑
i=1

Bε,γi,τi + Ψε,γ,τ ,

for every τ as in (1.3) and γ in a fairly broad range (see (3.4) and Proposition 3.2). Then we
shall strongly restrict the range of γ (Proposition 3.3 and (3.28)) and add the terms θiBε,γi,τi
to the ansatz. This will be crucial in the energy estimates of Section 4. In order to estimate
the error terms near the bubbles, we shall use the spherical profile of the bubble to treat
the blow-up regions as approximate spheres and apply Poincaré–Sobolev-type estimates, as
given in Section 7. Finally we will perform the Lyapunov-Schmidt reduction to find the
correct value (γε, θε, τε) and the correction term Φε,γε,θε,τε , to finally obtain uε as in (1.5)
(see also Remark 4.6).

Recently, Problem (Eh,β) has received attention also when the nonlinearity f is suitably
perturbed. Mancini and the second author [16] constructed radial (both positive and nodal)
solutions uγ to (Eh,β) on the unit disk, blowing up at 0 and having non-zero weak limit as
γ → ∞, in the case h ≡ 1, fγ(u) = λγu + βγu exp(u2) or fγ(u) = βγu exp(u2 − au) for
suitable λγ , βγ and a > 0. Grossi–Mancini–Naimen–Pistoia [12] constructed nodal solutions
up to (Eh,β) with h ≡ 1 and fp(u) = u exp

(
u2 + |u|p

)
, having one blow-up point as p ↓ 1.

Naimen [18] further gave a very detailed blow-up analysis of the blow-up of radial nodal
solutions to (Eh,β) when h ≡ 1 and f(u) = u exp

(
u2 + α|u|β

)
, α > 0. To our knowledge, our

work is the first one in which non-zero weak limits appear in the unperturbed case f(u) =
u exp(u2), and an arbitrary number of bubbles concentrates at the same point. Indeed, these
two phenomena cannot occur in the unperturbed case without (radial) symmetry breaking.

2. Preliminary steps

This section is devoted to the construction of a smooth family of critical points satisfying
some regularity, symmetry and asymptotic conditions which we will then use in the next
sections to construct our blowing-up solutions.

Definition 2.1. For every l ∈ N∗, p ∈ N and α ∈ (0, 1), we let Cp,αl,sym (Ω) be the vector space

of all functions in Cp,α (Ω) that are even with respect to the line `2j for all j ∈ {0, . . . , l − 1},
where `2j is as in (A).

Definition 2.2. Let β > 0, h be a continuous, positive function on Ω and w ∈ Eh,β. Then
we say that w is non-degenerate if there does not exist any solution v 6= 0 to the problem{

∆v = λhf ′ (w) v in Ω

v = 0 on ∂Ω,
(2.1)

where λ and f are as in (1.1). We let Endh,β be the set of all non-degenerate elements of Eh,β.
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The main result of this section is the following:

Proposition 2.3. Let Ω be a smooth, bounded domain, l ∈ 2N?, β0 ∈ (0, 8lπ), α ∈ (0, 1)
and h ∈ Cl−2,α (Ω) ∩ C0,α

(
Ω
)

be a positive function such that 0 ∈ Ω and (A) holds true.
Then we have the following:

(i) There exist w0 ∈ Eh,β0
∩Cl,αl,sym (Ω)∩C2

(
Ω
)

and a0 > 0 such that w0 (x1, 0) ∼ a0x
l
1

as x1 → 0.
(ii) There exists κ0 > 0 such that for every κ ∈ (−κ0, κ0) \ {0}, wκ := (1 + κ)w0 ∈

Endhκ,βκ∩C
l,α
l,sym (Ω)∩C2

(
Ω
)
, where βκ := (1+κ)2β0 and hκ := h exp

(
−κ (κ+ 2)w2

0

)
.

(iii) For every κ ∈ (−κ0, κ0) \ {0}, there exist ĥκ ∈ Cl−2,α
l,sym (Ω)∩C2

(
Ω
)

and ε0 (κ) ∈ (0, 1)

such that for every ε ∈ (0, ε0 (κ)), there exist βκ,ε > 0 and wκ,ε ∈ Ehκ,ε,βκ,ε ∩
Cl,αl,sym (Ω) ∩ C2

(
Ω
)
, where hκ,ε := hκ + εĥκ, such that the families (βκ,ε)0≤ε≤ε0(κ)

and (wκ,ε)0≤ε≤ε0(κ), where βκ,0 := βκ and wκ,0 := wκ, are smooth in ε and moreover

∂ε [wκ,ε (0)]ε=0 < 0 and wκ,ε (0) < 0 for all ε ∈ (0, ε0 (κ)).

Proof of Proposition 2.3 (i). Define

Ω1 :=
{

(x1, x2) ∈ Ω : |x2| < x1 tan
( π

2l

)}
.

Since Ω satisfies (A), we obtain that Ω1 is symmetric with respect to the line `0. In particular,
we can define the vector space H of all functions in H1

0 (Ω1) that are even in x2. Note that
(A) also gives that h|Ω1

is even in x2. By applying standard variational arguments (see for

instance Proposition 6 of Mancini–Martinazzi [15] in case h ≡ 1 and H = H1
0 (Ω1)), we then

obtain that for every β0 ∈ (0, 8lπ), there exists a critical point w0 of the functional Ih|H
under the constraint ‖∇w0‖2L2(Ω1) = β0/2l such that w0 > 0 in Ω1. By using (A), we can

then extend w0 to the whole domain Ω as an odd function with respect to the line `2j+1

for all j ∈ {0, . . . , l − 1}. We claim that w0 ∈ Eh,β0
. To see this, for every test function

v ∈ H1
0 (Ω), we define

vsym :=

l−1∑
j=0

v ◦ S2j+1 ◦ S1 −
l−1∑
j=0

v ◦ S2j+1,

where S2j+1 : Ω→ Ω is the symmetry operator with respect to the line `2j+1. By remarking
that vsym ∈ H1

0 (Ω1) and using vsym as a test function for the Euler–Lagrange equation of
u0, we obtain∫

Ω1

〈∇u0,∇vsym〉 dx =
β0

l
∫

Ω1
hw2

0 exp (w2
0) dx

∫
Ω1

hf (w0) vsymdx. (2.2)

By changes of variable and using the symmetry of w0 and h, we obtain∫
Ω1

〈∇w0,∇vsym〉 dx =

∫
Ω

〈∇w0,∇v〉 dx, (2.3)∫
Ω1

hw2
0 exp

(
w2

0

)
dx =

1

2l

∫
Ω

hw2
0 exp

(
w2

0

)
dx =

1

2l
DIh (w0) .w0, (2.4)∫

Ω1

hf (w0) vsymdx =

∫
Ω

hf (w0) vdx. (2.5)

By putting together (2.2)–(2.5), we obtain∫
Ω

〈∇w0,∇v〉 dx =
2β0

DIh (w0) .w0

∫
Ω

hf (w0) vdx
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and so w0 ∈ Eh,β0
. Since h ∈ Cl−2,α (Ω)∩C0,α

(
Ω
)

and ∂Ω is smooth, by using the Moser–
Trudinger inequality together with standard elliptic regularity theory, we then obtain that
w0 ∈ Cl,α (Ω) ∩ C2,α

(
Ω
)
. Since w0|Ω1

is even in x2 and w0 is odd with respect to the line

`2j+1 for all j ∈ {0, . . . , l − 1}, we then obtain that w0 is even with respect to `2j for all

j ∈ {0, . . . , l − 1}, i.e. w0 ∈ Cl,αl,sym (Ω). Furthermore, since w0 ∈ Cl,α (Ω) and w0 = 0 on

`2j+1 for all j ∈ {0, . . . , l − 1}, we obtain that Djw0 (0) = 0 for all j ∈ {0, . . . , l − 1} and so

w0 (x1, 0) = a0x
l
1 + O

(
xl+α1

)
(2.6)

as x1 → 0 for some a0 ∈ R. It remains to prove that a0 > 0. Since 0 ∈ Ω and Ω is open,
there exists r0 > 0 such that B (0, r0) ⊂ Ω. For every ε > 0, we define

Sl,ε (r0) := {(r cos θ, r sin θ) : 0 < r < r0 and |θ| < π/ (2 (l + ε))}

and let vl,ε : Sl,ε (r0)→ R be the function defined as

vl,ε (r cos θ, r sin θ) := rl+ε cos ((l + ε) θ)

for all (r cos θ, r sin θ) ∈ Sl,ε (r0). It is easy to check that vl,ε is harmonic in Sl,ε (r0),

continuous on Sl,ε (r0) and vl,ε = 0 on B (0, r0) ∩ ∂Sl,ε (r0). On the other hand, since

Sl,ε (r0) ⊂ Ω1, we have that w0 is continuous on Sl,ε (r0) and positive on Sl,ε (r0)\ {0}.
Furthermore, since h,w0 > 0 in Sl,ε (r0), it follows from the Euler–Lagrange equation of w0

that ∆w0 > 0 in Sl,ε (r0). It follows that there exists δl,ε > 0 such that w0 ≥ δl,εvl,ε on
∂Sl,ε (r0) ∩ ∂B (0, r0). By comparison, we then obtain that w0 ≥ δl,εvl,ε in Sl,ε (r0). Since
vl,ε (r, 0) = rl+ε, by taking ε < α, we then obtain that the number a0 in (2.6) is positive.
This ends the proof of (i) in Proposition 2.3. �

Proof of Proposition 2.3 (ii). It is easy to check that wκ ∈ Ehκ,βκ ∩ C
2,α
l,sym

(
Ω
)

for all κ ∈
(−1, 1). It remains to prove that wκ ∈ Endhκ,βκ for κ ∈ (−κ0, κ0) \ {0} with κ0 small enough.
Assume by contradiction that this is not the case, i.e. there exists a sequence of real numbers
(κj)j∈N such that wκj is degenerate and κj → 0. Let vj be a nonzero solution of the linearized
equation {

∆vj = λκjhκjf
′ (wκj) vj in Ω

vj = 0 on ∂Ω,

with

λκj :=
2βκj

DIhκj
(
wκj

)
.wκj

=
2β0

DIh (w0) .w0
= λ.

By renormalizing and passing to a subsequences, we may assume without loss of generality
that ‖∇vj‖L2 = 1 and (vj)j∈N converges weakly to some function v0 in H1

0 (Ω). By using

the compactness of the embedding H1
0 (Ω) ↪→ L2 (Ω) and remarking that βκ → β0 and

hκ, wκ → h,w0 in C0
(
Ω
)
, we obtain that (vj)j∈N converges strongly to v0 in H1

0 (Ω) and so

‖∇v0‖L2 = 1. Furthermore, we obtain that v0 is a solution of (2.1) with κ = 0. By using

the definitions of hκ, βκ and wκ, in particular noticing that hκ exp
(
w2
κ

)
= h exp

(
w2

0

)
, and

recalling the equation satisfied by vj and v0, it follows that∫
Ω

h
(

1 + 2w2
κj

)
exp

(
w2

0

)
vjv0dx =

1

2
DIh (w0) .w0

∫
Ω

〈∇vj ,∇v0〉 dx =

∫
Ω

hf ′ (w0) vjv0dx

and so ∫
Ω

hw2
0 exp

(
w2

0

)
vjv0dx =

∫
Ω

h
w2
κj − w

2
0

κj (κj + 2)
exp

(
w2

0

)
vjv0dx = 0. (2.7)
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By passing to the limit into (2.7), we obtain∫
Ω

hw2
0 exp

(
w2

0

)
v2

0dx = 0,

which gives w0v0 = 0 in Ω. Since ‖∇w0‖2L2 = β0 6= 0, by unique continuation (see Aron-
szajn [1] and Cordes [4]), we obtain that w0 6= 0 in a dense subset D of Ω and so v0 = 0 on D.
By continuity of v0, it follows that v0 = 0 in Ω. This is in contradiction with ‖∇v0‖L2 = 1.
This ends the proof of (ii) in Proposition 2.3. �

The result of (iii) in Proposition 2.3 will follow from the following:

Proposition 2.4. Let l ∈ N?, p ≥ 2, α ∈ (0, 1) and Ω be a smooth, bounded domain such
that 0 ∈ Ω and Ω is symmetric with respect to the line `2j for all j ∈ {0, . . . , l − 1}. Let

β0 > 0, h ∈ Cp−2,α
l,sym (Ω) ∩ C2

(
Ω
)

be positive in Ω and w0 ∈ Endh,β0

∩ Cp,αl,sym (Ω) ∩ C2
(
Ω
)

be

such that w0 (0, 0) = 0 and w0 (r, 0) > 0 for small r > 0. Let D be the set of all functions

ĥ ∈ Cp−2,α
l,sym (Ω) ∩ C2

(
Ω
)

such that∫
Ω

Gh (·, 0) ĥf (w0) dx < 0,

where Gh is the Green’s function of the operator

∆− 2β0hf
′ (w0)

DIh (w0) .w0

with boundary condition Gh (·, 0)
∣∣
∂Ω

= 0. Then D is a non-empty open subset of Cp−2,α
l,sym (Ω)∩

C2
(
Ω
)

and for every ĥ ∈ D, there exists ε0 > 0 such that for every ε ∈ (0, ε0), there exist

βε > 0 and wε ∈ Ehε,βε ∩ C
p,α
l,sym (Ω) ∩ C2

(
Ω
)
, where hε := h + εĥ, such that

(
βε
)

0≤ε≤ε0
and (wε)0≤ε≤ε0 are smooth in ε and ∂ε [wε (0)]ε=0 < 0 and wε (0) < 0 for all ε ∈ (0, ε0).

Proof. We begin with proving that D is not empty. Since Gh (·, 0) > 0 near 0, w0 ∈
Cp,αl,sym (Ω) and w0 (r, 0) > 0 for small r > 0, we obtain that there exists x0 ∈ Ω and r0 > 0

such that Gh (·, 0)w0 > 0 in B (x0, r0) and B (x0, r0) ⊂ Ω0, where

Ω0 := {(x1, x2) ∈ Ω : 0 < x2 < x1 tan (π/l)} .
Let χ ∈ C∞ (Ω) be such that χ > 0 in B (x0, r0) and χ ≡ 0 in B (x0, r0)

c
. Let χsym be the

unique function in Cp−2,α
l,sym (Ω) ∩ C2

(
Ω
)

such that χsym ≡ χ in Ω0. By symmetry and since

Gh (·, 0)χw0 > 0 in B (x0, r0) and χ = 0 in B (x0, r0)
c
, we obtain∫

Ω

Gh (·, 0)χsymf (w0) dx = 2l

∫
Ω

Gh (·, 0)χf (w0) dx > 0,

i.e. −χsym ∈ D. This proves that D is not empty. Now, we prove the second part of

Proposition 2.4. Since h ∈ Cp−2,α
l,sym (Ω) ∩ C2

(
Ω
)

and w0 ∈ Endh,β0

∩ Cp,αl,sym (Ω) ∩ C2
(
Ω
)
, it

follows from the implicit function theorem together with standard elliptic regularity that
there exist a neighborhood N of h in Cp−2,α

l,sym (Ω) ∩C2
(
Ω
)

and a smooth mapping w : N →
Cp,αl,sym (Ω) ∩ C2

(
Ω
)

such that w
(
h
)

= w0 and for every h̃ ∈ N , Ũ = w
(
h̃
)

is a solution of
the problem ∆Ũ =

2β0h̃f
(
Ũ
)

DIh (w0) .w0
in Ω

Ũ = 0 on ∂Ω.

(2.8)
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Note that (2.8) is equivalent to Ũ ∈ E
h̃,β
(
h̃
), where

β
(
h̃
)

:=
β0DIh̃

(
Ũ
)
.Ũ

DIh (w0) .w0
.

In particular, we obtain that for every ĥ ∈ D, there exists ε0 ∈ (0, 1) such that for every
ε ∈ (0, ε0), there exist βε = β

(
hε
)
> 0 and wε = w

(
hε
)
∈ Ehε,βε ∩ C

p,α
l,sym (Ω) ∩ C2

(
Ω
)
,

where hε := h+ εĥ such that
(
βε
)

0≤ε≤ε0
and (wε)0≤ε≤ε0 are smooth in ε. Furthermore, by

differentiating (2.8), we obtain
(

∆− 2β0

(
DIh (w0) .w0

)−1
hf ′ (w0)

)
∂ε [wε]ε=0 =

2β0ĥf (w0)

DIh (w0) .w0
in Ω

∂ε [wε]ε=0 = 0 on ∂Ω.

Since ĥ ∈ D, it follows that

∂ε [wε (0)]ε=0 =

∫
Ω

Gh (·, 0) ĥf (w0) dx < 0.

Since w0 (0) = 0, by taking ε0 smaller if necessary, we then obtain that wε (0) < 0 for all
ε ∈ (0, ε0). This ends the proof of Proposition 2.4. �

Proof of Proposition 2.3 (iii). The result of (iii) in Proposition 2.3 is a direct consequence
of Proposition 2.4 applied to β0 := βκ, h0 := hκ and w0 := wκ. �

3. Construction of the ansatz

This section is devoted to the construction of our ansatz. We let Ω, l, α and h be as in
Theorem 1.2, fix β > 4π, β0 > 0 and k ∈ N∗ such that β = β0 + 4kπ and let a0, κ0, ε0, βκ,
wκ, hκ, βκ,ε, uκ,ε and hκ,ε be as in Proposition 2.3. To prove that β is an unstable energy
level of Ih, by using a diagonal argument, one can easily see that it suffices to show that for
every κ ∈ (−κ0, κ0) \ {0}, the number βκ + 4kπ is an unstable energy level of Ihκ . In what
follows, we fix κ ∈ (−κ0, κ0) \ {0} and for the sake of simplicity, we drop the dependance in
κ from our notations. More precisely, we denote ε0 := ε0 (κ), β0 := βκ, h0 := hκ, w0 := wκ,
βε := βκ,ε, hε := hκ,ε and wε := wκ,ε. Remark that the new function w0 still satisfies the
properties of (i) in Proposition 2.3 but now this function is moreover non-degenerate.

3.1. The bubbles. For every γ0 > 0, we let Bγ0 be the unique radial solution to the
problem {

∆Bγ0 = f
(
Bγ0

)
in R2

Bγ0 (0) = γ0,

where f (s) := s exp
(
s2
)

for all s ∈ R. Note that by standard ordinary differential equations

theory, Bγ0 is defined on [0,∞). For every ε ∈ (0, ε0), γ0 > 0 and x0 ∈ Ω, we then define

Bε,γ0,x0 (x) := Bγ0
(√

λεhε (x0) |x− x0|
)

∀x ∈ R2,

where

λε :=
2βε

DIhε (wε) .wε
−→ 2β

DIh (w0) .w0
=: λ > 0,

so that Bε,γ0,x0
solves the problem{

∆Bε,γ0,x0 = λεhε (x0) f
(
Bε,γ0,x0

)
in R2

Bε,γ0,x0 (x0) = γ0.
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For every r > 0 such that B (x0, r) ⊂ Ω, we then let Bε,γ0,x0,r : Ω → R be the function
defined as

Bε,γ0,x0,r (x) :=

{
Bε,γ0,x0

(x)− Cε,γ0,x0,r +Aε,γ0,x0,rH (x, x0) x ∈ B (x0, r)

Aε,γ0,x0,rG (x, x0) otherwise
(3.1)

for all x ∈ Ω, where G is the Green’s function of the Laplace operator in Ω with boundary
condition G (·, x0)|∂Ω = 0, H is the regular part of G, i.e.

G (x, x0) =
1

2π
ln

1

|x− x0|
+H (x, x0)

and Aε,γ0,x0,r, Cε,γ0,x0,r are constants chosen so that Bε,γ0,x0,r ∈ C1
(
Ω
)
, i.e.

Aε,γ0,x0,r :=

∫
B(x0,r)

∆Bε,γ0,x0 dx, (3.2)

Cε,γ0,x0,r := Bγ0
(√

λεhε (x0)r
)
− Aε,γ0,x0,r

2π
ln

1

r
. (3.3)

3.2. The primary ansatz. For every ε ∈ (0, ε0) and δ ∈ (0, 1), let Γkε and T kε (δ) be the
sets of parameters defined as

Γkε (δ) :=
{
γ = (γ1, . . . , γk) ∈ (0,∞)

k
: |γi − γε| < δγε, ∀i ∈ {1, . . . , k}

}
, (3.4)

T kε (δ) :=
{
τ = (τ1, . . . , τk) ∈ Rk : −kdε

δ
< τ1 < · · · < τk <

kdε
δ

and |τi − τj | > δdε, ∀i, j ∈ {1, . . . , k} , i 6= j
}
, (3.5)

where

γε :=
2 (k + l − 1)

l |wε (0)|
ln

1

|wε (0)|
and dε := γ−1/l

ε . (3.6)

From (3.6), w0(0) = 0 and ∂ε[wε(0)]ε=0 6= 0, we get

wε(0) ∼ −2 (k + l − 1)

l

ln γε
γε

, ε ∼ wε(0)

∂ε[wε(0)]ε=0
= O

(
ln γε
γε

)
, as ε→ 0, (3.7)

and since w0 (r, 0) ∼ a0r
l as r → 0, using the continuity of ∂εwε(x) jointly in ε and x, and

(3.7) we get for some ε1 ∈ (0, ε)

wε (τi) = w0 (τi) + [wε (τi)− w0 (τi)] = O
(
dlε
)

+ ε∂ε[wε (τi)]ε=ε1

∼ ε∂ε[wε (0)]ε=0 ∼ wε (0) ∼ −2 (k + l − 1) ln γε
lγε

, as ε→ 0,
(3.8)

uniformly in τ ∈ T kε (δ). For every (γ, τ) ∈ Γkε (δ)× T kε (δ), we define

Ũε,γ,τ := wε +

k∑
i=1

Bε,γi,τi ,

where Bε,γi,τi := Bε,γi,τi,rε , τi := (τi, 0), and for δ0 ∈ (0, 1/2) to be fixed later,

rε := µδ0ε , µ2
ε := exp

(
− γ2

ε

)
. (3.9)

Claim 3.1. Set Aε,γi,τi := Aε,γi,τi,rε and Cε,γi,τi := Cε,γi,τi,rε . For every δ ∈ (0, 1) and
i ∈ {1, . . . , k}, we have

Aε,γi,τi =
4π

γi
+ O

(
1

γ3
ε

)
, Cε,γi,τi = −2 ln γε

γi
+ O

(
1

γε

)
, (3.10)



SIGN-CHANGING BLOW-UP FOR THE MOSER–TRUDINGER EQUATION 9

∂γi [Aε,γi,τi ] = −4π

γ2
i

+ O

(
1

γ4
ε

)
and ∂γi [Cε,γi,τi ] =

2 ln γε
γ2
i

+ O

(
1

γ2
ε

)
(3.11)

as ε → 0, uniformly in (γ, τ) ∈ Γkε (δ) × T kε (δ). Furthermore, for every a ≥ 0 and δ′ ∈(
0, 1−

√
δ0
)

(i.e. such that (1− δ′)2
> δ0), we have

∂τi [Aε,γi,τi ] = O

(
1

γaε

)
and ∂τi [Cε,γi,τi ] ∼ −

∂x1hε (τi)

hε (τi) γi
= O

(
1

γε

)
(3.12)

as ε→ 0, uniformly in (γ, τ) ∈ Γkε (δ′)× T kε (δ).

The proof of Claim 3.1 is based on a precise asymptotic study of the bubbles Bγ and is
postponed to the Appendix.

3.3. Correction of the error at the bottom of the bubbles. In this section, we modify
our ansatz so to correct the error made outside the balls B (τi, 2rε). We prove the following:

Proposition 3.2. Let Ω, l α and h be as in Theorem 1.2. Let k, ε0, hε, wε, λε, γε, τi,

rε, δ0, Γkε (δ), T kε (δ) and Ũε,γ,τ be as in Sections 3.1 and 3.2. Let χ ∈ C∞ (R) be such that
0 ≤ χ ≤ 1 in R, χ ≡ 1 in (−∞, 1] and χ ≡ 0 in [2,∞). Define

χε,τ (x) := 1−
k∑
i=1

χ
((
|x− τi|+ r2

ε − rε
)
/r2
ε

)
∀x ∈ R2.

For every δ ∈ (0, 1) and δ′ ∈ (0, 1−
√

2δ0), there exist ε1(δ, δ′) ∈ (0, ε0) and C1 = C1 (δ, δ′) >
0 such that for every ε ∈ (0, ε1 (δ, δ′)) and (γ, τ) ∈ Γkε (δ′) × T kε (δ), there exists a unique
solution Ψε,γ,τ ∈ Cl,α (Ω) ∩ C2

(
Ω
)

to the problem{
∆ (wε + Ψε,γ,τ ) = λεhεχε,τf

(
Ũε,γ,τ + Ψε,γ,τ

)
in Ω

Ψε,γ,τ = 0 on ∂Ω
(3.13)

such that Ψε,γ,τ is even in x2, continuously differentiable in (γ, τ) and

‖Ψε,γ,τ‖C1 ≤
C1

γε
, ‖Dγ [Ψε,γ,τ ]‖C1 ≤

C1

γ2
ε

, (3.14)

‖Dτ [Ψε,γ,τ ]‖H1 + ‖Dτ [Ψε,γ,τ ]‖C0 ≤
C1

γε
. (3.15)

Finally, setting Uε,γ,τ := Ũε,γ,τ + Ψε,γ,τ , there exists p0 = p0 (δ0, δ
′) such that for every

p ∈ [1, p0], a ≥ 0 and i ∈ {1, . . . , k}, we have∥∥exp
(
U2
ε,γ,τ

)
1A(τi,rε,Rε)

∥∥
Lp

= O

(
1

γaε

)
,
∥∥exp

(
U2
ε,γ,τ

)
Baε,γi,τi1ΩRε,τ

∥∥
Lp

= O

(
1

γaε

)
,

(3.16)

‖∂τi [χε,τ ] f (Uε,γ,τ )‖Lp = O

(
1

γaε

)
,
∥∥f ′ (Uε,γ,τ ) ∂τi [Uε,γ,τ ] 1Ωrε,τ

∥∥
Lp

= O (γε) (3.17)

uniformly in (γ, τ) ∈ Γkε (δ′)× T kε (δ), where Rε := exp (−γε) and

A (τi, r, R) := B (τi, R) \B (τi, r) and Ωr,τ := Ω\

(
k⋃
i=1

B (τi, r)

)
(3.18)

for all R > r > 0
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In other words, the function

Uε,γ,τ := Ũε,γ,τ + Ψε,γ,τ = wε +

k∑
i=1

Bε,γi,τi + Ψε,γ,τ , (3.19)

where Ψε,γ,τ is given by Proposition 3.2, is an exact solution outside the balls B
(
τ i, rε + r2

ε

)
for all i ∈ {1, . . . , k}, and it satisfies

∆Uε,γ,τ =

{
∆Bε,γi,τi = ∆Bε,γi,τi = λεhε (τi) f

(
Bε,γi,τi

)
in B (τi, rε)

λεhεχε,τf (Uε,γ,τ ) in Ωrε,τ .
(3.20)

Since the proof of Proposition 3.2 is lenghty, but not necessary to understand the rest of the
construction, it is postponed to Section 5.

For later use, we also observe that (3.1), (3.6), (3.9), (3.10) and (3.14) give Uε,γ,τ =
δ0γε(1 + o(1)) in Ωiε := B(τi, rε + r2

ε) \B(τi, rε), hence

f(Uε,γ,τ ) = O
(
µ
−2δ20+o(1)
ε

)
, in Ωiε. (3.21)

3.4. Adjustment of the values at the centers of the bubbles. In this section, we
refine the range of the parameters γi so to optimize the error made in the regions B (τi, rε).
Let us start by expanding

Uε,γ,τ (x) = Bε,γi,τi (x) + E(i)
ε,γ,τ + F (i)

ε,γ,τ (x) (3.22)

for all x ∈ B (τi, rε), where

E(i)
ε,γ,τ := wε (τi)− Cε,γi,τi +Aε,γi,τiH (τi, τi) +

∑
j 6=i

Aε,γj ,τjG (τi, τj) + Ψε,γ,τ (τi) , (3.23)

F (i)
ε,γ,τ (x) := wε (x)− wε (τi) +Aε,γi,τi (H(x, τi)−H (τi, τi))

+
∑
j 6=i

Aε,γj ,τj (G (x, τj)−G (τi, τj)) + Ψε,γ,τ (x)−Ψε,γ,τ (τi) . (3.24)

Note that F
(i)
ε,γ,τ (τi) = 0, so F

(i)
ε,γ,τ is small in B (τ i, rε). Instead the constant E

(i)
ε,γ,τ

might be large depending on the choice of γ and τ . In the next proposition we show that

we can choose γε (τ) ∼ γε depending on τ and ε in such a way that E
(i)
ε,γε(τ),τ = 0 for all

i ∈ {1, . . . , k}.

Proposition 3.3. Let δ0, ε1 and Ψε,γ,τ be as in Proposition 3.2. Then for every δ ∈
(0, 1) and δ′ ∈

(
0, 1−

√
2δ0
)
, there exists ε2 (δ, δ′) ∈ (0, ε1 (δ, δ′)) such that for every ε ∈

(0, ε2 (δ, δ′)) and τ ∈ T kε (δ), there exists a unique γε (τ) =
(
γ1,ε (τ) , . . . , γk,ε (τ)

)
∈ Γkε (δ′)

such that γk,ε (τ) is continuous in τ and for every i ∈ {1, . . . , k}, we have

Uε,γε(τ),τ (τi) = γi,ε (τ) and γi,ε (τ) ∼ γε (3.25)

as ε→ 0, uniformly in τ ∈ T kε (δ).

Proof. For every γ ∈ Γkε (δ′), we denote γ̃ := γ/γε. We let I := (1− δ′, 1 + δ′) and Eε,τ :

Ik → Rk, Eε,τ =
(
E

(1)
ε,τ , . . . , E

(k)
ε,τ

)
be the function defined by

E(i)
ε,τ (γ̃) :=

γε
ln γε

E(i)
ε,γ,τ ∀γ ∈ Ik, i ∈ {1, . . . , k} .

In particular, Eε,τ ∈ C1(Ik). By definition of dε, G and H, we obtain

G (τi, τj) ∼
1

2π
ln

1

dε
∼ ln γε

2lπ
and H (τi, τi) = O (1) (3.26)
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as ε → 0, uniformly in τ ∈ T kε (δ). It follows from (3.8), (3.10), (3.11), (3.14) and (3.26)

that Eε,τ → E0 =
(
E

(1)
0 , · · · , E(k)

0

)
in C1(Ik) as ε→ 0, uniformly in τ ∈ T kε (δ), where

E
(i)
0 (γ̃) :=

2

γ̃i
+

2

l

∑
j 6=i

1

γ̃j
− 2 (k + l − 1)

l

for all i ∈ {1, . . . , k} and γ̃ = (γ̃1, . . . , γ̃k) ∈ Ik. In particular,

E0 (1, . . . , 1) = 0 and det (DE0 (1, . . . , 1)) 6= 0. (3.27)

By applying the implicit function theorem, it follows from (3.27) that there exists ε2 (δ, δ′) ∈
(0, ε1 (δ, δ′)) such that for every ε ∈ (0, ε2 (δ, δ′)) and τ ∈ T kε (δ), there exists a unique
γ̃ε (τ) ∈ Ik such that γ̃ε (τ) is continuous in τ , Eε,τ (γ̃ε (τ)) = 0 and γ̃ε (τ) → (1, . . . , 1) as
ε→ 0, uniformly in τ ∈ T kε (δ), i.e. there exists a unique γε (τ) = γεγ̃ε (τ) ∈ Γkε (δ′) such that
γε (τ) is continuous in τ and (3.25) holds true. This ends the proof of Proposition 3.3. �

Now, we refine the set Γkε(δ′) by defining

Γ
k

ε (τ) :=
{
γ = (γ1, . . . , γk) ∈ (0,∞)

k
: |γi − γi,ε (τ) | < δε

γε
, ∀i ∈ {1, . . . , k}

}
, (3.28)

where γ1,ε (τ) , . . . , γk,ε (τ) are the numbers obtained in Proposition 3.3 and

δε := µδ1+1/2
ε , (3.29)

where µε is as in (3.9) and δ1 ∈ (0, 1/2) is a number that we shall fix later.

Note that for every δ, δ′ ∈ (0, 1), we have

Γ
k

ε (τ) ⊂ Γkε (δ′) (3.30)

for small ε > 0, uniformly in τ ∈ T kε (δ). Therefore, we can fix

δ′ :=
1−
√

2δ0
2

in what follows and let ε3 (δ) ∈ (0, ε2 (δ, δ′)) be such that (3.30) holds true together with
the results of Propositions 3.2 and 3.3 for all ε ∈ (0, ε3 (δ)) and τ ∈ T kε (δ).

3.5. An additional variation in the directions of the bubbles. We now introduce an
additional family of parameters θ = (θ1, . . . , θk) ∈ Rk and define our final ansatz as

Uε,γ,τ,θ := Uε,γ,τ +

k∑
i=1

θiBε,γi,τi = wε +

k∑
i=1

(1 + θi)Bε,γi,τi + Ψε,γ,τ ,

for

θ ∈ Θk
ε(δ) :=

{
θ = (θ1, . . . , θk) ∈ Rk : |θi| <

δε ln γε
γ4
ε

, ∀i ∈ {1, . . . , k}
}
, (3.31)

where γε and δε are as in (3.6) and (3.29). Finally, we define

P kε (δ) :=
{

(γ, τ, θ) ∈ (0,∞)
k × T kε (δ)×Θk

ε : γ ∈ Γ
k

ε (τ)
}
,

where T kε (δ), Γ
k

ε (τ) and Θk
ε are defined as in (3.5), (3.28) and (3.31), respectively.
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3.6. Pointwise estimates near the centers of the bubbles. We can now prove the
following:

Proposition 3.4. Let γε (τ) be as in Proposition 3.3. Then for every i ∈ {1, . . . , k} and
δ ∈ (0, 1) we have

∂γi
[
E(i)
ε,γ,τ

]
= −2 ln γε

γ2
ε

+ o

(
ln γε
γ2
ε

)
, ∂γj

[
E(i)
ε,γ,τ

]
= −2 ln γε

lγ2
ε

+ o

(
ln γε
γ2
ε

)
, for j 6= i,

E(i)
ε,γ,τ = −2 ln γε

γ2
ε

(γi − γi,ε (τ)) +
∑
j 6=i

γj − γj,ε (τ)

l

+ o

(
|γ − γε (τ)| ln γε

γ2
ε

)

as ε→ 0, uniformly in τ ∈ T kε (δ) and γ ∈ Γ
k

ε (τ).

Proof. Using (3.11), (3.23), (3.14) and noticing that for (γ1, . . . , γk) ∈ Γ
k

ε (τ) we have γj ∼ γε
for j = 1, . . . , k, we get

∂γi
[
E(i)
ε,γ,τ

]
= −∂γi [Cε,γi,τi ] + ∂γi [Aε,γi,τi ]H (τi, τi) + ∂γi [Ψε,γ,τ ]

= −2 ln γε
γ2
i

(1 + o (1))− 4π

γ2
i

O (1) + O

(
1

γ2
ε

)
= −2 ln γε

γ2
ε

+ o

(
ln γ2

ε

γ2
ε

)
as ε→ 0. For the case j 6= i, using (3.6), we estimate

G (τi, τj) =
1

2π
ln

1

dε
+ O (1) =

1

2πl
ln γε + O (1) ,

uniformly in τ ∈ T kε (δ) , hence

∂γj
[
E(i)
ε,γ,τ

]
= ∂γj

[
Aε,γj ,τj

]
G (τi, τj) + ∂γj [Ψε,γ,τ ]

= −4π

γ2
j

(
1

2πl
ln γε + O (1)

)
+ O

(
1

γ2
ε

)
= −2 ln γε

lγ2
ε

+ o

(
ln γ2

ε

γ2
ε

)
.

Now, since E
(i)
ε,γε(τ),τ = 0, integrating the gradient of E

(i)
ε,γ,τ with respect to γ from γε (τ) to

a generic γ ∈ Γ
k

ε (τ), the last identity follows at once. �

Proposition 3.5. For every i ∈ {1, . . . , k} and δ ∈ (0, 1), we have

F (i)
ε,γ,τ (x) =

(
a0lτ

l−1
i − 2

γε

∑
j 6=i

1

τi − τj

)
(x1 − τi) + o

(
|x− τi|
γεdε

)
, (3.32)

and for every i, j ∈ {1, . . . , k},

∂γj
[
F (i)
ε,γ,τ

]
(x) = O

(
|x− τi|
γ2
εdε

)
(3.33)

as ε→ 0, uniformly in x = (x1, x2) ∈ B (τi, rε) and (γ, τ, θ) ∈ P kε (δ).
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Proof. Note that F
(i)
ε,γ,τ (τi) = 0. Then, by using (3.7), (3.10) and (3.15) and since wε =

w0 + O (ε) in C1 (Ω), w0 (r, 0) ∼ a0r
l as r → 0 and ∂x2w0 (0, 0) = 0, we obtain

F (i)
ε,γ,τ (x) =

∫ 1

0

〈
∇F (i)

ε,γ,τ ((1− t) τi + tx) , x− τi
〉
dt

=

∫ 1

0

(
〈∇w0 ((1− t) τi + tx) , x− τi〉 −

∑
j 6=i

Aε,γj ,τj 〈(1− t) τi + tx− τj , x− τi〉
2π |(1− t) τi + tx− τj |2

)
dt

+ O (ε |x− τ i|) =

(
a0lτ

l−1
i − 2

γε

∑
j 6=i

1

τi − τj

)
(x1 − τi) + o

(
|x− τ i|
γ

1−1/l
ε

)

as ε → 0, uniformly in x = (x1, x2) ∈ B (τi, rε), τ ∈ T kε (δ) and γ ∈ Γ
k

ε (τ), hence proving
(3.32). Differentiating (3.24) and using Claim 3.1, (3.33) also follows at once. �

Proposition 3.6. For every i ∈ {1, . . . , k} and δ ∈ (0, 1), we have

Uε,γ,τ,θ (x) = Bε,γi,τi (x) +

(
a0lτ

l−1
i − 2

γε

∑
j 6=i

1

τi − τj

)
(x1 − τi)

+ o

(
|x− τi|
γ

1−1/l
ε

)
+ O

(
δε ln γε
γ3
ε

)
(3.34)

as ε → 0, uniformly in x = (x1, x2) ∈ B (τi, rε) and (γ, τ, θ) ∈ P kε (δ). In particular, for
every δ ∈ (0, 1), there exists ε4 (δ) ∈ (0, ε3 (δ)), where ε3 (δ) is as in Section 3.5, such that

Bε,γi,τi (x) > 0 and Uε,γ,τ,θ > 0 in B (τi, rε) (3.35)

for all ε (δ) ∈ (0, ε4 (δ)), (γ, τ, θ) ∈ P kε (δ) and i ∈ {1, . . . , k}.

Proof. In order to prove (3.34), it suffices to write

Uε,γ,τ,θ (x) = Bε,γi,τi (x) + E(i)
ε,γ,τ + F (i)

ε,γ,τ (x) +

k∑
j=1

θjBε,γj ,τj (x) in B (τi, rε)

and apply Proposition 3.4 to bound

E(i)
ε,γ,τ +

k∑
j=1

θiBε,γj ,τj = O

(
δε ln γε
γ3
ε

)
and Proposition 3.5 to estimate F

(i)
ε,γ,τ (x). It then follows from (3.34) and (6.2) that (3.35)

holds true for small ε > 0, uniformly in (γ, τ, θ) ∈ P kε (δ). �

4. Proof of Theorems 1.2 and 1.3

This section is devoted to the proof of Theorems 1.2 and 1.3. We let Ω, l, α and h be as
in Theorem 1.2, fix β > 4π, β0 > 0 and k ∈ N∗ such that β = β0 + 4kπ and let βε, hε, wε,

λε, γε, µε, dε, rε, δε, δ0, δ1, γi,ε (τ), Bε,γ0,x0
, Aε,γ,x,r, Cε,γ,x,r, G, H, Bε,γi,τi , Ũε,γ,τ , χε,τ ,

Ψε,γ,τ , Uε,γ,τ,θ, Γkε (δ), Γ
k

ε (τ), T kε (δ), Θk
ε and P kε (δ) be as in Section 3. We define

Rε,γ,τ,θ := Uε,γ,τ,θ −∆−1 [λεhεf (Uε,γ,τ,θ)] . (4.1)

As a first step, we obtain the following:
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Proposition 4.1. Let ε4 be as in Proposition 3.6. Assume that

3−
√

5
4 < δ0 <

1
2 and 0 < δ1 < 3δ0 − 2δ2

0 − 1
2 . (4.2)

Then for every δ ∈ (0, 1), there exist ε5 (δ) ∈ (0, ε4 (δ)) and C5 = C5 (δ) > 0 such that

‖Rε,γ,τ,θ‖H1
0
≤ C5

δε ln γε
γ2
ε

(4.3)

for all ε ∈ (0, ε5 (δ)) and (γ, τ, θ) ∈ P kε (δ).

Proof. For every ψ ∈ H1
0 (Ω), using that Bε,γi,τi ∈ Vε,γ,τ , integrating by parts and using

(3.20), we obtain

〈Rε,γ,τ,θ, ψ〉H1
0

=
〈
Uε,γ,τ,θ −∆−1 [λεhεf (Uε,γ,τ,θ)] , ψ

〉
H1

0

=

∫
Ω

(
∆Uε,γ,τ,θ − λεhεf (Uε,γ,τ,θ)

)
ψdx

= λε

∫
Ω

( k∑
i=1

(1 + θi)hε (τi) f
(
Bε,γi,τi

)
1B(τi,rε) + hεχε,τf

(
Uε,γ,τ

)
− hεf (Uε,γ,τ,θ)

)
ψdx+

k∑
i=1

θi

∫
Ω

ψ∆Bε,γi,τidx. (4.4)

By using the definition of χε,τ together with the mean value theorem, we obtain

∣∣∣∣∣
k∑
i=1

(1 + θi)hε (τi) f
(
Bε,γi,τi

)
1B(τi,rε) + hεχε,τf

(
Uε,γ,τ

)
− hεf (Uε,γ,τ,θ)

∣∣∣∣∣
≤

k∑
i=1

(∣∣hε (τi) f
(
Bε,γi,τi

)
− hεf (Uε,γ,τ,θ)

∣∣+ |θi|hε (τi) f
(
Bε,γi,τi

))
1B(τi,rε)

+ hε

k∑
i=1

∣∣f(Uε,γ,τ)∣∣1A(τi,rε,rε+r2ε) + hε
∣∣f(Uε,γ,τ)− f (Uε,γ,τ,θ)

∣∣1Ωrε,τ

≤
k∑
i=1

(
hεf

′ ((1− t1)Bε,γi,τi + t1Uε,γ,τ,θ
) ∣∣Uε,γ,τ,θ −Bε,γi,τi∣∣

+ |∇hε ((1− t2) τi + t2x)| |x− τi| f
(
Bε,γi,τi

) )
1B(τi,rε)

+ hε

k∑
i=1

∣∣f(Uε,γ,τ)∣∣1A(τi,rε,rε+r2ε) +

(
hε (τi) f

(
Bε,γi,τi

)
+ hεf

′
(
Uε,γ,τ + t3

k∑
i=1

θiBε,γi,τi

)) k∑
i=1

|θi|Bε,γi,τi1Ωrε,τ
(4.5)



SIGN-CHANGING BLOW-UP FOR THE MOSER–TRUDINGER EQUATION 15

for some functions t1, t2, t3 : Ω → [0, 1], where A
(
τi, rε, rε + r2

ε

)
and Ωrε,τ are as in (3.18).

Since λε → λ0 and hε → h0 in C1
(
Ω
)
, it follows from (4.4) and (4.5) that

〈Rε,γ,τ,θ, ψ〉H1
0

= O

( k∑
i=1

∫
Ω

((
f ′
(
(1− t1)Bε,γi,τi + t1Uε,γ,τ,θ

) ∣∣Uε,γ,τ,θ −Bε,γi,τi∣∣
+ |x− τi| f

(
Bε,γi,τi

) )
1B(τi,rε) +

∣∣f(Uε,γ,τ)∣∣1A(τi,rε,rε+r2ε)

+ f ′
(
Uε,γ,τ + t4

k∑
j=1

θjBε,γj ,τj

)
|θi|Bε,γi,τi1Ωrε,τ

)
|ψ|dx

)
. (4.6)

For every i ∈ {1, . . . , k}, by using (3.34) and remarking that f ′ (u) ≤ 3uf (u) for all u ≥ 1,
we obtain∫

B(τi,rε)

(
f ′
(
(1− t1)Bε,γi,τi + t1Uε,γ,τ,θ

) ∣∣Uε,γ,τ,θ −Bε,γi,τi ∣∣+ |x− τi| f
(
Bε,γi,τi

))
× |ψ|dx = O

(∫
B(τi,rε)

f
(
Bε,γi,τi

)(δε ln γε
γ2
ε

+ γ1/l
ε |x− τi|

)
|ψ|dx

)
. (4.7)

By integrating by parts, we obtain∫
B(τi,rε)

f
(
Bε,γi,τi

)
|ψ| dx = (λεhε (τi))

−1 〈Bε,γi,τi , |ψ|〉H1
0

≤ (λεhε (τi))
−1 ‖Bε,γi,τi‖H1

0
‖ψ‖H1

0
= O

(
‖ψ‖H1

0

)
. (4.8)

On the other hand, for every p > 1, by using Hölder’s inequality together with the continuity
of the embedding H1

0 (Ω) ↪→ Lp
′
(Ω), where p′ is the conjugate exponent of p, we obtain∫

B(τi,rε)

f
(
Bε,γi,τi

)
|x− τi| |ψ| dx = O

(∥∥f (Bε,γi,τi) |x− τi|1B(τi,rε)

∥∥
Lp
‖ψ‖H1

0

)
, (4.9)∫

A(τi,rε,rε+r2ε)

∣∣f(Uε,γ,τ)∣∣ |ψ| dx = O
(∥∥f(Uε,γ,τ)1A(τi,rε,rε+r2ε)

∥∥
Lp
‖ψ‖H1

0

)
, (4.10)

∫
Ωrε,τ

(
f
(
Bε,γi,τi

)
+ f ′

(
Uε,γ,τ + t4

k∑
j=1

θjBε,γj ,τj

)
Bε,γi,τi

)
|ψ| dx

= O

(∥∥∥∥(f (Bε,γi,τi)+ f ′
(
Uε,γ,τ + t4

k∑
j=1

θjBε,γj ,τj

)
Bε,γi,τi

)
1Ωrε,τ

∥∥∥∥
Lp
‖ψ‖H1

0

)
. (4.11)

By rescaling, we obtain∥∥f (Bε,γi,τi) |x− τi|1B(τi,rε)

∥∥p
Lp

= µp+2
i,ε

∫
B(0,rε/µi,ε)

f
(
Bε,γi,τi (τi + µi,εx)

)p |x|p dx,
where µi,ε is defined by µ2

i,ε := 4γ−2
i,ε exp

(
−γ2

i,ε

)
. By using (3.10) and (6.2), it follows that∥∥f (Bε,γi,τi) |x− τi|1B(τi,rε)

∥∥p
Lp

= O

(
µp+2
i,ε

∫
B(0,rε/µi,ε)

f

(
γi,ε −

1

γi,ε
ln

1

1 + λεhε (τi) |x|2

)p
|x|p dx

)

= O

(
µ2−p
i,ε

γpε

∫
B(0,rε/µi,ε)

|x|p dx(
1 + λεhε (τi) |x|2

)2p
)

= O

(
µ2−p
i,ε

γpε

)
= o

((
δε ln γε

γ
2+1/l
ε

)p)
(4.12)
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provided we choose p such that 2 − p > p (δ1 + 1/2), i.e. 1 < p < 4/ (2δ1 + 3), which is
possible since δ1 < 3δ0 − 2δ2

0 − 1/2 < 1/2. As regards the terms in the right-hand sides of
(4.10) and (4.11), by using (3.10) and (5.11) and proceeding as in (5.12)–(5.15) and (5.29),
we obtain∥∥f(Uε,γ,τ)1A(τi,rε,rε+r2ε)

∥∥p
Lp

= O
(
γpε ln (1 + rε) exp

(
(pδ0 − 1) δ0γ

2
ε + o (γε)

))
= O

(
γpε exp

((
pδ0 −

3

2

)
δ0γ

2
ε + o

(
γ2
ε

)))
= o

((
δε ln γε
γ2
ε

)p)
, (4.13)∥∥∥∥(f (Bε,γi,τi)+ f ′

(
Uε,γ,τ + t4

k∑
j=1

θjBε,γj ,τj

)
Bε,γi,τi

)
1Ωrε,τ

∥∥∥∥p
Lp

= O

(
γ3p+2
ε exp

(
(pδ0 − 1) δ0γ

2
ε + o

(
γ2
ε

))
+

1

γpε

∫
ΩRε,τ

|ln |x− τi|+ O (1)|p dx

)
= o (1) (4.14)

as ε→ 0, uniformly in (γ, τ, θ) ∈ P kε (δ), provided we choose p such that(
pδ0 −

3

2

)
δ0 < −

p

2

(
δ1 +

1

2

)
and pδ0 − 1 < 0,

i.e. 1 < p < min

(
3δ0

2δ2
0 + δ1 + 1/2

,
1

δ0

)
=

3δ0
2δ2

0 + δ1 + 1/2
,

which is possible when assuming (4.2). By putting together (4.6)–(4.14) and using the fact
that |θi| < δεγ

−4
ε ln γε, we obtain (4.3). This ends the proof of Proposition 4.1. �

We let H be the vector space of all functions in H1
0 (Ω) that are even in x2. For every

τ ∈ T kε (δ) and γ ∈ Γ
k

ε (τ), we define

Vε,γ,τ := span {Z0,i,ε,γ,τ , Z1,i,ε,γ,τ , Bε,γi,τi}1≤i≤k ,
where

Z0,i,ε,γ,τ := ∂γi [Uε,γ,τ,0] and Z1,i,ε,γ,τ := ∂τi [Uε,γ,τ,0] ∀i ∈ {1, . . . , k} .
Note that Uε,γ,τ,0 ∈ H and Vε,γ,τ ⊂ H. We let Πε,γ,τ and Π⊥ε,γ,τ be the orthogonal projection

of H onto Vε,γ,τ and V ⊥ε,γ,τ , respectively. We obtain the following:

Proposition 4.2. Assume that (4.2) holds true. Let ε5 be as in Proposition 4.1. Then
for every δ ∈ (0, 1), there exist ε6 (δ) ∈ (0, ε5 (δ)) and C6 = C6 (δ) > 0 such that for every
ε ∈ (0, ε6 (δ)) and (γ, τ, θ) ∈ P kε (δ), there exists a unique solution Φε,γ,τ,θ ∈ V ⊥ε,γ,τ to the
equation

Π⊥ε,γ,τ
(
Uε,γ,τ,θ + Φε,γ,τ,θ −∆−1 [λεhεf (Uε,γ,τ,θ + Φε,γ,τ,θ)]

)
= 0 (4.15)

such that

‖Φε,γ,τ,θ‖H1
0
≤ C6

δε ln γε
γ2
ε

. (4.16)

Furthermore, Φε,γ,τ,θ is continuous in (γ, τ, θ).

The proof of Proposition 4.2 relies on the following:

Lemma 4.3. Let ε5 be as in Proposition 4.1. For every δ ∈ (0, 1), there exist ε′5 (δ) ∈
(0, ε5 (δ)) and C ′5 = C ′5 (δ) > 0 such that for every ε ∈ (0, ε′5 (δ)) and (γ, τ, θ) ∈ P kε (δ), the
operator Lε,γ,τ,θ : V ⊥ε,γ,τ → V ⊥ε,γ,τ defined by

Lε,γ,τ,θ (Φ) = Π⊥ε,γ,τ
(
Φ−∆−1 [λεhεf

′ (Uε,γ,τ,θ) Φ]
)
∀Φ ∈ V ⊥ε,γ,τ (4.17)



SIGN-CHANGING BLOW-UP FOR THE MOSER–TRUDINGER EQUATION 17

satisfies
‖Φ‖H1

0
≤ C ′5 ‖Lε,γ,τ,θ (Φ)‖H1

0
. (4.18)

In particular, Lε,γ,τ,θ is an isomorphism.

Proposition 4.2 and Lemma 4.3 (together with Proposition 4.4 and Lemma 4.5), are the
heart of the Lyapunov–Schmidt procedure. We prove them by using a similar approach
as in the case of higher dimensions (see for instance Deng–Musso–Wei [7] and Robert–
Vétois [20,21]). Aside from the usual differences in the computations due to the exponential
term, the main difference here lies in the use of the Poincaré–Sobolev inequalities (7.2) and
(7.7), which take advantage of the additional dimensions of the kernel Vε,γ,τ given by the
directions of the bubbles.

Proof of Lemma 4.3. We proceed by contradiction. We assume that there exist sequences
(εn, γn, τn, θn,Φn)n∈N∗ such that εn → 0, (γn, τn, θn) ∈ P kε (δ) and

Φn ∈ V ⊥εn,γn,τn , ‖Φn‖H1
0

= 1 and ‖Lεn,γn,τn,θn (Φn)‖H1
0

= o (1) (4.19)

as n → ∞. For simplicity of notations, we denote γn := γεn , rn := rεn , dn := dεn ,

λn := λεn , hn := hεn , wn := wεn , Ψn := Ψεn,γn,τn , Un := Uεn,γn,τn,θn , Bi,n := Bεn,γi,n,τi,n ,

Bi,n := Bεn,γi,n,τi,n , Ln := Lεn,γn,τn,θn , V ⊥n := V ⊥εn,γn,τn and Zj,i,n := Zj,i,εn,γn,τn for all i ∈
{1, . . . , k} and j ∈ {0, 1}, where γn := (γ1,n, . . . , γk,n), τn := (τ1,n, . . . , τk,n), τi,n := (τi,n, 0)
and θn := (θ1,n, . . . , θk,n). It follows from (4.19) that

λn

∫
Ω

hnf
′ (Un) Φ2

ndx = ‖Φn‖2H1
0
− 〈Φn, Ln (Φn)〉H1

0
= 1 + o (1) (4.20)

as n→∞. On the other hand, since f ′ > 0, λn → λ0 and hn → h0 in C0
(
Ω
)
, we obtain

λn

∫
Ω

hnf
′ (Un) Φ2

ndx = O (In) , where In :=

∫
Ω

f ′ (Un) Φ2
ndx. (4.21)

In what follows, we will prove that In → 0 as n→∞, thus contradicting (4.20) and (4.21).

Estimation of In in the balls B (τi,n, rn). For i ∈ {1, . . . , k}, by rescaling and using (4.19),
we obtain∫

B(τi,n,rn)

f ′ (Un) Φ2
ndx = µ2

i,n

∫
B(0,rn/µi,n)

f ′
(
γ−1
i,n Ûn + γi,n

)
Φ̂2
ndx, (4.22)∫

(Ω−τi,n)/µi,n

〈
∇Φ̂n,∇ψ

〉
dx− λnµ2

i,n

∫
(Ω−τi,n)/µi,n

ĥnf
′(γ−1

i,n Ûn + γi,n
)
Φ̂nψdx

= o (‖∇ψ‖L2) ∀ψ ∈ C∞c
(
R2
)

(4.23)

as n→∞, where µi,n, ĥn, Φ̂n and Ûn are defined by

µ2
i,n := 4γ−2

i,n exp
(
−γ2

i,n

)
, ĥn (x) := hn (τi,n + µi,nx) ,

Φ̂n (x) := Φn (τi,n + µi,nx) and Ûn (x) := γi,n (Un (τi,n + µi,nx)− γi,n)

for all x ∈ (Ω− τi,n)/n. By using (3.10), (3.34) and (6.2), we obtain

Ûn (x) ∼ γi,n
(
Bi,n (τi,n + µi,nx)− γi,n

)
∼ ln

1

1 + λnhn (τi,n) |x|2
(4.24)

as n → ∞, uniformly in x ∈ B (0, rn/µi,n). By using (4.24) together with the definition of
µi,n, we obtain

µ2
i,nf

′(γ−1
i,n Ûn + γi,n

)
∼ 8(

1 + λnhn (τi,n) |x|2
)2 (4.25)
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as n→∞, uniformly in x ∈ B (0, rn/µi,n). By remarking that∥∥∇Φ̂n
∥∥
L2 = ‖∇Φn‖L2 = 1

and using (4.23) and (4.25), we obtain that
(
Φ̂n
)
n

converges, up to a subsequence, weakly

in D1,2
(
R2
)
, strongly in Lploc

(
R2
)

for all p ≥ 1 and pointwise almost everywhere in R2 to a

solution Φ̂0 of the equation

∆Φ̂0 =
8λ0h0 (0) Φ̂0(

1 + λ0h0 (0) |x|2
)2 in R2. (4.26)

Furthermore, since Φn ∈ H, we obtain that Φ̂0 is even in x2. By using a result of Baraket–

Pacard [2], it follows that Φ̂0 ∈ span {Z0, Z1}, where

Z0 (x) :=
1− λ0h0 (0) |x|2

1 + λ0h0 (0) |x|2
and Z1 (x) :=

2λ0h0 (0)x1

1 + λ0h0 (0) |x|2
∀x ∈ R2 .

In particular, note that the Poincaré–Sobolev inequality (7.2) applies to Φ̂0. On the other
hand, for every i ∈ {1, . . . , k}, since Φn ∈ E⊥εn,γn,τn , we get 〈Bi,n,Φn〉H1

0
= 〈Z0,i,n,Φn〉H1

0
=

〈Z1,i,n,Φn〉H1
0

= 0, which, by integrating by parts and using the equations satisfied by Bi,n,

Z0,i,n and Z1,i,n, gives∫
B(τi,n,rn)

f
(
Bi,n

)
Φndx = 0, (4.27)

λnhn (τi,n)

∫
B(τi,n,rn)

f ′
(
Bi,n

)
∂γi
[
Bεn,γ,τi,n

]
γ=γi,n

Φndx+
〈

Φn, ∂γi [Ψεn,γ,τn,0]γ=γn

〉
H1

0

= 0

(4.28)

together with an analogous estimate for the derivative in τi. It follows from (4.19), (4.27)
and the Poincaré–Sobolev inequality (7.7) that∫

B(τi,n,rn)

f ′
(
Bi,n

)
Φ2
ndx = O

(
‖∇Φn‖2L2

)
= O (1) . (4.29)

On the other hand, by using Cauchy–Schwartz’ inequality together with (3.14), (3.15) and
(4.19), we obtain〈

Φn, ∂γi [Ψεn,γ,τn,0]γ=γn

〉
H1

0

= o (1) and
〈

Φn, ∂τi [Ψεn,γn,τ,0]τ=τn

〉
H1

0

= o (1) (4.30)

as n→∞. By rescaling, it follows from (4.28) and (4.29) that

µ2
i,n

∫
B(0,rn/µi,n)

f ′
(
Bi,n (τi,n + µi,nx)

)
Φ̂n (x)

2
dx = O (1) , (4.31)〈

Φn, ∂γi [Ψεn,γ,τn,0]γ=γn

〉
H1

0

= −λnhn (τi,n)µ2
i,n

∫
B(0,rn/µi,n)

f ′
(
Bi,n (τi,n + µi,nx)

)
× ∂γi

[
Bεn,γ,τi,n (τi,n + µi,nx)

]
γ=γn

Φ̂n (x) dx. (4.32)

Here again, we obtain an analogous estimate to (4.32) for the derivative in τi. By using
(6.2) and (6.3) together with the definition of µi,n, we obtain

∂γi
[
Bεn,γ,τn (τi,n + µi,nx)

]
γ=γn

−→ Z0 (x) for a.e. x ∈ R2, (4.33)
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∂γi
[
Bεn,γ,τn (τi,n + µi,nx)

]
γ=γn

= O (1) , (4.34)

∂τi
[
Bεn,γi,n,(τ,0) (τi,n + µi,nx)

]
τ=τi,n

=
Z1 (x)

µi,nγi,n
+ o

(
1

µi,nγi,n

)
(4.35)

as n→∞, uniformly in x ∈ B (0, rn/µi,n). For every R > 0, since
(
Φ̂n
)
n

converges strongly

to Φ̂0 in L1
loc

(
R2
)
, it follows from (4.24), (4.25) and (4.33) that

µ2
i,n

∫
B(0,R)

f ′
(
Bi,n (τi,n + µi,nx)

)
∂γi
[
Bεn,γ,τi,n (τi,n + µi,nx)

]
γ=γn

Φ̂n (x) dx

−→ 8

∫
B(0,R)

8Z0 (x) Φ̂0 (x) dx(
1 + λ0h0 (0) |x|2

)2 (4.36)

as n → ∞. On the other hand, by using Hölder’s inequality together with (4.24), (4.25),
(4.31), (4.34) and (7.2), we obtain∣∣∣∣∣µ2

i,n

∫
A(0,R,rn/µi,n)

f ′
(
Bi,n (τi,n + µi,nx)

)
∂γi
[
Bεn,γ,τi,n (τi,n + µi,nx)

]
γ=γn

Φ̂n (x) dx

∣∣∣∣∣
= O

(µ2
i,n

∫
A(0,R,rn/µi,n)

f ′
(
Bi,n (τi,n + µi,nx)

)
dx

)1/2


= O

(∫
B(0,R)c

dx(
1 + λnhn (τi,n) |x|2

)2
)1/2

 = oR (1) , (4.37)

∣∣∣∣∣
∫
B(0,R)c

Z0 (x) Φ̂0 (x) dx(
1 + λ0h0 (0) |x|2

)2
∣∣∣∣∣ = O

(∫
B(0,R)c

dx(
1 + λ0h0 (0) |x|2

)2
)1/2

 = oR (1) , (4.38)

where oR (1)→ 0 as R→∞, uniformly in n ∈ N∗, where A (0, R, rn/µi,n) is as in (3.18). It
follows from (4.30), (4.32) and (4.36)–(4.38) that∫

R2

Z0 (x) Φ̂0 (x) dx(
1 + λ0h0 (0) |x|2

)2 = 0. (4.39)

By proceeding in the same way but using (4.35) instead of (4.33)–(4.34), we obtain∫
R2

Z1 (x) Φ̂0 (x) dx(
1 + λ0h0 (0) |x|2

)2 = 0. (4.40)

Since Φ̂0 ∈ span {Z0, Z1}, it follows from (4.26), (4.39) and (4.40) that Φ̂0 ≡ 0. For every

R > 0, by using (4.25) and since
(
Φ̂n
)
n

converges strongly to Φ̂0 in L2
loc

(
R2
)
, we then

obtain

µ2
i,n

∫
B(0,R)

f ′
(
γ−1
i,n Ûn + γi,n

)
Φ2
ndx = o (1) (4.41)

as n→∞. On the other hand, by proceeding as in (4.37), we obtain

µ2
i,n

∫
A(0,R,rn/µi,n)

f ′
(
γ−1
i,n Ûn + γi,n

)
Φ2
ndx = oR (1) , (4.42)
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where oR (1)→ 0 as R→∞, uniformly in n ∈ N∗. It follows from (4.22), (4.41) and (4.42)
that ∫

B(τi,n,rn)

f ′ (Un) Φ2
ndx = o (1) (4.43)

as n→∞.

Estimation of In in the annuli A (τi,n, rn, Rn), where Rn := exp (−γn). For every i ∈
{1, . . . , k}, for small p > 1, by using Hölder’s inequality, (3.16) and (4.19) together with the

continuity of the embedding H1
0 (Ω) ↪→ L2p′ (Ω), we obtain∫

A(τi,n,rn,Rn)

f ′ (Un) Φ2
ndx = O

(∥∥f ′ (Un) 1A(τi,n,rn,Rn)

∥∥
Lp
‖Φn‖2H1

0

)
= O

(∥∥f ′ (Un) 1A(τi,n,rn,Rn)

∥∥
Lp

)
= o (1) (4.44)

as n→∞.

Estimation of In in ΩRn,τn . By using (4.19), we obtain that (Φn)n converges, up to a
subsequence, weakly in H1

0 (Ω) and pointwise almost everywhere in Ω to a function Φ0.
Furthermore, (4.19) gives that∫

Ω

〈∇Φn,∇ψ〉 dx− λn
∫

Ω

hnf
′ (Un) Φnψdx = o (1) (4.45)

as n→∞, for all ψ ∈ C∞c (Ω). By rescaling as in (4.22) and using (4.25) together with the

fact that Φ̂n ⇀ 0 in D1,2
(
R2
)
, we obtain that

k∑
i=1

∫
B(τi,n,rn)

hnf
′ (Un) Φnψdx = o (1) (4.46)

as n→∞. By using similar estimates as in (4.44), we obtain

k∑
i=1

∫
A(τi,n,rn,Rn)

hnf
′ (Un) Φnψdx = o (1) (4.47)

as n→∞. By using (3.10), (3.14) and since wn → w0 in C0
(
Ω
)
, we obtain that Un1ΩRn,τn

is uniformly bounded and converges pointwise to u0 in Ω. Since moreover Φn ⇀ Φ0 in
H1

0 (Ω), λn → λ0 and hn → h0 in C0
(
Ω
)
, it follows from (4.45)–(4.47) that Φ0 is a solution

of the equation

∆Φ0 = λ0h0f
′ (w0) Φ0 in Rn.

Since w0 is non-degenerate, we then obtain that Φ0 ≡ 0. It then follows from standard
integration theory that ∫

ΩRn,τn

f ′ (Un) Φ2
ndx = o (1) (4.48)

as n→∞.

Finally, by combining (4.43), (4.44) and (4.48), we obtain a contradiction with (4.20) and
(4.21). This ends the proof of Lemma 4.3. �

Proof of Proposition 4.2. We let Nε,γ,τ,θ : V ⊥ε,γ,τ → V ⊥ε,γ,τ and Tε,γ,τ,θ : V ⊥ε,γ,τ → V ⊥ε,γ,τ be
the operators defined as

Nε,γ,τ,θ (Φ) := Π⊥ε,γ,τ
(
∆−1[λεhε(f (Uε,γ,τ,θ + Φ)− f (Uε,γ,τ,θ)− f ′ (Uε,γ,τ,θ) Φ)]

)
,

Tε,γ,τ,θ (Φ) := L−1
ε,γ,τ,θ

(
Nε,γ,τ,θ (Φ)−Π⊥ε,γ,τ (Rε,γ,τ,θ)

)
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for all Φ ∈ V ⊥ε,γ,τ , where Rε,γ,τ,θ and Lε,γ,τ,θ are as in (4.1) and (4.17). Remark that the
equation (4.15) can be rewritten as the fixed point equation Tε,γ,τ,θ (Φ) = Φ. For every
C > 0, ε ∈ (0, ε′5) and (γ, τ, θ) ∈ P kε (δ), we define

Vε,γ,τ,θ (C) :=

{
Φ ∈ V ⊥ε,γ,τ : ‖Φ‖H1

0
≤ C δε ln γε

γ2
ε

}
.

We will prove that if C is chosen large enough, then Tε,γ,τ,θ has a fixed point in Vγ,τ,θ (C).
By using (4.18), we obtain

‖Tε,γ,τ,θ (Φ)‖H1
0
≤ C ′5

(
‖Nε,γ,τ,θ (Φ)‖H1

0
+ ‖Rε,γ,τ,θ‖H1

0

)
. (4.49)

For every Φ1,Φ2 ∈ Vε,γ,τ,θ (C) and ψ ∈ V ⊥ε,γ,τ , by integrating by parts and applying the
mean value theorem, we obtain

〈Nε,γ,τ,θ (Φ1)−Nε,γ,τ,θ (Φ2) , ψ〉H1
0

= λε

∫
Ω

hε (f ′ (Uε,γ,τ,θ + tΦ1 + (1− t) Φ2)− f ′ (Uε,γ,τ,θ)) (Φ1 − Φ2)ψdx

= λε

∫
Ω

hεf
′′ (Uε,γ,τ,θ + stΦ1 + s (1− t) Φ2) (tΦ1 + (1− t) Φ2) (Φ1 − Φ2)ψdx (4.50)

for some functions s, t : Ω→ [0, 1]. Since λε → λ0, hε → h0 in C0
(
Ω
)

and f ′′ is increasing,
it follows from (4.50) that

〈Nε,γ,τ,θ (Φ1)−Nε,γ,τ,θ (Φ2) , ψ〉H1
0

= O

(∫
Ω

f ′′ (|Uε,γ,τ,θ|+ |Φ1|+ |Φ2|) (|Φ1|+ |Φ2|) |Φ1 − Φ2| |ψ| dx
)
. (4.51)

For every p > 1, by using Hölder’s inequality together with the continuity of the embedding
H1

0 (Ω) ↪→ L3p′ (Ω), we obtain∫
Ω

f ′′ (|Uε,γ,τ,θ|+ |Φ1|+ |Φ2|) (|Φ1|+ |Φ2|) |Φ1 − Φ2| |ψ| dx

= O
(
‖f ′′ (|Uε,γ,τ,θ|+ |Φ1|+ |Φ2|)‖Lp ‖|Φ1|+ |Φ2|‖H1

0
‖Φ1 − Φ2‖H1

0
‖ψ‖H1

0

)
. (4.52)

Since f ′′ is increasing, we obtain

f ′′ (|Uε,γ,τ,θ|+ |Φ1|+ |Φ2|) ≤ f ′′
(
Ũε,γ,τ,θ

)
+ f ′′

(
Φ̃ε
)
, (4.53)

where
Ũε,γ,τ,θ := (1 + δε) |Uε,γ,τ,θ| and Φ̃ε :=

(
1 + δ−1

ε

)
(|Φ1|+ |Φ2|) .

Remark that Φ̃ε → 0 in H1
0 (Ω) as ε → 0 since Φ1,Φ2 ∈ Vε,γ,τ,θ (C). By using Hölder’s in-

equality together with the Moser–Trudinger’s inequality and the continuity of the embedding
H1

0 (Ω) ↪→ L6p (Ω), we then obtain∥∥f ′′(Φ̃ε)∥∥Lp = 2
∥∥Φ̃ε

(
3 + 2Φ̃2

ε

)
exp

(
Φ̃2
ε

)∥∥
L2p

≤ 2
∥∥Φ̃ε

∥∥
H1

0

(
3 + 2

∥∥Φ̃ε
∥∥2

H1
0

)∥∥ exp
(
Φ̃2
ε

)∥∥
L2p = o (1) (4.54)

as ε → 0. For every i ∈ {1, . . . , k}, by remarking that f ′′ (s) ≤ 6sf ′ (s) for all s ≥ 0 and
using similar estimates as in (4.24) and (4.25), we obtain

f ′′
(
Ũε,γ,τ,θ (x)

)
= O

 γi (τ)µi (τ)
2(

µi (τ)
2

+ |x− τi|2
)2

 (4.55)
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uniformly in x ∈ B (τi, rε), where µi (τ) is defined by

µi (τ)
2

:= 4γi (τ)
−2

exp
(
− γi (τ)

2 )
.

It follows from (4.55) that∥∥f ′′(Ũε,γ,τ,θ)1B(τi,rε)

∥∥
Lp

= O
(
γi (τ)µi (τ)

−2/p′
)
, (4.56)

where p′ is the conjugate exponent of p. By using (3.16), we obtain∥∥f ′′(Ũε,γ,τ,θ)1A(τi,rε,Rε)

∥∥
Lp

= o (1) (4.57)

as ε → 0, where Rε := exp (−γε), provided we choose p such that p < 1/δ0. Furthermore,
since Uε,γ,τ,θ is uniformly bounded in ΩRε,τ , we obtain∥∥f ′′(Ũε,γ,τ,θ)1ΩRε,τ

∥∥
Lp

= O (1) . (4.58)

By putting together (4.51)–(4.53), (4.54) and (4.24) and (4.58), we obtain

‖Nε,γ,τ,θ (Φ1)−Nε,γ,τ,θ (Φ2)‖H1
0

= O
(
γi (τ)µi (τ)

−2/p′ ‖|Φ1|+ |Φ2|‖H1
0
‖Φ1 − Φ2‖H1

0

)
.

(4.59)
Remark that since Φ1,Φ2 ∈ Vε,γ,τ,θ (C), we obtain

γi (τ)µi (τ)
−2/p′ ‖|Φ1|+ |Φ2|‖H1

0
= o (1) (4.60)

as ε → 0, provided we choose p such that 2/p′ < δ1 + 1/2, i.e. p < 4/ (3− 2δ1). It follows
from (4.59) and (4.60) that

‖Nε,γ,τ,θ (Φ1)−Nε,γ,τ,θ (Φ2)‖H1
0

= o
(
‖Φ1 − Φ2‖H1

0

)
(4.61)

as ε→ 0. By using (4.3), (4.49), (4.61) and since Nε,γ,τ,θ (0) = 0, we obtain that there exist
ε6 (δ) ∈ (0, ε5 (δ)) and C6 = C6 (δ) > 0 such that for every ε ∈ (0, ε6 (δ)) and (γ, τ, θ) ∈
P kε (δ), Tε,γ,τ,θ is a contraction mapping on Vε,γ,τ,θ (C6). We can then apply the fixed
point theorem, which gives that there exists a unique solution Φε,γ,τ,θ ∈ Vε,γ,τ,θ (C6) to the
equation (4.15). The continuity of Φε,γ,τ,θ in (γ, τ, θ) follows from the continuity of Uε,γ,τ,θ,
Z0,i,ε,γ,τ,θ and Z1,i,ε,γ,τ,θ in (γ, τ, θ). This ends the proof of Proposition 4.2. �

As a last step, we prove the following:

Proposition 4.4. Let ε6 and Φε,γ,τ,θ be as in Proposition 4.2. Then there exists δ7 ∈
(0, 1) such that for every δ ∈ (0, δ7), there exists ε7 (δ) ∈ (0, ε7 (δ)) such that for every
ε ∈ (0, ε7 (δ)), there exists (γε, τε, θε) ∈ P kε (δ) such that

Uε,γε,τε,θε + Φε,γε,τε,θε = ∆−1 [λεhεf (Uε,γε,τε,θε + Φε,γε,τε,θε)] . (4.62)

The proof of Proposition 4.4 relies on the following:

Lemma 4.5. Set

R̃ε,γ,τ,θ := Uε,γ,τ,θ + Φε,γ,τ,θ −∆−1 [λεhεf (Uε,γ,τ,θ + Φε,γ,τ,θ)] .

Then for every i ∈ {1, . . . , k} and δ ∈ (0, 1), we have〈
R̃ε,γ,τ,θ, Z0,i,ε,γ,τ

〉
H1

0

= −8π

k∑
j=1

∂γi
[
E(j)
ε,γ,τ

] (
E(j)
ε,γ,τ + θjγε

)
+

4π

γ2
ε

E(i)
ε,γ,τ + o

(
δε ln γε
γ5
ε

)
,

(4.63)〈
R̃ε,γ,τ,θ, Bε,γi,τi

〉
H1

0

= −8πγε

(
E(i)
ε,γ,τ + θiγε

)
+ o

(
δε

γ2
ε

)
, (4.64)
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〈
R̃ε,γ,τ,θ, Z1,i,ε,γ,τ

〉
H1

0

= −4π

γε

(
a0lτ

l−1
i − 2

γε

∑
j 6=i

1

τi − τj

)
+ o

(
1

γ2
εdε

)
(4.65)

as ε→ 0, uniformly in (γ, τ, θ) ∈ P kε (δ).

Remark 4.6. As an evidence of the strong interaction generated by the Moser-Trudinger
critical nonlinearity, we stress that the variables θ and γ are intricately coupled in the ex-
pansions (4.63)–(4.65) used to determine (γε, θε, τε). This is not the case for 2-dimensional
Liouville-type equations (see for instance [3]), for which it is possible to construct blowing-up
solutions without introducing neither the parameter θ nor the bubbles Bε,γi,τi in Vε,γ,τ (see
for instance [10] working also in the H1

0 (Ω)-framework). Finally, even not facing a situation
with clustering or nonzero weak limit like ours, it is delicate to get a clean energy expansion
in the Moser-Trudinger critical case (see [6]). In particular, this expansion has to eventually
fit with the cancellation pointed out by [15] for the blow-up solutions.

Proof of (4.63). We start with computations that will be used also in the proofs of (4.64)-
(4.64). Given Z ∈ H1

0 (Ω), integration by parts yields〈
R̃ε,γ,τ,θ, Z

〉
H1

0

=

∫
Ω

[∆(Uε,γ,τ,θ + Φε,γ,τ,θ)− fε(Uε,γ,τ,θ + Φε,γ,τ,θ)]Zdx,

where we use the notation fε = λεhεf .1 We now expand for real numbers U and R,

exp[(U +R)2] = exp(U2) exp(2UR+R2) = exp(U2)[1 + 2UR+ O(U2R2)] (4.66)

uniformly for |UR| ≤ 1 and |R| ≤ 1 ≤ |U |, so that, recalling that f ′ (t) =
(
1 + 2t2

)
exp

(
t2
)
,

f (U +R) = f (U) + f ′ (U)R+ O
(
U3R2 exp

(
U2
))
, (4.67)

and similarly for fε since λεhε = O (1). We apply this to

U = Uε,γ,τ = uε +

k∑
i=1

Bε,γi,τi + Ψε,γ,τ , R = Φ̃ε,γ,τ,θ :=

k∑
i=1

θiBε,γi,τi + Φε,γ,τ,θ (4.68)

to obtain

fε (Uε,γ,τ,θ + Φε,γ,τ,θ) = fε (Uε,γ,τ ) + f ′ε (Uε,γ,τ )

(
k∑
i=1

θiBε,γi,τi + Φε,γ,τ,θ

)
+ O

(
exp

(
U2
ε,γ,τ

)
U3
ε,γ,τ Φ̃2

ε,γ,τ,θ

)
.

Recalling Proposition 3.2, and in particular that Uε,γ,τ is an exact solution outside the balls
B
(
τj , rε + r2

ε

)
, we get〈
R̃ε,γ,τ,θ, Z

〉
H1

0

=

k∑
j=1

∫
B(τj ,rε)

[∆Uε,γ,τ − fε (Uε,γ,τ )]Zdx

+

k∑
j=1

∫
Ωjε

[∆Uε,γ,τ − fε (Uε,γ,τ )]Zdx

+

k∑
j=1

θj

∫
Ω

[
∆Bε,γj ,τj − f ′ε (Uε,γ,τ )Bε,γj ,τj

]
Zdx

1We shall always write fε(U) instead of fε(x, U), ignoring the dependence on x.
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+

∫
Ω

[∆Φε,γ,τ,θ − f ′ε (Uε,γ,τ ) Φε,γ,τ,θ]Zdx

+ O

(∫
Ω

|Uε,γ,τ |3 exp
(
U2
ε,γ,τ

)
Φ̃2
ε,γ,τ,θ |Z| dx

)
=:

k∑
j=1

[(A)j + (A′)j + (B)j ] + (C) + (D), (4.69)

where Ωjε := B
(
τi, rε + r2

ε

)
\B (τi, rε). We now set Z = Z0,i,ε,γ,τ in (4.69) and estimate the

various terms.
In order to evaluate (A) :=

∑k
j=1(A)j , expand as in (3.22)

Uε,γ,τ = Bε,γj ,τj + E(j)
ε,γ,τ + F (j)

ε,γ,τ , in B (τj , rε) . (4.70)

Using Proposition 3.5 and omitting some indices, we get

Rj (x) := E(j)
ε,γ,τ + F (j)

ε,γ,τ (x) = E(j)
ε,γ,τ + O

(
|x− τj |
γεdε

)
=: Rsj (x) +Rrj , (4.71)

for all x ∈ B (τj , rε), where the letters s and r stand for “symmetric” and “remainder”,
respectively. Using (4.70) and (3.33), we get

Z0,i := Z0,i,ε,γ,τ = ∂γi
[
Bε,γj ,τj +Rj

]
= ∂γi

[
Bε,γj ,τj (x) + E(j)

ε,γ,τ

]
+ O (|x− τj |) , in B (τj , rε) , (4.72)

where we also replaced O
(
|x− τj | /

(
γ2
εdε
))

by O (|x− τj |) for simplicity. Using Proposi-

tion 3.2 and (3.20), i.e. ∆Bε,γj ,τj = ∆Bε,γj ,τj , in B (τj , rε), we can write

(A)j =

∫
B(τj ,rε)

[
∆Bε,γj ,τj − fε (Uε,γ,τ )

]
Z0,idx.

We now Taylor expand as in (4.67) with

U = Bε,γj ,τj , R = Rj = E(j)
ε,γ,τ + F (j)

ε,γ,τ ,

and since Bε,γi,τi is an exact solution in B (τi, rε), we estimate

(A)j =

∫
B(τj ,rε)

[
∆Bε,γj ,τj − λεhε (τj) f

(
Bε,γj ,τj

)]︸ ︷︷ ︸
=0

Z0,idx

−
∫
B(τj ,rε)

λε (hε − hε (τj)) f
(
Bε,γj ,τj

)
Z0,idx−

∫
B(τj ,rε)

λεhεf
′ (Bε,γj ,τj)RjZ0,idx

+ O

(∫
B(τj ,rε)

γ3
ε exp

(
B

2

ε,γj ,τj

)
R2
j |Z0,i| dx

)
. (4.73)

Observing that hε − hε (τj) = O (|x− τj |), using (4.71) to bound F
(j)
ε,γ,τ , writing

f ′
(
Bε,γj ,τj

)
= O

(
γεf

(
Bε,γj ,τj

))
= O

(
γ2
ε exp

(
B

2

ε,γj ,τj

))
, in B (τj , rε) ,
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and using |Z0,i| = O (1), we simplify to

(A)j = −
∫
B(τj ,rε)

λεhε (τj) f
′ (Bε,γj ,τj)E(j)

ε,γ,τ∂γi
[
Bε,γj ,τj + E(j)

ε,γ,τ

]
dx

+ O

(∫
B(τj ,rε)

γ3
ε exp

(
B

2

ε,γj ,τj

) (
|E(j)
ε,γ,τ |2 + |x− τj |

)
dx

)
. (4.74)

Now write

∂γi
[
Bε,γj ,τj + E(j)

ε,γ,τ

]
= δij∂γi

[
Bε,γi,τi

]
+ ∂γi

[
E(j)
ε,γ,τ

]
, on B (τj , rε) ,

where δij is the Kronecker symbol. Observing that

Bε,γj ,τj (x) = Bγj
(√

λε,j (x− τj)
)
, where λε,j := λεhε (τj) , (4.75)

with the change of variables
√
λε,j (x− τj) = y and Proposition 6.3, we get∫

B(τj ,rε)

λε,jf
′ (Bε,γj ,τj) dx =

∫
B(0,
√
λε,jrε)

f ′
(
Bγj

)
dy = 8π + O

(
1

γ2
ε

)
, (4.76)

where Bγj is as in Proposition 6.1. With the same change of variables and Proposition 6.3,
we also get∫

B(τi,rε)

λε,if
′(Bε,γi,τi)∂γi [Bε,γi,τi] dx =

∫
B(0,
√
λε,irε)

f ′
(
Bγi

)
Z0,γidy = −4π + o (1)

γ2
ε

,

where Z0,γi is as in Proposition 6.2. Now, using Proposition 3.4, the dominant term in (A)j
becomes

− E(j)
ε,γ,τ

∫
B(τj ,rε)

λε,jf
′ (Bε,γj ,τj) (∂γi[E(j)

ε,γ,τ

]
+ ∂γi

[
Bε,γj ,τj

])
dy

= −E(j)
ε,γ,τ

((
8π + O

(
1

γ2
ε

))
∂γi
[
E(j)
ε,γ,τ

]
− δij

4π + o (1)

γ2
ε

)
= −E(j)

ε,γ,τ

(
8π∂γi

[
E(j)
ε,γ,τ

]
− δij

4π

γ2
ε

)
+ o

(
δε ln γε
γ5
ε

)
Concerning the remainder term in (4.74), again using Proposition 6.3, we have∫

B(τj ,rε)

exp
(
B

2

ε,γj ,τj

)
γ3
εδ

2
εdx = O

(
γεδ

2
ε

)
= o

(
δε ln γε
γ5
ε

)
,

and, with the usual change of variables and Proposition 6.4, we obtain∫
B(τj ,rε)

exp
(
B

2

ε,γj ,τj

)
γ3
ε |x− τj | dx = O

(
γ3
εµ

3δ0−2δ20+o(1)
γj

)
= O

(
µ

3δ0−2δ20+o(1)
ε

)
= o

(
δε ln γε
γ5
ε

)
,

where in the last identity, we used that δε = µ
δ1+1/2
ε and 3δ0− 2δ2

0 > δ1 + 1
2 thanks to (4.2),

so that

µ
3δ0−2δ20+o(1)
ε = O

(
δε
γaε

)
, for any a ∈ R.

We therefore get

(A)j = −E(j)
ε,γ,τ

(
8π∂γi

[
E(j)
ε,γ,τ

]
− δij

4π

γ2
ε

)
+ o

(
δε ln γε
γ5
ε

)
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Summing over j, we then obtain

(A) =

k∑
j=1

(A)j = −8π

k∑
j=1

E(j)
ε,γ,τ∂γi

[
E(j)
ε,γ,τ

]
+

4π

γ2
ε

E(i)
ε,γ,τ + o

(
δε ln γε
γ5
ε

)
. (4.77)

As for the error term in the annuli, we have from Proposition 3.2,

(A′)j =

∫
Ωjε

(χε,τ − 1) fε (Uε,γ,τ )Z0,i,ε,γ,τdx,

hence, from (3.21),

(A′) =

k∑
j=1

O
(
|Ωjε|µ

−2δ20+o(1)
ε

)
= O

(
µ

3δ0−2δ20+o(1)
ε

)
= o

(
δε ln γε
γ5
ε

)
, (4.78)

where in the last line, we used that δε = µ
δ1+1/2
ε and 3δ0 − 2δ2

0 > δ1 + 1/2.
We now move on to the estimate of (B). Integration by parts and using that Uε,γ,τ is an

exact solution outside the balls B
(
τm, rε + r2

ε

)
give

(B)j = θj

∫
Ω

[∆Z0,i − f ′ε (Uε,γ,θ)Z0,i]Bε,γj ,τjdx

= θj

∫
Ω

∂γi [∆Uε,γ,τ − fε (Uε,γ,θ)]Bε,γj ,τjdx

= θj

k∑
m=1

∫
B(τm,rε)

∂γi [∆Uε,γ,τ − fε (Uε,γ,θ)]Bε,γj ,τjdx

+ θj

k∑
m=1

∫
Ωmε

∂γi [∆Uε,γ,τ − fε (Uε,γ,θ)]Bε,γj ,τjdx

=:

k∑
m=1

[(B)jm + (B′)jm] . (4.79)

Using the same notations as in (4.70)–(4.71) and using (4.66), which gives

f ′ (B +R) = f ′ (B) + O
(
B3 |R| exp

(
B2
))

(4.80)

with

B = Bm = Bε,γm,τm , R = Rm = E(m)
ε,γ,τ + F (m)

ε,γ,τ ,

on B (τm, rε), we can now write

∂γi [∆Uε,γ,τ − fε (Uε,γ,τ )] = ∂γi
[
∆Bm

]
− f ′ε (Uε,γ,τ ) ∂γi [Uε,γ,τ ]

= ∂γi
[
∆Bm

]
−
[
f ′ε
(
Bm
)

+ O
(
γ3
ε exp

(
B

2

m

)
|Rm|

)]
∂γi
[
Bm +Rm

]
= ∂γi

[
∆Bm − λεhε (τm) f

(
Bm
)]︸ ︷︷ ︸

=0

+ O
(
γ3
ε exp

(
B

2

m

)
(|x− τm|+ |Rm|) ∂γi [Bm]

)
−
[
f ′ε
(
Bm
)

+ O
(
γ3
ε exp

(
B

2

m

)
|Rm|

)]
∂γi [Rm] , (4.81)
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where we have also bound hε − hε (τm) = O (|x− τm|). Expanding ∂γi [Rm] as in (4.72), we
then get

(B)jm = −θj
∫
B(τm,rε)

f ′ε
(
Bε,γm,τm

)
Bε,γj ,τj∂γi [Rm] dx

+ O

(
|θj | γ4

ε

∫
B(τm,rε)

exp
(
B

2

ε,γm,τm

)
(δε + |x− τm|) dx

)
,

hence

(B)jm = −θj∂γi
[
E(m)
ε,γ,τ

] ∫
B(τm,rε)

f ′ε
(
Bε,γm,τm

)
Bε,γj ,τjdx+ o

(
δε ln γε
γ5
ε

)
.

Together with (6.11), for j = m, we obtain

(B)jj = −8πγεθj∂γi
[
E(j)
ε,γ,τ

]
+ o

(
δε ln γε
γ5
ε

)
,

while, observing that Bε,γj ,τj = O (1) on B (τm, rε) if j 6= m, we get

(B)jm = o

(
δε ln γε
γ5
ε

)
, for j 6= m.

As for (B′)jm, similarly as in (4.78), we can bound with (3.21) and Proposition 6.4

(B′)jm =

∫
Ωmε

(χε,τ − 1) ∂γi [fε (Uε,γ,τ )]Bε,γj ,τjdx

= O

(
γε

∫
Ωmε

|f ′ε (Uε,γ,τ )| |Z0,j,ε,γ,τ | dx

)
= O

(
µ

3δ0−2δ20+o(1)
ε

)
= o

(
δε ln γε
γ5
ε

)
. (4.82)

Hence, finally, summing over m and j, we obtain

(B) =

k∑
j=1

(B)j = −8πγε

k∑
j=1

θj∂γi
[
E(j)
ε,γ,τ

]
+ o

(
δε ln γε
γ5
ε

)
. (4.83)

We now estimate the term (C). Similar to (4.79), integration by parts and Proposition 3.2
give

(C) =

∫
Ω

[∆Z0,i − f ′ε (Uε,γ,θ)Z0,i] Φε,γ,τ,θdx

=

k∑
j=1

∫
B(τj ,rε)

∂γi [∆Uε,γ,τ − fε (Uε,γ,τ )] Φε,γ,τ,θdx

+

k∑
j=1

∫
Ωjε

∂γi [∆Uε,γ,τ − fε (Uε,γ,τ )] Φε,γ,τ,θdx =:

k∑
j=1

[(C)j + (C ′)j ] .

We can now use (4.81), and with the same notations, we write

(C)j = −
∫
B(τj ,rε)

f ′ε
(
Bε,γj ,τj

)
∂γi
[
Rj
]
Φε,γ,τ,θdx+ O

(∫
B(τj ,rε)

γ3
ε exp

(
B

2

ε,γj ,τj

)
×
(
(|x− τj |+ |Rj |)

∣∣∂γi [Bj]∣∣+ |Rj | |∂γi [Rj ]|
)
|Φε,γ,τ,θ| dx

)
.
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The main term in (C)j will be

(C1)j = −∂γi
[
E(j)
ε,γ,τ

] ∫
B(τj ,rε)

f ′ε
(
Bε,γj ,τj

)
Φε,γ,τ,θdx

= −∂γi
[
E(j)
ε,γ,τ

] ∫
B(τj ,rε)

2γjfε
(
Bε,γj ,τj

)
Φε,γ,τ,θdx

+ O

(
ln γε
γ2
ε

∫
B(τj ,rε)

|2γjfε
(
Bε,γj ,τj

)
− f ′ε

(
Bε,γj ,τj

)
| |Φε,γ,τ,θ| dx

)

= −2γj∂γi
[
E(j)
ε,γ,τ

] ∫
B(τj ,rε)

∆Bε,γj ,τjΦε,γ,τ,θdx

+ O

(
γε

∫
B(τj ,rε)

|x− τ j | f
(
Bε,γj ,τj

)
|Φε,γ,τ,θ| dx

)

+ O

(
ln γε
γ2
ε

∫
B(τj ,rε)

exp
(
B

2

ε,γj ,τj

)
|2γjBε,γj ,τj − 2B

2

ε,γj ,τj − 1| |Φε,γ,τ,θ| dx

)
,

where we used that

λε,jf
(
Bε,γj ,τj

)
= ∆Bε,γj ,τj = ∆Bε,γj ,τj , in B (τj , rε) .

Since Φε,γ,τ,θ ⊥ Bε,γj ,τj in H1
0 (Ω) and ∆Bε,γj ,τj = 0 in Ω \B (τj , rε), we have∫

B(τj ,rε)

∆Bε,γj ,τjΦε,γ,τ,θdx =

∫
Ω

〈
∇Bε,γj ,τj ,∇Φε,γ,τ,θ

〉
dx = 0, (4.84)

and by Proposition 6.1,

γjBε,γj ,τj −B
2

ε,γj ,τj = O
(
1 + tγj (· − τj)

)
, in B (τj , rε) .

so that with a change of variables and Propositions 4.2 and 7.2, we get

(C1)j = O

(
γ2
εrε

∫
B(τj ,rε)

exp
(
B

2

ε,γj ,τj

)
|Φε,γ,τ,θ| dx

)

+ O

(
ln γε
γ2
ε

∫
B(τj ,rε)

exp
(
B

2

ε,γj ,τj

) (
1 + tγj (x− τj)

)
|Φε,γ,τ,θ| dx

)

= O
(
rε ‖∇Φε,γ,τ,θ‖L2

)
+ O

(
ln γε
γ4
ε

‖∇Φε,γ,τθ‖L2

)
= o

(
δε ln γε
γ5
ε

)
.

Note that we crucially used the orthogonality condition (4.84) to gain a factor γ−2
ε . Again,

with a change of variables and Proposition 7.2, we bound

(C2)j = −
∫
B(τj ,rε)

f ′ε
(
Bε,γj ,τj

)
∂γi
[
F (j)
ε,γ,τ

]
Φε,γ,τ,θdx

= O

(∫
B(τj ,rε)

f ′ε
(
Bε,γj ,τj

)
|x− τj | |Φε,γ,τ,θ| dx

)

= O

(
rε

∫
B(τj ,rε)

f ′ε
(
Bε,γj ,τj

)
|Φε,γ,τ,θ| dx

)
= O (rε‖∇Φε,γ,τ,θ‖L2) = o

(
δε ln γε
γ5
ε

)
.
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Similarly, for some exponent a > 0 (which plays no role),

(C3)j = O

(∫
B(τj ,rε)

γ3
ε exp

(
B

2

ε,γj ,τj

) (
(|x− τj |+ |Rj |)

∣∣∂γi [Bj]∣∣+ |Rj | |∂γi [Rj ]|
)

× |Φε,γ,τ,θ| dx

)
= O

(
(δε + rε) γ

a
ε

∫
B(τj ,rε)

exp
(
B

2

ε,γj ,τj

)
|Φε,γ,τ,θ| dx

)

= O
(
(δε + rε) γ

a−2
ε ‖∇Φε,γ,τ,θ|‖L2

)
= o

(
δε ln γε
γ5
ε

)
. (4.85)

As for (C ′)j , in analogy with (4.82) (with Φε,γ,τ instead of Bε,γj ,τj ), using (3.21) together
with the Hölder and Poincaré inequalities, we bound

(C ′)j = O

(∫
Ωjε

f ′ (Uε,γ,τ ) |Φε,γ,τ,θ| dx
)

= O
(
‖f ′ (Uε,γ,τ ) ‖L2(Ωjε)

‖Φε,γ,τ,θ‖L2(Ω)

)
= O

(
µ

1
2 (3δ0−2δ20)+o(1)
ε ‖∇Φε,γ,τ,θ‖L2(Ω)

)
= o

(
δε ln γε
γ5
ε

)
.

Summing over j, we arrive at

(C) =

k∑
j=1

[(C1)j + (C2)j + (C3)j + (C ′)j ] = o

(
δε ln γε
γ5
ε

)
. (4.86)

As for (D), recalling that |Z0,i| = O (1), we bound

(D) = O

(∫
Ω

|Uε,γ,τ |3 exp
(
U2
ε,γ,τ

)(
Φ2
ε,γ,τ,θ +

k∑
i=1

θ2
i γ

2
ε

)
dx

)

= O

(∫
Ω

γ3
ε exp

(
U2
ε,γ,τ

)
Φ2
ε,γ,τ,θdx

)
+

k∑
i=1

O

(
θ2
i γ

2
ε

∫
Ω

|Uε,γ,τ |3 exp
(
U2
ε,γ,τ

)
dx

)
=: (D1) + (D2).

We first claim that ∫
Ω

exp
(
U2
ε,γ,τ

)
dx = O (1) . (4.87)

Indeed, with the usual decomposition given by (4.70), we get∫
B(τj ,rε)

exp
(
U2
ε,γ,τ

)
dx = O

(∫
B(τj ,rε)

exp
(
B

2

ε,γj ,τj

)
dx

)
= O

(
1

γ2
ε

)
,

thanks to the usual change of variables and Proposition 6.3. Then, summing over j = 1, . . . , k
and also using (3.16), we obtain (4.87). Then we immediately estimate

(D2) = O
(
θ2
i γ

5
ε

)
= o

(
δε ln γε
γ5
ε

)
.

As for (D1), from Hölder’s inequality and (3.16), we have

(D′1) :=

∫
Ωrε,τ

γ3
ε exp

(
U2
ε,γ,τ

)
Φ2
ε,γ,τ,θdx = O

(
γ3
ε

∥∥ exp
(
U2
ε,γ,τ

)
1Ωrε,τ

∥∥
Lp
‖Φε,γ,τ,θ‖2L2p′

)
= O

(
γ3
ε ‖∇Φε,γ,τ,θ‖2L2

)
= o

(
δε ln γε
γ5
ε

)
,
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where p is sufficiently small and p′ is the conjugate exponent of p. Moreover, with Proposi-
tion 7.2, and the same change of variables used to estimate (C1)j , we obtain

(D1)j :=

∫
B(τj ,rε)

γ3
ε exp

(
U2
ε,γ,τ

)
Φ2
ε,γ,τ,θdx = O

(
γ3
ε

∫
B(τj ,rε)

exp
(
B

2

ε,γj ,τj

)
Φ2
ε,γ,τ,θdx

)

= O
(
γε ‖∇Φε,γ,τ,θ‖2L2

)
= o

(
δε ln γε
γ5
ε

)
. (4.88)

Summing up, we conclude

(D) =

k∑
j=1

(D1)j + (D′1) + (D2) = o

(
δε ln γε
γ5
ε

)
. (4.89)

Now, putting together (4.77), (4.78), (4.83), (4.86) and (4.89), we conclude. �

Proof of (4.64). We consider now (4.69) with Z = Bε,γi,τi and estimate the terms from (A)
to (D). Using (4.67), we get

(A)j =

∫
B(τj ,rε)

[
∆Bε,γj ,τj − λε,jf

(
Bε,γj ,τj

)]︸ ︷︷ ︸
=0

Bε,γi,τidx

−
∫
B(τj ,rε)

λε (hε − hε (τj)) f
(
Bε,γj ,τj

)
Bε,γi,τidx

−
∫
B(τj ,rε)

λεhεf
′ (Bε,γj ,τj)RjBε,γi,τidx+ O

(∫
B(τj ,rε)

γ4
ε exp

(
B

2

ε,γj ,τj

)
R2
j

)
,

where Rj is as in (4.71). Similarly as in (4.74), we reduce to

(A)j = −
∫
B(τj ,rε)

λε,jf
′ (Bε,γj ,τj)E(j)

ε,γ,τBε,γi,τidx

+ O

(∫
B(τj ,rε)

γ4
ε exp

(
B

2

ε,γi,τi

) (
|x− τj |+ δ2

ε

)
dx

)
.

In the case j = i we use that

Bε,γi,τi = Bε,γi,τi

(
1 + O

(
ln γε
γ2
ε

))
, in B (τi, rε) , (4.90)

(see Claim 3.1) and with the usual change of variables, taking (4.75) and Propositions 6.3
and 6.4 into account, we obtain

(A)i = −
(

1 + O

(
ln γε
γ2
ε

))
E(i)
ε,γ,τ

∫
B(τi,rε)

λε,jf
′ (Bε,γi,τi)Bε,γi,τidx+ o

(
δε

γ2
ε

)
= −

(
1 + O

(
ln γε
γ2
ε

))
E(i)
ε,γ,τ

∫
B(0,
√
λε,irε)

f ′
(
Bγi

)
Bγidx+ o

(
δε

γ2
ε

)
= −

(
8π + O

(
ln γε
γ2
ε

))
γεE

(i)
ε,γ,τ + o

(
δε

γ2
ε

)
= −8πγεE

(i)
ε,γ,τ + o

(
δε

γ2
ε

)
.

For the case j 6= i, we use that Bε,γi,τi = O ((ln γε) /γε) in B(τj , rε) and with the same
computations, we obtain

(A)j = O

(
ln γε
γ2
ε

)
|E(j)
ε,γ,τ |

∫
B(0,
√
λε,jrε)

f ′
(
Bγj

)
dx+ o

(
δε

γ2
ε

)
= o

(
δε

γ2
ε

)
,
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so that summing up we conclude

(A) =

k∑
j=1

(A)j = −8πγεE
(i)
ε,γ,τ + o

(
δε

γ2
ε

)
. (4.91)

As for the annuli, similarly as in (4.78), we bound

(A′) =

∫
∪kj=1Ωjε

(χε,τ − 1) fε (Uε,γ,τ )Bε,γ,τdx = O
(
µ

3δ0−2δ20+o(1)
ε

)
= o

(
δε

γ2
ε

)
. (4.92)

We now turn to the estimate of (B). Using a Taylor expansion, together with (4.66),
(4.70) and (4.71), we write

(B)jm := θj

∫
B(τm,rε)

[
∆Bε,γj ,τj − f ′ε (Uε,γ,τ )Bε,γj ,τj

]
Bε,γi,τidx

= θj

∫
B(τm,rε)

[
δjm∆Bε,γj ,τj − f ′ε

(
Bε,γm,τm

)
Bε,γj ,τj

]
Bε,γi,τidx

+ O

(
|θj |

∫
B(τm,rε)

γ3
ε exp

(
B

2

ε,γm,τm

)
RmBε,γi,τidx

)
.

With Propositions 6.3 and 6.4, we estimate the last term as o
(
δε/γ

2
ε

)
. For j = m = i, still

with Proposition 6.3, we compute, keeping (4.90) in mind

θi

∫
B(τi,rε)

[
λε,if

(
Bε,γi,τi

)
− f ′ε

(
Bε,γi,τi

)
Bε,γi,τi

]
Bε,γi,τidx

= −8πθiγ
2
ε + O (|θi| γε) = −8πθiγ

2
ε + o

(
δε

γ2
ε

)
,

while for j 6= m, or j 6= i a similar computation based on Proposition 6.3 and (4.90)
gives (B)jm = o

(
δε/γ

2
ε

)
. Considering the integral in Ωrε,τ , where ∆Bε,γj ,τj = 0 for every

j = 1, . . . , k, we estimate with the help of (3.16),

(B′)jm := θj

∫
B(τm,Rε)\B(τm,rε)

f ′ε (Uε,γ,τ )Bε,γj ,τjBε,γi,τidx

= O

(
|θj | γ3

ε

∫
B(τm,Rε)\B(τm,rε)

exp
(
U2
ε,γ,τ

)
dx

)
= o

(
δε

γ2
ε

)
,

where Rε = exp (−γε) and, since Bε,γj ,τj = O (1) in Ω \B (τj , rε), still with (3.16), we get

(B′′)jm := θj

∫
ΩRε,τ

f ′ε (Uε,γ,τ )Bε,γj ,τjBε,γi,τidx = O (|θj |) = o

(
δε

γ2
ε

)
,

In conclusion, we have proven that

(B) =

k∑
j=1

[(B)jm + (B′)jm + (B′′)jm] = −8πθiγ
2
ε + o

(
δε

γ2
ε

)
. (4.93)

To estimate (C), we integrate by parts to obtain

(C) =

∫
Ω

[∆Bε,γi,τi − f ′ε (Uε,γ,τ )Bε,γi,τi ] Φε,γ,τ,θdx = −
∫

Ω

f ′ε (Uε,γ,τ )Bε,γi,τiΦε,γ,τ,θdx,
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where we also used that Φε,γ,τ,θ ⊥ Bε,γi,τi in H1
0 . Using (4.80), we write

(C1)j := −
∫
B(τj ,rε)

f ′ε (Uε,γ,τ )Bε,γi,τiΦε,γ,τ,θdx

= −
∫
B(τj ,rε)

f ′ε
(
Bε,γj ,τj

)
Bε,γi,τiΦε,γ,τ,θdx

+ O

(∫
B(τj ,rε)

γ3
ε exp

(
B

2

ε,γj ,τj

)
|RjBε,γi,τiΦε,γ,τ,θ|

)
︸ ︷︷ ︸

=o(δε/γ2
ε) as in (4.85)

.

Then, recalling that f ′ (s) =
(
1 + 2s2

)
exp

(
s2
)

= 2sf (s) + exp
(
s2
)
, which gives

(C1)j = −2

∫
B(τj ,rε)

Bε,γj ,τjfε
(
Bε,γj ,τj

)
Bε,γi,τiΦε,γ,τ,θdx

+ O

(
γε

∫
B(τj ,rε)

exp
(
B

2

ε,γj ,τj

)
|Φε,γ,τ,θ| dx

)
+ o

(
δε

γ2
ε

)
,

and using Proposition 7.2, we obtain

γε

∫
B(τj ,rε)

exp
(
B

2

ε,γj ,τj

)
|Φε,γ,τ,θ| dx = O

(
‖∇Φε,γ,τ,θ‖L2

γε

)
= o

(
δε

γ2
ε

)
.

Using Proposition 7.2 again, we simplify

(C1)i = 2γ2
i

∫
B(τi,rε)

λεhε (τi) f
(
Bε,γi,τi

)
Φε,γ,τ,θdx

+ O

(
γ2
ε

∫
B(τi,rε)

|x− τi| f
(
Bε,γi,τi

)
|Φε,γ,τ,θ| dx

)

+ O

(∫
B(τi,rε)

(1 + tγi (x− τi)) f
(
Bε,γi,τi

)
|Φε,γ,τ,θ| dx

)
+ o

(
δε

γ2
ε

)
= 2γ2

i

∫
B(τi,rε)

∆Bε,γi,τiΦε,γ,τ,θdx+ O

((
rε +

1

γ2
ε

)
‖∇Φε,γ,τ,θ‖L2

)
+ o

(
δε

γ2
ε

)
,

where the last integral vanishes thanks to ∆Bε,γi,τi = ∆Bε,γi,τi and to the condition
Bε,γi,τi ⊥ Φε,γ,τ,θ. A similar computation holds on B (τj , rε), where we can use that
Bε,γi,τi = O (1) if j 6= i. Hence

(C1) =

k∑
j=1

(C1)j = o

(
δε

γ2
ε

)
.

With (3.16) and the Hölder and Poincaré inequalities, we now bound

(C2)j := −
k∑
j=1

∫
B(τj ,Rε)\B(τj ,rε)

f ′ε (Uε,γ,τ )Bε,γi,τiΦε,γ,τ,θdx



SIGN-CHANGING BLOW-UP FOR THE MOSER–TRUDINGER EQUATION 33

=

k∑
j=1

O
(
γ3
ε

∥∥ exp
(
U2
ε,γ,τ

)
1B(τj ,Rε)\B(τj ,rε)

∥∥
Lp
‖Φε,γ,τ,θ‖Lp′

)
= O

(
‖∇Φε,γ,τ,θ‖L2

γa−3
ε

)
= o

(
δε

γ2
ε

)
,

upon choosing a > 3. Again with (3.16) and the Hölder and Poincaré inequalities, and
observing that Uε,γ,τ = O (1) in ΩRε,τ , we get

(C3) := −
∫

ΩRε,τ

f ′ε (Uε,γ,τ )Bε,γi,τiΦε,γ,τ,θdx

= O
(∥∥ exp

(
U2
ε,γ,τ

)
Bε,γi,τi1ΩRε,τ

∥∥
Lp
‖Φε,γ,τ,θ‖Lp′

)
= O

(
‖∇Φε,γ,τ,θ‖L2

γε

)
= o

(
δε

γ2
ε

)
,

where p is sufficiently small and p′ is the conjugate exponent of p. Adding up, we conclude

(C) = (C1) + (C2) + (C3) = o

(
δε

γ2
ε

)
. (4.94)

Finally the estimate

(D) = o

(
δε

γ2
ε

)
(4.95)

follows exactly as the analog estimate in the proof of (4.63) (replacing Z0,i,ε,γ,τ by Bε,γi,τi),

since all the terms contain θ2
i or ‖∇Φε,γ,τ,θ‖2L2 , which actually allows an estimate of the

form (D) = O (δε/γ
a
ε) for every a ≥ 0. Now, putting together (4.91), (4.92), (4.93), (4.94)

and (4.95), we conclude. �

Proof of (4.65). We now use (4.69) with Z = Z1,i,ε,γ,τ , and again we need to estimate the
terms from (A) to (D).

We start with some estimates of Z1,i := Z1,i,ε,γ,τ . From Claim 3.1, we have

∂τi [Bε,γi,τi ] = ∂τi
[
Bε,γi,τi

]
− ∂τi [Cε,γi,τi ] + ∂τi [Aε,γi,τiH(·, τi)]

= ∂τi
[
Bε,γi,τi

]
+ O

(
1

γε

)
, in B (τ i, rε) .

Now, recalling (3.19) and using (3.15), we write

Z1,i = ∂τi [Bε,γi,τi ] + ∂τi [Ψε,γ,τ ] = ∂τi
[
Bε,γi,τi

]
+ O

(
1

γε

)
=: Za1,i + Zr1,i, (4.96)

in B (τi, rε), and with (4.75) and Proposition 6.1, we estimate

Za1,i =
2

γi

λε,i (x1 − τi)
µ2
i + λε,i |x− τi|2

+ O

(
1

γ3
ε

1

µi + |x− τi|

)
, in B (τi, rε) , (4.97)

where µi := µγi = µ
1+o(1)
ε is given by (6.1), while directly from the definition of Bε,γi,τi ,

Claim 3.1 and (3.15), we also obtain

Z1,i =
(2 + o(1)) (x1 − τi)

γε |x− τi|
2 + O

(
1

γε

)
, in Ω \B (τi, rε) , (4.98)

which can be specialized to

Z1,i = O

(
1

γεdε

)
, in B (τj , rε) , for j 6= i. (4.99)
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Let us also write from (3.32),

F (i)
ε,γ,τ (x) = Λ(i)

ε,τ (x1 − τi) + o

(
|x− τi|
γεdε

)
in B (τi, rε) , (4.100)

where

Λ(i)
ε,τ := a0lτ

l−1
i − 2

γε

∑
j 6=i

1

τi − τj
= O

(
1

γεdε

)
.

With the help of (4.70), as in (4.73), we can write

(A)j = −
∫
B(τj ,rε)

λε (hε − hε (τj)) f
(
Bε,γj ,τj

)
Z1,idx

−
∫
B(τj ,rε)

λε,jf
′ (Bε,γj ,τj)RjZ1,idx−

∫
B(τj ,rε)

λε (hε − hε (τj)) f
′ (Bε,γj ,τj)RjZ1,idx

+ O

(∫
B(τj ,rε)

γ3
ε exp

(
B

2

ε,γj ,τj

)
R2
j |Z1,i| dx

)
=: (A1)j + (A2)j + (A3)j + (A4),

where Rj is as in (4.71).

We start with the main order term, which turns out to be the one involving F
(i)
ε,γ,τ and

which we write, using (4.97) and (4.100), as

(AF2 )i := −
∫
B(τi,rε)

f ′ε
(
Bε,γi,τi

)
F (i)
ε,γ,τZ1,idx

= −Λ
(i)
ε,τ

γi

∫
B(τi,rε)

λε,if
′(Bε,γi,τi)( 2λε,i (x1 − τi)2

µ2
i + λε,i |x− τi|2

+ O

(
1

γε

))
dx

+ o

(
1

γ2
εdε

∫
B(τi,rε)

λε,if
′(Bε,γi,τi)dx

)
.

With the usual change of variables
√
λε,i (x− τi) = y and using (4.75) and Proposition 6.3

together with γi = γε (1 + o (1)) and Λ
(i)
ε,τ = O (1/ (γεdε)), we get

(AF2 )i = −Λ
(i)
ε,τ

γi

∫
B(0,
√
λε,irε)

f ′
(
Bγi

)( 2y2
1

µ2
i + |y|2

+ o (1)

)
dy + o

(
1

γ2
εdε

)

= − (4π + o(1))Λ
(i)
ε,τ

γi
+ o

(
1

γ2
εdε

)
= −4πΛ

(i)
ε,τ

γε
+ o

(
1

γ2
εdε

)
,

For j 6= i, using (4.99) and Proposition 6.4, we get

(AF2 )j = O

(∫
B(τj ,rε)

f ′
(
Bε,γj ,τj

) ∣∣F (j)
ε,γ,τ

∣∣ |Z1,i| dx

)

= O

(∫
B(τj ,rε)

f ′
(
Bε,γj ,τj

) |x− τj |
γεdε

1

γεdε
dx

)

= O

(
1

γ2
εd

2
ε

∫
B(0,
√
λε,jrε)

f ′
(
Bγj

)
|y| dy

)
= o

(
1

γ2
εdε

)
.
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Using (4.96), canceling the integral of the anti-symmetric term and using Proposition 6.3,
we get

(AE2 )i := −
∫
B(τi,rε)

f ′ε
(
Bε,γi,τi

)
E(i)
ε,γ,τ (Za1,i + Zr1,i)dx

= O

(∣∣E(i)
ε,γ,τ

∣∣
γε

∫
B(τi,rε)

f ′ε
(
Bε,γi,τi

)
dx

)

= O

(
δε ln γε
γ4
ε

∫
B(0,
√
λε,irε)

f ′ε
(
Bγi

)
dx

)
= o

(
1

γ2
εdε

)
.

When j 6= i, we have thanks to (4.99),

(AE2 )j = O

(∫
B(τj ,rε)

f ′ε
(
Bε,γj ,τj

)
|E(j)
ε,γ,τ | |Z1,i| dx

)

= O

(
δε ln γε
γ3
ε

1

γεdε

∫
B(0,
√
λε,jrε)

f ′ε
(
Bγj

)
dx

)
= o

(
1

γ2
εdε

)
.

We now estimate (A1). Using that hε − hε (τi) = O (|x− τi|) in B (τi, rε), by (4.97), we
have

|(hε − hε (τi))Z1,i| = O

(
1

γε

)
, in B (τi, rε) , (4.101)

and with Proposition 6.3, we estimate

(A1)i = O

(
1

γε

∫
B(τi,rε)

f
(
Bε,γi,τi

)
dx

)
= O

(
1

γε

∫
B(0,
√
λε,irε)

f
(
Bγi

)
dy

)

= O

(
1

γ2
ε

)
= o

(
1

γ2
εdε

)
.

Observe that this says that thanks to dε = o (1), the term ∇hε (τ i) does not play a role,
contrary to what happens when the blow-up points are separated by a finite distance. For
j 6= i, with (4.99), Proposition 6.4 and the usual change of variables we obtain

(A1)j = O

(
1

γεdε

∫
B(τj ,rε)

f
(
Bε,γj ,τj

)
|x− τj | dx

)
= o

(
1

γ2
εdε

)
.

Similarly, one can bound with (4.97),

(A3)i = O

(∫
B(τi,rε)

|x− τi| f ′
(
Bε,γi,τi

)
|Ri|

1

γε |x− τi|
dx

)

= O

(
1

γε

∫
B(τi,rε)

f ′
(
Bε,γi,τi

)(δε ln γε
γ3
ε

+
|x− τi|
γεdε

)
dx

)
= o

(
1

γ2
εdε

)
,

where we also used Propositions 6.3 and 6.4. For j 6= i, an easier estimate holds, using
(4.99) instead of (4.97), and hε − hε (τi) = O (rε), so that

(A3)j = O

(
rε
γεdε

∫
B(τj ,rε)

f ′
(
Bε,γj ,τj

)(δε ln γε
γ3
ε

+
|x− τj |
γεdε

)
dx

)
= o

(
1

γ2
εdε

)
,
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As for (A4)i, using that
∣∣E(i)

ε,γ,τ

∣∣ = o
(
δ2
ε (ln γε)

2
/γ6

ε

)
= O

(
µ

2δ1+1+o(1)
ε

)
, and γaε =

O
(
µ

o(1)
ε

)
for every a ∈ R, we bound

(AE4 )i = O

(
µ2δ1+1+o(1)
ε

∫
B(τi,rε)

exp
(
B

2

ε,γi,τi

) 1

µi + |x− τi|
dx

)

= O

(
µ2δ1+o(1)
ε

∫
B(0,
√
λε,irε)

exp
(
B

2

γi

)
dx

)
= O

(
µ2δ1+o(1)
ε

)
= o

(
1

γ2
εdε

)
,

and, similarly, for j 6= i,

(AE4 )j = O

(
µ2δ1+1+o(1)
ε

∫
B(τj ,rε)

exp
(
B

2

ε,γi,τi

) 1

γεdε
dx

)
= o

(
1

γ2
εdε

)
.

Using that F
(j)
ε,γ,τ = O (rε/ (γεdε)), similarly as in the case of (AE4 )j , we obtain (AF4 )j =

o
(

1
γ2
εdε

)
, including the case j = i. Summing over j, we obtain

(A) =

k∑
j=1

(A)j = −4πΛ
(i)
ε,τ

γε
+ o

(
1

γ2
εdε

)
. (4.102)

It remains to show that all the remaining terms are o
(
1/(γ2

εdε)
)
.

Let us now estimate (A′). By (3.20), (3.21), (4.98) and (4.99), we have

(A′) = O

 k∑
j=1

∫
Ωjε

|fε (Uε,γ,τ )| |Z1,i| dx

 = O

(
µ
−2δ20+o(1)
ε r2

ε

γε

)

= O
(
µ

2δ0−2δ20+o(1)
ε

)
= o

(
1

γ2
εdε

)
, (4.103)

absorbing powers of γε in the term µ
o(1)
ε and using that 2δ0 − 2δ2

0 > 0.
We now estimate (B). Since ∆Bε,γj ,τj = ∆Bε,γj ,τj1B(τj ,rε), we have

(B†)j := θj

∫
Ω

∆Bε,γj ,τjZ1,idx = θj

∫
B(τj ,rε)

∆Bε,γj ,τjZ1,idx.

Then for j 6= i, together with (4.99) we obtain

θj

∫
B(τj ,rε)

∆Bε,γj ,τjZ1,idx = O

(
|θj |
γεdε

∫
B(τj ,rε)

f
(
Bε,γj ,τj

)
dx

)
= o

(
1

γ2
εdε

)
.

For j = i, we use the anti-symmetry to obtain

θi

∫
B(τi,rε)

∆Bε,γi,τiZ1,idx = θi

∫
B(τi,rε)

λε,if
(
Bε,γi,τi

)
Bε,γi,τi

(
Za1,i + Zr1,i

)
dx

= θi

∫
B(τi,rε)

λε,if
(
Bε,γi,τi

)
Bε,γi,τiDτiΨε,γ,τdx = o

(
1

γ2
εdε

)
.
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In order to estimate the second term in the integral in (B)j , we start with the integral away
from the blow-up points, and using (3.17), the definition of Bε,γj ,τj and (3.10), we get

(B′j) = θj

∫
Ωrε,τ

f ′ε (Uε,γ,τ )Bε,γj ,τjZ1,idx = O
(
|θj |

∥∥f ′ε (Uε,γ,τ )Z1,i1Ωrε,τ

∥∥
Lp

×
∥∥Bε,γj ,τj1Ω\B(τj ,rε)

∥∥
Lp′
)

= O

(
|θj | γε

∥∥∥∥ 1

γε
ln

C

| · −τj |

∥∥∥∥
Lp′

)
= o

(
1

γ2
εdε

)
,

where p is sufficiently small and p′ is the conjugate exponent of p. It remains to estimate

(B)jm := θj

∫
B(τm,rε)

Bε,γj ,τjf
′
ε (Uε,γ,τ )Z1,idx.

For m 6= i, it easily follows from (4.99) and Proposition 6.3 that

(B)jm = O

(
|θj |
dε

∫
B(τm,rε)

f ′ε (Uε,γ,τ ) dx

)
= o

(
1

γ2
εdε

)
.

The case m = i is more subtle. Using (4.80) to split

(B)ji = θj

∫
B(τi,rε)

Bε,γj ,τjf
′
ε

(
Bε,γi,τi

)
Z1,idx

+ O

(
|θj | γ3

ε

∫
B(τi,rε)

exp
(
B

2

ε,γi,τi

)
|Ri| |Z1,i| dx

)
=: (B1)ji + (B2)ji. (4.104)

Now, writing

Bε,γi,τi = Bsε,γi,τi +Brε,γi,τi ,

where

Bsε,γi,τi = Bε,γi,τi − Cε,γi,τi +Aε,γi,τiH (τi, τi) ,

Brε,γi,τi = Aε,γi,τi (H (·, τi)−H (τi, τi)) = O

(
| · −τi|
γε

)
, in B (τi, rε) ,

and also using (4.96) and (4.101), we get

(B1)ii = θi

∫
B(τi,rε)

Bsε,γi,τiλε,if
′(Bε,γi,τi)Za1,idx

+ O

(
|θi|
∫
B(τi,rε)

f ′
(
Bε,γi,τi

)(
1 + γε |x− τj | |Z1,i|︸ ︷︷ ︸

=O(1/γε)

)
dx

)
= o

(
1

γ2
εdε

)
, (4.105)

where we used skew-symmetry to cancel the first integral, and the usual change of variables
to estimate the second one with Proposition 6.3. When j 6= i, a similar approach gives
analog results, with the splitting of Bε,γj ,τj = Bsε,γj ,τj +Brε,γj ,τj (x), where

Bsε,γj ,τj = Aε,γj ,τjG (τj , τi) ,

Brε,γj ,τj = Aε,γj ,τj (G (τj , x)−G (τj , τi)) = O

(
|x− τi|
γεdε

)
, in B (τi, rε) ,

which allows to cancel the symmetric term and obtain

(B1)ji = o

(
1

γ2
εdε

)
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As for (B2)ji, the term involving F
(i)
ε,γ,τ can be estimated using a similar approach as in

(4.105), since F
(i)
ε,γ,τ (x) = O (|x− τi| /(γεdε)) in B (τi, rε). In the term involving E

(i)
ε,γ,τ =

O
(
δε ln γε/γ

3
ε

)
, we use the estimate

|Z1,i| = O

(
1

γε (µγi + |x− τi|)

)
= O

(
1

µ
1+o(1)
ε

)
(4.106)

to finally obtain

(B2)ji = O

(
|θj | δε
µ

1+o(1)
ε

)
= o

(
1

γ2
εdε

)
.

Summing up, we conclude

(B) =

k∑
j=1

[
(B†)j + (B′)j +

k∑
m=1

(B)jm

]
= o

(
1

γ2
εdε

)
. (4.107)

To bound the term (C), let us start by observing that Φε,γ,τ,θ ⊥ Z1,i implies

(C1) :=

∫
Ω

∆Φε,γ,τ,θZ1,idx = 0,

so that it remains to bound

(C2) := −
∫

Ω

f ′ε (Uε,γ,τ ) Φε,γ,τ,θZ1,idx.

Observe that a rough estimate on B (τi, rε) using |Z1,i| = O (1/µε) would lead to an expo-
nentially large error term. Therefore we have to be more subtle and use again the Sobolev–
Poincaré estimates which follow from Φε,γ,τ,θ ⊥ Bε,γi,τi . We start by noticing that by (3.17)
and the Sobolev embedding, we have

(C∗2 ) := −
∫

Ωrε,τ

f ′ε (Uε,γ,τ ) Φε,γ,τ,θZ1,idx = O
(∥∥f ′ (Uε,γ,τ )Z1,i1Ωrε,τ

∥∥
Lp

× ‖Φε,γ,τ,θ‖Lp′
)

= O
(
γε ‖∇Φε,γ,τ,θ‖L2

)
= O

(
δε ln γε
γε

)
= o

(
1

γ2
εdε

)
.

For j 6= i, we bound with (4.99) and Proposition 7.2 (which we can use thanks to (4.84)),

(C†2)j := −
∫
B(τj ,rε)

f ′ε (Uε,γ,τ )Z1,iΦε,γ,τ,θdx

= O

(
1

γεdε

∫
B(τj ,rε)

f ′ε (Uε,γ,τ ) |Φε,γ,τ,θ| dx

)

= O

(
‖∇Φε,γ,τ,θ‖L2

γεdε

)
= O

(
δε ln γε
γ3
εdε

)
= o

(
1

γ2
εdε

)
. (4.108)

We are left with (C†2)i which we expand as in (4.80), giving

(C†2)i = −
∫
B(τi,rε)

f ′ε
(
Bε,γi,τi

)
Z1,iΦε,γ,τ,θdx

+ O

(
γ3
ε

∫
B(τi,rε)

exp
(
B

2

ε,γi,τi

)∣∣(E(i)
ε,γ,τ + F (i)

ε,γ,τ

)
Z1,iΦε,γ,τ,θ

∣∣dx) (4.109)



SIGN-CHANGING BLOW-UP FOR THE MOSER–TRUDINGER EQUATION 39

The remainder term in (4.109) can be estimated as follows. By (4.97) and (4.100), we get

|F (i)
ε,γ,τZ1,i| = O

(
1/
(
γ2
εdε
))

, and we use Proposition 7.2 to obtain an error term of order

O

(
‖∇Φε,γ,τ,θ‖L2

γεdε

)
= o

(
1

γ2
εdε

)
.

As regards the term involving E
(i)
ε,γ,τ , using (4.106) and Proposition 7.2, we obtain an error

term of order

O

(
δε‖∇Φε,γ,τ,θ‖L2

µ
1+o(1)
ε

)
= O

(
µ2δ1+o(1)
ε

)
= o

(
1

γ2
εdε

)
.

The first integral in (4.109) can be estimated by using (4.96) together with the estimate(
hε − hε (τi)

)
∂τi
[
Bε,γi,τi

]
= O (1/γε) to obtain∫

B(τi,rε)

f ′ε
(
Bε,γi,τi

)
Z1,iΦε,γ,τ,θdx =

∫
B(τi,rε)

λε,if
′(Bε,γi,τi)∂τi [Bε,γi,τi]Φε,γ,τ,θdx

+ O

(
1

γε

∫
B(τi,rε)

f ′
(
Bε,γi,τi

)
|Φε,γ,τ,θ| dx

)
=: −(C‡2)i + (Cr2)i.

The remainder term (Cr2)i can be handled as in (4.108), giving

(Cr2)i = O

(
‖∇Φε,γ,τ,θ‖L2

γε

)
= o

(
1

γ2
εdε

)
.

Then we are left with the term (C‡2)i, which is actually more subtle to bound. Let us
first rewrite it as

(C‡2)i = −
∫
B(τi,rε)

λε,i∆Z1,iΦε,γ,τ,θdx,

using that

∆Z1,i = ∂τi [∆Uε,γ,τ ] = ∂τi
[
∆Bε,γi,τi

]
= λε,i∂τi

[
f
(
Bε,γ,τi

)]
, in B (τi, rε) .

In order to estimate (C‡2)i we start by observing that the orthogonality condition Z1,i ⊥
Φε,γ,τ,θ and integration by parts imply

0 =

∫
Ω

〈∇Z1,i,∇Φε,γ,τ,θ〉 dx =

∫
B(τi,rε)

∆Z1,i Φε,γ,τ,θdx

+

∫
Ω\B(τi,rε)

∆Z1,i Φε,γ,τ,θdx+

∫
∂B(τi,rε)

(
∂νZ

int
1,i − ∂νZext1,i

)
Φε,γ,τ,θdσ. (4.110)

Here ν denotes the exterior normal to ∂B (τi, rε) and

Zint1,i := Z1,i|B(τi,rε)
, Zext1,i := Z1,i|Ω\B(τi,rε).

Note that the boundary integral in (4.110) is in general non-zero because Bε,γi,τi is C1 but

not smooth across ∂B (τi, rε). Now we reduced the estimate of (C‡2)i to

(C‡2)i =

∫
Ω\B(τi,rε)

∆Z1,i Φε,γ,τ,θdx+

∫
∂B(τi,rε)

(
∂νZ

int
1,i − ∂νZext1,i

)
Φε,γ,τ,θdσ.

Now using that

∆Z1,i = ∂τi [∆Uε,γ,τ ] = ∂τi [χε,τfε (Uε,γ,τ )]

= ∂τi [χε,τ ] fε (Uε,γ,τ ) + χε,τf
′
ε (Uε,γ,τ ) ∂τi [Uε,γ,τ ] , in B (τi, rε) .
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from (3.17), we obtain ∥∥∆Z1,i1Ω\B(τi,rε)

∥∥
Lp

= O (γε)

for some p > 1, hence with the Hölder and Sobolev inequalities∫
Ω\B(τi,rε)

∆Z1,i Φε,γ,τ,θdx = O
(∥∥∆Z1,i1Ω\B(τi,rε)

∥∥
Lp
‖Φε,γ,τ,θ‖Lp′

)
= O

(
γε ‖∇Φε,γ,τ,θ‖L2

)
= o

(
1

γεdε

)
.

Observe that Dτ [Ψε,γ,τ ] ∈ C1
(
Ω
)
, by elliptic estimates (the function χε,τ in Proposition 3.2

is smooth), hence we get

∂νZ
int
1,i − ∂νZext1,i = ∂ν∂τi

[
Bintε,γi,τi

]
− ∂ν∂τi

[
Bextε,γi,τi

]
(4.111)

Using the definition of Bε,γi,τi and (3.12), we compute

∂ν∂τi
[
Bintε,γi,τi

]
= ∂τi

[
∂νB

int
ε,γi,τi

]
= ∂τi

[
∂νBε,γi,τi

]
+ ∂τi [∂ν(Aε,γi,τiH (·, τi))]

= ∂τi
[
∂νBε,γi,τi

]
+ O

(
1

γε

)
.

Similarly,

∂ν∂τi
[
Bextε,γi,τi

]
= ∂τi

[
Aε,γi,τi

2π
∂ν

(
ln

1

|x− τi|

)]
+ ∂τi [∂ν (Aε,γi,τiH (·, τi))]

= −∂τi
[

Aε,γi,τi
2π |x− τi|

]
+ O

(
1

γε

)
.

Now in order to compute the difference of the two terms in (4.111), set

vε,γi,τi (x) :=
Aε,γi,τi

2π
ln

1

|x− τi|

and Note that v′ε,γi,τi (rε) = B
′
ε,γi,τi (rε) by the definitions in Section 3.1, where with a little

abuse of notation, we use the prime to denote the radial derivative from τi. Then, with a
similar abuse of notation

−B′′ε,γi,τi (rε)−
B
′
ε,γi,τi (rε)

rε
= ∆Bε,γi,τi (rε) = λε,if

(
Bε,γi,τi (rε)

)
,

−v′′ε,γi,τi (rε)−
v′ε,γi,τi (rε)

rε
= ∆vε,γi,τi (rε) = 0,

and subtracting we finally estimate∣∣∂νZint1,i − ∂νZext1,i

∣∣ = O
(∣∣∣B′′ε,γi,τi (rε)− v′′ε,γi,τi (rε)

∣∣∣)+ O

(
1

γε

)
= O

(
f
(
Bε,γi,τi (rε)

))
+ O

(
1

γε

)
= O

(
1

µ
2δ20+o(1)
ε

)
. (4.112)

We now claim that

‖Φε,γ,τ,θ‖L1(∂B(τi,rε))
= O

(
rε

√
ln

1

rε
+ ‖∇Φε,γ,τ,θ‖L2

)
= O

(
µδ0+o(1)
ε

)
. (4.113)
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This, together with (4.112) allows to bound∫
∂B(τi,rε)

(
∂νZ

int
1,i − ∂νZext1,i

)
Φε,γ,τ,θdσ = O

(
‖Φε,γ,τ,θ‖L1(∂B(τi,rε))

µ
2δ20+o(1)
ε

)

= O
(
µ
δ0−2δ20+o(1)
ε

)
= o

(
1

γ2
εdε

)
.

This completes the estimates of (C‡2)i, hence

(C) = (C1) + (C∗2 ) +

k∑
j=1

[
(C†2)j + (C‡2)j

]
= o

(
1

γ2
εdε

)
. (4.114)

In order to prove (4.113), set Φ̃ (y) := Φε,γ,τ,θ (τi + rεy). We then have∥∥∇Φ̃
∥∥
L2(B(0,1))

= ‖∇Φε,γ,τ,θ‖L2(B(τi,rε))
.

By the trace inequality, we get

‖Φε,γ,τ,θ‖L1(B(τi,rε))

rε
=
∥∥Φ̃
∥∥
L1(B(0,1))

= O

(∥∥∇Φ̃
∥∥
L2(B(0,1))

+

∣∣∣∣∣ 1

|B (0, 1)|

∫
B(0,1)

Φ̃dy

∣∣∣∣∣
)
,

(4.115)
since the right-hand side contains a norm equivalent to the H1-norm. Now, by the Jensen
and Moser–Trudinger inequalities, we have

exp

( 1

|B (0, 1) |

∫
B(0,1)

Φ̃dy

)2
 ≤ 1

|B (0, 1) |

∫
B(0,1)

exp
(
Φ̃2
)
dy

=
1

πrε

∫
B(τi,rε)

exp
(
Φ2
ε,γ,τ,θ

)
dx ≤ 1

πrε

It follows that ∣∣∣∣∣ 1

|B (0, 1) |

∫
B(0,1)

Φ̃dy

∣∣∣∣∣ ≤
√

ln
1

πrε

and (4.113) follows at once from (4.115). This completes the proof of (4.114).
We finally estimate

(D) = O

∫
Ω

|Uε,γ,τ |3 exp
(
U2
ε,γ,τ

)Φ2
ε,γ,τ,θ +

k∑
j=1

θ2
jB

2
ε,γj ,τj

 |Z1,i| dx


= O

(∫
Ω

|Uε,γ,τ |3 exp
(
U2
ε,γ,τ

)
Φ2
ε,γ,τ,θ |Z1,i| dx

)
+

k∑
j=1

O

(
θ2
jγ

2
ε

∫
Ω

|Uε,γ,τ |3 exp
(
U2
ε,γ,τ

)
|Z1,i| dx

)
=: (D1) +

k∑
j=1

(D2)j .

For every j ∈ {1, . . . , k}, with the rough estimate

Z1,i = O
(
µ−1
γi

)
= O

(
µ−1+o(1)
ε

)
, in B (τj , rε) ,

we obtain as in (4.88)

(D1)j :=

∫
B(τj ,rε)

|Uε,γ,τ |3 exp
(
U2
ε,γ,τ

)
Φ2
ε,γ,τ,θ |Z1,i| dx
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= O

(
γ3
ε

µ
1+o(1)
ε

(∫
B(τj ,rε)

exp
(
B

2

ε,γj ,τj

)
Φ2
ε,γ,τ,θdx

))

= O

(
‖∇Φε,γ,τ,θ‖2L2

µ
1+o(1)
ε

)
= O

(
δ2
ε

µ
1+o(1)
ε

)
= O

(
µ2δ1+o(1)
ε

)
= o

(
1

γ2
εdε

)
.

Similarly, with (3.17),

(D′1) :=

∫
Ωrε,τ

|Uε,γ,τ |3 exp
(
U2
ε,γ,τ

)
Φ2
ε,γ,τ,θ |Z1,i| dx = O

(
γε
∥∥f ′ (Uε,γ,τ )Z1,i1Ωrε,τ

∥∥
Lp

× ‖Φε,γ,τ,θ‖2L2p′

)
= O

(
γ2
ε ‖∇Φε,γ,τ,θ‖2L2

)
= o

(
1

γ2
εdε

)
.

As for the terms involving θj , we can use the rough estimate Z1,i = O
(
µ
−1+o(1)
ε

)
to get

(D2)j := θ2
jγ

2
ε

∫
B(τm,rε)

|Uε,γ,τ |3 exp
(
U2
ε,γ,τ

)
|Z1,i| dx

= O

(
θ2
jγ

5
ε

µ
1+o(1)
ε

(∫
B(τm,rε)

exp
(
B

2

ε,γm,τm

)
dx

))
= O

(
µ2δ1+o(1)
ε

)
= o

(
1

γ2
εdε

)
,

while in Ωrε,τ , we can use (3.17) with p = 1 to obtain

(D′2)j := θ2
jγ

2
ε

∫
Ωrε,τ

|Uε,γ,τ |3 exp
(
U2
ε,γ,τ

)
|Z1,i| dx = O(θ2

jγ
4
ε) = o

(
1

γ2
εdε

)
.

Summing up, we obtain

(D) =

k∑
j=1

(D1)j + (D′1) +

k∑
j=1

[(D2)j + (D′2)j ] = o

(
1

γ2
εdε

)
. (4.116)

Now, (4.102), (4.103), (4.107), (4.114) and (4.116) allow us to conclude. �

Proof of Proposition 4.4. We claim that for δ and ε small enough, we can find (γε, θε, τε) ∈
P kε (δ) such that〈

R̃ε,γε,τε,θε , Z0,i,ε,γε,τε

〉
H1

0

=
〈
R̃ε,γε,τε,θε , Bε,γε,τε

〉
H1

0

=
〈
R̃ε,γε,τε,θε , Z1,i,ε,γε,τε

〉
H1

0

= 0,

(4.117)

for i = 1, . . . , k, so that

Πε,γε,τε

(
Uε,γε,τε,θε + Φε,γε,τε,θε −∆−1 (λεhεf (Uε,γε,τε,θε + Φε,γε,τε,θε))

)
= 0,

hence, together with Proposition 4.2, Uε,γε,τε,θε +Φε,γε,τε,θε is a solution to (4.62). For every

τ ∈ T kε (δ) and γ ∈ Γ̂kε (τ), let us set γ̂ := γ − γε (τ) and

Γ̂kε :=

{
γ̂ = (γ̂1, . . . , γ̂k) ∈ (0,∞)k : |γ̂i| <

δε
γε
, ∀i ∈ {i, . . . , k}

}
,

and define (Lε,Mε, Nε) : P̂ kε (δ) := Γ̂kε ×Θk
ε × T kε (δ)→ R3k as

Liε (γ̂, τ, θ) := − 1

8π

〈
R̃ε,γ,τ,θ, Z0,i,ε,γ,τ

〉
H1

0

=

k∑
j=1

∂γi
[
E(j)
ε,γ,τ

](
E(j)
ε,γ,τ + θjγε

)
− E

(i)
ε,γ,τ

2γ2
ε

+ o

(
δε ln γε
γ5
ε

)
,
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M i
ε (γ̂, τ, θ) := − 1

8πγε

〈
R̃ε,γ,τ,θ, Bε,γi,τi

〉
H1

0

= E(i)
ε,γ,τ + θiγε + o

(
δε

γ3
ε

)
,

N i
ε (γ̂, τ, θ) := −γ

2
εdε
4π

〈
R̃ε,γ,τ,θ, Z1,i,ε,γ,τ

〉
H1

0

= a0l

(
τi
dε

)l−1

−
∑
j 6=i

2dε
τi − τj

+ o (1)

for i = 1, . . . k, where the error terms in the right-hand sides are uniform for (γ̂, τ, θ) ∈ P̂ kε (δ).
(Note that we wrote γ̂ in the left-hand side and γ instead of γ̂ + γε (τ) in the right-hand

side for simplicity, so that for instance the terms E
(j)
ε,γ,τ should be read as E

(j)
ε,γ̂+γε(τ),τ )

We claim that

deg
(

(Lε,Mε, Nε) , P̂
k
ε (δ) , 0

)
6= 0 (4.118)

for δ and ε small (to be fixed), where deg denotes the Brouwer degree. Let us consider the

homotopy (Ltε,M
t
ε, N

t
ε) : P̂ kε (δ)→ R3k with Ltε =

(
Lt,1ε , . . . , Lt,kε

)
, etc. defined by

Lt,iε = (1− t)Liε + tLiε, L
i

ε :=

k∑
j=1

∂γi
[
E(j)
ε,γ,τ

](
E(j)
ε,γ,τ + θjγε

)
− E

(i)
ε,γ,τ

2γ2
ε

,

M t,i
ε = (1− t)M i

ε + tM i
ε, M

i

ε := E(i)
ε,γ,τ + θiγε,

N t,i
ε = (1− t)N i

ε + tN i
ε, N

i

ε := a0l

(
τi
dε

)l−1

−
∑
j 6=i

2dε
τi − τj

.

for i = 1, . . . k and t ∈ [0, 1]. We first show that (Ltε,M
t
ε, N

t
ε) 6= 0 on ∂P̂ kε (δ) for any t ∈ [0, 1]

if ε > 0 is sufficiently small. Otherwise there would be a sequence εn ↓ 0 (which we still
denote by ε), tε ∈ [0, 1] and

(γ̂ε, θε, τε) ∈ ∂P̂ kε , i.e. γ̂ε ∈ ∂Γ̂kε , or θε ∈ ∂Θk
ε , or τε ∈ ∂T kε (δ) , (4.119)

such that (
Ltεε (γ̂ε, θε, τε) ,M

tε
ε (γ̂ε, θε, τε) , N

tε (γ̂ε, θε, τε)
)

= 0.

Then, multiplying M tε,j
ε by ∂γiE

(j)
ε,γε,τε , subtracting it from Ltε,iε for j = 1, . . . , k and using

Proposition 3.4, we obtain (upon multiplication by 2γ2
ε)

E(i)
ε,γε,τε = o

(
δε ln γε
γ3
ε

)
, for i = 1, . . . , k. (4.120)

Plugging (4.120) into the equation for M tε,i
ε , we then obtain

θε = o

(
δε ln γε
γ4
ε

)
, (4.121)

hence θε 6∈ ∂Θk
ε . Now (4.121), the equation for Ltε,iε and Proposition 3.4 yield

k∑
j=1

∂γi
[
E(j)
ε,γε,τε

]
E(j)
ε,γε,τε = o

(
δε ln2 γε
γ5
ε

)
, for i = 1, . . . , k. (4.122)

We can rewrite (4.122) as

QεEε,γε,τε = o

(
δε ln γε
γ3
ε

)
, (4.123)
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where, taking Proposition 3.4 into account, Qε = (Qε,ij)1≤i,j≤k is a k × k matrix with

Qε,ij = Qij + o (1) as ε→ 0 and

Q = (Qij)1≤i,j≤k :=


1 1/l . . . 1/l

1/l 1 . . . 1/l
...

. . .
...

1/l 1/l . . . 1

 , Eε,γε,τε =


E

(1)
ε,γε,τε

...

E
(k)
ε,γε,τε

 (4.124)

Now, since

detQε = detQ+ o (1) =

(
1 +

k − 1

l

)(
1− 1

l

)k−1

+ o (1) > 0

for ε > 0 sufficiently small, uniformly with respect to (γ, θ, τ) ∈ P kε (δ), we can invert Qε in
(4.123) and get

E(i)
ε,γε,τε = o

(
δε ln γε
γ3
ε

)
, for i = 1, . . . , k. (4.125)

On the other hand, still by Proposition 3.4, we have

Eε,γε,τε = −2
ln γε
γ2
ε

Qεγ̂ε + o

(
|γ̂ε|

ln γε
γ2
ε

)
,

where we recall that γ̂ = γ − γε (τ). Then, inverting Qε and using (4.125) we end up with

γ̂ε = o (δε/γε) , which, for ε > 0 sufficiently small implies that γ̂ε 6∈ ∂Γ
k

ε .
Finally, writing τ̂ε := τε/dε, we have N i (τ̂ε) = o (1), where N = (N1, . . . , Nk) is as in

(4.130). On the other hand, τε ∈ ∂T kε (δ) implies τ̂ε ∈ ∂T̂ k (δ), where

T̂ k (δ) :=
{
y = (y1, . . . , yk) ∈ Rk : −k

δ
< y1 < y2 < · · · < yk <

k

δ

and |yi − yj | > δ, ∀i, j ∈ {1, . . . , k} , i 6= j
}
, (4.126)

which is compact and this contradicts Lemma 4.7 for δ = δ (a0, l, k) > 0 sufficiently small

such that y∗ ∈ T̂ k(δ). Then we also have τε 6∈ ∂T kε (δ), which contradicts (4.119).

We have therefore proven that (Ltε,M
t
ε, N

t
ε) 6= 0 on ∂P̂ kε (δ), for ε > 0 sufficiently small,

hence by homotopy invariance of the degree

deg
(

(Lε,Mε, Nε) , P̂
k
ε (δ) , 0

)
= deg

( (
Lε,Mε, Nε

)
, P̂ kε (δ) , 0

)
. (4.127)

The degree of
(
Lε,Mε, Nε

)
does not change upon multiplication by an invertible matrix

with determinant 1, namely if we consider L̃ε
Mε

Nε

 :=

Ik −Dγ [Eε,γ,τ ] 0
0 Ik 0
0 0 Ik

Lε
Mε

Nε

 ,

where Dγ [Eε,γ,τ ] =
(
∂γj
[
E

(i)
ε,γ,τ

])
1≤i,j≤k, Ik is the k × k identity matrix and L̃ε : P̂ kε (δ)→

Rk, is defined by L̃iε = −E(i)
ε,γ,τ , for i = 1, . . . k, we get

deg
( (
Lε,Mε, Nε

)
, P̂ kε (δ) , 0

)
= deg

((
L̃ε,Mε, Nε

)
, P̂ kε (δ) , 0

)
.
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Expanding E
(i)
ε,γ,τ as in Proposition 3.4, we do a final homotopy between

(
L̃ε,Mε

)
and(

L∗ε,M
∗
ε

)
: P̂ kε (δ)→ R2k, where

L∗iε = −2 ln γε
γ2
ε

γ̂i +
∑
j 6=i

γ̂j
l

 , M∗iε = L∗iε + θiγε

for i = 1, . . . k (with the same method as above to prevent zeroes on ∂P̂ kε (δ)), so that

deg
((
L̃ε,Mε, Nε

)
, P̂ kε (δ) , 0

)
= deg

( (
L∗ε,M

∗
ε , Nε

)
, P̂ kε (δ) , 0

)
Using the matrix Q defined in (4.124), we see thatL∗ε

M∗ε
Nε

 =

−2 ln γε
γ2
ε
Q 0 0

−2 ln γε
γ2
ε
Q γεIk 0

0 0 Ik


 γ̂
θ
Nε

 . (4.128)

Since Q has positive determinant, if we call A the 3k × 3k matrix on the right-hand side of
(4.128) we have sign (detA) = (−1)k, and noticing that Nε only depends on τ , we obtain

A−1

L∗ε
M∗ε
Nε

 = Id× Id×Nε : Γ̂kε ×Θk
ε × T kε (δ)→ Rk × Rk × Rk,

and using the product formula for the degree, we finally obtain

deg
(

(Lε,Mε, Nε) , P̂
k
ε (δ) , 0

)
= deg

( (
L∗ε,,M

∗
ε , Nε

)
, P̂ kε (δ) , 0

)
= (−1)k deg

(
Id, Γ̂kε , 0

)
deg

(
Id,Θk

ε , 0
)

deg
(
Nε, T

k
ε (δ) , 0

)
= (−1)k deg

(
Nε, T

k
ε (δ) , 0

)
. (4.129)

In order to compute the degree of Nε, observe that N
i

ε (τ) = N i (τ̂ε), where τ̂ε = τ/dε
and N =

(
N1, . . . , Nk

)
is as in (4.130). Moreover, since δ ∈ (0, 1) was chosen such that

y∗ ∈ T̂ k(δ), with y∗ as in Lemma 4.7, it follows that

deg
(
Nε, T

k
ε (δ) , 0

)
= deg

(
N, T̂ k (δ) , 0

)
= 1.

We then conclude with (4.129) that there exists (γ̂ε, θε, τε) ∈ P̂ kε (δ) such that (γε, θε, τε) =
(γ̂ε + γε (τ) , θε, τε) ∈ P kε (δ) solves (4.117). �

Lemma 4.7. The function

N : T̂ k(0) :=
{
y = (y1, . . . , yk) ∈ Rk : y1 < y2 < · · · < yk

}
→ Rk

given by

N i (y1, . . . , yk) := a0ly
l−1
i − 2

∑
j 6=i

1

yi − yj
, for i = 1, . . . , k, (4.130)

has exactly one zero, which we call y∗. Moreover deg(H, T̂ k(0), 0) = 1.

Proof. We have that N = ∇J , with

J (y) = a0

k∑
i=1

yli +
1

2

∑
i 6=j

ln
1

(yi − yj)2 , ∀y = (y1, . . . , yk) ∈ T̂ k (0) .
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The Hessian ∇2J is positive definite on T̂ k (0), since

∂2
yiJ = ∂yiN

i = a0l(l − 1)yl−2
i +

∑
j 6=i

2

(yi − yj)2 ,

∂yi∂yjJ = ∂yiN
j = − 2

(yi − yj)2 , for i 6= j,

so that for every ξ ∈ Rk \ {0}, using that ξ2
i + ξ2

j ≥ 2ξiξj , we get

ξT∇2Jξ =

k∑
i=1

ξ2
i

a0l (l − 1) yl−2
i +

∑
j 6=i

2

(yi − yj)2

− k∑
i=1

∑
j 6=i

2ξjξi

(yi − yj)2

≥
k∑
i=1

ξ2
i a0l (l − 1) yl−2

i ,

and, using that y ∈ T̂ k (0) and l ∈ 2N∗, the right-hand side is positive, unless ξ =
(0, . . . , ξi0 , . . . 0) and yi0 = 0 for some i0 ∈ {1, . . . , k}, in which case

ξT∇2Jξ =
∑
j 6=i0

2ξ2
i0

(yi0 − yj)2
> 0.

Then J is strictly convex in T̂ k(0) and since |J(y)| → ∞ as y → ∂T̂ k(0) or |y| → ∞,
J has a minimum y∗, which is its only critical point and the only zero of N . Moreover

det(∇N(y∗)) = det(∇2J(y∗)) > 0, hence deg(N, T̂ k(0), 0) = 1. �

Finally, we can now conclude the proof of Theorems 1.2 and 1.3.

End of proof of Theorems 1.2 and 1.3. It follows from Proposition 4.4 that for small ε > 0,

uε := Uε,γε,τε,θε+Φε,γε,τε,θε ∈ Ehε,βε , where βε :=
∥∥∇uε∥∥2

L2 . We denote γε = (γ1,ε, . . . , γk,ε),

τε = (τ1,ε, . . . , τk,ε), θε = (θ1,ε, . . . , θk,ε). By using (3.14) and (4.16), we obtain that

Ψε,γε,τε ,Φε,γε,τε,θε → 0 in H1
0 (Ω) as ε → 0. Since moreover wε → w0 in C1

(
Ω
)
, H ∈

C1
(
Ω× Ω

)
, θi,ε → 0 and Aε,γi,ε,τi,ε → 0 for all i ∈ {1, . . . , k}, we obtain

∥∥∇uε∥∥L2 =
∥∥∥∇w0 +

k∑
i=1

(1 + θi,ε)
(
∇Bε,γi,ε,τi,ε1B(τi,ε,rε)

+Aε,γi,ε,τi,ε∇G (·, τi,ε) 1Ω\B(τi,ε,rε)

)∥∥∥
L2

+ o (1) (4.131)

as ε→ 0. By integrating by parts, we obtain∥∥∇G (·, τi,ε) 1Ω\B(τi,ε,rε)

∥∥2

L2 = −
∫
∂B(τi,ε,rε)

G (·, τi,ε) ∂νG (·, τi,ε) dσ ∼
1

2π
ln

1

rε
∼ δ0γ

2
ε

4π
,

(4.132)〈
∇G (·, τi,ε) 1Ω\B(τi,ε,rε),∇w0

〉
L2 =

∫
∂B(τi,ε,rε)

w0∂νG (·, τi,ε) dσ = O
(
‖w0‖C0(∂B(τi,ε,rε))

)
= o (1) (4.133)
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and〈
∇G (·, τi,ε) 1Ω\B(τi,ε,rε),∇G (·, τj,ε) 1Ω\B(τj,ε,rε)

〉
L2

=

∫
∂B(τi,ε,rε)∪∂B(τj,ε,rε)

G (·, τi,ε) ∂νG (·, τj,ε) dσ = O

(
ln

1

dε

)
= O (ln γε) (4.134)

as ε→ 0 for all i, j ∈ {1, . . . , k}, i 6= j, where ν and dσ are the outward unit normal vector
and volume element of ∂B (τi,ε, rε) ∪ ∂B (τj,ε, rε), respectively. On the other hand, since
γi,ε ∼ γε, by using (6.2), we obtain∥∥∇Bε,γi,ε,τi,ε1B(τi,ε,rε)

∥∥2

L2 = 2π

∫ √λεhε(τi,ε)rε
0

(
B
′
γi,ε (r)

)2
r dr

∼ 8π

γ2
i,ε

ln

(√
λεhε (τi,ε)rε

µi,ε

)
∼ 4π (1− δ0) (4.135)

for all i ∈ {1, . . . , k}, where µi,ε is defined by µ2
i,ε := 4γ−2

i,ε exp
(
−γ2

i,ε

)
. For every j 6= i, by

remarking that B (τi,ε, rε) ∩B (τj,ε, rε) = ∅ for small ε > 0 and∥∥Aε,γj,ε,τj,ε∇G (·, τj,ε) 1B(τi,ε,rε)

∥∥
C0 = O

(
1

γεdε

)
= o (1) ,

we obtain〈
∇Bε,γi,ε,τi,ε1B(τi,ε,rε),∇w0 +

∑
j 6=i

(1 + θi,ε)
(
∇Bε,γi,ε,τi,ε1B(τi,ε,rε) +Aε,γi,ε,τi,ε∇G (·, τi,ε)

× 1Ω\B(τi,ε,rε)

)〉
L2

= O
(∥∥∇Bε,γi,ε,τi,ε1B(τi,ε,rε)

∥∥
L1

)
= O

(
rε
γε

)
= o (1) (4.136)

as ε→ 0. Since moreover θε → 0, it follows from (3.10) and (4.131)–(4.136) that∥∥∇uε∥∥2

L2 −→ ‖∇w0‖2L2 + 4kπ = β0 + 4kπ

as ε → 0. Standard elliptic theory gives that
∥∥uε∥∥L∞ → ∞ as ε → 0. Since hε → h0 in

C2
(
Ω
)
, we then obtain that β0 + 4kπ is an unstable energy level of Ih0 . This ends the proof

of Theorem 1.2.
The above construction also proves Theorem 1.3 if w0 is non-degenerate. Otherwise

we apply a diagonal procedure. More precisely, thanks to Proposition 2.3, for κ ∈ (0, κ0)
and ε = ε(κ) sufficiently small we construct wκ,ε(κ) ∈ Eβκ,ε(κ),hκ,ε(κ) , with wκ,ε(κ) → w0,

hκ,ε(κ) → h in C2(Ω) and β′κ := βκ,ε(κ) → β0 as κ→ 0; we further construct

uκ = wκ +

k∑
i=1

(1 + θκ,i)Bκ,γκ,i,τκ,i + Ψκ,γκ,τκ + Φκ,γκ,θκ,τκ ∈ Ehκ,βκ ,

where each subscript κ on the right-hand side actually means (κ, ε(κ)), with ε(κ) > 0
sufficiently small so that

‖∇Ψκ,ε(κ),γκ,ε(κ),τκ,ε(κ)‖L2 + ‖∇Φκ,ε(κ),γκ,ε(κ),θκ,ε(κ),τκ,ε(κ)‖L2 = o(1) as κ→ 0.

Up to renaming the indices, we conclude. �

Remark 4.8 (Stable vs. positively stable energy levels). As in Definition 1.1, let (uε) be
a family of functions such that uε ∈ Ehε,βε with hε → h > 0 in C2(Ω̄) and βε → β > 0. In
particular, uε solves (Ehε,βε) with λ = λε > 0 obtained from hε, βε and uε thanks to (1.1).
As a simple claim, testing (Ehε,βε) against v > 0, first eigenfuntion of ∆ with zero Dirichlet
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condition on ∂Ω, the bound λε = O(1) is automatic when defining a positively stable energy
level in Definition 1.1. In the sign changing case, however, let us consider the following
unstable situation: uε goes uniformly to 0 6∈ Eh,β, while looking like a (h-weighted) Dirichlet
eigenfunction associated to some large eigenvalue λ̄ε ∼ λε → +∞, but still having the given
energy βε ∼ β > 0 as ε→ 0. Then, in order not to have an empty notion of stable energy
level, we further assume the bound λε = O(1) in Definition 1.1.

5. Proof of Proposition 3.2

We fix ε ∈ (0, 1) and δ′ ∈
(
0, 1−

√
2δ0
)
. For every p > 1, we define W2,p

0 (Ω) :=

W 2,p (Ω) ∩H1
0 (Ω). Note that we have a compact embedding of W 2,p (Ω) into H1 (Ω) and

C0
(
Ω
)

when p > 1 and into C1
(
Ω
)

when p > 2. For every ε ∈ (0, ε0) and τ ∈ T kε (δ), we

let Lε,τ :W2,p
0 (Ω)→W2,p

0 (Ω) be the operator defined as

Lε,τ (Ψ) = Ψ−∆−1 [λεhεχε,τf
′ (wε) Ψ] ∀Ψ ∈ W2,p

0 (Ω) . (5.1)

As a first step, we prove that there exists a constant C = C (p, δ) > 0 such that

‖Ψ‖W 2,p ≤ C ‖Lε,τ (Ψ)‖W 2,p ∀Ψ ∈ W2,p
0 (Ω) (5.2)

so that in particular Lε,τ is an isomorphism. We assume by contradiction that there exist

sequences (εn, τn,Ψn)n such that εn → 0, τn ∈ T kεn (δ), Ψn ∈ W2,p
0 (Ω) and

‖Ψn‖W 2,p = 1 and ‖Lεn,τn (Ψn)‖W 2,p → 0 (5.3)

as n → ∞. In particular, we obtain that (Ψn)n converges, up to a subsequence, weakly in

W 2,p (Ω) and strongly in H1
0 (Ω) and C0

(
Ω
)

to a function Ψ0. By using the second part of
(5.3), we obtain∫

Ω

〈∇Ψn,∇φ〉 dx− λεn
∫

Ω

hεnχεn,τnf
′ (uεn) Ψnφdx = o (1) (5.4)

for all φ ∈ C∞c (Ω). Since λεnhεnχεn,τnf
′ (uεn) is uniformly bounded and converges pointwise

to λ0h0f
′ (u0) in Ω and Ψn → Ψ0 in H1

0 (Ω) and C0
(
Ω
)
, by passing to the limit into (5.4),

we obtain that Ψ0 is a solution of the problem{
∆Ψ0 = λ0h0f

′ (u0) Ψ0 in Ω

Ψ0 = 0 on ∂Ω.

Since u0 is non-degenerate, it follows that Ψ0 ≡ 0. By using (5.3) together with standard
Lp-estimates for the Dirichlet problem (see Lemma 9.17 of Gilbarg–Trudinger [11]), we then
obtain

‖Ψn‖W 2,p ≤ ‖Lεn,τn (Ψn)‖W 2,p +
∥∥∆−1 [λεnhεnχεn,τnf

′ (uεn) Ψn]
∥∥
W 2,p

= o (1) + O
(
‖λεnhεnχεn,τnf ′ (uεn) Ψn‖Lp

)
= o (1)

as n→∞, which is in contradiction with (5.3). This ends the proof of (5.2).

Now, for every ε ∈ (0, ε0) and (γ, τ) ∈ T kε (δ)× Γkε (δ′), we let Nε,γ,τ , Tε,γ,τ :W2,p
0 (Ω)→

W2,p
0 (Ω) be the operators defined as

Nε,γ,τ (Ψ) := ∆−1
[
λεhεχε,τ

(
f
(
Ũε,γ,τ + Ψ

)
− f (wε)− f ′ (wε) Ψ

)]
,

Tε,γ,τ (Ψ) := L−1
ε,τ (Nε,γ,τ (Ψ)−Rε,τ )

for all Ψ ∈ W2,p
0 (Ω), where

Rε,τ := wε −∆−1 [λεhεχε,τf (wε)] = ∆−1 [λεhε(1− χε,τ )f (wε)] .
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Note that the problem (3.13) can be rewritten as the fixed point equation Tε,γ,τ (Ψ) = Ψ.
For every C > 0 and ε ∈ (0, ε0), we define

Vε (C) :=
{

Ψ ∈ W2,p
0 (Ω) : ‖Ψ‖W 2,p ≤ C/γε

}
.

We will prove that if C is chosen large enough, then Tε,γ,τ has a fixed point in Vε (C) for
small ε > 0. By using a standard Lp-estimate and since λε → λ0, hε → h0 and wε → w0 in
C0
(
Ω
)
, we obtain

‖Rε,τ‖W 2,p = O
(
‖λεhε (1− χε,τ ) f (wε)‖Lp

)
= O

(
‖1− χε,τ‖Lp

)
= o (1/γε) (5.5)

as ε→ 0, uniformly in τ ∈ T kε (δ). Similarly, for every Ψ,Ψ1,Ψ2 ∈ Vε (C), we obtain

‖Nε,γ,τ (Ψ)‖W 2,p = O
(∥∥χε,τ(f(Ũε,γ,τ + Ψ

)
− f (wε)− f ′ (wε) Ψ

)∥∥
Lp

)
, (5.6)

‖Nε,γ,τ (Ψ1)−Nε,γ,τ (Ψ2)‖W 2,p = O
(∥∥χε,τ(f(Ũε,γ,τ + Ψ1

)
− f

(
Ũε,γ,τ + Ψ2

)
− f ′ (wε) (Ψ1 −Ψ2)

)∥∥
Lp

)
. (5.7)

By applying the mean value theorem together with Hölder’s inequality, it follows from (5.6)
and (5.7) that

‖Nε,γ,τ (Ψ)‖W 2,p = O

(∥∥∥∥χε,τf ′(wε + t1

k∑
i=1

Bε,γi,τi + Ψ
) k∑
i=1

Bε,γi,τi

∥∥∥∥
Lp

+ ‖χε,τf ′′ (wε + s1Ψ)‖Lp ‖Ψ‖
2
C0

)
, (5.8)

‖Nε,γ,τ (Ψ1)−Nε,γ,τ (Ψ2)‖W 2,p

= O
(∥∥χε,τ(f ′(Ũε,γ,τ + (1− s2) Ψ1 + s2Ψ2

)
− f ′ (wε)

)∥∥
Lp
‖Ψ1 −Ψ2‖C0

)
= O

(∥∥∥∥χε,τf ′′(wε + t2

k∑
i=1

Bε,γi,τi + t2 (1− s2) Ψ1 + t2s2Ψ2

)
×
( k∑
i=1

Bε,γi,τi + (1− s2) Ψ1 + s2Ψ2

)∥∥∥∥
Lp
‖Ψ1 −Ψ2‖C0

)
(5.9)

for some functions s1, s2, t1, t2 : Ω→ [0, 1]. Since 0 ≤ χε,τ ≤ 1 in Ω, wε → w0 in C0
(
Ω
)

and
Ψ ∈ Vε (C), we obtain

‖χε,τf ′′ (wε + s1Ψ)‖Lp = O (1) . (5.10)

For every j ∈ {1, . . . , k}, by using (3.10), we obtain

Bε,γj ,τj (x) =
2

γj

(
ln

1

|x− τj |
+ O (1)

)
(5.11)

uniformly in x ∈ Ω\B (τj , rε). We let Rε := exp (−γε) � rε. Since χε,τ ≡ 0 in B (τj , rε),

0 ≤ χε,τ ≤ 1 in Ω, wε → w0 in C0
(
Ω
)
, u0 (0) = 0, Ψ,Ψ1,Ψ2 ∈ Vε (C) and 0 ≤ s1, s2, t1, t2 ≤

1, it follows from (5.11) that∥∥∥∥χε,τf ′(wε + t1

k∑
i=1

Bε,γi,τi + Ψ
) k∑
i=1

Bε,γi,τi1B(τj ,Rε)

∥∥∥∥p
Lp

= O

(
γpε

∫ Rε

rε

f ′
(

2t1
γj

ln
1

r
+ o (1)

)p
rdr

)
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= O

(
γp+2
ε

∫ δ0γ
2
ε/γ

2
j

2γε/γ
2
j

f ′ (t1γjs+ o (1))
p

exp
(
−γ2

j s
)
ds

)

= O

(
γ3p+2
ε

∫ δ0γ
2
ε/γ

2
j

2γε/γ
2
j

exp
((
pt21s− 1

)
sγ2
j + o (γj)

)
ds

)

= O

(
γ3p+2
ε

∫ δ0/(1−δ′)
2

δ0/[γε(1+δ′)2]

exp
((
pt21s− 1

)
sγ2
j + o (γj)

)
ds

)
= o (1) , (5.12)

∥∥∥∥χε,τf ′′(wε + t2

k∑
i=1

Bε,γi,τi + t2 (1− s2) Ψ1 + t2s2Ψ2

)
×
( k∑
i=1

Bε,γi,τi + (1− s2) Ψ1 + s2Ψ2

)
1B(τj ,Rε)

∥∥∥∥p
Lp

= O

(
γpε

∫ Rε

rε

f ′′
(

2t2
γj

ln
1

r
+ o (1)

)p
rdr

)

= O

(
γp+2
ε

∫ δ0γ
2
ε/γ

2
j

2γε/γ
2
j

f ′′ (t2γjs+ o (1))
p

exp
(
−γ2

j s
)
ds

)

= O

(
γ4p+2
ε

∫ δ0γ
2
ε/γ

2
j

2γε/γ
2
j

exp
((
pt22s− 1

)
sγ2
j + o (γj)

)
ds

)

= O

(
γ4p+2
ε

∫ δ0/(1−δ′)
2

δ0/[γε(1+δ′)2]

exp
((
pt22s− 1

)
sγ2
j + o (γj)

)
ds

)
= o (1) (5.13)

as ε→ 0, uniformly in (γ, τ) ∈ Γkε (δ′)× T kε (δ) and Ψ,Ψ1,Ψ2 ∈ Vε(C), provided we choose

p such that pδ0/ (1− δ′)2 − 1 < 0, i.e. p < (1− δ′)2
/δ0. By using (5.11), we obtain∥∥∥∥χε,τf ′(wε + t1

k∑
i=1

Bε,γi,τi + Ψ
) k∑
i=1

Bε,γi,τi1ΩRε,τ

∥∥∥∥p
Lp

= O

(
1

γpε

k∑
i=1

∫
ΩRε,τ

|ln |x− τi|+ O (1)|p dx
)

= o (1) (5.14)

and, similarly,∥∥∥∥χε,τf ′′(wε + t2

k∑
i=1

Bε,γi,τi + t2 (1− s2) Ψ1 + t2s2Ψ2

)
×
( k∑
i=1

Bε,γi,τi + (1− s2) Ψ1 + s2Ψ2

)
1ΩRε,τ

∥∥∥∥
Lp

= o (1) (5.15)

as ε→ 0, uniformly in (γ, τ) ∈ Γkε (δ′)× T kε (δ) and Ψ,Ψ1,Ψ2 ∈ Vε(C).
Note that similar estimates as in (5.12)–(5.14) yield (3.16).
By putting together (5.9)–(5.15) and using the continuity of the embedding W 2,p (Ω) ↪→

C0
(
Ω
)
, we obtain

‖Nε,γ,τ (Ψ)‖W 2,p = o
(
‖Ψ‖2W 2,p

)
, (5.16)
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‖Nε,γ,τ (Ψ1)−Nε,γ,τ (Ψ2)‖W 2,p = o (‖Ψ1 −Ψ2‖W 2,p) (5.17)

as ε→ 0, uniformly in (γ, τ) ∈ Γkε (δ′)×T kε (δ) and Ψ,Ψ1,Ψ2 ∈ Vε(C). It follows from (5.2),
(5.5), (5.16) and (5.17) that there exist ε1 (p, δ, δ′) ∈ (0, ε0) and C = C (p, δ, δ′) > 0 (here we
do not specify the dependence in δ0 as this number is considered to be fixed) such that for
every ε ∈ (0, ε1 (δ)) and (γ, τ) ∈ Γkε (δ′)× T kε (δ), Tε,γ,τ is a contraction mapping on Vε (C).
By the fixed point theorem, we then obtain that there exists a unique solution Ψε,γ,τ ∈ Vε (C)

to the problem (3.13). By fixing a number p such that 2 < p < (1− δ0)
2
/δ0, the first

inequality in (3.14) then follows from the continuity of the embedding W 2,p (Ω) ↪→ C1
(
Ω
)
.

By using the Moser–Trudinger inequality together with standard elliptic regularity theory,
we obtain that Ψε,γ,τ ∈ Cl,α (Ω) ∩ C2

(
Ω
)
. Furthermore, by symmetry of Ω, wε, hε, χε,τ

and Ũε,γ,τ , we obtain that Ψε,γ,τ is even in x2 and by using the continuous differentiability

of Ũε,γ,τ and χε,τ in (γ, τ), we obtain that Ψε,γ,τ is continuously differentiable in (γ, τ).
Now, we prove the second inequality in (3.14). For i ∈ {1, . . . , k}, by differentiating (3.13)

in γi, we obtain

∆ [Lε,τ (∂γi [Ψε,γ,τ ])] = λεhεχε,τf
′(Ũε,γ,τ + Ψε,γ,τ

)
∂γi
[
Ũε,γ,τ

]
+ λεhεχε,τ

(
f ′
(
Ũε,γ,τ + Ψε,γ,τ

)
− f ′ (wε)

)
∂γi [Ψε,γ,τ ] , (5.18)

where Lε,τ is as in (5.1). By using (5.2) and (5.18) together with a standard Lp-estimate

and since λε → λ0 and hε → h0 in C0
(
Ω
)
, we then obtain

‖∂γi [Ψε,γ,τ ]‖W 2,p = O

(∥∥∥χε,τf ′(Ũε,γ,τ + Ψε,γ,τ

)
∂γi
[
Ũε,γ,τ

]∥∥∥
Lp

+
∥∥∥χε,τ(f ′(Ũε,γ,τ + Ψε,γ,τ

)
− f ′ (wε)

)
∂γi [Ψε,γ,τ ]

∥∥∥
Lp

)
. (5.19)

By using (3.11), we obtain

∂γi
[
Ũε,γ,τ

]
=

2

γ2
i

(ln |x− τi|+ O (1)) (5.20)

uniformly in x ∈ Ω\B (τi, rε). By using (5.11) and (5.20) and proceeding as in (5.12)–(5.15),
we obtain∥∥∥∥χε,τf ′(Ũε,γ,τ + Ψε,γ,τ

)
∂γi
[
Ũε,γ,τ

]∥∥∥∥p
Lp

= O

(∫ Rε

rε

f ′
(

2

γi
ln

1

r
+ o (1)

)p
rdr

+
1

γ2p
i

∫
ΩRε,τ

|ln |x− τi|+ O (1)|p dx
)

= O

(
1

γ2p
ε

)
(5.21)

uniformly in (γ, τ) ∈ Γkε (δ′) × T kε (δ), provided p is chosen so that p < (1− δ′)2
/δ0. On

the other hand, by applying the mean value theorem together with Hölder’s inequality, we
obtain∥∥∥χε,τ(f ′(Ũε,γ,τ + Ψε,γ,τ

)
− f ′ (wε)

)
∂γi [Ψε,γ,τ ]

∥∥∥
Lp
≤
∥∥∥∥∂γi [Ψε,γ,τ ]

∥∥∥∥
C0

×
∥∥∥∥χε,τf ′′(wε + t

k∑
i=1

Bε,γi,τi + tΨε,γ,τ

)( k∑
i=1

Bε,γi,τi + Ψε,γ,τ

)∥∥∥∥
Lp

(5.22)
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for some function t : Ω → [0, 1]. By using (5.11) and proceeding as in (5.12)–(5.15), we
obtain ∥∥∥∥χε,τf ′′(wε + t

k∑
i=1

Bε,γi,τi + tΨε,γ,τ

)( k∑
i=1

Bε,γi,τi + Ψε,γ,τ

)∥∥∥∥p
Lp

= o (1) (5.23)

as ε → 0, uniformly in (γ, τ) ∈ Γkε (δ′) × T kε (δ), provided we choose p such that p <

(1− δ′)2
/δ0. By putting together (5.19) and (5.21)–(5.23), we obtain

‖∂γi [Ψε,γ,τ ]‖W 2,p = O

(
1

γ2
ε

)
+ o

(
‖∂γi [Ψε,γ,τ ]‖C0

)
(5.24)

as ε→ 0, uniformly in (γ, τ) ∈ Γkε (δ′)× T kε (δ). By choosing p such that

2 < p <
(1− δ0)

2

δ0

and using the continuity of the embedding W 2,p (Ω) ↪→ C1
(
Ω
)
, the second inequality in

(3.14) then follows from (5.24).
Now, we prove (3.15). For every i ∈ {1, . . . , k}, by differentiating (3.13) in τi, we obtain

∆ [Lε,τ (∂τi [Ψε,γ,τ ])] = λεhεf
(
Ũε,γ,τ + Ψε,γ,τ

)
∂τi
[
χε,τ

]
+ λεhεχε,τf

′(Ũε,γ,τ + Ψε,γ,τ

)
× ∂τi

[
Ũε,γ,τ

]
+ λεhεχε,τ

(
f ′
(
Ũε,γ,τ + Ψε,γ,τ

)
− f ′ (wε)

)
∂τi [Ψε,γ,τ ] , (5.25)

where Lε,τ is as in (5.1). By using (5.2) and (5.25) together with a standard Lp–estimate

and since λε → λ0 and hε → h0 in C0
(
Ω
)
, we obtain

‖∂τi [Ψε,γ,τ ]‖W 2,p = O

(∥∥∥f(Ũε,γ,τ + Ψε,γ,τ

)
∂τi
[
χε,τ

]∥∥∥
Lp

+
∥∥∥χε,τf ′(Ũε,γ,τ + Ψε,γ,τ

)
× ∂τi

[
Ũε,γ,τ

]∥∥∥
Lp

+
∥∥∥χε,τ(f ′(Ũε,γ,τ + Ψε,γ,τ

)
− f ′ (wε)

)
∂τi [Ψε,γ,τ ]

∥∥∥
Lp

)
. (5.26)

It is easy to see that

∂τi
[
χε,τ

]
= O

(
1

r2
ε

1A(τi,rε,rε+r2ε)

)
(5.27)

uniformly in Ω. By using (3.10) and (3.12) and since δ′ < 1−
√

2δ0, we obtain

∂τi
[
Ũε,γ,τ

]
=

2

γi
(1 + o (1))

x1 − τi
|x− τi|2

+ O

(
1

γε

)
(5.28)

uniformly in x = (x1, x2) ∈ Ω\B (τi, rε). By using (5.11), (5.27), (5.28) and proceeding as
in (5.12)–(5.15), we obtain∥∥∥f(Ũε,γ,τ + Ψε,γ,τ

)
∂τi
[
χε,τ

]∥∥∥p
Lp

= O

(
1

r2p
ε

∫ rε+r
2
ε

rε

f

(
2

γi
ln

1

r
(1 + o (1)) + O

(
1

γε

))p
rdr

)
= O

(
γp+2
ε

r2p
ε

∫ δ0γ
2
ε/γ

2
i

δ0γ2
ε/γ

2
i−(2/γ2

i ) ln(1+rε)

exp
(
(ps− 1) sγ2

i (1 + o (1))
)
ds

)

= O

(
γpε

r2p
ε

ln (1 + rε) exp

((
pδ0

γ2
ε

γ2
i

− 1

)
δ0γ

2
ε + o

(
γ2
ε

)))
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= O

(
γpε exp

(
pδ2

0

γ4
ε

γ2
i

+

(
p− 3

2

)
δ0γ

2
ε + o

(
γ2
ε

)))
= O

(
γpε exp

((
pδ0

(1− δ′)2 + p− 3

2

)
δ0γ

2
ε + o

(
γ2
ε

)))
= o

(
1

γpε

)
, (5.29)

∥∥∥χε,τf ′(Ũε,γ,τ + Ψε,γ,τ

)
∂τi
[
Ũε,γ,τ

]∥∥∥p
Lp

= O

(
1

γpi

∫
ΩRε,τ

(
1

|x− τi|
+ 1

)p
dx

+
1

γpi

∫ Rε

rε

f ′
(

2

γi
ln

1

r
(1 + o (1)) + O

(
1

γε

))p
r1−pdr

)

= O

(
1

γpε
+ γp+2

i

∫ δ0/(1−δ′)
2

δ0/[γε(1+δ′)2]

exp
((
ps+

p

2
− 1
)
sγ2
i + o

(
γ2
i

))
ds

)
= O

(
1

γpε

)
(5.30)

as ε→ 0, uniformly in (γ, τ) ∈ Γkε (δ′)× T kε (δ), provided we choose p such that

pδ0

(1− δ′)2 + p− 3

2
< 0 and

pδ0

(1− δ′)2 +
p

2
− 1 < 0,

i.e. max

(
1

2
+

δ0

(1− δ′)2 ,
2

3

(
1 +

δ0

(1− δ′)2

))
<

1

p
< 1,

which is possible since δ′ < 1−
√

2δ0. Note that in this case, we cannot choose p > 2 and so
W 2,p (Ω) does not embed into C1

(
Ω
)
. Furthermore, by proceeding as in (5.22)–(5.23), we

obtain∥∥∥χε,τ(f ′(Ũε,γ,τ + Ψε,γ,τ

)
− f ′ (wε)

)
∂τi
[
Ψε,γ,τ

]∥∥∥
Lp

= o
(∥∥∂τi[Ψε,γ,τ

]∥∥
C0

)
(5.31)

as ε → 0, uniformly in (γ, τ) ∈ Γkε (δ′) × T kε (δ). By putting together (5.26), (5.29), (5.30)
and (5.31), we obtain∥∥∂τi[Ψε,γ,τ

]∥∥
W 2,p = O

(
1

γε

)
+ o

(∥∥∂τi[Ψε,γ,τ

]∥∥
C0

)
(5.32)

as ε→ 0, uniformly in (γ, τ) ∈ Γkε (δ′)× T kε (δ). By using the continuity of the embeddings
of W 2,p (Ω) into C0

(
Ω
)

and H1 (Ω), (3.15) then follows from (5.32).
Note that (5.29) corresponds to the first identity in (3.17), while the second one follows

from (5.30) together with the already proven (3.15) and (3.16), which yield∥∥f ′ (Uε,γ,τ )DτiΨε,γ,τ1Ωrε,τ

∥∥
Lp

= O
(
γ2
ε

∥∥exp
(
U2
ε,γ,τ

)
1Ωrε,τ

∥∥
Lp
‖DτiΨε,γ,τ‖C0

)
= O (γε) .

This ends the proof of Proposition 3.2.

6. Expansions of the bubble and its derivatives

In this section we give a precise asymptotic analysis of spherical solutions, and prove
some useful consequences.

Proposition 6.1. For every γ > 0, let Bγ be the unique radial solution to the problem{
∆Bγ = f

(
Bγ
)

in R2

Bγ (0) = γ,
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where f (s) := s exp
(
s2
)

for all s ∈ R. Set

µ2
γ := 4γ−2 exp

(
−γ2

)
and t (r) := ln

(
1 + r2

)
∀r ≥ 0 (6.1)

and let ϕ be the unique radial solution to the problem{
∆ϕ = 4e−2t

(
t2 − t+ 2ϕ

)
in R2

ϕ (0) = 0.

Then

Bγ (r) = γ − t (r/µγ)

γ
+
ϕ (r/µγ)

γ3
+Dγ (r/µγ) ,

where

Dγ (r) = O

(
t (r)

γ5

)
and D′γ (r) = O

(
1

γ5r

)
(6.2)

as γ → ∞, uniformly in r ∈
(
0, µδ−1

γ

)
, δ ∈ (0, 1) fixed. Furthermore, ϕ (r) ∼ −t (r) and

ϕ′ (r) ∼ −t′ (r) as r →∞.

Proof. This was originally proven in [8], see Claim 5.1 and estimates (5.8) and (5.9) in
particular (note that the function Bγ in [8] corresponds to the function Bγ via the relation

Bγ (r) = Bγ(r/2)). The estimates (5.8)–(5.9) in [8] are valid as long as 0 ≤ t(r/µγ) ≤ γ2−Tγ ,
where Tγ is chosen so that γke−Tγ = o (1) as γ → ∞ for every k ≥ 0. It is not difficult to
see that this condition is satisfied uniformly for 0 ≤ r ≤ µδγ , for any fixed δ > 0. �

With regard to the derivative of Bγ with respect to γ, we obtain the following:

Proposition 6.2. Let Bγ , µγ , t and ϕ be as in Proposition 6.1. Set Z0 (r) := 1−r2
1+r2 and let

ψ be the unique radial solution to the problem{
∆ψ = 4e−2t

(
Z0

(
1− 4t+ 2t2 + 4ϕ

)
+ 2ψ

)
in R2

ψ (0) = 0.

Then

Z0,γ (r) := ∂γ
[
Bγ (r)

]
= Z0(r/µγ) +

ψ (r/µγ)

γ2
+ Eγ(r/µγ),

where

Eγ (r) = O

(
1 + t (r)

γ4

)
and E′γ (r) = O

(
1

γ4r

)
(6.3)

as γ → ∞, uniformly in r ∈
(
0, µδ−1

γ

)
, δ ∈ (0, 1) fixed. Furthermore, ψ (r) ∼ t (r) and

ψ′ (r) ∼ t′ (r) as r →∞.

Proof. We easily see that {
∆Z0,γ = f ′

(
Bγ
)
Z0,γ in B(0, µδγ)

Z0,γ (0) = 1,

with f (s) = ses
2

. Set

Eγ (r) := Z0,γ (µγr)− Z0 (r)− ψ (r)

γ2

and observe that

∆Z0 = 8e−2tZ0,
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so that ∆Eγ = µ2
γf
′ (Bγ (µγ ·)

)
Z0,γ (µγ ·)− 8e−2tZ0 −

∆ψ

γ2
in B

(
0, µδ−1

γ

)
Eγ (0) = 0.

(6.4)

In order to expand the right-hand side of (6.4) we use (6.2), ϕ = O (1 + t) and recalling that

µ2
γγ

2eγ
2

= 4, we find

f ′
(
Bγ (µγ ·)

)
=
(
1 + 2B

2

γ (µγ ·)
)

exp
(
B

2

γ (µγ ·)
)

=

[
1 + 2

(
γ − t

γ
+

ϕ

γ3
+ O

(
t

γ5

))2
]
e

(
γ− t

γ+ ϕ

γ3
+O
(
t
γ5

))2

=
4e−2t

µ2
γ

[
1

γ2
+ 2− 4t

γ2
+ O

(
1 + t2

γ4

)]
e
t2

γ2 e
2ϕ

γ2
+O
(

1+t2

γ4

)
. (6.5)

Using that es = 1 + s+ O(s2)es for s > 0, we write

e
t2

γ2 = 1 +
t2

γ2
+ O

(
t4

γ4

)
e
t2

γ2 ,

and using that t = O
(
γ2
)

uniformly on
(
0, µδ−1

γ

)
,

e
2ϕ

γ2
+O
(

1+t2

γ4

)
= 1 +

2ϕ

γ2
+ O

(
1 + t2

γ4

)
.

We now multiply and reorder, using that exp
(
t2/γ2

)
≥ 1, to obtain

f ′
(
Bγ (µγ ·)

)
=

4e−2t

µ2
γ

(
2 +

1

γ2
(1− 4t+ 4ϕ) + O

(
1 + t4

γ4

))
e
t2

γ2

=
4e−2t

µ2
γ

(
2 +

1

γ2

(
1− 4t+ 2t2 + 4ϕ

))
+
e
−2t+ t2

γ2

µ2
γ

O

(
1 + t4

γ4

)
.

Together with (6.4) and using that ψ = O (1 + t) (as we shall prove later), we now estimate

∆Eγ = µ2
γ

(
f ′
(
Bγ (µγ ·)

)
Z0 +

f ′
(
Bγ (µγ ·)

)
ψ

γ2
+ f ′

(
Bγ (µγ ·)

)
Eγ

)

− 8e−2tZ0 − 4e−2t

(
Z0

γ2

(
1− 4t+ 2t2 + 4ϕ

)
+

2ψ

γ2

)
= µ2

γf
′ (Bγ (µγ ·)

)
Eγ + e

−2t+ t2

γ2 O

(
1 + t4

γ4

)
.

We now go back to (6.5) and, still using that t = O
(
γ2
)

on B
(
0, µδ−1

γ

)
, we bound

f ′
(
Bγ (µγ ·)

)
= O

(
1

µ2
γ

e
−2t+ t2

γ2

)
,

so that

∆Eγ = e
−2t+ t2

γ2

(
O (|Eγ |) + O

(
1 + t4

γ4

))
. (6.6)

Multiplying by γ4 and using ODE theory, we see that

γ4Eγ −→ Ẽ∞ in C1
loc

(
R2
)
.
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In particular, for any fixed T > 0 and for γ large (γ ≥ γ0 (T )), we have

|Eγ | ≤
C (T )

γ4
and

∣∣E′γ∣∣ ≤ C ′ (T )

γ4
on [0, T ] . (6.7)

From now on, it is understood that γ ≥ γ0 (T ), so that (6.7) holds. In order to prove (6.3),
observe that the first identity in (6.3) follows from the second one and (6.7) by integration
over [T, r]. Then, for T,M > 0 to be chosen later, set

Rγ := sup

{
r ∈

(
T, µδ−1

γ

]
:
∣∣E′γ (ρ)

∣∣ ≤ M

γ4ρ
, ∀ρ ∈ [T, r]

}
.

We shall prove that for T and M suitable, we have Rγ = µδ−1
γ for every γ sufficiently large.

Arguing by contradiction, assume that Rγ < µδ−1
γ , so that in particular∣∣E′γ(Rγ)

∣∣ =
M

Rγγ4
. (6.8)

By definition of Rγ , using (6.7) and integrating, we get

|Eγ (r)| ≤ |Eγ (T )|+
∫ r

T

M

γ4ρ
dρ ≤ C (T )

γ4
+
Mt (r)

2γ4
on [T,Rγ ] . (6.9)

With the divergence theorem, (6.6) and (6.9), we now bound for t ∈ [T,Rγ ],∣∣2πrE′γ (r)
∣∣ ≤ ∣∣2πTE′γ (T )

∣∣+

∫
B(0,r)\B(0,T )

|∆Eγ (x) dx|

≤ 2πTC ′ (T )

γ4
+

∫
B(0,r)\B(0,T )

e
−2t+ t2

γ2

(
C̃|Eγ |+ C̃

(
1 + t4

γ4

))
dx

≤ 2πTC ′ (T )

γ4
+
C̃M

2γ4

∫
B(0,r)\B(0,T )

e
−2t+ t2

γ2 tdx

+
1

γ4

∫
B(0,r)\B(0,T )

e
−2t+ t2

γ2 C̃
(
C (T ) + 1 + t4

)
dx

=:
2πTC ′ (T )

γ4
+

(Iγ)

γ4
+

(IIγ)

γ4
. (6.10)

Observing that

−2t+
t2

γ2
≤ − (1 + δ) t and e−

δ
2 ttk = O (1) on B

(
0, µδ−1

γ

)
, ∀k ≥ 0,

we bound ∫
B(0,µδ−1

γ )\B(0,T )

e
−2t+ t2

γ2 tkdx = O

(∫
B(0,T )c

e−(1+ δ
2 )tdx

)
= oT (1) ,

with oT (1) → 0 as T → ∞. We can therefore choose T sufficiently large (independent of
M) so that

(Iγ) ≤ πM

2
.

Then, choosing M sufficiently large (depending on T ), so that

2πTC ′ (T ) + (IIγ) ≤ πM

2
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and dividing by 2π in (6.10), we finally obtain

r |E′ (r)| ≤ M

2γ4
, ∀r ∈ [T,Rγ ] ,

which for r = Rγ is a contradiction to (6.8). Therefore Rγ = µδ−1
γ .

To prove that ψ (r) ∼ t (r) and ψ′ (r) ∼ t′ (r) as r →∞, we recall from [15, Lemmas 15
and 16] (see also [8, Lemma 5.1]) that if ψ is radially symmetric and solves

∆ψ = 4e−2t (g + 2ψ) ,

with g (r) = O
(

(ln r)
k )

as r →∞ for some k ≥ 1, then

ψ (r) = β ln r + O (r) , ψ′ (r) =
β

r
+ O

(
(ln r)

k

r3

)
, β :=

2

π

∫
R2

Z0e
−2tgdx,

as r →∞. With g = Z0

(
1− 4t+ 2t2 + 4ϕ

)
we compute∫

R2

Z
2

0e
−2tdx =

π

3
,

∫
R2

Z
2

0e
−2t4tdx =

16π

9
,∫

R2

Z
2

0e
−2t2t2dx =

70π

27
and

∫
R2

Z
2

0e
−2t4ϕdx = −4π

27
,

so that β = 2. �

Let us see a few consequences of the above estimates.

Proposition 6.3. Let Bγ , µγ , t, Z0 and Z0,γ be as in Propositions 6.1 and 6.2. Given
δ ∈ (0, 1), a, b ≥ 0 and tγ (r) = t(r/µγ), we have∫

B(0,r)

exp
(
B

2

γ

)
B
b

γ

(
1 + O

(
tγ
γ2

))a
dx = 4πγb−2 + O

(
γb−4

)
, (6.11)

as γ →∞, uniformly for γµγ ≤ r ≤ µδγ . Moreover,∫
B(0,r)

f ′
(
Bγ
)
Z0,γdx =

−4π + o (1)

γ2
(6.12)

as γ →∞, uniformly for γµγ = o (r) and r ≤ µδγ , and∫
B(0,r)

f ′
(
Bγ (x)

) 2x2
1

µ2
γ + |x|2

dx = 4π + O

(
1

γ2

)
(6.13)

as γ →∞, uniformly for γµγ ≤ r ≤ µδγ .

Proof. Using Proposition 6.1 and noticing that ϕ = O (1 + t), tγ = O
(
γ2
)

in B (0, r) for

r ≤ µδγ , we write

exp
(
B

2

γ

)
= e

[
γ− tγγ +O

(
1+tγ

γ3

)]2
= eγ

2

e−2tγe
t2γ

γ2
+O
(

1+tγ

γ2

)
=

4e−2tγ

µ2
γγ

2

(
1 + O

(
t2γ
γ2

)
e
t2γ

γ2

)
,

(6.14)
where we used the inequality |ex − 1| ≤ |x| e|x| to estimate∣∣∣∣eO

(
t2γ

γ2

)
− 1

∣∣∣∣ = O

(
t2γ
γ2

)
e
t2γ

γ2 .
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Further, we use Proposition 6.1 together with (1 + x)
a

= 1 + O (x) uniformly for x = O (1),
to bound

B
b

γ

(
1 + O

(
tγ
γ2

))a
=

(
γ + O

(
1 + tγ
γ

))b(
1 + O

(
tγ
γ2

))a
= γb

(
1 + O

(
1 + tγ
γ

))a+b

= γb

(
1 + O

(
1 + t2γ
γ2

))
. (6.15)

We can then estimate the left-hand side of (6.11) as∫
B(0,r)

4e−2tγ

µ2
γγ

2−b

(
1 + O

(
1 + t2γ
γ2

e
t2γ

γ2

))
dx

=

∫
B(0,r/µγ)

4e−2t

γ2−b

(
1 + O

(
1 + t2

γ2
e
t2

γ2

))
dx =

4π

γ2−b

∫ r/µγ

0

2ρ

(1 + ρ2)
2 dρ

+
1

γ4−b

∫
B(0,r/µγ)

O

((
1 + t2

)
e
−t
(

2− t
γ2

))
dx =: (I)γ + (II)γ .

Using that r ≥ γµγ , one computes

(I)γ =
4π

γ2−b

(
1 + O

(
γ−2

))
,

and using that 0 ≤ t/γ2 ≤ (1− δ + o (1)) in B (0, r/µγ) as γ → ∞, uniformly for r ≤ µδγ ,

and observing that
(
1 + t2

)
e−(1+δ′)t ∈ L1

(
R2
)

for every δ′ > 0, one has

(II)γ = O

(
1

γ4−b

∫
B(0,r/µγ)

(
1 + t2

)
e−t(1+δ+o(1))

)
= O

(
1

γ4−b

)
(6.16)

as γ →∞, uniformly for r ≤ µδγ , so that (6.11) is proven.
In order to prove (6.12) we use Proposition 6.2 to expand Z0,γ and compute∫

B(0,r)

f ′
(
Bγ
)
Z0,γdx =

∫
B(0,r)

∂γ
[
f
(
Bγ
)]
dx =

∫
B(0,r)

∆Z0,γdx

=

∫
B(0,r)

∆

(
Z0

(
x

µγ

)
+

1

γ2
ψ

(
x

µγ

)
+ Eγ

(
x

µγ

))
dx

= −2πr

µγ

(
Z
′
0

(
r

µγ

)
+

1

γ2
ψ′
(
r

µγ

)
+ E′γ

(
r

µγ

))
.

A direct computation shows

r

µγ
Z
′
0

(
r

µγ

)
= O

(
µ2
γ

r2

)
= o

(
1

γ2

)
as γ →∞, uniformly for γµγ = o (r). Using that

ψ′ (s) = t′ (s) (1 + o (1)) =
2s

1 + ss
=

2

s
(1 + o (1)) as s→∞,

we obtain
r

µγ
ψ′
(
r

µγ

)
= 2 + o (1) .
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Finally, from the second part of (6.3), we infer

r

µγ
E′γ

(
r

µγ

)
= O

(
1

γ4

)
= o

(
1

γ2

)
.

Summing up, (6.12) follows at once.
It remains to prove (6.13). Using (6.14) and (6.15), we write∫

B(0,r)

f ′
(
Bγ (x)

) 2x2
1

µ2
γ + |x|2

dx

= 4γ2eγ
2

∫
B(0,r)

(
1 + O

(
1 + tγ
γ2

))
e−3tγ

(
1 + O

(
t2γ
γ2

)
e
t2γ

γ2

)(
y1

µγ

)2

dy

=

∫
B(0,r/µγ)

16e−3ty2
1dy + O

(∫
B(0,r/µγ)

1 + t2

γ2
e−t(3−t/γ2)y2

1dy

)
=: (I)γ + (II)γ

To compute (I)γ , we observe that its value does not change if we replace y1 with y2, so that

(I)γ =
1

2

∫
B(0,r/µγ)

16e−3t |x|2 dy = 16π

[
− 1 + 2ρ2

4 (1 + ρ2)
2

]r/µγ
ρ=0

= 4π + o (1)

as γ → ∞, uniformly for r ≥ γµγ . The term (II)γ can be estimated as in (6.16) since
y2

1 ≤ et, so that

(II)γ = O

(∫
B(0,r/µγ)

t2

γ2
e−t(1+δ+o(1))dx

)
= O

(
1

γ2

)
as γ →∞, uniformly for r ≤ µδγ . �

Proposition 6.4. Let Bγ and µγ be as in Proposition 6.1. Given δ0 ∈ (0, 1/2), we have∫
B(0,r)

exp
(
Bγ (x)

2 ) |x| dx = O
(
µ

3δ0−2δ20+o(1)
γ

)
(6.17)

as γ →∞, uniformly for r = O
(
µδ0γ
)
.

Proof. Let tγ be as in Proposition 6.2. Using Proposition 6.1, we write

exp
(
B

2

γ

)
= exp

([
γ − tγ

γ
+ O

(
1 + tγ
γ3

)]2
)

= eγ
2

e
−2tγ+

t2γ

γ2 e
O
(

1+tγ

γ2

)

= O

(
e−tγ(2−tγ/γ2)

µ2
γγ

2

)
, for r = O

(
µδ0γ
)
, (6.18)

Then, using that

tγ (r) ≤ (1− δ0 + o (1)) γ2, for r = O
(
µδ0γ
)
, (6.19)

together with a change of variables, we get∫
B(0,r)

exp
(
Bγ (x)

2 ) |x| dx = O

(∫
B(0,r)

e−tγ(2−tγ/γ2)

µ2
γγ

2
|x| dx

)



60 LUCA MARTINAZZI, PIERRE-DAMIEN THIZY, AND JÉRÔME VÉTOIS

= O

(
µγ

∫
B(0,r/µγ)

|y| dy(
1 + |y|2

)2−t/γ2

)
= O

(
µγ

∫
B(0,r/µγ)

|y| dy(
1 + |y|2

)1+δ0+o(1)

)

= O

(
µγ

(
r

µγ

)1−2δ0+o(1)
)

= O
(
µ

3δ0−2δ20+o(1)
γ

)
as γ →∞, uniformly for r = O

(
µδ0γ
)
, which proves (6.17). �

7. Poincaré–Sobolev inequalities

The standard Poincaré–Sobolev inequality on S2 says that for every p ∈ [1,∞) there
exists Cp > 0 such that for every φ ∈ H1(S2) with

∫
S2 φdvS2 = 0, we have∫

S2
|φ|p dvS2 ≤ Cp

(∫
S2
|∇φ|2 dvS2

) p
2

. (7.1)

Pulling back the spherical metric onto R2, we can also rewrite (7.1) as∫
R2

|φ|p e−2tdx ≤ Cp
(∫

R2

|∇φ|2 dx
) p

2

, (7.2)

for every φ ∈ D1,2
(
R2
)

such that
∫
R2 φe

−2tdx = 0, where t (x) := ln
(
1 + |x|2

)
, so that

4e−2t(x) = 4
(
1 + |x|2

)−2
is the conformal factor of the pull-back metric.

We will need a perturbed version of (7.2), where we replace e−2t with suitable scaled

versions of exp
(
B

2

γ

)
.

Lemma 7.1. Let (χε)ε>0 be a sequence of functions in R2 such that for every q > 1, we
have χε → χ0 as ε→ 0 in Lq

(
R2, e−2tdx

)
, i.e.∫

R2

|χε − χ0|q e−2tdx −→ 0

for some function χ0 in R2 and further assume that∫
R2

χ0e
−2tdx 6= 0. (7.3)

Then, for every p ∈ [1,∞), there exists a constant C > 0 (depending on p and (χε)) such
that for ε > 0 small enough, the following holds:∫

R2

|φ|p e−2tdx ≤ C
(∫

R2

|∇φ|2 dx
) p

2

(7.4)

for every φ ∈ D1,2
(
R2
)

such that
∫
R2 φχεe

−2tdx = 0.

Proof. Assume by contradiction that there exists a sequence (φε)ε in D1,2
(
R2
)

such that∫
R2

|φε|pe−2tdx = 1,

∫
R2

φεχεe
−2tdx = 0, lim

ε→0

∫
R2

|∇φε|2dx = 0. (7.5)

Let Π : S2 → R2 be the stereographic projection. By the first equation in (7.5), the average
of φε ◦Π on S2 is bounded, so by the Sobolev–Poincaré inequality and weak compactness, up
to a subsequence, φε ◦Π→ φ0 ◦Π strongly in Lq

′
(S2), in Lp(S2), and weakly in H1(S2), for

some function φ0 ∈ Lp(R2, e−2tdx). By lower-semicontinuity of the Dirichlet integral we get
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‖∇(φ0 ◦Π)‖L2(S2) = ‖∇φ0‖L2(R2) = 0, so that φ0 is constant, non-zero since ‖φ0 ◦Π‖Lp(S2) =
1. Then, we obtain

0 =

∫
R2

φεχεe
−2tdx→

∫
R2

φ0χ0e
−2tdx ⇒

∫
R2

χ0e
−2tdx = 0,

contradicting our assumption. �

Proposition 7.2. Let Bγ , µγ and tγ be as in Propositions 6.1 and 6.2. Let φ ∈ D1,2
(
R2
)

be such that ∫
Br

f
(
Bγ
)
φdx = 0 (7.6)

for r such that µγ = o (r) and r = O
(
µδ0γ
)

for some δ0 ∈ (0, 1). Then for every p ∈ [1,∞),
we have ∫

B(0,r)

exp
(
B

2

γ

)
(1 + tγ) |φ|p dx = O

(
1

γ2

(∫
R2

|∇φ|2 dx
) p

2

)
. (7.7)

Proof. With Proposition 6.1 we can rewrite condition (7.6) as

0 = γ

∫
B(0,r)

(
1 + O

(
1 + tγ
γ2

))
eγ

2

e
−2tγ+

t2γ

γ2
+O
(

1+tγ

γ2

)
φdx

=
4

γ

∫
B(0,r/µγ)

(
1 + O

(
1 + t

γ2

))
e
−2t+ t2

γ2
+O
(

1+t

γ2

)
φ(µγ ·)dx =

4

γ

∫
R2

e−2tχγ φ̃dy,

where Φ̃ (y) = φ(µγy), and we claim that

χγ := 1B(0,r/µγ)

(
1 + O

(
1 + t

γ2

))
e
t2

γ2
+O
(

1+t

γ2

)
−→ χ0 ≡ 1

in Lq(R2, e−2tdx) for 1 ≤ q < 1

1− δ0
. (7.8)

Indeed, it is clear that χγ → χ0 pointwise, while we can uniformly bound χγ by a function
in Lq

(
R2, e−2tdx

)
as follows. By using (6.19), we obtain

χγ = O
(
e
t2

γ2

)
= O

(
et(1−δ0+o(1))

)
, so that χqγ = O

(
etq(1−δ0+o(1))

)
.

On the other hand,∫
R2

etq(1−δ0+o(1))e−2tdx =

∫
R2

e−t(2−q+qδ0+o(1))dx =

∫
R2

O

(
1

1 + |x|4−2q+2qδ0+o(1)

)
dx

= O (1) for 4− 2q + 2qδ0 > 2, i.e. 1 ≤ q < 1

1− δ0
,

so that (7.8) follows by dominated convergence.

We can then apply Lemma 7.1 to Φ̃, so that (7.4) holds. On the other hand, for any
r ∈ [1,∞),∫

B(0,r)

exp
(
B

2

γ

)
(1 + tγ) |φ|p dx

=
1

γ2

∫
B(0,r/µγ)

e
−2t+ t2

γ2
+O
(

1+t

γ2

)
(1 + t) |φ̃|pdx =

1

γ2

∫
R2

χ̃γ |φ̃|pe−2tdx, (7.9)
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where, as in (7.8) we have

χ̃γ := 1B(0,r/µγ) (1 + t) e
t2

γ2
+O
(

1+t

γ2

)
−→ 1 + t in Lq(R2, e−2tdx)

for q < 1/ (1− δ0), and with Hölder’s inequality, we obtain∫
R2

χ̃γ |φ̃|pe−2tdx ≤
(∫

R2

χ̃qγe
−2tdx

) 1
q
(∫

R2

|φ̃|pq
′
e−2tdx

) 1
q′

= O

((∫
R2

|∇φ̃|2
) p

2

)

= O

((∫
R2

|∇φ|2
) p

2

)
.

Substituting into (7.9), we then obtain (7.7). �

8. Proof of Claim 3.1

From (3.2), (6.2) and the divergence theorem, we get

Aε,γi,τi = −2πrεB
′
ε,γi,τi (rε) = −2πrε

√
λεhε (τ i)B

′
γi

(√
λεhε (τ i)rε

)
=

4π

γi
+ O

(
1

γ3
ε

)
.

(8.1)
Considering that

lnλε = O (1) and lnµγi = −1

2
γ2
i − ln γi + O (1) ,

from (6.2), we infer

Bγi
(√

λεhε (τ i)rε
)

= γi −
2 ln(rε/µγi) + ln(λεhε (τ i))

γi
+ O

(
1

γi

)
= −2 ln rε

γi
− 2 ln γi

γi
+ O

(
1

γε

)
, (8.2)

which together with (3.3) and (8.1) gives

Cε,γi,τi = −2 ln γi
γi

+ O

(
1

γε

)
= −2 ln γε

γi
+ O

(
1

γε

)
.

This proves (3.10). Further, Proposition 6.2 gives

∂γi [Aε,γi,τi ] = −2πrε
√
λεhε (τ i)∂γi

[
B
′
γi

(√
λεhε (τ i)rε

)]
= −4π

γ2
i

+ O

(
µ2
γi

r3
ε

)
+ O

(
1

γ4
ε

)
= −4π

γ2
i

+ O

(
1

γ4
ε

)
.

Similarly,

∂γi [Bγi
(√

λεhε (τ i)rε
)
] =

2 ln rε
γ2
i

+
2 ln γi
γ2
i

+ O

(
1

γ2
ε

)
,

so that

∂γi [Cε,γi,τi ] = ∂γi [Bγi
(√

λεhε (τ i)rε
)
] +

1

2π
∂γi [Aε,γi,τi ] ln rε

=
2 ln γi
γ2
i

+ O

(
1

γ2
ε

)
=

2 ln γε
γ2
i

+ O

(
1

γ2
ε

)
,
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which proves (3.11). To prove (3.12), we observe that

Aε,γi,τi = λεhε (τi)

∫
B(τi,rε)

f
(
Bε,γi,τi

)
dx = 2πλεhε (τi)

∫ rε

0

f
(
Bγi

(√
λεhε (τi)r

))
rdr

= 2π

∫ √λεhε(τi)rε
0

f
(
Bγi (r)

)
rdr. (8.3)

By differentiating (8.3) in τi, we obtain

∂τi [Aε,γi,τi ] = πλε∂x1hε (τi) r
2
εf
(
Bγi

(√
λεhε (τi)rε

))
. (8.4)

By using (8.2) together with the definition of rε, and using that γi ≥ (1− δ′) γε, we obtain

r2
εf
(
Bγi

(√
λεhε (τi)rε

)
= O

(
r2
εγε exp

(
4

γ2
i

(ln rε + ln γi + O (1))
2

))
= O

(
γε exp

(
2 ln rε

(
1 + 2

ln rε
γ2
i

+ 4
ln γi
γ2
i

)))
= O

(
exp

(
−δ0γ2

ε

(
1− δ0

γ2
ε

γ2
i

+ o (1)

)
+ ln γε

))
= O

(
exp

(
−δ0γ2

ε

(
1− δ0

(1− δ′)2 + o (1)

)))
= o

(
1

γaε

)
(8.5)

uniformly in (γ, τ) ∈ Γkε (δ′) × T kε (δ) for all a ≥ 0, provided δ′ < 1 −
√
δ0. By using (8.4)

and (8.5) and since λε → λ0 and hε → h0 in C1
(
Ω
)
, we obtain the first part of (3.12). By

differentiating Cε,γi,τi in τi and using (6.2), (8.4) and (8.5), we then obtain

∂τi [Cε,γi,τi ] =

√
λε∂x1

hε (τ i) rε

2
√
hε (τ i)

B
′
γi

(√
λεhε (τ i)rε

)
− 1

2π
∂τi [Aε,γi,τi ] ln

1

rε
= −∂x1

hε (τi)

hε (τi) γi
+ O

(
|∂x1

hε (τi)|
γ3
ε

)
,

which gives the second part of (3.12). This ends the proof of Claim 3.1.
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Claude Bernard, 69622 Villeurbanne Cedex, France
Email address: pierre-damien.thizy@univ-lyon1.fr
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