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SIGN-CHANGING BLOW-UP FOR THE MOSER-TRUDINGER EQUATION

.

where the approximate bubble B ε,γε,i,τε,i ∈ H 1 0 (Ω) is as in Section 3.1 and the remainder H 1 0 (Ω)-terms Ψ ε,γε,τε and Φ ε,γε,θε,τε are given by Propositions 3.2 and 4.2. In particular, ∇Ψ ε,γε,τε L 2 = o(1), ∇Φ ε,γε,θε,τε L 2 = o(1), as ε → 0.

 and further extended in our Section 6. In fact, we will construct the ansatz in two steps. First we construct the approximate solution

for every τ as in (1.3) and γ in a fairly broad range (see (3.4) and Proposition 3.2). Then we shall strongly restrict the range of γ (Proposition 3.3 and (3.28)) and add the terms θ i B ε,γi,τi to the ansatz. This will be crucial in the energy estimates of Section 4. In order to estimate the error terms near the bubbles, we shall use the spherical profile of the bubble to treat the blow-up regions as approximate spheres and apply Poincaré-Sobolev-type estimates, as given in Section 7. Finally we will perform the Lyapunov-Schmidt reduction to find the correct value (γ ε , θ ε , τ ε ) and the correction term Φ ε,γε,θε,τε , to finally obtain u ε as in (1.5) (see also Remark 4.6).

 further gave a very detailed blow-up analysis of the blow-up of radial nodal solutions to (E h,β ) when h ≡ 1 and f (u) = u exp u 2 + α|u| β , α > 0. To our knowledge, our work is the first one in which non-zero weak limits appear in the unperturbed case f (u) = u exp(u 2 ), and an arbitrary number of bubbles concentrates at the same point. Indeed, these two phenomena cannot occur in the unperturbed case without (radial) symmetry breaking.

Preliminary steps

This section is devoted to the construction of a smooth family of critical points satisfying some regularity, symmetry and asymptotic conditions which we will then use in the next sections to construct our blowing-up solutions.

Introduction and main result

Given a smooth, bounded domain Ω ⊂ R 2 and a smooth, positive function h on Ω, we consider the Moser-Trudinger functional I h : H 1 0 (Ω) → R defined as

I h (u) := Ω h exp u 2 dx ∀u ∈ H 1 0 (Ω) .
For any β > 0, let E h,β be the set of all the critical points u ∈ H 1 0 (Ω) of I h under the constraint ∇u We first introduce the following definition in the spirit of [START_REF] Hebey | Compactness and stability for nonlinear elliptic equations[END_REF]Chapter 5] (see also Remark 4.8):

Definition 1.1. We say that β > 0 is a stable energy level of I h if, for all (h ε ), (β ε ) and (λ ε ) such that h ε → h in C 2 ( Ω) and β ε → β with λ ε = O(1), any family (u ε ) such that u ε solves (E hε,βε ) with λ = λ ε for all ε converges in C 2 ( Ω) to some u solving (E h,β ) as ε → 0, up to a subsequence. We say that β > 0 is a positively stable energy level of I h if the same holds true with u ε ≥ 0.

As a consequence of the Moser-Trudinger inequality [START_REF] Moser | A sharp form of an inequality by N. Trudinger[END_REF][START_REF] Trudinger | On imbeddings into Orlicz spaces and some applications[END_REF], every β ∈ (0, 4π) is a stable energy level of I h . Druet-Thizy [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I -quantification and location of concentration points[END_REF] obtained that every β ∈ (0, ∞) \4πN (N := N \ {0}) is a positively stable energy level of I h . In contrast to this result, we obtain in this paper Date: April 10, 2021. The first author was supported by the Swiss National Foundation Grants PP00P2-144669 and PP00P2-170588/1. The second author was supported by the French ANR Grant BLADE-JC. The third author was supported by the Discovery Grant RGPIN-2016-04195 from the Natural Sciences and Engineering Research Council of Canada.

that every β ≥ 4π is an unstable energy level provided Ω and h are such that 0 ∈ Ω and the following symmetric condition holds true for some even number l ∈ 2N :

(A) Ω is symmetric and h is even with respect to the lines

j := t cos jπ 2l , t sin jπ 2l : t ∈ R , 0 ≤ j ≤ 2l -1.
Under this assumption, we obtain the following:

Theorem 1.2. Let Ω ⊂ R 2 be a smooth, bounded domain, l ∈ 2N * , α ∈ (0, 1) and h ∈ C l-2,α (Ω) ∩ C 2 Ω be a positive function such that 0 ∈ Ω and (A) holds true. Then every β ≥ 4π is an unstable energy level of I h .

In order to prove Theorem 1.2 we will construct a sign-changing weak limit w 0 with arbitrary energy β 0 ∈ (0, 8πl) and use a Lyapunov-Schmidt procedure to glue to w 0 an arbitrary number k ∈ N * of bubbles, all concentrating at the origin. This is in sharp contrast to the positive case studied by Druet-Thizy [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I -quantification and location of concentration points[END_REF], in which blow-up can happen only at energy levels β ∈ 4πN , the weak limit vanishes and the bubbles blow up at distinct points. See also [START_REF] Del Pino | New solutions for Trudinger-Moser critical equations in R 2[END_REF][START_REF]Beyond the Trudinger-Moser supremum[END_REF][START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities II -Existence of solutions of high energies[END_REF] for the constructive counterpart of [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I -quantification and location of concentration points[END_REF].

To be more concrete, given h ∈ C l-2,α (Ω) ∩ C 2 Ω and β 0 > 0, using the symmetry of Ω and h, we will construct w 0 ∈ E h,β0 such that w 0 (x 1 , 0) ∼ a 0 x l 1 , as x 1 → 0, for some a 0 > 0.

(

Up to a perturbation and a diagonal argument, we can assume that w 0 is non degenerate, and construct families h ε → h in C 2 Ω , β ε → β 0 and w ε , 0 ≤ ε ≤ ε 0 , smooth with respect to ε such that w ε ∈ E hε,βε and 0 > w ε (0) ↑ 0 as ε → 0. The behaviour (1.2) of the weak limit w 0 near the origin will be crucial to glue bubbles and the value of w ε (0) ↑ 0 will determine the parameter γ ε → ∞ (see (3.6)), which is the approximate height of the bubbles.

In fact, if B γ is the radial solution to ∆B γ = f B γ with B γ (0) = γ, we will attach to the function w ε a fixed number k of perturbations of B γε along the x 1 axis, at points (τ ε,1 , 0) , . . . , (τ ε,k , 0). The centers (τ ε,i , 0) of the bubbles will satisfy for some δ ∈ (0, 1),

- kd ε δ < τ ε,1 < • • • < τ ε,k < kd ε δ , |τ ε,i -τ ε,j | > δd ε , d ε := γ -1/l ε → 0, (1.3) 
and, up to scaling, (τ ε,1 /d ε , . . . , τ ε,k /d ε ) will converge to a zero of N = (N 1 , . . . , N k ), defined in a suitable convex subset of R k as N i (y 1 , . . . , y k ) := a 0 ly l-1 i j =i 2 y i -y j .

(1.4)

Note that, contrary to the case studied in [START_REF] Del Pino | New solutions for Trudinger-Moser critical equations in R 2[END_REF][START_REF]Beyond the Trudinger-Moser supremum[END_REF][START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I -quantification and location of concentration points[END_REF], the function h (more specifically, its gradient) plays no role in (1.4), hence at main order it does not influence the location of the bubbles, which instead depends on a 0 > 0 and l as in (1.2) and on k.

A diagonal argument allows to treat the case β 0 = 0. Thus we finally obtain:

Theorem 1.3. Given Ω, l, α and h as in Theorem 1.2 and β ≥ 4π, k ∈ N * , β 0 ≥ 0 such that β = β 0 + 4πk, there exist w 0 ∈ E h,β0 and ε 0 > 0 such that for every ε ∈ (0, ε 0 ), we can find

h ε → h in C 2 (Ω), β ε → β 0 , as ε → 0, w ε ∈ E hε,β ε as in (1.2), numbers β ε → β, γ ε → ∞, γ ε , τ ε , θ ε ∈ R k , with γ ε,i ∼ γ ε , θ ε,i → 0 as ε → 0, τ ε,i as in (1.
3), and a function u ε ∈ E hε,βε of the form

u ε = w ε + k i=1
(1 + θ ε,i )B ε,γε,i,τε,i + Ψ ε,γε,τε + Φ ε,γε,θε,τε ,

Definition 2.1. For every l ∈ N * , p ∈ N and α ∈ (0, 1), we let C p,α l,sym (Ω) be the vector space of all functions in C p,α (Ω) that are even with respect to the line 2j for all j ∈ {0, . . . , l -1}, where 2j is as in (A). Definition 2.2. Let β > 0, h be a continuous, positive function on Ω and w ∈ E h,β . Then we say that w is non-degenerate if there does not exist any solution v = 0 to the problem

∆v = λhf (w) v in Ω v = 0 on ∂Ω, (2.1) 
where λ and f are as in (1.1). We let E nd h,β be the set of all non-degenerate elements of E h,β .

The main result of this section is the following:

Proposition 2.3.
Let Ω be a smooth, bounded domain, l ∈ 2N , β 0 ∈ (0, 8lπ), α ∈ (0, 1) and h ∈ C l-2,α (Ω) ∩ C 0,α Ω be a positive function such that 0 ∈ Ω and (A) holds true.

Then we have the following:

(i) There exist w 0 ∈ E h,β0 ∩ C l,α l,sym (Ω) ∩ C 2 Ω and a 0 > 0 such that w 0 (x 1 , 0) ∼ a 0 x l 1 as x 1 → 0. (ii) There exists κ 0 > 0 such that for every κ ∈ (-κ 0 , κ 0 ) \ {0}, w κ := (1 + κ) w 0 ∈ E nd hκ,βκ ∩C l,α l,sym (Ω)∩C 2 Ω , where β κ := (1+κ) 2 β 0 and h κ := h exp -κ (κ + 2) w 2 0 . (iii) For every κ ∈ (-κ 0 , κ 0 ) \ {0}, there exist ĥκ ∈ C l-2,α l,sym (Ω)∩C 2 Ω and ε 0 (κ) ∈ (0, 1) such that for every ε ∈ (0, ε 0 (κ)), there exist β κ,ε > 0 and w κ,ε ∈ E hκ,ε,βκ,ε ∩ C l,α l,sym (Ω) ∩ C 2 Ω , where h κ,ε := h κ + ε ĥκ , such that the families (β κ,ε ) 0≤ε≤ε0(κ) and (w κ,ε ) 0≤ε≤ε0(κ) , where β κ,0 := β κ and w κ,0 := w κ , are smooth in ε and moreover ∂ ε [w κ,ε (0)] ε=0 < 0 and w κ,ε (0) < 0 for all ε ∈ (0, ε 0 (κ)).

Proof of Proposition 2.3 (i).

Define

Ω 1 := (x 1 , x 2 ) ∈ Ω : |x 2 | < x 1 tan π 2l .
Since Ω satisfies (A), we obtain that Ω 1 is symmetric with respect to the line 0 . In particular, we can define the vector space H of all functions in H 1 0 (Ω 1 ) that are even in x 2 . Note that (A) also gives that h| Ω1 is even in x 2 . By applying standard variational arguments (see for instance Proposition 6 of Mancini-Martinazzi [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF] in case h ≡ 1 and H = H 1 0 (Ω 1 )), we then obtain that for every β 0 ∈ (0, 8lπ), there exists a critical point w 0 of the functional I h | H under the constraint ∇w 0 2 L 2 (Ω1) = β 0 /2l such that w 0 > 0 in Ω 1 . By using (A), we can then extend w 0 to the whole domain Ω as an odd function with respect to the line 2j+1 for all j ∈ {0, . . . , l -1}. We claim that w 0 ∈ E h,β0 . To see this, for every test function v ∈ H 1 0 (Ω), we define

v sym := l-1 j=0 v • S 2j+1 • S 1 - l-1 j=0 v • S 2j+1 ,
where S 2j+1 : Ω → Ω is the symmetry operator with respect to the line 2j+1 . By remarking that v sym ∈ H 1 0 (Ω 1 ) and using v sym as a test function for the Euler-Lagrange equation of u 0 , we obtain

Ω1 ∇u 0 , ∇v sym dx = β 0 l Ω1 hw 2 0 exp (w 2 0 ) dx Ω1 hf (w 0 ) v sym dx. (2.2) 
By changes of variable and using the symmetry of w 0 and h, we obtain

Ω1 ∇w 0 , ∇v sym dx = Ω ∇w 0 , ∇v dx, (2.3) 
Ω1 hw 2 0 exp w 2 0 dx = 1 2l Ω hw 2 0 exp w 2 0 dx = 1 2l DI h (w 0 ) .w 0 , (2.4) 
Ω1 hf (w 0 ) v sym dx = Ω hf (w 0 ) vdx.

(2.5)

By putting together (2.2)-(2.5), we obtain Ω ∇w 0 , ∇v dx = 2β 0 DI h (w 0 ) .w 0 Ω hf (w 0 ) vdx and so w 0 ∈ E h,β0 . Since h ∈ C l-2,α (Ω) ∩ C 0,α Ω and ∂Ω is smooth, by using the Moser-Trudinger inequality together with standard elliptic regularity theory, we then obtain that w 0 ∈ C l,α (Ω) ∩ C 2,α Ω . Since w 0 | Ω1 is even in x 2 and w 0 is odd with respect to the line 2j+1 for all j ∈ {0, . . . , l -1}, we then obtain that w 0 is even with respect to 2j for all j ∈ {0, . . . , l -1}, i.e. w 0 ∈ C l,α l,sym (Ω). Furthermore, since w 0 ∈ C l,α (Ω) and w 0 = 0 on 2j+1 for all j ∈ {0, . . . , l -1}, we obtain that D j w 0 (0) = 0 for all j ∈ {0, . . . , l -1} and so

w 0 (x 1 , 0) = a 0 x l 1 + O x l+α 1 (2.6)
as x 1 → 0 for some a 0 ∈ R. It remains to prove that a 0 > 0. Since 0 ∈ Ω and Ω is open, there exists r 0 > 0 such that B (0, r 0 ) ⊂ Ω. For every ε > 0, we define S l,ε (r 0 ) := {(r cos θ, r sin θ) : 0 < r < r 0 and |θ| < π/ (2 (l + ε))} and let v l,ε : S l,ε (r 0 ) → R be the function defined as v l,ε (r cos θ, r sin θ) := r l+ε cos ((l + ε) θ)

for all (r cos θ, r sin θ) ∈ S l,ε (r 0 ). It is easy to check that v l,ε is harmonic in S l,ε (r 0 ), continuous on S l,ε (r 0 ) and v l,ε = 0 on B (0, r 0 ) ∩ ∂S l,ε (r 0 ). On the other hand, since S l,ε (r 0 ) ⊂ Ω 1 , we have that w 0 is continuous on S l,ε (r 0 ) and positive on S l,ε (r 0 )\ {0}. Furthermore, since h, w 0 > 0 in S l,ε (r 0 ), it follows from the Euler-Lagrange equation of w 0 that ∆w 0 > 0 in S l,ε (r 0 ). It follows that there exists δ l,ε > 0 such that w 0 ≥ δ l,ε v l,ε on ∂S l,ε (r 0 ) ∩ ∂B (0, r 0 ). By comparison, we then obtain that w 0 ≥ δ l,ε v l,ε in S l,ε (r 0 ). Since v l,ε (r, 0) = r l+ε , by taking ε < α, we then obtain that the number a 0 in (2.6) is positive. This ends the proof of (i) in Proposition 2.3.

Proof of Proposition 2.3 (ii).

It is easy to check that w κ ∈ E hκ,βκ ∩ C 2,α l,sym Ω for all κ ∈ (-1, 1). It remains to prove that w κ ∈ E nd hκ,βκ for κ ∈ (-κ 0 , κ 0 ) \ {0} with κ 0 small enough. Assume by contradiction that this is not the case, i.e. there exists a sequence of real numbers (κ j ) j∈N such that w κj is degenerate and κ j → 0. Let v j be a nonzero solution of the linearized equation ∆v j = λ κj h κj f w κj v j in Ω v j = 0 on ∂Ω, with

λ κj := 2β κj DI hκ j w κj .w κj = 2β 0 DI h (w 0 ) .w 0 = λ.
By renormalizing and passing to a subsequences, we may assume without loss of generality that ∇v j L 2 = 1 and (v j ) j∈N converges weakly to some function v 0 in H 1 0 (Ω). By using the compactness of the embedding H 1 0 (Ω) → L 2 (Ω) and remarking that β κ → β 0 and h κ , w κ → h, w 0 in C 0 Ω , we obtain that (v j ) j∈N converges strongly to v 0 in H 1 0 (Ω) and so ∇v 0 L 2 = 1. Furthermore, we obtain that v 0 is a solution of (2.1) with κ = 0. By using the definitions of h κ , β κ and w κ , in particular noticing that h κ exp w 2 κ = h exp w 2 0 , and recalling the equation satisfied by v j and v 0 , it follows that

Ω h 1 + 2w 2 κj exp w 2 0 v j v 0 dx = 1 2 DI h (w 0 ) .w 0 Ω ∇v j , ∇v 0 dx = Ω hf (w 0 ) v j v 0 dx
and so

Ω hw 2 0 exp w 2 0 v j v 0 dx = Ω h w 2 κj -w 2 0 κ j (κ j + 2) exp w 2 0 v j v 0 dx = 0.
(2.7)

By passing to the limit into (2.7), we obtain

Ω hw 2 0 exp w 2 0 v 2 0 dx = 0,
which gives w 0 v 0 = 0 in Ω. Since ∇w 0 2 L 2 = β 0 = 0, by unique continuation (see Aronszajn [START_REF] Aronszajn | A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order[END_REF] and Cordes [START_REF] Cordes | Über die eindeutige Bestimmtheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben[END_REF]), we obtain that w 0 = 0 in a dense subset D of Ω and so v 0 = 0 on D. By continuity of v 0 , it follows that v 0 = 0 in Ω. This is in contradiction with ∇v 0 L 2 = 1. This ends the proof of (ii) in Proposition 2.3.

The result of (iii) in Proposition 2.3 will follow from the following:

Proposition 2.4. Let l ∈ N , p ≥ 2, α ∈ (0, 1)
and Ω be a smooth, bounded domain such that 0 ∈ Ω and Ω is symmetric with respect to the line 2j for all j ∈ {0, . . . , l -1}. Let

β 0 > 0, h ∈ C p-2,α l,sym (Ω) ∩ C 2 Ω be positive in Ω and w 0 ∈ E nd h,β 0 ∩ C p,α l,sym (Ω) ∩ C
2 Ω be such that w 0 (0, 0) = 0 and w 0 (r, 0) > 0 for small r > 0. Let D be the set of all functions ĥ

∈ C p-2,α l,sym (Ω) ∩ C 2 Ω such that Ω G h (•, 0) ĥf (w 0 ) dx < 0,
where G h is the Green's function of the operator

∆ - 2β 0 hf (w 0 ) DI h (w 0 ) .w 0 with boundary condition G h (•, 0) ∂Ω = 0. Then D is a non-empty open subset of C p-2,α l,sym (Ω)∩ C 2 Ω
and for every ĥ ∈ D, there exists ε 0 > 0 such that for every ε ∈ (0, ε 0 ), there exist

β ε > 0 and w ε ∈ E hε,β ε ∩ C p,α l,sym (Ω) ∩ C 2 Ω
, where h ε := h + ε ĥ, such that β ε 0≤ε≤ε0 and (w ε ) 0≤ε≤ε0 are smooth in ε and ∂ ε [w ε (0)] ε=0 < 0 and w ε (0) < 0 for all ε ∈ (0, ε 0 ).

Proof. We begin with proving that D is not empty. Since G h (•, 0) > 0 near 0, w 0 ∈ C p,α l,sym (Ω) and w 0 (r, 0) > 0 for small r > 0, we obtain that there exists x 0 ∈ Ω and r 0 > 0 such that G h (•, 0) w 0 > 0 in B (x 0 , r 0 ) and B (x 0 , r 0 ) ⊂ Ω 0 , where

Ω 0 := {(x 1 , x 2 ) ∈ Ω : 0 < x 2 < x 1 tan (π/l)} . Let χ ∈ C ∞ (Ω) be such that χ > 0 in B (x 0 , r 0 ) and χ ≡ 0 in B (x 0 , r 0 ) c . Let χ sym be the unique function in C p-2,α l,sym (Ω) ∩ C 2 Ω such that χ sym ≡ χ in Ω 0 . By symmetry and since G h (•, 0) χw 0 > 0 in B (x 0 , r 0 ) and χ = 0 in B (x 0 , r 0 ) c , we obtain Ω G h (•, 0) χ sym f (w 0 ) dx = 2l Ω G h (•, 0) χf (w 0 ) dx > 0, i.e. -χ sym ∈ D.
This proves that D is not empty. Now, we prove the second part of Proposition 2.4. Since h

∈ C p-2,α l,sym (Ω) ∩ C 2 Ω and w 0 ∈ E nd h,β 0 ∩ C p,α l,sym (Ω) ∩ C 2 Ω
, it follows from the implicit function theorem together with standard elliptic regularity that there exist a neighborhood N of h in C p-2,α l,sym (Ω) ∩ C 2 Ω and a smooth mapping w : N → C p,α l,sym (Ω) ∩ C 2 Ω such that w h = w 0 and for every h

∈ N , U = w h is a solution of the problem      ∆ U = 2β 0 hf U DI h (w 0 ) .w 0 in Ω U = 0 on ∂Ω.
(2.8)

Note that (2.8) is equivalent to U ∈ E h,β h , where

β h := β 0 DI h U . U DI h (w 0 ) .w 0 .
In particular, we obtain that for every ĥ ∈ D, there exists ε 0 ∈ (0, 1) such that for every ε ∈ (0, ε 0 ), there exist

β ε = β h ε > 0 and w ε = w h ε ∈ E hε,β ε ∩ C p,α l,sym (Ω) ∩ C 2 Ω
, where h ε := h + ε ĥ such that β ε 0≤ε≤ε0 and (w ε ) 0≤ε≤ε0 are smooth in ε. Furthermore, by differentiating (2.8), we obtain

     ∆ -2β 0 DI h (w 0 ) .w 0 -1 hf (w 0 ) ∂ ε [w ε ] ε=0 = 2β 0 ĥf (w 0 ) DI h (w 0 ) .w 0 in Ω ∂ ε [w ε ] ε=0 = 0 on ∂Ω.
Since ĥ ∈ D, it follows that

∂ ε [w ε (0)] ε=0 = Ω G h (•, 0) ĥf (w 0 ) dx < 0.
Since w 0 (0) = 0, by taking ε 0 smaller if necessary, we then obtain that w ε (0) < 0 for all ε ∈ (0, ε 0 ). This ends the proof of Proposition 2.4.

Proof of Proposition 2.3 (iii). The result of (iii) in Proposition 2.3 is a direct consequence of Proposition 2.4 applied to β 0 := β κ , h 0 := h κ and w 0 := w κ .

Construction of the ansatz

This section is devoted to the construction of our ansatz. We let Ω, l, α and h be as in Theorem 1.2, fix β > 4π, β 0 > 0 and k ∈ N * such that β = β 0 + 4kπ and let a 0 , κ 0 , ε 0 , β κ , w κ , h κ , β κ,ε , u κ,ε and h κ,ε be as in Proposition 2.3. To prove that β is an unstable energy level of I h , by using a diagonal argument, one can easily see that it suffices to show that for every κ ∈ (-κ 0 , κ 0 ) \ {0}, the number β κ + 4kπ is an unstable energy level of I hκ . In what follows, we fix κ ∈ (-κ 0 , κ 0 ) \ {0} and for the sake of simplicity, we drop the dependance in κ from our notations. More precisely, we denote ε 0 := ε 0 (κ), β 0 := β κ , h 0 := h κ , w 0 := w κ , β ε := β κ,ε , h ε := h κ,ε and w ε := w κ,ε . Remark that the new function w 0 still satisfies the properties of (i) in Proposition 2.3 but now this function is moreover non-degenerate.

3.1. The bubbles. For every γ 0 > 0, we let B γ0 be the unique radial solution to the problem

∆B γ0 = f B γ0 in R 2 B γ0 (0) = γ 0 ,
where f (s) := s exp s 2 for all s ∈ R. Note that by standard ordinary differential equations theory, B γ0 is defined on [0, ∞). For every ε ∈ (0, ε 0 ), γ 0 > 0 and x 0 ∈ Ω, we then define

B ε,γ0,x0 (x) := B γ0 λ ε h ε (x 0 ) |x -x 0 | ∀x ∈ R 2 ,
where

λ ε := 2β ε DI hε (w ε ) .w ε -→ 2β DI h (w 0 ) .w 0 =: λ > 0, so that B ε,γ0,x0 solves the problem ∆B ε,γ0,x0 = λ ε h ε (x 0 ) f B ε,γ0,x0 in R 2 B ε,γ0,x0 (x 0 ) = γ 0 .
For every r > 0 such that B (x 0 , r) ⊂ Ω, we then let B ε,γ0,x0,r : Ω → R be the function defined as

B ε,γ0,x0,r (x) := B ε,γ0,x0 (x) -C ε,γ0,x0,r + A ε,γ0,x0,r H (x, x 0 ) x ∈ B (x 0 , r) A ε,γ0,x0,r G (x, x 0 ) otherwise (3.1)
for all x ∈ Ω, where G is the Green's function of the Laplace operator in Ω with boundary condition

G (•, x 0 )| ∂Ω = 0, H is the regular part of G, i.e. G (x, x 0 ) = 1 2π ln 1 |x -x 0 | + H (x, x 0 ) and A ε,γ0,x0,r , C ε,γ0,x0,r are constants chosen so that B ε,γ0,x0,r ∈ C 1 Ω , i.e. A ε,γ0,x0,r := B(x0,r) ∆B ε,γ0,x0 dx, (3.2) 
C ε,γ0,x0,r := B γ0 λ ε h ε (x 0 )r - A ε,γ0,x0,r 2π ln 1 r . (3.3)
3.2. The primary ansatz. For every ε ∈ (0, ε 0 ) and δ ∈ (0, 1), let Γ k ε and T k ε (δ) be the sets of parameters defined as

Γ k ε (δ) := γ = (γ 1 , . . . , γ k ) ∈ (0, ∞) k : |γ i -γ ε | < δγ ε , ∀i ∈ {1, . . . , k} , (3.4) 
T k ε (δ) := τ = (τ 1 , . . . , τ k ) ∈ R k : - kd ε δ < τ 1 < • • • < τ k < kd ε δ and |τ i -τ j | > δd ε , ∀i, j ∈ {1, . . . , k} , i = j , (3.5) 
where

γ ε := 2 (k + l -1) l |w ε (0)| ln 1 |w ε (0)| and d ε := γ -1/l ε . (3.6) 
From (3.6), w 0 (0) = 0 and ∂ ε [w ε (0)] ε=0 = 0, we get

w ε (0) ∼ - 2 (k + l -1) l ln γ ε γ ε , ε ∼ w ε (0) ∂ ε [w ε (0)] ε=0 = O ln γ ε γ ε , as ε → 0, (3.7) 
and since w 0 (r, 0) ∼ a 0 r l as r → 0, using the continuity of ∂ ε w ε (x) jointly in ε and x, and (3.7) we get for some ε 1 ∈ (0, ε)

w ε (τ i ) = w 0 (τ i ) + [w ε (τ i ) -w 0 (τ i )] = O d l ε + ε∂ ε [w ε (τ i )] ε=ε1 ∼ ε∂ ε [w ε (0)] ε=0 ∼ w ε (0) ∼ - 2 (k + l -1) ln γ ε lγ ε , as ε → 0, (3.8) uniformly in τ ∈ T k ε (δ). For every (γ, τ ) ∈ Γ k ε (δ) × T k ε (δ), we define U ε,γ,τ := w ε + k i=1 B ε,γi,τi ,
where B ε,γi,τi := B ε,γi,τi,rε , τ i := (τ i , 0), and for δ 0 ∈ (0, 1/2) to be fixed later,

r ε := µ δ0 ε , µ 2 ε := exp -γ 2 ε .
(3.9)

Claim 3.1. Set A ε,γi,τi := A ε,γi,τi,rε and C ε,γi,τi := C ε,γi,τi,rε . For every δ ∈ (0, 1) and i ∈ {1, . . . , k}, we have

A ε,γi,τi = 4π γ i + O 1 γ 3 ε , C ε,γi,τi = - 2 ln γ ε γ i + O 1 γ ε , (3.10) 
∂ γi [A ε,γi,τi ] = - 4π γ 2 i + O 1 γ 4 ε and ∂ γi [C ε,γi,τi ] = 2 ln γ ε γ 2 i + O 1 γ 2 ε (3.11) as ε → 0, uniformly in (γ, τ ) ∈ Γ k ε (δ) × T k ε (δ).
Furthermore, for every a ≥ 0 and δ ∈ 0, 1 -√ δ 0 (i.e. such that (1 -δ ) 2 > δ 0 ), we have

∂ τi [A ε,γi,τi ] = O 1 γ a ε and ∂ τi [C ε,γi,τi ] ∼ - ∂ x1 h ε (τ i ) h ε (τ i ) γ i = O 1 γ ε (3.12) as ε → 0, uniformly in (γ, τ ) ∈ Γ k ε (δ ) × T k ε (δ)
. The proof of Claim 3.1 is based on a precise asymptotic study of the bubbles B γ and is postponed to the Appendix.

3.3.

Correction of the error at the bottom of the bubbles. In this section, we modify our ansatz so to correct the error made outside the balls B (τ i , 2r ε ). We prove the following:

Proposition 3.2. Let Ω, l α and h be as in Theorem 1.2. Let k, ε 0 , h ε , w ε , λ ε , γ ε , τ i , r ε , δ 0 , Γ k ε (δ), T k ε (δ) and U ε,γ,τ be as in Sections 3.1 and 3.2. Let χ ∈ C ∞ (R) be such that 0 ≤ χ ≤ 1 in R, χ ≡ 1 in (-∞, 1] and χ ≡ 0 in [2, ∞). Define χ ε,τ (x) := 1 - k i=1 χ |x -τ i | + r 2 ε -r ε /r 2 ε ∀x ∈ R 2 .
For every δ ∈ (0, 1) and δ ∈ (0, 1-

√ 2δ 0 ), there exist ε 1 (δ, δ ) ∈ (0, ε 0 ) and C 1 = C 1 (δ, δ ) > 0 such that for every ε ∈ (0, ε 1 (δ, δ )) and (γ, τ ) ∈ Γ k ε (δ ) × T k ε (δ), there exists a unique solution Ψ ε,γ,τ ∈ C l,α (Ω) ∩ C 2 Ω to the problem ∆ (w ε + Ψ ε,γ,τ ) = λ ε h ε χ ε,τ f U ε,γ,τ + Ψ ε,γ,τ in Ω Ψ ε,γ,τ = 0 on ∂Ω (3.13)
such that Ψ ε,γ,τ is even in x 2 , continuously differentiable in (γ, τ ) and

Ψ ε,γ,τ C 1 ≤ C 1 γ ε , D γ [Ψ ε,γ,τ ] C 1 ≤ C 1 γ 2 ε , (3.14) 
D τ [Ψ ε,γ,τ ] H 1 + D τ [Ψ ε,γ,τ ] C 0 ≤ C 1 γ ε . (3.15)
Finally, setting U ε,γ,τ := U ε,γ,τ + Ψ ε,γ,τ , there exists p 0 = p 0 (δ 0 , δ ) such that for every p ∈ [1, p 0 ], a ≥ 0 and i ∈ {1, . . . , k}, we have

exp U 2 ε,γ,τ 1 A(τi,rε,Rε) L p = O 1 γ a ε , exp U 2 ε,γ,τ B a ε,γi,τi 1 Ω Rε,τ L p = O 1 γ a ε , (3.16 
)

∂ τi [χ ε,τ ] f (U ε,γ,τ ) L p = O 1 γ a ε , f (U ε,γ,τ ) ∂ τi [U ε,γ,τ ] 1 Ωr ε,τ L p = O (γ ε ) (3.17) uniformly in (γ, τ ) ∈ Γ k ε (δ ) × T k ε (δ)
, where R ε := exp (-γ ε ) and

A (τ i , r, R) := B (τ i , R) \B (τ i , r) and Ω r,τ := Ω\ k i=1 B (τ i , r) (3.18)
for all R > r > 0

In other words, the function

U ε,γ,τ := U ε,γ,τ + Ψ ε,γ,τ = w ε + k i=1 B ε,γi,τi + Ψ ε,γ,τ , (3.19) 
where Ψ ε,γ,τ is given by Proposition 3.2, is an exact solution outside the balls B τ i , r ε + r 2 ε for all i ∈ {1, . . . , k}, and it satisfies

∆U ε,γ,τ = ∆B ε,γi,τi = ∆B ε,γi,τi = λ ε h ε (τ i ) f B ε,γi,τi in B (τ i , r ε ) λ ε h ε χ ε,τ f (U ε,γ,τ ) in Ω rε,τ . (3.20) 
Since the proof of Proposition 3.2 is lenghty, but not necessary to understand the rest of the construction, it is postponed to Section 5.

For later use, we also observe that (3.1), (3.6), (3.9), (3.10) and (3.14) give

U ε,γ,τ = δ 0 γ ε (1 + o(1)) in Ω i ε := B(τ i , r ε + r 2 ε ) \ B(τ i , r ε ), hence f (U ε,γ,τ ) = O µ -2δ 2 0 +o(1) ε , in Ω i ε . (3.21)
3.4. Adjustment of the values at the centers of the bubbles. In this section, we refine the range of the parameters γ i so to optimize the error made in the regions B (τ i , r ε ).

Let us start by expanding

U ε,γ,τ (x) = B ε,γi,τi (x) + E (i) ε,γ,τ + F (i) ε,γ,τ (x) (3.22) 
for all x ∈ B (τ i , r ε ), where

E (i) ε,γ,τ := w ε (τ i ) -C ε,γi,τi + A ε,γi,τi H (τ i , τ i ) + j =i A ε,γj ,τj G (τ i , τ j ) + Ψ ε,γ,τ (τ i ) , (3.23) 
F (i) ε,γ,τ (x) := w ε (x) -w ε (τ i ) + A ε,γi,τi (H(x, τ i ) -H (τ i , τ i )) + j =i A ε,γj ,τj (G (x, τ j ) -G (τ i , τ j )) + Ψ ε,γ,τ (x) -Ψ ε,γ,τ (τ i ) . (3.24) Note that F (i) ε,γ,τ (τ i ) = 0, so F (i) ε,γ,τ is small in B (τ i , r ε ). Instead the constant E (i) ε,γ,τ
might be large depending on the choice of γ and τ . In the next proposition we show that we can choose γ ε (τ ) ∼ γ ε depending on τ and ε in such a way that E (i) ε,γ ε (τ ),τ = 0 for all i ∈ {1, . . . , k}. Proposition 3.3. Let δ 0 , ε 1 and Ψ ε,γ,τ be as in Proposition 3.2. Then for every δ ∈ (0, 1) and δ ∈ 0, 1 -√ 2δ 0 , there exists ε 2 (δ, δ ) ∈ (0, ε 1 (δ, δ )) such that for every ε ∈ (0, ε 2 (δ, δ )) and τ ∈ T k ε (δ), there exists a unique γ ε (τ

) = γ 1,ε (τ ) , . . . , γ k,ε (τ ) ∈ Γ k ε (δ ) such that γ k,ε ( 
τ ) is continuous in τ and for every i ∈ {1, . . . , k}, we have

U ε,γ ε (τ ),τ (τ i ) = γ i,ε (τ ) and γ i,ε (τ ) ∼ γ ε (3.25)
as ε → 0, uniformly in τ ∈ T k ε (δ). Proof. For every γ ∈ Γ k ε (δ ), we denote γ := γ/γ ε . We let I := (1 -δ , 1 + δ ) and E ε,τ :

I k → R k , E ε,τ = E (1) ε,τ , . . . , E (k)
ε,τ be the function defined by

E (i) ε,τ (γ) := γ ε ln γ ε E (i) ε,γ,τ ∀γ ∈ I k , i ∈ {1, . . . , k} .
In particular, E ε,τ ∈ C 

→ E 0 = E (1) 0 , • • • , E (k) 0 in C 1 (I k ) as ε → 0, uniformly in τ ∈ T k ε (δ)
, where

E (i) 0 (γ) := 2 γi + 2 l j =i 1 γj - 2 (k + l -1) l
for all i ∈ {1, . . . , k} and γ = (γ 1 , . . . , γk ) ∈ I k . In particular, E 0 (1, . . . , 1) = 0 and det (DE 0 (1, . . . , 1)) = 0.

(3.27)

By applying the implicit function theorem, it follows from (3.27) that there exists ε 2 (δ, δ ) ∈ (0, ε 1 (δ, δ )) such that for every ε ∈ (0, ε 2 (δ, δ )) and τ ∈ T k ε (δ), there exists a unique γε (τ ) ∈ I k such that γε (τ ) is continuous in τ , E ε,τ (γ ε (τ )) = 0 and γε (τ ) → (1, . . . , 1) as ε → 0, uniformly in τ ∈ T k ε (δ), i.e. there exists a unique γ ε (τ ) = γ ε γε (τ ) ∈ Γ k ε (δ ) such that γ ε (τ ) is continuous in τ and (3.25) holds true. This ends the proof of Proposition 3.3. Now, we refine the set Γ k ε (δ ) by defining

Γ k ε (τ ) := γ = (γ 1 , . . . , γ k ) ∈ (0, ∞) k : |γ i -γ i,ε (τ ) | < δ ε γ ε , ∀i ∈ {1, . . . , k} , (3.28) 
where γ 1,ε (τ ) , . . . , γ k,ε (τ ) are the numbers obtained in Proposition 3.3 and

δ ε := µ δ1+1/2 ε , (3.29) 
where µ ε is as in (3.9) and δ 1 ∈ (0, 1/2) is a number that we shall fix later.

Note that for every δ, δ ∈ (0, 1), we have

Γ k ε (τ ) ⊂ Γ k ε (δ ) (3.30)
for small ε > 0, uniformly in τ ∈ T k ε (δ). Therefore, we can fix

δ := 1 - √ 2δ 0 2
in what follows and let ε 3 (δ) ∈ (0, ε 2 (δ, δ )) be such that (3.30) holds true together with the results of Propositions 3.2 and 3.3 for all ε ∈ (0, ε 3 (δ)) and τ ∈ T k ε (δ).

3.5. An additional variation in the directions of the bubbles. We now introduce an additional family of parameters θ = (θ 1 , . . . , θ k ) ∈ R k and define our final ansatz as

U ε,γ,τ,θ := U ε,γ,τ + k i=1 θ i B ε,γi,τi = w ε + k i=1 (1 + θ i ) B ε,γi,τi + Ψ ε,γ,τ , for θ ∈ Θ k ε (δ) := θ = (θ 1 , . . . , θ k ) ∈ R k : |θ i | < δ ε ln γ ε γ 4 ε , ∀i ∈ {1, . . . , k} , (3.31) 
where γ ε and δ ε are as in (3.6) and (3.29). Finally, we define

P k ε (δ) := (γ, τ, θ) ∈ (0, ∞) k × T k ε (δ) × Θ k ε : γ ∈ Γ k ε (τ ) ,
where T k ε (δ), Γ k ε (τ ) and Θ k ε are defined as in (3.5), (3.28) and (3.31), respectively.

3.6. Pointwise estimates near the centers of the bubbles. We can now prove the following:

Proposition 3.4. Let γ ε (τ ) be as in Proposition 3.3. Then for every i ∈ {1, . . . , k} and δ ∈ (0, 1) we have

∂ γi E (i) ε,γ,τ = - 2 ln γ ε γ 2 ε + o ln γ ε γ 2 ε , ∂ γj E (i) ε,γ,τ = - 2 ln γ ε lγ 2 ε + o ln γ ε γ 2 ε , for j = i, E (i) ε,γ,τ = - 2 ln γ ε γ 2 ε   (γ i -γ i,ε (τ )) + j =i γ j -γ j,ε (τ ) l   + o |γ -γ ε (τ )| ln γ ε γ 2 ε as ε → 0, uniformly in τ ∈ T k ε (δ) and γ ∈ Γ k ε (τ ).
Proof. Using (3.11), (3.23), (3.14) and noticing that for (γ 1 , . . . , γ k ) ∈ Γ k ε (τ ) we have γ j ∼ γ ε for j = 1, . . . , k, we get

∂ γi E (i) ε,γ,τ = -∂ γi [C ε,γi,τi ] + ∂ γi [A ε,γi,τi ] H (τ i , τ i ) + ∂ γi [Ψ ε,γ,τ ] = - 2 ln γ ε γ 2 i (1 + o (1)) - 4π γ 2 i O (1) + O 1 γ 2 ε = - 2 ln γ ε γ 2 ε + o ln γ 2 ε γ 2 ε
as ε → 0. For the case j = i, using (3.6), we estimate

G (τ i , τ j ) = 1 2π ln 1 d ε + O (1) = 1 2πl ln γ ε + O (1) , uniformly in τ ∈ T k ε (δ) , hence ∂ γj E (i) ε,γ,τ = ∂ γj A ε,γj ,τj G (τ i , τ j ) + ∂ γj [Ψ ε,γ,τ ] = - 4π γ 2 j 1 2πl ln γ ε + O (1) + O 1 γ 2 ε = - 2 ln γ ε lγ 2 ε + o ln γ 2 ε γ 2 ε . Now, since E (i) ε,γ ε (τ ),τ = 0, integrating the gradient of E (i)
ε,γ,τ with respect to γ from γ ε (τ ) to a generic γ ∈ Γ k ε (τ ), the last identity follows at once. Proposition 3.5. For every i ∈ {1, . . . , k} and δ ∈ (0, 1), we have

F (i) ε,γ,τ (x) = a 0 lτ l-1 i - 2 γ ε j =i 1 τ i -τ j (x 1 -τ i ) + o |x -τ i | γ ε d ε , (3.32) 
and for every i, j ∈ {1, . . . , k},

∂ γj F (i) ε,γ,τ (x) = O |x -τ i | γ 2 ε d ε (3.33) as ε → 0, uniformly in x = (x 1 , x 2 ) ∈ B (τ i , r ε ) and (γ, τ, θ) ∈ P k ε (δ).
Proof. Note that F (i) ε,γ,τ (τ i ) = 0. Then, by using (3.7), (3.10) and (3.15) and since w ε = w 0 + O (ε) in C 1 (Ω), w 0 (r, 0) ∼ a 0 r l as r → 0 and ∂ x2 w 0 (0, 0) = 0, we obtain

F (i) ε,γ,τ (x) = 1 0 ∇F (i) ε,γ,τ ((1 -t) τ i + tx) , x -τ i dt = 1 0 ∇w 0 ((1 -t) τ i + tx) , x -τ i - j =i A ε,γj ,τj (1 -t) τ i + tx -τ j , x -τ i 2π |(1 -t) τ i + tx -τ j | 2 dt + O (ε |x -τ i |) = a 0 lτ l-1 i - 2 γ ε j =i 1 τ i -τ j (x 1 -τ i ) + o |x -τ i | γ 1-1/l ε as ε → 0, uniformly in x = (x 1 , x 2 ) ∈ B (τ i , r ε ), τ ∈ T k ε (δ) and γ ∈ Γ k ε (τ )
, hence proving (3.32). Differentiating (3.24) and using Claim 3.1, (3.33) also follows at once. Proposition 3.6. For every i ∈ {1, . . . , k} and δ ∈ (0, 1), we have

U ε,γ,τ,θ (x) = B ε,γi,τi (x) + a 0 lτ l-1 i - 2 γ ε j =i 1 τ i -τ j (x 1 -τ i ) + o |x -τ i | γ 1-1/l ε + O δ ε ln γ ε γ 3 ε (3.34) as ε → 0, uniformly in x = (x 1 , x 2 ) ∈ B (τ i , r ε ) and (γ, τ, θ) ∈ P k ε (δ).
In particular, for every δ ∈ (0, 1), there exists ε 4 (δ) ∈ (0, ε 3 (δ)), where ε 3 (δ) is as in Section 3.5, such that B ε,γi,τi (x) > 0 and U ε,γ,τ,θ > 0 in B (τ i , r ε ) (3.35) for all ε (δ) ∈ (0, ε 4 (δ)), (γ, τ, θ) ∈ P k ε (δ) and i ∈ {1, . . . , k}. Proof. In order to prove (3.34), it suffices to write

U ε,γ,τ,θ (x) = B ε,γi,τi (x) + E (i) ε,γ,τ + F (i) ε,γ,τ (x) + k j=1 θ j B ε,γj ,τj (x) in B (τ i , r ε )
and apply Proposition 3.4 to bound

E (i) ε,γ,τ + k j=1 θ i B ε,γj ,τj = O δ ε ln γ ε γ 3 ε and Proposition 3.5 to estimate F (i)
ε,γ,τ (x). It then follows from (3.34) and (6.2) that (3.35) holds true for small ε > 0, uniformly in (γ, τ, θ) ∈ P k ε (δ).

Proof of Theorems 1.2 and 1.3

This section is devoted to the proof of Theorems 1.2 and 1.3. We let Ω, l, α and h be as in Theorem 1.2, fix β > 4π, β 0 > 0 and k ∈ N * such that β = β 0 + 4kπ and let

β ε , h ε , w ε , λ ε , γ ε , µ ε , d ε , r ε , δ ε , δ 0 , δ 1 , γ i,ε (τ ), B ε,γ0,x0 , A ε,γ,x,r , C ε,γ,x,r , G, H, B ε,γi,τi , U ε,γ,τ , χ ε,τ , Ψ ε,γ,τ , U ε,γ,τ,θ , Γ k ε (δ), Γ k ε (τ ), T k ε (δ), Θ k ε and P k ε (δ) be as in Section 3. We define R ε,γ,τ,θ := U ε,γ,τ,θ -∆ -1 [λ ε h ε f (U ε,γ,τ,θ )] . (4.1)
As a first step, we obtain the following: Proposition 4.1. Let ε 4 be as in Proposition 3.6. Assume that

3- √ 5 4 < δ 0 < 1 2 and 0 < δ 1 < 3δ 0 -2δ 2 0 -1 2 . (4.2)
Then for every δ ∈ (0, 1), there exist ε 5 (δ) ∈ (0, ε 4 (δ)) and

C 5 = C 5 (δ) > 0 such that R ε,γ,τ,θ H 1 0 ≤ C 5 δ ε ln γ ε γ 2 ε (4.3)
for all ε ∈ (0, ε 5 (δ)) and (γ, τ, θ) ∈ P k ε (δ).

Proof. For every ψ ∈ H 1 0 (Ω), using that B ε,γi,τi ∈ V ε,γ,τ , integrating by parts and using (3.20), we obtain

R ε,γ,τ,θ , ψ H 1 0 = U ε,γ,τ,θ -∆ -1 [λ ε h ε f (U ε,γ,τ,θ )] , ψ H 1 0 = Ω ∆U ε,γ,τ,θ -λ ε h ε f (U ε,γ,τ,θ ) ψdx = λ ε Ω k i=1 (1 + θ i ) h ε (τ i ) f B ε,γi,τi 1 B(τi,rε) + h ε χ ε,τ f U ε,γ,τ -h ε f (U ε,γ,τ,θ ) ψdx + k i=1 θ i Ω ψ∆B ε,γi,τi dx. (4.4)
By using the definition of χ ε,τ together with the mean value theorem, we obtain

k i=1 (1 + θ i ) h ε (τ i ) f B ε,γi,τi 1 B(τi,rε) + h ε χ ε,τ f U ε,γ,τ -h ε f (U ε,γ,τ,θ ) ≤ k i=1 h ε (τ i ) f B ε,γi,τi -h ε f (U ε,γ,τ,θ ) + |θ i | h ε (τ i ) f B ε,γi,τi 1 B(τi,rε) + h ε k i=1 f U ε,γ,τ 1 A(τi,rε,rε+r 2 ε ) + h ε f U ε,γ,τ -f (U ε,γ,τ,θ ) 1 Ωr ε,τ ≤ k i=1 h ε f (1 -t 1 ) B ε,γi,τi + t 1 U ε,γ,τ,θ U ε,γ,τ,θ -B ε,γi,τi + |∇h ε ((1 -t 2 ) τ i + t 2 x)| |x -τ i | f B ε,γi,τi 1 B(τi,rε) + h ε k i=1 f U ε,γ,τ 1 A(τi,rε,rε+r 2 ε ) + h ε (τ i ) f B ε,γi,τi + h ε f U ε,γ,τ + t 3 k i=1 θ i B ε,γi,τi k i=1 |θ i | B ε,γi,τi 1 Ωr ε,τ (4.5) 
for some functions t 1 , t 2 , t 3 : Ω → [0, 1], where A τ i , r ε , r ε + r 2 ε and Ω rε,τ are as in (3.18). Since λ ε → λ 0 and h ε → h 0 in C 1 Ω , it follows from (4.4) and (4.5) that

R ε,γ,τ,θ , ψ H 1 0 = O k i=1 Ω f (1 -t 1 ) B ε,γi,τi + t 1 U ε,γ,τ,θ U ε,γ,τ,θ -B ε,γi,τi + |x -τ i | f B ε,γi,τi 1 B(τi,rε) + f U ε,γ,τ 1 A(τi,rε,rε+r 2 ε ) + f U ε,γ,τ + t 4 k j=1 θ j B ε,γj ,τj |θ i | B ε,γi,τi 1 Ωr ε,τ |ψ|dx . (4.6)
For every i ∈ {1, . . . , k}, by using (3.34) and remarking that f (u) ≤ 3uf (u) for all u ≥ 1, we obtain

B(τi,rε) f (1 -t 1 ) B ε,γi,τi + t 1 U ε,γ,τ,θ U ε,γ,τ,θ -B ε,γi,τi + |x -τ i | f B ε,γi,τi × |ψ|dx = O B(τi,rε) f B ε,γi,τi δ ε ln γ ε γ 2 ε + γ 1/l ε |x -τ i | |ψ|dx . (4.7)
By integrating by parts, we obtain

B(τi,rε) f B ε,γi,τi |ψ| dx = (λ ε h ε (τ i )) -1 B ε,γi,τi , |ψ| H 1 0 ≤ (λ ε h ε (τ i )) -1 B ε,γi,τi H 1 0 ψ H 1 0 = O ψ H 1 0 . (4.8) 
On the other hand, for every p > 1, by using Hölder's inequality together with the continuity of the embedding H 1 0 (Ω) → L p (Ω), where p is the conjugate exponent of p, we obtain

B(τi,rε) f B ε,γi,τi |x -τ i | |ψ| dx = O f B ε,γi,τi |x -τ i | 1 B(τi,rε) L p ψ H 1 0 , (4.9) 
A(τi,rε,rε+r 2 ε ) f U ε,γ,τ |ψ| dx = O f U ε,γ,τ 1 A(τi,rε,rε+r 2 ε ) L p ψ H 1 0 , (4.10 
)

Ωr ε,τ f B ε,γi,τi + f U ε,γ,τ + t 4 k j=1 θ j B ε,γj ,τj B ε,γi,τi |ψ| dx = O f B ε,γi,τi + f U ε,γ,τ + t 4 k j=1 θ j B ε,γj ,τj B ε,γi,τi 1 Ωr ε,τ L p ψ H 1 0 . (4.11)
By rescaling, we obtain

f B ε,γi,τi |x -τ i | 1 B(τi,rε) p L p = µ p+2 i,ε B(0,rε/µi,ε) f B ε,γi,τi (τ i + µ i,ε x) p |x| p dx, where µ i,ε is defined by µ 2 i,ε := 4γ -2 i,ε exp -γ 2 i,ε . By using (3.10) and (6.2), it follows that f B ε,γi,τi |x -τ i | 1 B(τi,rε) p L p = O µ p+2 i,ε B(0,rε/µi,ε) f γ i,ε - 1 γ i,ε ln 1 1 + λ ε h ε (τ i ) |x| 2 p |x| p dx = O µ 2-p i,ε γ p ε B(0,rε/µi,ε) |x| p dx 1 + λ ε h ε (τ i ) |x| 2 2p = O µ 2-p i,ε γ p ε = o δ ε ln γ ε γ 2+1/l ε p (4.12) provided we choose p such that 2 -p > p (δ 1 + 1/2), i.e. 1 < p < 4/ (2δ 1 + 3), which is possible since δ 1 < 3δ 0 -2δ 2 0 -1/2 < 1/2.
As regards the terms in the right-hand sides of (4.10) and (4.11), by using (3.10) and (5.11) and proceeding as in (5.12)-(5.15) and (5.29), we obtain

f U ε,γ,τ 1 A(τi,rε,rε+r 2 ε ) p L p = O γ p ε ln (1 + r ε ) exp (pδ 0 -1) δ 0 γ 2 ε + o (γ ε ) = O γ p ε exp pδ 0 - 3 2 δ 0 γ 2 ε + o γ 2 ε = o δ ε ln γ ε γ 2 ε p , (4.13) 
f B ε,γi,τi + f U ε,γ,τ + t 4 k j=1 θ j B ε,γj ,τj B ε,γi,τi 1 Ωr ε,τ p L p = O γ 3p+2 ε exp (pδ 0 -1) δ 0 γ 2 ε + o γ 2 ε + 1 γ p ε Ω Rε,τ |ln |x -τ i | + O (1)| p dx = o (1) (4.14)
as ε → 0, uniformly in (γ, τ, θ) ∈ P k ε (δ), provided we choose p such that

pδ 0 - 3 2 δ 0 < - p 2 δ 1 + 1 2 and pδ 0 -1 < 0, i.e. 1 < p < min 3δ 0 2δ 2 0 + δ 1 + 1/2 , 1 δ 0 = 3δ 0 2δ 2 0 + δ 1 + 1/2
, which is possible when assuming (4.2). By putting together (4.6)-(4.14) and using the fact

that |θ i | < δ ε γ -4 ε ln γ ε , we obtain (4.
3). This ends the proof of Proposition 4.1. We let H be the vector space of all functions in H 1 0 (Ω) that are even in x 2 . For every

τ ∈ T k ε (δ) and γ ∈ Γ k ε (τ ), we define V ε,γ,τ := span {Z 0,i,ε,γ,τ , Z 1,i,ε,γ,τ , B ε,γi,τi } 1≤i≤k ,
where

Z 0,i,ε,γ,τ := ∂ γi [U ε,γ,τ,0 ] and Z 1,i,ε,γ,τ := ∂ τi [U ε,γ,τ,0 ] ∀i ∈ {1, . . . , k} .
Note that U ε,γ,τ,0 ∈ H and V ε,γ,τ ⊂ H. We let Π ε,γ,τ and Π ⊥ ε,γ,τ be the orthogonal projection of H onto V ε,γ,τ and V ⊥ ε,γ,τ , respectively. We obtain the following: Proposition 4.2. Assume that (4.2) holds true. Let ε 5 be as in Proposition 4.1. Then for every δ ∈ (0, 1), there exist ε 6 (δ) ∈ (0, ε 5 (δ)) and

C 6 = C 6 (δ) > 0 such that for every ε ∈ (0, ε 6 (δ)) and (γ, τ, θ) ∈ P k ε (δ), there exists a unique solution Φ ε,γ,τ,θ ∈ V ⊥ ε,γ,τ to the equation Π ⊥ ε,γ,τ U ε,γ,τ,θ + Φ ε,γ,τ,θ -∆ -1 [λ ε h ε f (U ε,γ,τ,θ + Φ ε,γ,τ,θ )] = 0 (4.15) such that Φ ε,γ,τ,θ H 1 0 ≤ C 6 δ ε ln γ ε γ 2 ε . (4.16) Furthermore, Φ ε,γ,τ,θ is continuous in (γ, τ, θ).
The proof of Proposition 4.2 relies on the following: Lemma 4.3. Let ε 5 be as in Proposition 4.1. For every δ ∈ (0, 1), there exist ε 5 (δ) ∈ (0, ε 5 (δ)) and C 5 = C 5 (δ) > 0 such that for every ε ∈ (0, ε 5 (δ)) and (γ, τ, θ)

∈ P k ε (δ), the operator L ε,γ,τ,θ : V ⊥ ε,γ,τ → V ⊥ ε,γ,τ defined by L ε,γ,τ,θ (Φ) = Π ⊥ ε,γ,τ Φ -∆ -1 [λ ε h ε f (U ε,γ,τ,θ ) Φ] ∀Φ ∈ V ⊥ ε,γ,τ (4.17) satisfies Φ H 1 0 ≤ C 5 L ε,γ,τ,θ (Φ) H 1 0 . (4.18)
In particular, L ε,γ,τ,θ is an isomorphism.

Proposition 4.2 and Lemma 4.3 (together with Proposition 4.4 and Lemma 4.5), are the heart of the Lyapunov-Schmidt procedure. We prove them by using a similar approach as in the case of higher dimensions (see for instance Deng-Musso-Wei [START_REF] Deng | Sign-changing blow-up solutions for Yamabe problem[END_REF] and Robert-Vétois [START_REF] Robert | Sign-Changing Blow-Up for Scalar Curvature Type Equations[END_REF][START_REF]A general theorem for the construction of blowing-up solutions to some elliptic nonlinear equations via Lyapunov-Schmidt's reduction[END_REF]). Aside from the usual differences in the computations due to the exponential term, the main difference here lies in the use of the Poincaré-Sobolev inequalities (7.2) and (7.7), which take advantage of the additional dimensions of the kernel V ε,γ,τ given by the directions of the bubbles.

Proof of Lemma 4.3. We proceed by contradiction. We assume that there exist sequences

(ε n , γ n , τ n , θ n , Φ n ) n∈N * such that ε n → 0, (γ n , τ n , θ n ) ∈ P k ε (δ) and Φ n ∈ V ⊥ εn,γn,τn , Φ n H 1 0 = 1 and L εn,γn,τn,θn (Φ n ) H 1 0 = o (1) (4.19)
as n → ∞. For simplicity of notations, we denote

γ n := γ εn , r n := r εn , d n := d εn , λ n := λ εn , h n := h εn , w n := w εn , Ψ n := Ψ εn,γn,τn , U n := U εn,γn,τn,θn , B i,n := B εn,γi,n,τi,n , B i,n := B εn,γi,n,τi,n , L n := L εn,γn,τn,θn , V ⊥ n := V ⊥
εn,γn,τn and Z j,i,n := Z j,i,εn,γn,τn for all i ∈ {1, . . . , k} and j ∈ {0, 1}, where

γ n := (γ 1,n , . . . , γ k,n ), τ n := (τ 1,n , . . . , τ k,n ), τ i,n := (τ i,n , 0) and θ n := (θ 1,n , . . . , θ k,n ). It follows from (4.19) that λ n Ω h n f (U n ) Φ 2 n dx = Φ n 2 H 1 0 -Φ n , L n (Φ n ) H 1 0 = 1 + o (1) (4.20) 
as n → ∞. On the other hand, since f > 0, λ n → λ 0 and h n → h 0 in C 0 Ω , we obtain

λ n Ω h n f (U n ) Φ 2 n dx = O (I n ) , where I n := Ω f (U n ) Φ 2 n dx. (4.21)
In what follows, we will prove that I n → 0 as n → ∞, thus contradicting (4.20) and (4.21).

Estimation of I n in the balls B (τ i,n , r n ). For i ∈ {1, . . . , k}, by rescaling and using (4. [START_REF] Rey | The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent[END_REF], we obtain

B(τi,n,rn) f (U n ) Φ 2 n dx = µ 2 i,n B(0,rn/µi,n) f γ -1 i,n U n + γ i,n Φ 2 n dx, (4.22) 
(Ω-τi,n)/µi,n ∇ Φ n , ∇ψ dx -λ n µ 2 i,n (Ω-τi,n)/µi,n ĥn f γ -1 i,n U n + γ i,n Φ n ψdx = o ( ∇ψ L 2 ) ∀ψ ∈ C ∞ c R 2 (4.23)
as n → ∞, where µ i,n , ĥn , Φ n and U n are defined by

µ 2 i,n := 4γ -2 i,n exp -γ 2 i,n , ĥn (x) := h n (τ i,n + µ i,n x) , Φ n (x) := Φ n (τ i,n + µ i,n x) and U n (x) := γ i,n (U n (τ i,n + µ i,n x) -γ i,n )
for all x ∈ (Ω -τ i,n )/n. By using (3.10), (3.34) and (6.2), we obtain

U n (x) ∼ γ i,n B i,n (τ i,n + µ i,n x) -γ i,n ∼ ln 1 1 + λ n h n (τ i,n ) |x| 2 (4.24)
as n → ∞, uniformly in x ∈ B (0, r n /µ i,n ). By using (4.24) together with the definition of µ i,n , we obtain

µ 2 i,n f γ -1 i,n U n + γ i,n ∼ 8 1 + λ n h n (τ i,n ) |x| 2 2 (4.25) as n → ∞, uniformly in x ∈ B (0, r n /µ i,n ). By remarking that ∇ Φ n L 2 = ∇Φ n L 2 = 1
and using (4.23) and (4.25), we obtain that Φ n n converges, up to a subsequence, weakly in D 1,2 R 2 , strongly in L p loc R 2 for all p ≥ 1 and pointwise almost everywhere in R 2 to a solution Φ 0 of the equation

∆ Φ 0 = 8λ 0 h 0 (0) Φ 0 1 + λ 0 h 0 (0) |x| 2 2 in R 2 . (4.26)
Furthermore, since Φ n ∈ H, we obtain that Φ 0 is even in x 2 . By using a result of Baraket-Pacard [START_REF] Baraket | Construction of singular limits for a semilinear elliptic equation in dimension 2[END_REF], it follows that Φ 0 ∈ span {Z 0 , Z 1 }, where

Z 0 (x) := 1 -λ 0 h 0 (0) |x| 2 1 + λ 0 h 0 (0) |x| 2 and Z 1 (x) := 2λ 0 h 0 (0) x 1 1 + λ 0 h 0 (0) |x| 2 ∀x ∈ R 2 .
In particular, note that the Poincaré-Sobolev inequality (7.2) applies to Φ 0 . On the other hand, for every i ∈ {1, . . . , k}, since Φ n ∈ E ⊥ εn,γn,τn , we get

B i,n , Φ n H 1 0 = Z 0,i,n , Φ n H 1 0 = Z 1,i,n , Φ n H 1 0 = 0,
which, by integrating by parts and using the equations satisfied by B i,n , Z 0,i,n and Z 1,i,n , gives 

B(τi,n,rn) f B i,n Φ n dx = 0, (4.27) 
λ n h n (τ i,n ) B(τi,n,rn) f B i,n ∂ γi B εn,γ,τi,n γ=γi,n Φ n dx + Φ n , ∂ γi [Ψ εn,γ,τn,0 ] γ=γn H 1 0 = 0 (4.
f B i,n Φ 2 n dx = O ∇Φ n 2 L 2 = O (1) . (4.29)
On the other hand, by using Cauchy-Schwartz' inequality together with (3.14), (3.15) and (4.19), we obtain

Φ n , ∂ γi [Ψ εn,γ,τn,0 ] γ=γn H 1 0 = o (1) and Φ n , ∂ τi [Ψ εn,γn,τ,0 ] τ =τn H 1 0 = o (1) (4.30)
as n → ∞. By rescaling, it follows from (4.28) and (4.29) that

µ 2 i,n B(0,rn/µi,n) f B i,n (τ i,n + µ i,n x) Φ n (x) 2 dx = O (1) , (4.31) Φ n , ∂ γi [Ψ εn,γ,τn,0 ] γ=γn H 1 0 = -λ n h n (τ i,n ) µ 2 i,n B(0,rn/µi,n) f B i,n (τ i,n + µ i,n x) × ∂ γi B εn,γ,τi,n (τ i,n + µ i,n x) γ=γn Φ n (x) dx. (4.32)
Here again, we obtain an analogous estimate to (4.32) for the derivative in τ i . By using (6.2) and ( 6.

3) together with the definition of µ i,n , we obtain

∂ γi B εn,γ,τn (τ i,n + µ i,n x) γ=γn -→ Z 0 (x) for a.e. x ∈ R 2 , (4.33) ∂ γi B εn,γ,τn (τ i,n + µ i,n x) γ=γn = O (1) , (4.34) 
∂ τi B εn,γi,n,(τ,0) (τ i,n + µ i,n x) τ =τi,n = Z 1 (x) µ i,n γ i,n + o 1 µ i,n γ i,n (4.35) 
as n → ∞, uniformly in x ∈ B (0, r n /µ i,n ). For every R > 0, since Φ n n converges strongly to Φ 0 in L 1 loc R 2 , it follows from (4.24), (4.25) and (4.33) that

µ 2 i,n B(0,R) f B i,n (τ i,n + µ i,n x) ∂ γi B εn,γ,τi,n (τ i,n + µ i,n x) γ=γn Φ n (x) dx -→ 8 B(0,R) 8Z 0 (x) Φ 0 (x) dx 1 + λ 0 h 0 (0) |x| 2 2 (4.36)
as n → ∞. On the other hand, by using Hölder's inequality together with (4.24), (4.25), (4.31), (4.34) and ( 7.2), we obtain 

µ 2 i,n A(0,R,rn/µi,n) f B i,n (τ i,n + µ i,n x) ∂ γi B εn,γ,τi,n (τ i,n + µ i,n x) γ=γn Φ n (x) dx = O   µ 2 i,n A(0,R,rn/µi,n) f B i,n (τ i,n + µ i,n x) dx 1/2   = O   B(0,R) c dx 1 + λ n h n (τ i,n ) |x| 2 2 1/2   = o R (1) , (4.37) 
B(0,R) c Z 0 (x) Φ 0 (x) dx 1 + λ 0 h 0 (0) |x| 2 2 = O   B(0,R) c dx 1 + λ 0 h 0 (0) |x| 2 2 1/2   = o R (
R 2 Z 0 (x) Φ 0 (x) dx 1 + λ 0 h 0 (0) |x| 2 2 = 0. (4.39)
By proceeding in the same way but using (4.35) instead of (4.33)-(4.34), we obtain

R 2 Z 1 (x) Φ 0 (x) dx 1 + λ 0 h 0 (0) |x| 2 2 = 0. (4.40)
Since Φ 0 ∈ span {Z 0 , Z 1 }, it follows from (4.26), (4.39) and (4.40) that Φ 0 ≡ 0. For every R > 0, by using (4.25) and since Φ n n converges strongly to Φ 0 in L 2 loc R 2 , we then obtain

µ 2 i,n B(0,R) f γ -1 i,n U n + γ i,n Φ 2 n dx = o (1) (4.41)
as n → ∞. On the other hand, by proceeding as in (4.37), we obtain 

µ 2 i,n A(0,R,rn/µi,n) f γ -1 i,n U n + γ i,n Φ 2 n dx = o R (1) , ( 4 
f (U n ) Φ 2 n dx = O f (U n ) 1 A(τi,n,rn,Rn) L p Φ n 2 H 1 0 = O f (U n ) 1 A(τi,
Ω ∇Φ n , ∇ψ dx -λ n Ω h n f (U n ) Φ n ψdx = o (1) (4.45) as n → ∞, for all ψ ∈ C ∞ c (Ω)
. By rescaling as in (4.22) and using (4.25) together with the fact that Φ n 0 in D 1,2 R 2 , we obtain that k i=1 B(τi,n,rn)

h n f (U n ) Φ n ψdx = o (1) (4.46)
as n → ∞. By using similar estimates as in (4.44), we obtain k i=1 A(τi,n,rn,Rn)

h n f (U n ) Φ n ψdx = o (1) (4.47)
as n → ∞. By using (3.10), (3.14) and since w n → w 0 in C 0 Ω , we obtain that U n 1 Ω Rn ,τn is uniformly bounded and converges pointwise to u 0 in Ω. Since moreover

Φ n Φ 0 in H 1 0 (Ω), λ n → λ 0 and h n → h 0 in C 0 Ω , it follows from (4.45)-(4.47) that Φ 0 is a solution of the equation ∆Φ 0 = λ 0 h 0 f (w 0 ) Φ 0 in R n .
Since w 0 is non-degenerate, we then obtain that Φ 0 ≡ 0. It then follows from standard integration theory that Proof of Proposition 4.2. We let N ε,γ,τ,θ :

Ω Rn ,τn f (U n ) Φ 2 n dx = o (1) (4.48) as n → ∞.
V ⊥ ε,γ,τ → V ⊥ ε,γ,τ and T ε,γ,τ,θ : V ⊥ ε,γ,τ → V ⊥ ε,γ,τ be the operators defined as N ε,γ,τ,θ (Φ) := Π ⊥ ε,γ,τ ∆ -1 [λ ε h ε (f (U ε,γ,τ,θ + Φ) -f (U ε,γ,τ,θ ) -f (U ε,γ,τ,θ ) Φ)] , T ε,γ,τ,θ (Φ) := L -1 ε,γ,τ,θ N ε,γ,τ,θ (Φ) -Π ⊥ ε,γ,τ (R ε,γ,τ,θ )
for all Φ ∈ V ⊥ ε,γ,τ , where R ε,γ,τ,θ and L ε,γ,τ,θ are as in (4.1) and (4.17). Remark that the equation (4.15) can be rewritten as the fixed point equation T ε,γ,τ,θ (Φ) = Φ. For every C > 0, ε ∈ (0, ε 5 ) and (γ, τ, θ) ∈ P k ε (δ), we define

V ε,γ,τ,θ (C) := Φ ∈ V ⊥ ε,γ,τ : Φ H 1 0 ≤ C δ ε ln γ ε γ 2 ε .
We will prove that if C is chosen large enough, then T ε,γ,τ,θ has a fixed point in V γ,τ,θ (C). By using (4.18), we obtain

T ε,γ,τ,θ (Φ) H 1 0 ≤ C 5 N ε,γ,τ,θ (Φ) H 1 0 + R ε,γ,τ,θ H 1 0 . (4.49) For every Φ 1 , Φ 2 ∈ V ε,γ,τ,θ (C) and ψ ∈ V ⊥ ε,γ,τ
, by integrating by parts and applying the mean value theorem, we obtain

N ε,γ,τ,θ (Φ 1 ) -N ε,γ,τ,θ (Φ 2 ) , ψ H 1 0 = λ ε Ω h ε (f (U ε,γ,τ,θ + tΦ 1 + (1 -t) Φ 2 ) -f (U ε,γ,τ,θ )) (Φ 1 -Φ 2 ) ψdx = λ ε Ω h ε f (U ε,γ,τ,θ + stΦ 1 + s (1 -t) Φ 2 ) (tΦ 1 + (1 -t) Φ 2 ) (Φ 1 -Φ 2 ) ψdx (4.50) for some functions s, t : Ω → [0, 1]. Since λ ε → λ 0 , h ε → h 0 in C 0 Ω and f is increasing, it follows from (4.50) that N ε,γ,τ,θ (Φ 1 ) -N ε,γ,τ,θ (Φ 2 ) , ψ H 1 0 = O Ω f (|U ε,γ,τ,θ | + |Φ 1 | + |Φ 2 |) (|Φ 1 | + |Φ 2 |) |Φ 1 -Φ 2 | |ψ| dx . (4.51)
For every p > 1, by using Hölder's inequality together with the continuity of the embedding

H 1 0 (Ω) → L 3p (Ω), we obtain Ω f (|U ε,γ,τ,θ | + |Φ 1 | + |Φ 2 |) (|Φ 1 | + |Φ 2 |) |Φ 1 -Φ 2 | |ψ| dx = O f (|U ε,γ,τ,θ | + |Φ 1 | + |Φ 2 |) L p |Φ 1 | + |Φ 2 | H 1 0 Φ 1 -Φ 2 H 1 0 ψ H 1 0 . (4.52)
Since f is increasing, we obtain

f (|U ε,γ,τ,θ | + |Φ 1 | + |Φ 2 |) ≤ f U ε,γ,τ,θ + f Φ ε , (4.53) 
where

U ε,γ,τ,θ := (1 + δ ε ) |U ε,γ,τ,θ | and Φ ε := 1 + δ -1 ε (|Φ 1 | + |Φ 2 |) . Remark that Φ ε → 0 in H 1 0 (Ω) as ε → 0 since Φ 1 , Φ 2 ∈ V ε,γ,τ,θ (C)
. By using Hölder's inequality together with the Moser-Trudinger's inequality and the continuity of the embedding

H 1 0 (Ω) → L 6p (Ω), we then obtain f Φ ε L p = 2 Φ ε 3 + 2 Φ 2 ε exp Φ 2 ε L 2p ≤ 2 Φ ε H 1 0 3 + 2 Φ ε 2 H 1 0 exp Φ 2 ε L 2p = o (1) (4.54)
as ε → 0. For every i ∈ {1, . . . , k}, by remarking that f (s) ≤ 6sf (s) for all s ≥ 0 and using similar estimates as in (4.24) and (4.25), we obtain

f U ε,γ,τ,θ (x) = O    γ i (τ ) µ i (τ ) 2 µ i (τ ) 2 + |x -τ i | 2 2    (4.55)
uniformly in x ∈ B (τ i , r ε ), where µ i (τ ) is defined by

µ i (τ ) 2 := 4γ i (τ ) -2 exp -γ i (τ ) 2 .
It follows from (4.55) that

f U ε,γ,τ,θ 1 B(τi,rε) L p = O γ i (τ ) µ i (τ ) -2/p , (4.56) 
where p is the conjugate exponent of p. By using (3.16), we obtain

f U ε,γ,τ,θ 1 A(τi,rε,Rε) L p = o (1) (4.57)
as ε → 0, where R ε := exp (-γ ε ), provided we choose p such that p < 1/δ 0 . Furthermore, since U ε,γ,τ,θ is uniformly bounded in Ω Rε,τ , we obtain 

f U ε,γ,τ,θ 1 Ω Rε,τ L p = O (1
N ε,γ,τ,θ (Φ 1 ) -N ε,γ,τ,θ (Φ 2 ) H 1 0 = O γ i (τ ) µ i (τ ) -2/p |Φ 1 | + |Φ 2 | H 1 0 Φ 1 -Φ 2 H 1 0 . (4.59) Remark that since Φ 1 , Φ 2 ∈ V ε,γ,τ,θ (C), we obtain γ i (τ ) µ i (τ ) -2/p |Φ 1 | + |Φ 2 | H 1 0 = o (1) (4.60) 
as ε → 0, provided we choose p such that 2/p < δ 1 + 1/2, i.e. p < 4/ (3 -2δ 1 ). It follows from (4.59) and (4.60) that

N ε,γ,τ,θ (Φ 1 ) -N ε,γ,τ,θ (Φ 2 ) H 1 0 = o Φ 1 -Φ 2 H 1 0 (4.61)
as ε → 0. By using (4.3), (4.49), (4.61) and since N ε,γ,τ,θ (0) = 0, we obtain that there exist ε 6 (δ) ∈ (0, ε 5 (δ)) and C 6 = C 6 (δ) > 0 such that for every ε ∈ (0, ε 6 (δ)) and (γ, τ, θ) ∈ P k ε (δ), T ε,γ,τ,θ is a contraction mapping on V ε,γ,τ,θ (C 6 ). We can then apply the fixed point theorem, which gives that there exists a unique solution Φ ε,γ,τ,θ ∈ V ε,γ,τ,θ (C 6 ) to the equation (4.15). The continuity of Φ ε,γ,τ,θ in (γ, τ, θ) follows from the continuity of U ε,γ,τ,θ , Z 0,i,ε,γ,τ,θ and Z 1,i,ε,γ,τ,θ in (γ, τ, θ). This ends the proof of Proposition 4.2.

As a last step, we prove the following: Proposition 4.4. Let ε 6 and Φ ε,γ,τ,θ be as in Proposition 4.2. Then there exists δ 7 ∈ (0, 1) such that for every δ ∈ (0, δ 7 ), there exists ε 7 (δ) ∈ (0, ε 7 (δ)) such that for every ε ∈ (0, ε 7 (δ)), there exists

(γ ε , τ ε , θ ε ) ∈ P k ε (δ) such that U ε,γε,τε,θε + Φ ε,γε,τε,θε = ∆ -1 [λ ε h ε f (U ε,γε,τε,θε + Φ ε,γε,τε,θε )] . (4.62)
The proof of Proposition 4.4 relies on the following:

Lemma 4.5. Set R ε,γ,τ,θ := U ε,γ,τ,θ + Φ ε,γ,τ,θ -∆ -1 [λ ε h ε f (U ε,γ,τ,θ + Φ ε,γ,τ,θ )] .
Then for every i ∈ {1, . . . , k} and δ ∈ (0, 1), we have

R ε,γ,τ,θ , Z 0,i,ε,γ,τ H 1 0 = -8π k j=1 ∂ γi E (j) ε,γ,τ E (j) ε,γ,τ + θ j γ ε + 4π γ 2 ε E (i) ε,γ,τ + o δ ε ln γ ε γ 5 ε , (4.63) R ε,γ,τ,θ , B ε,γi,τi H 1 0 = -8πγ ε E (i) ε,γ,τ + θ i γ ε + o δ ε γ 2 ε , (4.64) R ε,γ,τ,θ , Z 1,i,ε,γ,τ H 1 0 = - 4π γ ε a 0 lτ l-1 i - 2 γ ε j =i 1 τ i -τ j + o 1 γ 2 ε d ε (4.65)
as ε → 0, uniformly in (γ, τ, θ) ∈ P k ε (δ). Remark 4.6. As an evidence of the strong interaction generated by the Moser-Trudinger critical nonlinearity, we stress that the variables θ and γ are intricately coupled in the expansions (4.63)-(4.65) used to determine (γ ε , θ ε , τ ε ). This is not the case for 2-dimensional Liouville-type equations (see for instance [START_REF] Chen | Topological degree for a mean field equation on Riemann surfaces[END_REF]), for which it is possible to construct blowing-up solutions without introducing neither the parameter θ nor the bubbles B ε,γi,τi in V ε,γ,τ (see for instance [START_REF] Esposito | On the existence of blowing-up solutions for a mean field equation[END_REF] working also in the H1 0 (Ω)-framework). Finally, even not facing a situation with clustering or nonzero weak limit like ours, it is delicate to get a clean energy expansion in the Moser-Trudinger critical case (see [START_REF]Beyond the Trudinger-Moser supremum[END_REF]). In particular, this expansion has to eventually fit with the cancellation pointed out by [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF] for the blow-up solutions.

Proof of (4.63). We start with computations that will be used also in the proofs of (4.64)-(4.64). Given Z ∈ H 1 0 (Ω), integration by parts yields

R ε,γ,τ,θ , Z H 1 0 = Ω [∆(U ε,γ,τ,θ + Φ ε,γ,τ,θ ) -f ε (U ε,γ,τ,θ + Φ ε,γ,τ,θ )]Zdx,
where we use the notation f ε = λ ε h ε f . 1 We now expand for real numbers U and R,

exp[(U + R) 2 ] = exp(U 2 ) exp(2U R + R 2 ) = exp(U 2 )[1 + 2U R + O(U 2 R 2 )] (4.66) uniformly for |U R| ≤ 1 and |R| ≤ 1 ≤ |U |, so that, recalling that f (t) = 1 + 2t 2 exp t 2 , f (U + R) = f (U ) + f (U ) R + O U 3 R 2 exp U 2 , (4.67) 
and similarly for f ε since λ ε h ε = O (1). We apply this to

U = U ε,γ,τ = u ε + k i=1 B ε,γi,τi + Ψ ε,γ,τ , R = Φ ε,γ,τ,θ := k i=1 θ i B ε,γi,τi + Φ ε,γ,τ,θ (4.68) to obtain f ε (U ε,γ,τ,θ + Φ ε,γ,τ,θ ) = f ε (U ε,γ,τ ) + f ε (U ε,γ,τ ) k i=1 θ i B ε,γi,τi + Φ ε,γ,τ,θ + O exp U 2 ε,γ,τ U 3 ε,γ,τ Φ 2 ε,γ,τ,θ .
Recalling Proposition 3.2, and in particular that U ε,γ,τ is an exact solution outside the balls

B τ j , r ε + r 2 ε , we get R ε,γ,τ,θ , Z H 1 0 = k j=1 B(τj ,rε) [∆U ε,γ,τ -f ε (U ε,γ,τ )] Zdx + k j=1 Ω j ε [∆U ε,γ,τ -f ε (U ε,γ,τ )] Zdx + k j=1 θ j Ω ∆B ε,γj ,τj -f ε (U ε,γ,τ ) B ε,γj ,τj Zdx + Ω [∆Φ ε,γ,τ,θ -f ε (U ε,γ,τ ) Φ ε,γ,τ,θ ] Zdx + O Ω |U ε,γ,τ | 3 exp U 2 ε,γ,τ Φ 2 ε,γ,τ,θ |Z| dx =: k j=1 [(A) j + (A ) j + (B) j ] + (C) + (D), (4.69) 
where Ω j ε := B τ i , r ε + r 2 ε \B (τ i , r ε ). We now set Z = Z 0,i,ε,γ,τ in (4.69) and estimate the various terms.

In order to evaluate (A) := k j=1 (A) j , expand as in (3.22)

U ε,γ,τ = B ε,γj ,τj + E (j) ε,γ,τ + F (j) ε,γ,τ , in B (τ j , r ε ) . (4.70)
Using Proposition 3.5 and omitting some indices, we get

R j (x) := E (j) ε,γ,τ + F (j) ε,γ,τ (x) = E (j) ε,γ,τ + O |x -τ j | γ ε d ε =: R s j (x) + R r j , (4.71) 
for all x ∈ B (τ j , r ε ), where the letters s and r stand for "symmetric" and "remainder", respectively. Using (4.70) and (3.33), we get

Z 0,i := Z 0,i,ε,γ,τ = ∂ γi B ε,γj ,τj + R j = ∂ γi B ε,γj ,τj (x) + E (j) ε,γ,τ + O (|x -τ j |) , in B (τ j , r ε ) , (4.72) 
where we also replaced O |x -τ j | / γ 2 ε d ε by O (|x -τ j |) for simplicity. Using Proposition 3.2 and (3.20), i.e. ∆B ε,γj ,τj = ∆B ε,γj ,τj , in B (τ j , r ε ), we can write

(A) j = B(τj ,rε) ∆B ε,γj ,τj -f ε (U ε,γ,τ ) Z 0,i dx.
We now Taylor expand as in (4.67) with

U = B ε,γj ,τj , R = R j = E (j) ε,γ,τ + F (j) ε,γ,τ ,
and since B ε,γi,τi is an exact solution in B (τ i , r ε ), we estimate 

(A) j = B(τj ,rε) ∆B ε,γj ,τj -λ ε h ε (τ j ) f B ε,γj ,τj =0 Z 0,i dx - B(τj ,rε) λ ε (h ε -h ε (τ j )) f B ε,γj ,τj Z 0,i dx - B(τj ,rε) λ ε h ε f B ε,γj ,τj R j Z 0,i dx + O B(τj ,rε) γ 3 ε exp B 2 ε,γj ,τj R 2 j |Z 0,i | dx . (4.73) Observing that h ε -h ε (τ j ) = O (|x -τ j |), using (4.71) to bound F (j) ε,γ,τ , writing f B ε,γj ,τj = O γ ε f B ε,γj ,τj = O γ 2 ε exp B 2 ε,γj ,τj , in B (τ j , r ε ) ,
λ ε h ε (τ j ) f B ε,γj ,τj E (j) ε,γ,τ ∂ γi B ε,γj ,τj + E (j) ε,γ,τ dx + O B(τj ,rε) γ 3 ε exp B 2 ε,γj ,τj |E (j) ε,γ,τ | 2 + |x -τ j | dx . (4.74)
Now write

∂ γi B ε,γj ,τj + E (j) ε,γ,τ = δ ij ∂ γi B ε,γi,τi + ∂ γi E (j) ε,γ,τ , on B (τ j , r ε )
, where δ ij is the Kronecker symbol. Observing that

B ε,γj ,τj (x) = B γj λ ε,j (x -τ j ) , where λ ε,j := λ ε h ε (τ j ) , (4.75) 
with the change of variables λ ε,j (x -τ j ) = y and Proposition 6.3, we get

B(τj ,rε) λ ε,j f B ε,γj ,τj dx = B(0, √ λε,j rε) f B γj dy = 8π + O 1 γ 2 ε , (4.76) 
where B γj is as in Proposition 6.1. With the same change of variables and Proposition 6.3, we also get

B(τi,rε) λ ε,i f B ε,γi,τi ∂ γi B ε,γi,τi dx = B(0, √ λε,irε) f B γi Z 0,γi dy = - 4π + o (1) γ 2 ε ,
where Z 0,γi is as in Proposition 6.2. Now, using Proposition 3.4, the dominant term in (A) j becomes

-E (j) ε,γ,τ B(τj ,rε) λ ε,j f B ε,γj ,τj ∂ γi E (j) ε,γ,τ + ∂ γi B ε,γj ,τj dy = -E (j) ε,γ,τ 8π + O 1 γ 2 ε ∂ γi E (j) ε,γ,τ -δ ij 4π + o (1) γ 2 ε = -E (j) ε,γ,τ 8π∂ γi E (j) ε,γ,τ -δ ij 4π γ 2 ε + o δ ε ln γ ε γ 5 ε
Concerning the remainder term in (4.74), again using Proposition 6.3, we have

B(τj ,rε) exp B 2 ε,γj ,τj γ 3 ε δ 2 ε dx = O γ ε δ 2 ε = o δ ε ln γ ε γ 5 ε ,
and, with the usual change of variables and Proposition 6.4, we obtain

B(τj ,rε) exp B 2 ε,γj ,τj γ 3 ε |x -τ j | dx = O γ 3 ε µ 3δ0-2δ 2 0 +o(1) γj = O µ 3δ0-2δ 2 0 +o(1) ε = o δ ε ln γ ε γ 5 ε ,
where in the last identity, we used that δ ε = µ δ1+1/2 ε and 3δ 0 -2δ 2 0 > δ 1 + 1 2 thanks to (4.2), so that

µ 3δ0-2δ 2 0 +o(1) ε = O δ ε γ a ε
, for any a ∈ R.

We therefore get

(A) j = -E (j) ε,γ,τ 8π∂ γi E (j) ε,γ,τ -δ ij 4π γ 2 ε + o δ ε ln γ ε γ 5 ε
Summing over j, we then obtain

(A) = k j=1 (A) j = -8π k j=1 E (j) ε,γ,τ ∂ γi E (j) ε,γ,τ + 4π γ 2 ε E (i) ε,γ,τ + o δ ε ln γ ε γ 5 ε . (4.77)
As for the error term in the annuli, we have from Proposition 3.2,

(A ) j = Ω j ε (χ ε,τ -1) f ε (U ε,γ,τ ) Z 0,i,ε,γ,τ dx, hence, from (3.21), (A ) = k j=1 O |Ω j ε |µ -2δ 2 0 +o(1) ε = O µ 3δ0-2δ 2 0 +o(1) ε = o δ ε ln γ ε γ 5 ε , (4.78) 
where in the last line, we used that δ ε = µ δ1+1/2 ε and 3δ 0 -2δ 2 0 > δ 1 + 1/2. We now move on to the estimate of (B). Integration by parts and using that U ε,γ,τ is an exact solution outside the balls B τ m , r ε + r 2 ε give

(B) j = θ j Ω [∆Z 0,i -f ε (U ε,γ,θ ) Z 0,i ] B ε,γj ,τj dx = θ j Ω ∂ γi [∆U ε,γ,τ -f ε (U ε,γ,θ )] B ε,γj ,τj dx = θ j k m=1 B(τm,rε) ∂ γi [∆U ε,γ,τ -f ε (U ε,γ,θ )] B ε,γj ,τj dx + θ j k m=1 Ω m ε ∂ γi [∆U ε,γ,τ -f ε (U ε,γ,θ )] B ε,γj ,τj dx =: k m=1 [(B) jm + (B ) jm ] . (4.79) 
Using the same notations as in (4.70)-(4.71) and using (4.66), which gives

f (B + R) = f (B) + O B 3 |R| exp B 2 (4.80) with B = B m = B ε,γm,τm , R = R m = E (m) ε,γ,τ + F (m) ε,γ,τ ,
on B (τ m , r ε ), we can now write

∂ γi [∆U ε,γ,τ -f ε (U ε,γ,τ )] = ∂ γi ∆B m -f ε (U ε,γ,τ ) ∂ γi [U ε,γ,τ ] = ∂ γi ∆B m -f ε B m + O γ 3 ε exp B 2 m |R m | ∂ γi B m + R m = ∂ γi ∆B m -λ ε h ε (τ m ) f B m =0 + O γ 3 ε exp B 2 m (|x -τ m | + |R m |) ∂ γi [B m ] -f ε B m + O γ 3 ε exp B 2 m |R m | ∂ γi [R m ] , (4.81) 
where we have also bound 

h ε -h ε (τ m ) = O (|x -τ m |). Expanding ∂ γi [R m ]
f ε B ε,γm,τm B ε,γj ,τj ∂ γi [R m ] dx + O |θ j | γ 4 ε B(τm,rε) exp B 2 ε,γm,τm (δ ε + |x -τ m |) dx , hence (B) jm = -θ j ∂ γi E (m) ε,γ,τ B(τm,rε) f ε B ε,γm,τm B ε,γj ,τj dx + o δ ε ln γ ε γ 5 ε .
Together with (6.11), for j = m, we obtain

(B) jj = -8πγ ε θ j ∂ γi E (j) ε,γ,τ + o δ ε ln γ ε γ 5 ε , while, observing that B ε,γj ,τj = O (1) on B (τ m , r ε ) if j = m, we get (B) jm = o δ ε ln γ ε γ 5 ε , for j = m.
As for (B ) jm , similarly as in (4.78), we can bound with (3.21) and Proposition 6.4

(B ) jm = Ω m ε (χ ε,τ -1) ∂ γi [f ε (U ε,γ,τ )] B ε,γj ,τj dx = O γ ε Ω m ε |f ε (U ε,γ,τ )| |Z 0,j,ε,γ,τ | dx = O µ 3δ0-2δ 2 0 +o(1) ε = o δ ε ln γ ε γ 5 ε . (4.82)
Hence, finally, summing over m and j, we obtain

(B) = k j=1 (B) j = -8πγ ε k j=1 θ j ∂ γi E (j) ε,γ,τ + o δ ε ln γ ε γ 5 ε . ( 4 

.83)

We now estimate the term (C). Similar to (4.79), integration by parts and Proposition 3.2 give

(C) = Ω [∆Z 0,i -f ε (U ε,γ,θ ) Z 0,i ] Φ ε,γ,τ,θ dx = k j=1 B(τj ,rε) ∂ γi [∆U ε,γ,τ -f ε (U ε,γ,τ )] Φ ε,γ,τ,θ dx + k j=1 Ω j ε ∂ γi [∆U ε,γ,τ -f ε (U ε,γ,τ )] Φ ε,γ,τ,θ dx =: k j=1 [(C) j + (C ) j ] .
We can now use (4.81), and with the same notations, we write

(C) j = - B(τj ,rε) f ε B ε,γj ,τj ∂ γi R j Φ ε,γ,τ,θ dx + O B(τj ,rε) γ 3 ε exp B 2 ε,γj ,τj × (|x -τ j | + |R j |) ∂ γi B j + |R j | |∂ γi [R j ]| |Φ ε,γ,τ,θ | dx .
The main term in (C) j will be

(C 1 ) j = -∂ γi E (j) ε,γ,τ B(τj ,rε) f ε B ε,γj ,τj Φ ε,γ,τ,θ dx = -∂ γi E (j)
ε,γ,τ B(τj ,rε)

2γ j f ε B ε,γj ,τj Φ ε,γ,τ,θ dx + O ln γ ε γ 2 ε B(τj ,rε) |2γ j f ε B ε,γj ,τj -f ε B ε,γj ,τj | |Φ ε,γ,τ,θ | dx = -2γ j ∂ γi E (j) ε,γ,τ B(τj ,rε) ∆B ε,γj ,τj Φ ε,γ,τ,θ dx + O γ ε B(τj ,rε) |x -τ j | f B ε,γj ,τj |Φ ε,γ,τ,θ | dx + O ln γ ε γ 2 ε B(τj ,rε) exp B 2 ε,γj ,τj |2γ j B ε,γj ,τj -2B 2 ε,γj ,τj -1| |Φ ε,γ,τ,θ | dx ,
where we used that

λ ε,j f B ε,γj ,τj = ∆B ε,γj ,τj = ∆B ε,γj ,τj , in B (τ j , r ε ) . Since Φ ε,γ,τ,θ ⊥ B ε,γj ,τj in H 1 0 (Ω) and ∆B ε,γj ,τj = 0 in Ω \ B (τ j , r ε ), we have B(τj ,rε) ∆B ε,γj ,τj Φ ε,γ,τ,θ dx = Ω ∇B ε,γj ,τj , ∇Φ ε,γ,τ,θ dx = 0, (4.84) 
and by Proposition 6.1,

γ j B ε,γj ,τj -B 2 ε,γj ,τj = O 1 + t γj (• -τ j )
, in B (τ j , r ε ) . so that with a change of variables and Propositions 4.2 and 7.2, we get

(C 1 ) j = O γ 2 ε r ε B(τj ,rε) exp B 2 ε,γj ,τj |Φ ε,γ,τ,θ | dx + O ln γ ε γ 2 ε B(τj ,rε) exp B 2 ε,γj ,τj 1 + t γj (x -τ j ) |Φ ε,γ,τ,θ | dx = O r ε ∇Φ ε,γ,τ,θ L 2 + O ln γ ε γ 4 ε ∇Φ ε,γ,τ θ L 2 = o δ ε ln γ ε γ 5 ε .
Note that we crucially used the orthogonality condition (4.84) to gain a factor γ -2 ε . Again, with a change of variables and Proposition 7.2, we bound

(C 2 ) j = - B(τj ,rε) f ε B ε,γj ,τj ∂ γi F (j) ε,γ,τ Φ ε,γ,τ,θ dx = O B(τj ,rε) f ε B ε,γj ,τj |x -τ j | |Φ ε,γ,τ,θ | dx = O r ε B(τj ,rε) f ε B ε,γj ,τj |Φ ε,γ,τ,θ | dx = O (r ε ∇Φ ε,γ,τ,θ L 2 ) = o δ ε ln γ ε γ 5 ε .
Similarly, for some exponent a > 0 (which plays no role),

(C 3 ) j = O B(τj ,rε) γ 3 ε exp B 2 ε,γj ,τj (|x -τ j | + |R j |) ∂ γi B j + |R j | |∂ γi [R j ]| × |Φ ε,γ,τ,θ | dx = O (δ ε + r ε ) γ a ε B(τj ,rε) exp B 2 ε,γj ,τj |Φ ε,γ,τ,θ | dx = O (δ ε + r ε ) γ a-2 ε ∇Φ ε,γ,τ,θ | L 2 = o δ ε ln γ ε γ 5 ε . (4.85)
As for (C ) j , in analogy with (4.82) (with Φ ε,γ,τ instead of B ε,γj ,τj ), using (3.21) together with the Hölder and Poincaré inequalities, we bound

(C ) j = O Ω j ε f (U ε,γ,τ ) |Φ ε,γ,τ,θ | dx = O f (U ε,γ,τ ) L 2 (Ω j ε ) Φ ε,γ,τ,θ L 2 (Ω) = O µ 1 2 (3δ0-2δ 2 0 )+o(1) ε ∇Φ ε,γ,τ,θ L 2 (Ω) = o δ ε ln γ ε γ 5 ε .
Summing over j, we arrive at

(C) = k j=1 [(C 1 ) j + (C 2 ) j + (C 3 ) j + (C ) j ] = o δ ε ln γ ε γ 5 ε . (4.86) 
As for (D), recalling that |Z 0,i | = O (1), we bound

(D) = O Ω |U ε,γ,τ | 3 exp U 2 ε,γ,τ Φ 2 ε,γ,τ,θ + k i=1 θ 2 i γ 2 ε dx = O Ω γ 3 ε exp U 2 ε,γ,τ Φ 2 ε,γ,τ,θ dx + k i=1 O θ 2 i γ 2 ε Ω |U ε,γ,τ | 3 exp U 2 ε,γ,τ dx =: (D 1 ) + (D 2 ).
We first claim that

Ω exp U 2 ε,γ,τ dx = O (1) . (4.87)
Indeed, with the usual decomposition given by (4.70), we get

B(τj ,rε) exp U 2 ε,γ,τ dx = O B(τj ,rε) exp B 2 ε,γj ,τj dx = O 1 γ 2 ε ,
thanks to the usual change of variables and Proposition 6.3. Then, summing over j = 1, . . . , k and also using (3.16), we obtain (4.87). Then we immediately estimate

(D 2 ) = O θ 2 i γ 5 ε = o δ ε ln γ ε γ 5 ε .
As for (D 1 ), from Hölder's inequality and (3.16), we have

(D 1 ) := Ωr ε,τ γ 3 ε exp U 2 ε,γ,τ Φ 2 ε,γ,τ,θ dx = O γ 3 ε exp U 2 ε,γ,τ 1 Ωr ε,τ L p Φ ε,γ,τ,θ 2 L 2p = O γ 3 ε ∇Φ ε,γ,τ,θ 2 
L 2 = o δ ε ln γ ε γ 5 ε ,
where p is sufficiently small and p is the conjugate exponent of p. Moreover, with Proposition 7.2, and the same change of variables used to estimate (C 1 ) j , we obtain (D 1 ) j := B(τj ,rε)

γ 3 ε exp U 2 ε,γ,τ Φ 2 ε,γ,τ,θ dx = O γ 3 ε B(τj ,rε) exp B 2 ε,γj ,τj Φ 2 ε,γ,τ,θ dx = O γ ε ∇Φ ε,γ,τ,θ 2 
L 2 = o δ ε ln γ ε γ 5 ε . (4.88)
Summing up, we conclude 

(D) = k j=1 (D 1 ) j + (D 1 ) + (D 2 ) = o δ ε ln γ ε γ 5 ε . ( 4 
∆B ε,γj ,τj -λ ε,j f B ε,γj ,τj =0 B ε,γi,τi dx - B(τj ,rε) λ ε (h ε -h ε (τ j )) f B ε,γj ,τj B ε,γi,τi dx - B(τj ,rε) λ ε h ε f B ε,γj ,τj R j B ε,γi,τi dx + O B(τj ,rε) γ 4 ε exp B 2 ε,γj ,τj R 2 j
, where R j is as in (4.71). Similarly as in (4.74), we reduce to

(A) j = - B(τj ,rε) λ ε,j f B ε,γj ,τj E (j) ε,γ,τ B ε,γi,τi dx + O B(τj ,rε) γ 4 ε exp B 2 ε,γi,τi |x -τ j | + δ 2 ε dx .
In the case j = i we use that

B ε,γi,τi = B ε,γi,τi 1 + O ln γ ε γ 2 ε , in B (τ i , r ε ) , (4.90) 
(see Claim 3.1) and with the usual change of variables, taking (4.75) and Propositions 6.3 and 6.4 into account, we obtain

(A) i = -1 + O ln γ ε γ 2 ε E (i) ε,γ,τ B(τi,rε) λ ε,j f B ε,γi,τi B ε,γi,τi dx + o δ ε γ 2 ε = -1 + O ln γ ε γ 2 ε E (i) ε,γ,τ B(0, √ λε,irε) f B γi B γi dx + o δ ε γ 2 ε = -8π + O ln γ ε γ 2 ε γ ε E (i) ε,γ,τ + o δ ε γ 2 ε = -8πγ ε E (i) ε,γ,τ + o δ ε γ 2 ε .
For the case j = i, we use that B ε,γi,τi = O ((ln γ ε ) /γ ε ) in B(τ j , r ε ) and with the same computations, we obtain

(A) j = O ln γ ε γ 2 ε |E (j) ε,γ,τ | B(0, √ λε,j rε) f B γj dx + o δ ε γ 2 ε = o δ ε γ 2 ε ,
so that summing up we conclude

(A) = k j=1 (A) j = -8πγ ε E (i) ε,γ,τ + o δ ε γ 2 ε . (4.91)
As for the annuli, similarly as in (4.78), we bound

(A ) = ∪ k j=1 Ω j ε (χ ε,τ -1) f ε (U ε,γ,τ ) B ε,γ,τ dx = O µ 3δ0-2δ 2 0 +o(1) ε = o δ ε γ 2 ε . ( 4 

.92)

We now turn to the estimate of (B). Using a Taylor expansion, together with (4.66), (4.70) and (4.71), we write

(B) jm := θ j B(τm,rε) ∆B ε,γj ,τj -f ε (U ε,γ,τ ) B ε,γj ,τj B ε,γi,τi dx = θ j B(τm,rε) δ jm ∆B ε,γj ,τj -f ε B ε,γm,τm B ε,γj ,τj B ε,γi,τi dx + O |θ j | B(τm,rε) γ 3 ε exp B 2 ε,γm,τm R m B ε,γi,τi dx .
With Propositions 6.3 and 6.4, we estimate the last term as o δ ε /γ 2 ε . For j = m = i, still with Proposition 6.3, we compute, keeping (4.90) in mind

θ i B(τi,rε) λ ε,i f B ε,γi,τi -f ε B ε,γi,τi B ε,γi,τi B ε,γi,τi dx = -8πθ i γ 2 ε + O (|θ i | γ ε ) = -8πθ i γ 2 ε + o δ ε γ 2 ε ,
while for j = m, or j = i a similar computation based on Proposition 6.3 and (4.90) gives (B) jm = o δ ε /γ 2 ε . Considering the integral in Ω rε,τ , where ∆B ε,γj ,τj = 0 for every j = 1, . . . , k, we estimate with the help of (3.16), (B ) jm := θ j B(τm,Rε)\B(τm,rε)

f ε (U ε,γ,τ ) B ε,γj ,τj B ε,γi,τi dx = O |θ j | γ 3 ε B(τm,Rε)\B(τm,rε) exp U 2 ε,γ,τ dx = o δ ε γ 2 ε ,
where R ε = exp (-γ ε ) and, since B ε,γj ,τj = O (1) in Ω \ B (τ j , r ε ), still with (3.16), we get

(B ) jm := θ j Ω Rε,τ f ε (U ε,γ,τ ) B ε,γj ,τj B ε,γi,τi dx = O (|θ j |) = o δ ε γ 2 ε ,
In conclusion, we have proven that

(B) = k j=1 [(B) jm + (B ) jm + (B ) jm ] = -8πθ i γ 2 ε + o δ ε γ 2 ε . (4.93)
To estimate (C), we integrate by parts to obtain

(C) = Ω [∆B ε,γi,τi -f ε (U ε,γ,τ ) B ε,γi,τi ] Φ ε,γ,τ,θ dx = - Ω f ε (U ε,γ,τ ) B ε,γi,τi Φ ε,γ,τ,θ dx,
where we also used that Φ ε,γ,τ,θ ⊥ B ε,γi,τi in H 1 0 . Using (4.80), we write

(C 1 ) j := - B(τj ,rε) f ε (U ε,γ,τ ) B ε,γi,τi Φ ε,γ,τ,θ dx = - B(τj ,rε) f ε B ε,γj ,τj B ε,γi,τi Φ ε,γ,τ,θ dx + O B(τj ,rε) γ 3 ε exp B 2 ε,γj ,τj |R j B ε,γi,τi Φ ε,γ,τ,θ | =o(δε/γ 2 ε ) as in (4.85)
.

Then, recalling that f (s) = 1 + 2s 2 exp s 2 = 2sf (s) + exp s 2 , which gives

(C 1 ) j = -2 B(τj ,rε) B ε,γj ,τj f ε B ε,γj ,τj B ε,γi,τi Φ ε,γ,τ,θ dx + O γ ε B(τj ,rε) exp B 2 ε,γj ,τj |Φ ε,γ,τ,θ | dx + o δ ε γ 2 ε ,
and using Proposition 7.2, we obtain

γ ε B(τj ,rε) exp B 2 ε,γj ,τj |Φ ε,γ,τ,θ | dx = O ∇Φ ε,γ,τ,θ L 2 γ ε = o δ ε γ 2 ε .
Using Proposition 7.2 again, we simplify

(C 1 ) i = 2γ 2 i B(τi,rε) λ ε h ε (τ i ) f B ε,γi,τi Φ ε,γ,τ,θ dx + O γ 2 ε B(τi,rε) |x -τ i | f B ε,γi,τi |Φ ε,γ,τ,θ | dx + O B(τi,rε) (1 + t γi (x -τ i )) f B ε,γi,τi |Φ ε,γ,τ,θ | dx + o δ ε γ 2 ε = 2γ 2 i B(τi,rε) ∆B ε,γi,τi Φ ε,γ,τ,θ dx + O r ε + 1 γ 2 ε ∇Φ ε,γ,τ,θ L 2 + o δ ε γ 2 ε ,
where the last integral vanishes thanks to ∆B ε,γi,τi = ∆B ε,γi,τi and to the condition B ε,γi,τi ⊥ Φ ε,γ,τ,θ . A similar computation holds on B (τ j , r ε ), where we can use that

B ε,γi,τi = O (1) if j = i. Hence (C 1 ) = k j=1 (C 1 ) j = o δ ε γ 2 ε .
With (3.16) and the Hölder and Poincaré inequalities, we now bound

(C 2 ) j := - k j=1 B(τj ,Rε)\B(τj ,rε) f ε (U ε,γ,τ ) B ε,γi,τi Φ ε,γ,τ,θ dx = k j=1 O γ 3 ε exp U 2 ε,γ,τ 1 B(τj ,Rε)\B(τj ,rε) L p Φ ε,γ,τ,θ L p = O ∇Φ ε,γ,τ,θ L 2 γ a-3 ε = o δ ε γ 2 ε ,
upon choosing a > 3. Again with (3.16) and the Hölder and Poincaré inequalities, and observing that U ε,γ,τ = O (1) in Ω Rε,τ , we get

(C 3 ) := - Ω Rε,τ f ε (U ε,γ,τ ) B ε,γi,τi Φ ε,γ,τ,θ dx = O exp U 2 ε,γ,τ B ε,γi,τi 1 Ω Rε,τ L p Φ ε,γ,τ,θ L p = O ∇Φ ε,γ,τ,θ L 2 γ ε = o δ ε γ 2 ε ,
where p is sufficiently small and p is the conjugate exponent of p. Adding up, we conclude

(C) = (C 1 ) + (C 2 ) + (C 3 ) = o δ ε γ 2 ε . (4.94)
Finally the estimate

(D) = o δ ε γ 2 ε (4.95)
follows exactly as the analog estimate in the proof of (4.63) (replacing Z 0,i,ε,γ,τ by B ε,γi,τi ), since all the terms contain θ 2 i or ∇Φ ε,γ,τ,θ 2 L 2 , which actually allows an estimate of the form (D) = O (δ ε /γ a ε ) for every a ≥ 0. Now, putting together (4.91), (4.92), (4.93), (4.94) and (4.95), we conclude.

Proof of (4.65). We now use (4.69) with Z = Z 1,i,ε,γ,τ , and again we need to estimate the terms from (A) to (D).

We start with some estimates of Z 1,i := Z 1,i,ε,γ,τ . From Claim 3.1, we have

∂ τi [B ε,γi,τi ] = ∂ τi B ε,γi,τi -∂ τi [C ε,γi,τi ] + ∂ τi [A ε,γi,τi H(•, τ i )] = ∂ τi B ε,γi,τi + O 1 γ ε , in B (τ i , r ε ) .
Now, recalling (3.19) and using (3.15), we write

Z 1,i = ∂ τi [B ε,γi,τi ] + ∂ τi [Ψ ε,γ,τ ] = ∂ τi B ε,γi,τi + O 1 γ ε =: Z a 1,i + Z r 1,i , (4.96) 
in B (τ i , r ε ), and with (4.75) and Proposition 6.1, we estimate

Z a 1,i = 2 γ i λ ε,i (x 1 -τ i ) µ 2 i + λ ε,i |x -τ i | 2 + O 1 γ 3 ε 1 µ i + |x -τ i | , in B (τ i , r ε ) , (4.97) 
where µ i := µ γi = µ 1+o(1) ε is given by (6.1), while directly from the definition of B ε,γi,τi , Claim 3.1 and (3.15), we also obtain

Z 1,i = (2 + o(1)) (x 1 -τ i ) γ ε |x -τ i | 2 + O 1 γ ε , in Ω \ B (τ i , r ε ) , (4.98) 
which can be specialized to

Z 1,i = O 1 γ ε d ε , in B (τ j , r ε ) , for j = i. (4.99)
Let us also write from (3.32),

F (i) ε,γ,τ (x) = Λ (i) ε,τ (x 1 -τ i ) + o |x -τ i | γ ε d ε in B (τ i , r ε ) , (4.100) 
where

Λ (i) ε,τ := a 0 lτ l-1 i - 2 γ ε j =i 1 τ i -τ j = O 1 γ ε d ε .
With the help of (4.70), as in (4.73), we can write

(A) j = - B(τj ,rε) λ ε (h ε -h ε (τ j )) f B ε,γj ,τj Z 1,i dx - B(τj ,rε) λ ε,j f B ε,γj ,τj R j Z 1,i dx - B(τj ,rε) λ ε (h ε -h ε (τ j )) f B ε,γj ,τj R j Z 1,i dx + O B(τj ,rε) γ 3 ε exp B 2 ε,γj ,τj R 2 j |Z 1,i | dx =: (A 1 ) j + (A 2 ) j + (A 3 ) j + (A 4 ),
where R j is as in (4.71).

We start with the main order term, which turns out to be the one involving

F (i)
ε,γ,τ and which we write, using (4.97) and (4.100), as

(A F 2 ) i := - B(τi,rε) f ε B ε,γi,τi F (i) ε,γ,τ Z 1,i dx = - Λ (i) ε,τ γ i B(τi,rε) λ ε,i f B ε,γi,τi 2λ ε,i (x 1 -τ i ) 2 µ 2 i + λ ε,i |x -τ i | 2 + O 1 γ ε dx + o 1 γ 2 ε d ε B(τi,rε) λ ε,i f B ε,γi,τi dx .
With the usual change of variables λ ε,i (x -τ i ) = y and using (4.75) and Proposition 6.3 together with γ i = γ ε (1 + o (1)) and Λ

(i) ε,τ = O (1/ (γ ε d ε )), we get (A F 2 ) i = - Λ (i) ε,τ γ i B(0, √ λε,irε) f B γi 2y 2 1 µ 2 i + |y| 2 + o (1) dy + o 1 γ 2 ε d ε = - (4π + o(1))Λ (i) ε,τ γ i + o 1 γ 2 ε d ε = - 4πΛ (i) ε,τ γ ε + o 1 γ 2 ε d ε ,
For j = i, using (4.99) and Proposition 6.4, we get

(A F 2 ) j = O B(τj ,rε) f B ε,γj ,τj F (j) ε,γ,τ |Z 1,i | dx = O B(τj ,rε) f B ε,γj ,τj |x -τ j | γ ε d ε 1 γ ε d ε dx = O 1 γ 2 ε d 2 ε B(0, √ λε,j rε) f B γj |y| dy = o 1 γ 2 ε d ε .
Using (4.96), canceling the integral of the anti-symmetric term and using Proposition 6.3, we get

(A E 2 ) i := - B(τi,rε) f ε B ε,γi,τi E (i) ε,γ,τ (Z a 1,i + Z r 1,i )dx = O E (i) ε,γ,τ γ ε B(τi,rε) f ε B ε,γi,τi dx = O δ ε ln γ ε γ 4 ε B(0, √ λε,irε) f ε B γi dx = o 1 γ 2 ε d ε .
When j = i, we have thanks to (4.99),

(A E 2 ) j = O B(τj ,rε) f ε B ε,γj ,τj |E (j) ε,γ,τ | |Z 1,i | dx = O δ ε ln γ ε γ 3 ε 1 γ ε d ε B(0, √ λε,j rε) f ε B γj dx = o 1 γ 2 ε d ε . We now estimate (A 1 ). Using that h ε -h ε (τ i ) = O (|x -τ i |) in B (τ i , r ε )
, by (4.97), we have

|(h ε -h ε (τ i ))Z 1,i | = O 1 γ ε , in B (τ i , r ε ) , (4.101) 
and with Proposition 6.3, we estimate

(A 1 ) i = O 1 γ ε B(τi,rε) f B ε,γi,τi dx = O 1 γ ε B(0, √ λε,irε) f B γi dy = O 1 γ 2 ε = o 1 γ 2 ε d ε .
Observe that this says that thanks to d ε = o (1), the term ∇h ε (τ i ) does not play a role, contrary to what happens when the blow-up points are separated by a finite distance. For j = i, with (4.99), Proposition 6.4 and the usual change of variables we obtain

(A 1 ) j = O 1 γ ε d ε B(τj ,rε) f B ε,γj ,τj |x -τ j | dx = o 1 γ 2 ε d ε .
Similarly, one can bound with (4.97),

(A 3 ) i = O B(τi,rε) |x -τ i | f B ε,γi,τi |R i | 1 γ ε |x -τ i | dx = O 1 γ ε B(τi,rε) f B ε,γi,τi δ ε ln γ ε γ 3 ε + |x -τ i | γ ε d ε dx = o 1 γ 2 ε d ε ,
where we also used Propositions 6.3 and 6.4. For j = i, an easier estimate holds, using (4.99) instead of (4.97), and

h ε -h ε (τ i ) = O (r ε ), so that (A 3 ) j = O r ε γ ε d ε B(τj ,rε) f B ε,γj ,τj δ ε ln γ ε γ 3 ε + |x -τ j | γ ε d ε dx = o 1 γ 2 ε d ε , As for (A 4 ) i , using that E (i) ε,γ,τ = o δ 2 ε (ln γ ε ) 2 /γ 6 ε = O µ 2δ1+1+o(1) ε
, and

γ a ε = O µ o(1) ε for every a ∈ R, we bound (A E 4 ) i = O µ 2δ1+1+o(1) ε B(τi,rε) exp B 2 ε,γi,τi 1 µ i + |x -τ i | dx = O µ 2δ1+o(1) ε B(0, √ λε,irε) exp B 2 γi dx = O µ 2δ1+o(1) ε = o 1 γ 2 ε d ε ,
and, similarly, for j = i,

(A E 4 ) j = O µ 2δ1+1+o(1) ε B(τj ,rε) exp B 2 ε,γi,τi 1 γ ε d ε dx = o 1 γ 2 ε d ε . Using that F (j) ε,γ,τ = O (r ε / (γ ε d ε ))
, similarly as in the case of (A E 4 ) j , we obtain (A F 4 ) j = o 1 γ 2 ε dε , including the case j = i. Summing over j, we obtain and using that 2δ 0 -2δ 2 0 > 0. We now estimate (B). Since ∆B ε,γj ,τj = ∆B ε,γj ,τj 1 B(τj ,rε) , we have

(A) = k j=1 (A) j = - 4πΛ (i) ε,τ γ ε + o 1 γ 2 ε d ε . ( 4 
(A ) = O   k j=1 Ω j ε |f ε (U ε,γ,τ )| |Z 1,i | dx   = O µ -2δ 2 0 +o(1) ε r 2 ε γ ε = O µ 2δ0-2δ 2 0 +o(1) ε = o 1 γ 2 ε d ε , ( 4 
(B † ) j := θ j Ω ∆B ε,γj ,τj Z 1,i dx = θ j B(τj ,rε) ∆B ε,γj ,τj Z 1,i dx.
Then for j = i, together with (4.99) we obtain

θ j B(τj ,rε) ∆B ε,γj ,τj Z 1,i dx = O |θ j | γ ε d ε B(τj ,rε) f B ε,γj ,τj dx = o 1 γ 2 ε d ε .
For j = i, we use the anti-symmetry to obtain

θ i B(τi,rε) ∆B ε,γi,τi Z 1,i dx = θ i B(τi,rε) λ ε,i f B ε,γi,τi B ε,γi,τi Z a 1,i + Z r 1,i dx = θ i B(τi,rε) λ ε,i f B ε,γi,τi B ε,γi,τi D τi Ψ ε,γ,τ dx = o 1 γ 2 ε d ε .
In order to estimate the second term in the integral in (B) j , we start with the integral away from the blow-up points, and using (3.17), the definition of B ε,γj ,τj and (3.10), we get

(B j ) = θ j Ωr ε,τ f ε (U ε,γ,τ ) B ε,γj ,τj Z 1,i dx = O |θ j | f ε (U ε,γ,τ ) Z 1,i 1 Ωr ε,τ L p × B ε,γj ,τj 1 Ω\B(τj ,rε) L p = O |θ j | γ ε 1 γ ε ln C | • -τ j | L p = o 1 γ 2 ε d ε ,
where p is sufficiently small and p is the conjugate exponent of p. It remains to estimate

(B) jm := θ j B(τm,rε) B ε,γj ,τj f ε (U ε,γ,τ ) Z 1,i dx.
For m = i, it easily follows from (4.99) and Proposition 6.3 that

(B) jm = O |θ j | d ε B(τm,rε) f ε (U ε,γ,τ ) dx = o 1 γ 2 ε d ε .
The case m = i is more subtle. Using (4.80) to split

(B) ji = θ j B(τi,rε) B ε,γj ,τj f ε B ε,γi,τi Z 1,i dx + O |θ j | γ 3 ε B(τi,rε) exp B 2 ε,γi,τi |R i | |Z 1,i | dx =: (B 1 ) ji + (B 2 ) ji . (4.104)
Now, writing B ε,γi,τi = B s ε,γi,τi + B r ε,γi,τi , where

B s ε,γi,τi = B ε,γi,τi -C ε,γi,τi + A ε,γi,τi H (τ i , τ i ) , B r ε,γi,τi = A ε,γi,τi (H (•, τ i ) -H (τ i , τ i )) = O | • -τ i | γ ε , in B (τ i , r ε ) ,
and also using (4.96) and (4.101), we get

(B 1 ) ii = θ i B(τi,rε) B s ε,γi,τi λ ε,i f B ε,γi,τi Z a 1,i dx + O |θ i | B(τi,rε) f B ε,γi,τi 1 + γ ε |x -τ j | |Z 1,i | =O(1/γ ε ) dx = o 1 γ 2 ε d ε , (4.105)
where we used skew-symmetry to cancel the first integral, and the usual change of variables to estimate the second one with Proposition 6.3. When j = i, a similar approach gives analog results, with the splitting of B ε,γj ,τj = B s ε,γj ,τj + B r ε,γj ,τj (x), where

B s ε,γj ,τj = A ε,γj ,τj G (τ j , τ i ) , B r ε,γj ,τj = A ε,γj ,τj (G (τ j , x) -G (τ j , τ i )) = O |x -τ i | γ ε d ε , in B (τ i , r ε ) ,
which allows to cancel the symmetric term and obtain

(B 1 ) ji = o 1 γ 2 ε d ε
As for (B 2 ) ji , the term involving

F (i)
ε,γ,τ can be estimated using a similar approach as in (4.105), since

F (i) ε,γ,τ (x) = O (|x -τ i | /(γ ε d ε )) in B (τ i , r ε ). In the term involving E (i) ε,γ,τ = O δ ε ln γ ε /γ 3 ε , we use the estimate |Z 1,i | = O 1 γ ε (µ γi + |x -τ i |) = O 1 µ 1+o(1) ε (4.106)
to finally obtain

(B 2 ) ji = O |θ j | δ ε µ 1+o(1) ε = o 1 γ 2 ε d ε .
Summing up, we conclude

(B) = k j=1 (B † ) j + (B ) j + k m=1 (B) jm = o 1 γ 2 ε d ε . (4.107)
To bound the term (C), let us start by observing that Φ ε,γ,τ,θ ⊥ Z 1,i implies

(C 1 ) := Ω ∆Φ ε,γ,τ,θ Z 1,i dx = 0, so that it remains to bound (C 2 ) := - Ω f ε (U ε,γ,τ ) Φ ε,γ,τ,θ Z 1,i dx.
Observe that a rough estimate on B (τ i , r ε ) using |Z 1,i | = O (1/µ ε ) would lead to an exponentially large error term. Therefore we have to be more subtle and use again the Sobolev-Poincaré estimates which follow from Φ ε,γ,τ,θ ⊥ B ε,γi,τi . We start by noticing that by (3.17) and the Sobolev embedding, we have

(C * 2 ) := - Ωr ε,τ f ε (U ε,γ,τ ) Φ ε,γ,τ,θ Z 1,i dx = O f (U ε,γ,τ ) Z 1,i 1 Ωr ε,τ L p × Φ ε,γ,τ,θ L p = O γ ε ∇Φ ε,γ,τ,θ L 2 = O δ ε ln γ ε γ ε = o 1 γ 2 ε d ε .
For j = i, we bound with (4.99) and Proposition 7.2 (which we can use thanks to (4.84)),

(C † 2 ) j := - B(τj ,rε) f ε (U ε,γ,τ ) Z 1,i Φ ε,γ,τ,θ dx = O 1 γ ε d ε B(τj ,rε) f ε (U ε,γ,τ ) |Φ ε,γ,τ,θ | dx = O ∇Φ ε,γ,τ,θ L 2 γ ε d ε = O δ ε ln γ ε γ 3 ε d ε = o 1 γ 2 ε d ε . (4.108)
We are left with (C † 2 ) i which we expand as in (4.80), giving

(C † 2 ) i = - B(τi,rε) f ε B ε,γi,τi Z 1,i Φ ε,γ,τ,θ dx + O γ 3 ε B(τi,rε) exp B 2 ε,γi,τi E (i) ε,γ,τ + F (i) ε,γ,τ Z 1,i Φ ε,γ,τ,θ dx (4.109)
The remainder term in (4.109) can be estimated as follows. By (4.97) and (4.100), we get 

|F (i) ε,γ,τ Z 1,i | = O 1/ γ 2 ε d ε ,
O ∇Φ ε,γ,τ,θ L 2 γ ε d ε = o 1 γ 2 ε d ε .
As regards the term involving

E (i)
ε,γ,τ , using (4.106) and Proposition 7.2, we obtain an error term of order

O δ ε ∇Φ ε,γ,τ,θ L 2 µ 1+o(1) ε = O µ 2δ1+o(1) ε = o 1 γ 2 ε d ε .
The first integral in (4.109) can be estimated by using (4.96) together with the estimate

h ε -h ε (τ i ) ∂ τi B ε,γi,τi = O (1/γ ε ) to obtain B(τi,rε) f ε B ε,γi,τi Z 1,i Φ ε,γ,τ,θ dx = B(τi,rε) λ ε,i f B ε,γi,τi ∂ τi B ε,γi,τi Φ ε,γ,τ,θ dx + O 1 γ ε B(τi,rε) f B ε,γi,τi |Φ ε,γ,τ,θ | dx =: -(C ‡ 2 ) i + (C r 2 ) i .
The remainder term (C r 2 ) i can be handled as in (4.108), giving

(C r 2 ) i = O ∇Φ ε,γ,τ,θ L 2 γ ε = o 1 γ 2 ε d ε .
Then we are left with the term (C ‡ 2 ) i , which is actually more subtle to bound. Let us first rewrite it as

(C ‡ 2 ) i = - B(τi,rε) λ ε,i ∆Z 1,i Φ ε,γ,τ,θ dx, using that ∆Z 1,i = ∂ τi [∆U ε,γ,τ ] = ∂ τi ∆B ε,γi,τi = λ ε,i ∂ τi f B ε,γ,τi , in B (τ i , r ε ) .
In order to estimate (C ‡ 2 ) i we start by observing that the orthogonality condition Z 1,i ⊥ Φ ε,γ,τ,θ and integration by parts imply

0 = Ω ∇Z 1,i , ∇Φ ε,γ,τ,θ dx = B(τi,rε) ∆Z 1,i Φ ε,γ,τ,θ dx + Ω\B(τi,rε) ∆Z 1,i Φ ε,γ,τ,θ dx + ∂B(τi,rε) ∂ ν Z int 1,i -∂ ν Z ext 1,i Φ ε,γ,τ,θ dσ. (4.110)
Here ν denotes the exterior normal to ∂B (τ i , r ε ) and

Z int 1,i := Z 1,i | B(τi,rε) , Z ext 1,i := Z 1,i | Ω\B(τi,rε)
. Note that the boundary integral in (4.110) is in general non-zero because B ε,γi,τi is C 1 but not smooth across ∂B (τ i , r ε ). Now we reduced the estimate of (C ‡ 2 ) i to

(C ‡ 2 ) i = Ω\B(τi,rε) ∆Z 1,i Φ ε,γ,τ,θ dx + ∂B(τi,rε) ∂ ν Z int 1,i -∂ ν Z ext 1,i Φ ε,γ,τ,θ dσ. Now using that ∆Z 1,i = ∂ τi [∆U ε,γ,τ ] = ∂ τi [χ ε,τ f ε (U ε,γ,τ )] = ∂ τi [χ ε,τ ] f ε (U ε,γ,τ ) + χ ε,τ f ε (U ε,γ,τ ) ∂ τi [U ε,γ,τ ] , in B (τ i , r ε ) .
from (3.17), we obtain

∆Z 1,i 1 Ω\B(τi,rε) L p = O (γ ε )
for some p > 1, hence with the Hölder and Sobolev inequalities

Ω\B(τi,rε) ∆Z 1,i Φ ε,γ,τ,θ dx = O ∆Z 1,i 1 Ω\B(τi,rε) L p Φ ε,γ,τ,θ L p = O γ ε ∇Φ ε,γ,τ,θ L 2 = o 1 γ ε d ε . Observe that D τ [Ψ ε,γ,τ ] ∈ C 1 Ω
, by elliptic estimates (the function χ ε,τ in Proposition 3.2 is smooth), hence we get

∂ ν Z int 1,i -∂ ν Z ext 1,i = ∂ ν ∂ τi B int ε,γi,τi -∂ ν ∂ τi B ext ε,γi,τi (4.111)
Using the definition of B ε,γi,τi and (3.12), we compute

∂ ν ∂ τi B int ε,γi,τi = ∂ τi ∂ ν B int ε,γi,τi = ∂ τi ∂ ν B ε,γi,τi + ∂ τi [∂ ν (A ε,γi,τi H (•, τ i ))] = ∂ τi ∂ ν B ε,γi,τi + O 1 γ ε .
Similarly,

∂ ν ∂ τi B ext ε,γi,τi = ∂ τi A ε,γi,τi 2π ∂ ν ln 1 |x -τ i | + ∂ τi [∂ ν (A ε,γi,τi H (•, τ i ))] = -∂ τi A ε,γi,τi 2π |x -τ i | + O 1 γ ε .
Now in order to compute the difference of the two terms in (4.111), set

v ε,γi,τi (x) := A ε,γi,τi 2π ln 1 |x -τ i |
and Note that v ε,γi,τi (r ε ) = B ε,γi,τi (r ε ) by the definitions in Section 3.1, where with a little abuse of notation, we use the prime to denote the radial derivative from τ i . Then, with a similar abuse of notation

-B ε,γi,τi (r ε ) - B ε,γi,τi (r ε ) r ε = ∆B ε,γi,τi (r ε ) = λ ε,i f B ε,γi,τi (r ε ) , -v ε,γi,τi (r ε ) - v ε,γi,τi (r ε ) r ε = ∆v ε,γi,τi (r ε ) = 0,
and subtracting we finally estimate

∂ ν Z int 1,i -∂ ν Z ext 1,i = O B ε,γi,τi (r ε ) -v ε,γi,τi (r ε ) + O 1 γ ε = O f B ε,γi,τi (r ε ) + O 1 γ ε = O 1 µ 2δ 2 0 +o(1) ε . ( 4 

.112)

We now claim that 

Φ ε,γ,τ,θ L 1 (∂B(τi,rε)) = O r ε ln 1 r ε + ∇Φ ε,γ,τ,θ L 2 = O µ δ0+o(
∂ ν Z int 1,i -∂ ν Z ext 1,i Φ ε,γ,τ,θ dσ = O Φ ε,γ,τ,θ L 1 (∂B(τi,rε)) µ 2δ 2 0 +o(1) ε = O µ δ0-2δ 2 0 +o(1) ε = o 1 γ 2 ε d ε .
This completes the estimates of (C ‡ 2 ) i , hence

(C) = (C 1 ) + (C * 2 ) + k j=1 (C † 2 ) j + (C ‡ 2 ) j = o 1 γ 2 ε d ε . (4.114)
In order to prove (4.113), set Φ (y) := Φ ε,γ,τ,θ (τ i + r ε y). We then have

∇ Φ L 2 (B(0,1)) = ∇Φ ε,γ,τ,θ L 2 (B(τi,rε)) .
By the trace inequality, we get

Φ ε,γ,τ,θ L 1 (B(τi,rε)) r ε = Φ L 1 (B(0,1)) = O ∇ Φ L 2 (B(0,1)) + 1 |B (0, 1)| B(0,1)
Φdy , Φdy

2   ≤ 1 |B (0, 1) | B(0,1) exp Φ 2 dy = 1 πr ε B(τi,rε) exp Φ 2 ε,γ,τ,θ dx ≤ 1 πr ε It follows that 1 |B (0, 1) | B(0,1)
Φdy ≤ ln 1 πr ε and (4.113) follows at once from (4.115). This completes the proof of (4.114). We finally estimate

(D) = O   Ω |U ε,γ,τ | 3 exp U 2 ε,γ,τ   Φ 2 ε,γ,τ,θ + k j=1 θ 2 j B 2 ε,γj ,τj   |Z 1,i | dx   = O Ω |U ε,γ,τ | 3 exp U 2 ε,γ,τ Φ 2 ε,γ,τ,θ |Z 1,i | dx + k j=1 O θ 2 j γ 2 ε Ω |U ε,γ,τ | 3 exp U 2 ε,γ,τ |Z 1,i | dx =: (D 1 ) + k j=1 (D 2 ) j .
For every j ∈ {1, . . . , k}, with the rough estimate

Z 1,i = O µ -1 γi = O µ -1+o(1) ε , in B (τ j , r ε ) ,
we obtain as in (4.88)

(D 1 ) j := B(τj ,rε) |U ε,γ,τ | 3 exp U 2 ε,γ,τ Φ 2 ε,γ,τ,θ |Z 1,i | dx = O γ 3 ε µ 1+o(1) ε B(τj ,rε) exp B 2 ε,γj ,τj Φ 2 ε,γ,τ,θ dx = O ∇Φ ε,γ,τ,θ 2 L 2 µ 1+o(1) ε = O δ 2 ε µ 1+o(1) ε = O µ 2δ1+o(1) ε = o 1 γ 2 ε d ε .
Similarly, with (3.17),

(D 1 ) := Ωr ε,τ |U ε,γ,τ | 3 exp U 2 ε,γ,τ Φ 2 ε,γ,τ,θ |Z 1,i | dx = O γ ε f (U ε,γ,τ ) Z 1,i 1 Ωr ε,τ L p × Φ ε,γ,τ,θ 2 L 2p = O γ 2 ε ∇Φ ε,γ,τ,θ 2 
L 2 = o 1 γ 2 ε d ε .
As for the terms involving θ j , we can use the rough estimate

Z 1,i = O µ -1+o(1) ε to get (D 2 ) j := θ 2 j γ 2 ε B(τm,rε) |U ε,γ,τ | 3 exp U 2 ε,γ,τ |Z 1,i | dx = O θ 2 j γ 5 ε µ 1+o(1) ε B(τm,rε) exp B 2 ε,γm,τm dx = O µ 2δ1+o(1) ε = o 1 γ 2 ε d ε ,
while in Ω rε,τ , we can use (3.17) with p = 1 to obtain

(D 2 ) j := θ 2 j γ 2 ε Ωr ε,τ |U ε,γ,τ | 3 exp U 2 ε,γ,τ |Z 1,i | dx = O(θ 2 j γ 4 ε ) = o 1 γ 2 ε d ε .
Summing up, we obtain Proof of Proposition 4.4. We claim that for δ and ε small enough, we can find (γ ε , θ ε , τ ε ) ∈ P k ε (δ) such that R ε,γε,τε,θε , Z 0,i,ε,γε,τε

(D) = k j=1 (D 1 ) j + (D 1 ) + k j=1 [(D 2 ) j + (D 2 ) j ] = o 1 γ 2 ε d ε . ( 4 
H 1 0 = R ε,γε,τε,θε , B ε,γε,τε H 1 0 = R ε,γε,τε,θε , Z 1,i,ε,γε,τε H 1 0 = 0, (4.117) 
for i = 1, . . . , k, so that Π ε,γε,τε U ε,γε,τε,θε + Φ ε,γε,τε,θε -∆ -1 (λ ε h ε f (U ε,γε,τε,θε + Φ ε,γε,τε,θε )) = 0,
hence, together with Proposition 4.2, U ε,γε,τε,θε + Φ ε,γε,τε,θε is a solution to (4.62). For every

τ ∈ T k ε (δ) and γ ∈ Γ k ε (τ ), let us set γ := γ -γ ε (τ ) and Γ k ε := γ = (γ 1 , . . . , γk ) ∈ (0, ∞) k : |γ i | < δ ε γ ε , ∀i ∈ {i, . . . , k} ,
and define (L ε , M ε , N ε ) :

P k ε (δ) := Γ k ε × Θ k ε × T k ε (δ) → R 3k as L i ε (γ, τ, θ) := - 1 8π R ε,γ,τ,θ , Z 0,i,ε,γ,τ H 1 0 = k j=1 ∂ γi E (j) ε,γ,τ E (j) ε,γ,τ + θ j γ ε - E (i) ε,γ,τ 2γ 2 ε + o δ ε ln γ ε γ 5 ε , M i ε (γ, τ, θ) := - 1 8πγ ε R ε,γ,τ,θ , B ε,γi,τi H 1 0 = E (i) ε,γ,τ + θ i γ ε + o δ ε γ 3 ε , N i ε (γ, τ, θ) := - γ 2 ε d ε 4π R ε,γ,τ,θ , Z 1,i,ε,γ,τ H 1 0 = a 0 l τ i d ε l-1 - j =i 2d ε τ i -τ j + o (1) 
for i = 1, . . . k, where the error terms in the right-hand sides are uniform for (γ, τ, θ) ∈ P k ε (δ). (Note that we wrote γ in the left-hand side and γ instead of γ + γ ε (τ ) in the right-hand side for simplicity, so that for instance the terms E (j) ε,γ,τ should be read as

E (j) ε,γ+γ ε (τ ),τ ) We claim that deg (L ε , M ε , N ε ) , P k ε (δ) , 0 = 0 (4.118)
for δ and ε small (to be fixed), where deg denotes the Brouwer degree. Let us consider the homotopy (L t ε , M t ε , N t ε ) :

P k ε (δ) → R 3k with L t ε = L t,1 ε , . . . , L t,k ε , etc. defined by L t,i ε = (1 -t) L i ε + tL i ε , L i ε := k j=1 ∂ γi E (j) ε,γ,τ E (j) ε,γ,τ + θ j γ ε - E (i) ε,γ,τ 2γ 2 ε , M t,i ε = (1 -t) M i ε + tM i ε , M i ε := E (i) ε,γ,τ + θ i γ ε , N t,i ε = (1 -t) N i ε + tN i ε , N i ε := a 0 l τ i d ε l-1 - j =i 2d ε τ i -τ j . for i = 1, . . . k and t ∈ [0, 1]. We first show that (L t ε , M t ε , N t ε ) = 0 on ∂ P k ε (δ) for any t ∈ [0, 1] if ε >
0 is sufficiently small. Otherwise there would be a sequence ε n ↓ 0 (which we still denote by ε), t ε ∈ [0, 1] and

(γ ε , θ ε , τ ε ) ∈ ∂ P k ε , i.e. γε ∈ ∂ Γ k ε , or θ ε ∈ ∂Θ k ε , or τ ε ∈ ∂T k ε (δ) , (4.119) 
such that

L tε ε (γ ε , θ ε , τ ε ) , M tε ε (γ ε , θ ε , τ ε ) , N tε (γ ε , θ ε , τ ε ) = 0.
Then, multiplying M tε,j ε by ∂ γi E

ε,γε,τε , subtracting it from L tε,i ε for j = 1, . . . , k and using Proposition 3.4, we obtain (upon multiplication by 2γ 2 ε )

E (i) ε,γε,τε = o δ ε ln γ ε γ 3 ε , for i = 1, . . . , k. (4.120) 
Plugging (4.120) into the equation for M tε,i ε , we then obtain

θ ε = o δ ε ln γ ε γ 4 ε , (4.121) 
hence θ ε ∈ ∂Θ k ε . Now (4.121), the equation for L tε,i ε and Proposition 3.4 yield

k j=1 ∂ γi E (j) ε,γε,τε E (j) ε,γε,τε = o δ ε ln 2 γ ε γ 5 ε , for i = 1, . . . , k. (4.122) 
We can rewrite (4.122) as

Q ε E ε,γε,τε = o δ ε ln γ ε γ 3 ε , (4.123) 
where, taking Proposition 3.4 into account,

Q ε = (Q ε,ij ) 1≤i,j≤k is a k × k matrix with Q ε,ij = Q ij + o (1) as ε → 0 and Q = (Q ij ) 1≤i,j≤k :=      1 1/l . . . 1/l 1/l 1 . . . 1/l . . . . . . . . . 1/l 1/l . . . 1      , E ε,γε,τε =     E (1) ε,γε,τε . . . E (k) ε,γε,τε     (4.124) Now, since det Q ε = det Q + o (1) = 1 + k -1 l 1 - 1 l k-1 + o (1) > 0
for ε > 0 sufficiently small, uniformly with respect to (γ, θ, τ ) ∈ P k ε (δ), we can invert Q ε in (4.123) and get

E (i) ε,γε,τε = o δ ε ln γ ε γ 3 ε , for i = 1, . . . , k. (4.125) 
On the other hand, still by Proposition 3.4, we have

E ε,γε,τε = -2 ln γ ε γ 2 ε Q ε γε + o |γ ε | ln γ ε γ 2 ε ,
where we recall that γ = γ -γ ε (τ ). Then, inverting Q ε and using (4.125) we end up with γε = o (δ ε /γ ε ) , which, for ε > 0 sufficiently small implies that γε ∈ ∂Γ k ε . Finally, writing τε := τ ε /d ε , we have N i (τ ε ) = o (1), where N = (N 1 , . . . , N k ) is as in (4.130). On the other hand, τ ε ∈ ∂T k ε (δ) implies τε ∈ ∂ T k (δ), where

T k (δ) := y = (y 1 , . . . , y k ) ∈ R k : - k δ < y 1 < y 2 < • • • < y k < k δ
and |y i -y j | > δ, ∀i, j ∈ {1, . . . , k} , i = j , (

which is compact and this contradicts Lemma 4.7 for δ = δ (a 0 , l, k) > 0 sufficiently small such that y * ∈ T k (δ). Then we also have τ ε ∈ ∂T k ε (δ), which contradicts (4.119). We have therefore proven that (L t ε , M t ε , N t ε ) = 0 on ∂ P k ε (δ), for ε > 0 sufficiently small, hence by homotopy invariance of the degree

deg (L ε , M ε , N ε ) , P k ε (δ) , 0 = deg L ε , M ε , N ε , P k ε (δ) , 0 . (4.127) 
The degree of L ε , M ε , N ε does not change upon multiplication by an invertible matrix with determinant 1, namely if we consider

  L ε M ε N ε   :=   I k -D γ [E ε,γ,τ ] 0 0 I k 0 0 0 I k     L ε M ε N ε   , where D γ [E ε,γ,τ ] = ∂ γj E (i) ε,γ,τ 1≤i,j≤k , I k is the k × k identity matrix and L ε : P k ε (δ) → R k , is defined by L i ε = -E (i) ε,γ,τ , for i = 1, . . . k, we get deg L ε , M ε , N ε , P k ε (δ) , 0 = deg L ε , M ε , N ε , P k ε (δ) , 0 . Expanding E (i)
ε,γ,τ as in Proposition 3.4, we do a final homotopy between L ε , M ε and

L * ε , M * ε : P k ε (δ) → R 2k
, where

L * i ε = - 2 ln γ ε γ 2 ε   γi + j =i γj l   , M * i ε = L * i ε + θ i γ ε
for i = 1, . . . k (with the same method as above to prevent zeroes on

∂ P k ε (δ)), so that deg L ε , M ε , N ε , P k ε (δ) , 0 = deg L * ε , M * ε , N ε , P k ε (δ) , 0 Using the matrix Q defined in (4.124), we see that   L * ε M * ε N ε   =    -2 ln γ ε γ 2 ε Q 0 0 -2 ln γ ε γ 2 ε Q γ ε I k 0 0 0 I k      γ θ N ε   . (4.128) 
Since Q has positive determinant, if we call A the 3k × 3k matrix on the right-hand side of (4.128) we have sign (det A) = (-1) k , and noticing that N ε only depends on τ , we obtain

A -1   L * ε M * ε N ε   = Id × Id × N ε : Γ k ε × Θ k ε × T k ε (δ) → R k × R k × R k ,
and using the product formula for the degree, we finally obtain

deg (L ε , M ε , N ε ) , P k ε (δ) , 0 = deg L * ε, , M * ε , N ε , P k ε (δ) , 0 = (-1) k deg Id, Γ k ε , 0 deg Id, Θ k ε , 0 deg N ε , T k ε (δ) , 0 = (-1) k deg N ε , T k ε (δ) , 0 . (4.129) 
In order to compute the degree of N ε , observe that N i ε (τ ) = N i (τ ε ), where τε = τ /d ε and N = N 1 , . . . , N k is as in (4.130). Moreover, since δ ∈ (0, 1) was chosen such that y * ∈ T k (δ), with y * as in Lemma 4.7, it follows that

deg N ε , T k ε (δ) , 0 = deg N, T k (δ) , 0 = 1.
We then conclude with (4.129) that there exists

(γ ε , θ ε , τ ε ) ∈ P k ε (δ) such that (γ ε , θ ε , τ ε ) = (γ ε + γ ε (τ ) , θ ε , τ ε ) ∈ P k ε (δ) solves (4.117).
Lemma 4.7. The function

N : T k (0) := y = (y 1 , . . . , y k ) ∈ R k : y 1 < y 2 < • • • < y k → R k
given by

N i (y 1 , . . . , y k ) := a 0 ly l-1 i -2 j =i 1 y i -y j , for i = 1, . . . , k, (4.130) 
has exactly one zero, which we call y * . Moreover deg(H, T k (0), 0) = 1.

Proof. We have that N = ∇J, with

J (y) = a 0 k i=1 y l i + 1 2 i =j ln 1 (y i -y j ) 2 , ∀y = (y 1 , . . . , y k ) ∈ T k (0) .
The Hessian ∇ 2 J is positive definite on T k (0), since

∂ 2 yi J = ∂ yi N i = a 0 l(l -1)y l-2 i + j =i 2 (y i -y j ) 2 , ∂ yi ∂ yj J = ∂ yi N j = - 2 (y i -y j ) 2 , for i = j, so that for every ξ ∈ R k \ {0}, using that ξ 2 i + ξ 2 j ≥ 2ξ i ξ j , we get ξ T ∇ 2 Jξ = k i=1 ξ 2 i   a 0 l (l -1) y l-2 i + j =i 2 (y i -y j ) 2   - k i=1 j =i 2ξ j ξ i (y i -y j ) 2 ≥ k i=1 ξ 2 i a 0 l (l -1) y l-2 i ,
and, using that y ∈ T k (0) and l ∈ 2N * , the right-hand side is positive, unless ξ = (0, . . . , ξ i0 , . . . 0) and y i0 = 0 for some i 0 ∈ {1, . . . , k}, in which case

ξ T ∇ 2 Jξ = j =i0 2ξ 2 i0 (y i0 -y j ) 2 > 0.
Then J is strictly convex in T k (0) and since |J(y)| → ∞ as y → ∂ T k (0) or |y| → ∞, J has a minimum y * , which is its only critical point and the only zero of N . Moreover det(∇N (y * )) = det(∇ 2 J(y * )) > 0, hence deg(N, T k (0), 0) = 1.

Finally, we can now conclude the proof of Theorems 1.2 and 1.3.

End of proof of Theorems 1.2 and 1.3. It follows from Proposition 4.4 that for small ε > 0, u ε := U ε,γε,τε,θε +Φ ε,γε,τε,θε ∈ E hε,βε , where

β ε := ∇u ε 2 L 2 .
We denote γ ε = (γ 1,ε , . . . , γ k,ε ), τ ε = (τ 1,ε , . . . , τ k,ε ), θ ε = (θ 1,ε , . . . , θ k,ε ). By using (3.14) and (4.16), we obtain that Ψ ε,γε,τε , Φ ε,γε,τε,θε → 0 in H 1 0 (Ω) as ε → 0. Since moreover w ε → w 0 in C 1 Ω , H ∈ C 1 Ω × Ω , θ i,ε → 0 and A ε,γi,ε,τi,ε → 0 for all i ∈ {1, . . . , k}, we obtain

∇u ε L 2 = ∇w 0 + k i=1 (1 + θ i,ε ) ∇B ε,γi,ε,τi,ε 1 B(τi,ε,rε) + A ε,γi,ε,τi,ε ∇G (•, τ i,ε ) 1 Ω\B(τi,ε,rε) L 2 + o (1) (4.
131) as ε → 0. By integrating by parts, we obtain

∇G (•, τ i,ε ) 1 Ω\B(τi,ε,rε) 2 L 2 = - ∂B(τi,ε,rε) G (•, τ i,ε ) ∂ ν G (•, τ i,ε ) dσ ∼ 1 2π ln 1 r ε ∼ δ 0 γ 2 ε 4π , (4.132) ∇G (•, τ i,ε ) 1 Ω\B(τi,ε,rε) , ∇w 0 L 2 = ∂B(τi,ε,rε) w 0 ∂ ν G (•, τ i,ε ) dσ = O w 0 C 0 (∂B(τi,ε,rε)) = o (1) (4.133)
and

∇G (•, τ i,ε ) 1 Ω\B(τi,ε,rε) , ∇G (•, τ j,ε ) 1 Ω\B(τj,ε,rε) L 2 = ∂B(τi,ε,rε)∪∂B(τj,ε,rε) G (•, τ i,ε ) ∂ ν G (•, τ j,ε ) dσ = O ln 1 d ε = O (ln γ ε ) (4.134)
as ε → 0 for all i, j ∈ {1, . . . , k}, i = j, where ν and dσ are the outward unit normal vector and volume element of ∂B (τ i,ε , r ε ) ∪ ∂B (τ j,ε , r ε ), respectively. On the other hand, since γ i,ε ∼ γ ε , by using (6.2), we obtain

∇B ε,γi,ε,τi,ε 1 B(τi,ε,rε) 2 L 2 = 2π √ λεhε(τi,ε)rε 0 B γi,ε (r) 2 r dr ∼ 8π γ 2 i,ε ln λ ε h ε (τ i,ε )r ε µ i,ε ∼ 4π (1 -δ 0 ) (4.135)
for all i ∈ {1, . . . , k}, where µ i,ε is defined by µ 2 i,ε := 4γ -2 i,ε exp -γ 2 i,ε . For every j = i, by remarking that B (τ i,ε , r ε ) ∩ B (τ j,ε , r ε ) = ∅ for small ε > 0 and

A ε,γj,ε,τj,ε ∇G (•, τ j,ε ) 1 B(τi,ε,rε) C 0 = O 1 γ ε d ε = o (1) , we obtain ∇B ε,γi,ε,τi,ε 1 B(τi,ε,rε) , ∇w 0 + j =i (1 + θ i,ε ) ∇B ε,γi,ε,τi,ε 1 B(τi,ε,rε) + A ε,γi,ε,τi,ε ∇G (•, τ i,ε ) × 1 Ω\B(τi,ε,rε) L 2 = O ∇B ε,γi,ε,τi,ε 1 B(τi,ε,rε) L 1 = O r ε γ ε = o (1) (4.136)
as ε → 0. Since moreover θ ε → 0, it follows from (3.10) and (4.131)-(4.136) that

∇u ε 2 L 2 -→ ∇w 0 2 L 2 + 4kπ = β 0 + 4kπ as ε → 0. Standard elliptic theory gives that u ε L ∞ → ∞ as ε → 0. Since h ε → h 0 in C 2 Ω ,
we then obtain that β 0 + 4kπ is an unstable energy level of I h0 . This ends the proof of Theorem 1.2.

The above construction also proves Theorem 1.3 if w 0 is non-degenerate. Otherwise we apply a diagonal procedure. More precisely, thanks to Proposition 2.3, for κ ∈ (0, κ 0 ) and ε = ε(κ) sufficiently small we construct w κ,ε(κ) ∈ E β κ,ε(κ) ,h κ,ε(κ) , with w κ,ε(κ) → w 0 , h κ,ε(κ) → h in C 2 (Ω) and β κ := β κ,ε(κ) → β 0 as κ → 0; we further construct

u κ = w κ + k i=1 (1 + θ κ,i )B κ,γκ,i,τκ,i + Ψ κ,γκ,τκ + Φ κ,γκ,θκ,τκ ∈ E hκ,βκ ,
where each subscript κ on the right-hand side actually means (κ, ε(κ)), with ε(κ) > 0 sufficiently small so that

∇Ψ κ,ε(κ),γ κ,ε(κ) ,τ κ,ε(κ) L 2 + ∇Φ κ,ε(κ),γ κ,ε(κ) ,θ κ,ε(κ) ,τ κ,ε(κ) L 2 = o(1) as κ → 0.
Up to renaming the indices, we conclude. Remark 4.8 (Stable vs. positively stable energy levels). As in Definition 1.1, let (u ε ) be a family of functions such that u ε ∈ E hε,βε with h ε → h > 0 in C 2 ( Ω) and β ε → β > 0. In particular, u ε solves (E hε,βε ) with λ = λ ε > 0 obtained from h ε , β ε and u ε thanks to (1.1). As a simple claim, testing (E hε,βε ) against v > 0, first eigenfuntion of ∆ with zero Dirichlet condition on ∂Ω, the bound λ ε = O(1) is automatic when defining a positively stable energy level in Definition 1.1. In the sign changing case, however, let us consider the following unstable situation: u ε goes uniformly to 0 ∈ E h,β , while looking like a (h-weighted) Dirichlet eigenfunction associated to some large eigenvalue λε ∼ λ ε → +∞, but still having the given energy β ε ∼ β > 0 as ε → 0. Then, in order not to have an empty notion of stable energy level, we further assume the bound λ ε = O(1) in Definition 1.1.

Proof of Proposition 3.2

We fix ε ∈ (0, 1) and δ ∈ 0, 1 -√ 2δ 0 . For every p > 1, we define W 2,p 0 (Ω) := W 2,p (Ω) ∩ H 1 0 (Ω). Note that we have a compact embedding of W 2,p (Ω) into H 1 (Ω) and C 0 Ω when p > 1 and into C 1 Ω when p > 2. For every ε ∈ (0, ε 0 ) and τ ∈ T k ε (δ), we let L ε,τ : W 2,p 0 (Ω) → W 2,p 0 (Ω) be the operator defined as

L ε,τ (Ψ) = Ψ -∆ -1 [λ ε h ε χ ε,τ f (w ε ) Ψ] ∀Ψ ∈ W 2,p 0 (Ω) . (5.1) 
As a first step, we prove that there exists a constant C = C (p, δ) > 0 such that

Ψ W 2,p ≤ C L ε,τ (Ψ) W 2,p ∀Ψ ∈ W 2,p 0 (Ω) (5.2)
so that in particular L ε,τ is an isomorphism. We assume by contradiction that there exist sequences

(ε n , τ n , Ψ n ) n such that ε n → 0, τ n ∈ T k εn (δ), Ψ n ∈ W 2,p 0 (Ω) and Ψ n W 2,p = 1 and L εn,τn (Ψ n ) W 2,p → 0 (5.3)
as n → ∞. In particular, we obtain that (Ψ n ) n converges, up to a subsequence, weakly in W 2,p (Ω) and strongly in H 1 0 (Ω) and C 0 Ω to a function Ψ 0 . By using the second part of (5.3), we obtain Ω ∇Ψ n , ∇φ dx -λ εn Ω h εn χ εn,τn f (u εn ) Ψ n φ dx = o (1) (5.4) for all φ ∈ C ∞ c (Ω). Since λ εn h εn χ εn,τn f (u εn ) is uniformly bounded and converges pointwise to λ 0 h 0 f (u 0 ) in Ω and Ψ n → Ψ 0 in H 1 0 (Ω) and C 0 Ω , by passing to the limit into (5.4), we obtain that Ψ 0 is a solution of the problem

∆Ψ 0 = λ 0 h 0 f (u 0 ) Ψ 0 in Ω Ψ 0 = 0 on ∂Ω.
Since u 0 is non-degenerate, it follows that Ψ 0 ≡ 0. By using (5.3) together with standard L p -estimates for the Dirichlet problem (see Lemma 9.17 of Gilbarg-Trudinger [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]), we then obtain

Ψ n W 2,p ≤ L εn,τn (Ψ n ) W 2,p + ∆ -1 [λ εn h εn χ εn,τn f (u εn ) Ψ n ] W 2,p = o (1) + O λ εn h εn χ εn,τn f (u εn ) Ψ n L p = o (1)
as n → ∞, which is in contradiction with (5.3). This ends the proof of (5.2). Now, for every ε ∈ (0, ε 0 ) and (γ, τ ) ∈ T k ε (δ) × Γ k ε (δ ), we let N ε,γ,τ , T ε,γ,τ : W 2,p 0 (Ω) → W 2,p 0 (Ω) be the operators defined as

N ε,γ,τ (Ψ) := ∆ -1 λ ε h ε χ ε,τ f U ε,γ,τ + Ψ -f (w ε ) -f (w ε ) Ψ , T ε,γ,τ (Ψ) := L -1 ε,τ (N ε,γ,τ (Ψ) -R ε,τ ) for all Ψ ∈ W 2,p 0 (Ω), where R ε,τ := w ε -∆ -1 [λ ε h ε χ ε,τ f (w ε )] = ∆ -1 [λ ε h ε (1 -χ ε,τ )f (w ε )] .
Note that the problem (3.13) can be rewritten as the fixed point equation T ε,γ,τ (Ψ) = Ψ. For every C > 0 and ε ∈ (0, ε 0 ), we define

V ε (C) := Ψ ∈ W 2,p 0 (Ω) : Ψ W 2,p ≤ C/γ ε .
We will prove that if C is chosen large enough, then T ε,γ,τ has a fixed point in V ε (C) for small ε > 0. By using a standard L p -estimate and since λ ε → λ 0 , h ε → h 0 and w ε → w 0 in C 0 Ω , we obtain

R ε,τ W 2,p = O λ ε h ε (1 -χ ε,τ ) f (w ε ) L p = O 1 -χ ε,τ L p = o (1/γ ε ) (5.5) as ε → 0, uniformly in τ ∈ T k ε (δ). Similarly, for every Ψ, Ψ 1 , Ψ 2 ∈ V ε (C), we obtain N ε,γ,τ (Ψ) W 2,p = O χ ε,τ f U ε,γ,τ + Ψ -f (w ε ) -f (w ε ) Ψ L p , (5.6 
)

N ε,γ,τ (Ψ 1 ) -N ε,γ,τ (Ψ 2 ) W 2,p = O χ ε,τ f U ε,γ,τ + Ψ 1 -f U ε,γ,τ + Ψ 2 -f (w ε ) (Ψ 1 -Ψ 2 ) L p . (5.7)
By applying the mean value theorem together with Hölder's inequality, it follows from (5.6) and (5.7) that

N ε,γ,τ (Ψ) W 2,p = O χ ε,τ f w ε + t 1 k i=1 B ε,γi,τi + Ψ k i=1 B ε,γi,τi L p + χ ε,τ f (w ε + s 1 Ψ) L p Ψ 2 C 0 , (5.8) 
N ε,γ,τ (Ψ 1 ) -N ε,γ,τ (Ψ 2 ) W 2,p = O χ ε,τ f U ε,γ,τ + (1 -s 2 ) Ψ 1 + s 2 Ψ 2 -f (w ε ) L p Ψ 1 -Ψ 2 C 0 = O χ ε,τ f w ε + t 2 k i=1 B ε,γi,τi + t 2 (1 -s 2 ) Ψ 1 + t 2 s 2 Ψ 2 × k i=1 B ε,γi,τi + (1 -s 2 ) Ψ 1 + s 2 Ψ 2 L p Ψ 1 -Ψ 2 C 0 (5.9) for some functions s 1 , s 2 , t 1 , t 2 : Ω → [0, 1]. Since 0 ≤ χ ε,τ ≤ 1 in Ω, w ε → w 0 in C 0 Ω and Ψ ∈ V ε (C), we obtain χ ε,τ f (w ε + s 1 Ψ) L p = O (1) . (5.10) 
For every j ∈ {1, . . . , k}, by using (3.10), we obtain

B ε,γj ,τj (x) = 2 γ j ln 1 |x -τ j | + O (1) (5.11) uniformly in x ∈ Ω\B (τ j , r ε ). We let R ε := exp (-γ ε ) r ε . Since χ ε,τ ≡ 0 in B (τ j , r ε ), 0 ≤ χ ε,τ ≤ 1 in Ω, w ε → w 0 in C 0 Ω , u 0 (0) = 0, Ψ, Ψ 1 , Ψ 2 ∈ V ε (C) and 0 ≤ s 1 , s 2 , t 1 , t 2 ≤ 1, it follows from (5.11) that χ ε,τ f w ε + t 1 k i=1 B ε,γi,τi + Ψ k i=1 B ε,γi,τi 1 B(τj ,Rε) p L p = O γ p ε Rε rε f 2t 1 γ j ln 1 r + o (1) p rdr = O γ p+2 ε δ0γ 2 ε /γ 2 j 2γ ε /γ 2 j f (t 1 γ j s + o (1)) p exp -γ 2 j s ds = O γ 3p+2 ε δ0γ 2 ε /γ 2 j 2γ ε /γ 2 j exp pt 2 1 s -1 sγ 2 j + o (γ j ) ds = O γ 3p+2 ε δ0/(1-δ ) 2 δ0/[γ ε (1+δ ) 2 ]
exp pt 2 1 s -1 sγ 2 j + o (γ j ) ds = o (1) , (5.12)

χ ε,τ f w ε + t 2 k i=1 B ε,γi,τi + t 2 (1 -s 2 ) Ψ 1 + t 2 s 2 Ψ 2 × k i=1 B ε,γi,τi + (1 -s 2 ) Ψ 1 + s 2 Ψ 2 1 B(τj ,Rε) p L p = O γ p ε Rε rε f 2t 2 γ j ln 1 r + o (1) p rdr = O γ p+2 ε δ0γ 2 ε /γ 2 j 2γ ε /γ 2 j f (t 2 γ j s + o (1)) p exp -γ 2 j s ds = O γ 4p+2 ε δ0γ 2 ε /γ 2 j 2γ ε /γ 2 j exp pt 2 2 s -1 sγ 2 j + o (γ j ) ds = O γ 4p+2 ε δ0/(1-δ ) 2 δ0/[γ ε (1+δ ) 2 ]
exp pt 2 2 s -1 sγ 2 j + o (γ j ) ds = o (1) (5.13) as ε → 0, uniformly in (γ, τ ) ∈ Γ k ε (δ ) × T k ε (δ) and Ψ, Ψ 1 , Ψ 2 ∈ V ε (C), provided we choose p such that pδ 0 / (1 -δ )

2 -1 < 0, i.e. p < (1 -δ ) 2 /δ 0 . By using (5.11), we obtain

χ ε,τ f w ε + t 1 k i=1 B ε,γi,τi + Ψ k i=1 B ε,γi,τi 1 Ω Rε,τ p L p = O 1 γ p ε k i=1 Ω Rε,τ |ln |x -τ i | + O (1)| p dx = o (1) (5.14)
and, similarly,

χ ε,τ f w ε + t 2 k i=1 B ε,γi,τi + t 2 (1 -s 2 ) Ψ 1 + t 2 s 2 Ψ 2 × k i=1 B ε,γi,τi + (1 -s 2 ) Ψ 1 + s 2 Ψ 2 1 Ω Rε,τ L p = o (1) (5.15) as ε → 0, uniformly in (γ, τ ) ∈ Γ k ε (δ ) × T k ε (δ) and Ψ, Ψ 1 , Ψ 2 ∈ V ε (C).
Note that similar estimates as in (5.12)-(5.14) yield (3.16). By putting together (5.9)-(5.15) and using the continuity of the embedding W 2,p (Ω) → C 0 Ω , we obtain

N ε,γ,τ (Ψ) W 2,p = o Ψ 2 W 2,p , (5.16 
)

N ε,γ,τ (Ψ 1 ) -N ε,γ,τ (Ψ 2 ) W 2,p = o ( Ψ 1 -Ψ 2 W 2,p ) (5.17) as ε → 0, uniformly in (γ, τ ) ∈ Γ k ε (δ ) × T k ε (δ) and Ψ, Ψ 1 , Ψ 2 ∈ V ε (C).
It follows from (5.2), (5.5), (5.16) and (5.17) that there exist ε 1 (p, δ, δ ) ∈ (0, ε 0 ) and C = C (p, δ, δ ) > 0 (here we do not specify the dependence in δ 0 as this number is considered to be fixed) such that for every ε ∈ (0, ε 1 (δ)) and (γ, τ ) ∈ Γ k ε (δ ) × T k ε (δ), T ε,γ,τ is a contraction mapping on V ε (C). By the fixed point theorem, we then obtain that there exists a unique solution Ψ ε,γ,τ ∈ V ε (C) to the problem (3.13). By fixing a number p such that 2 < p < (1 -δ 0 )

2 /δ 0 , the first inequality in (3.14) then follows from the continuity of the embedding W 2,p (Ω) → C 1 Ω . By using the Moser-Trudinger inequality together with standard elliptic regularity theory, we obtain that Ψ ε,γ,τ ∈ C l,α (Ω) ∩ C 2 Ω . Furthermore, by symmetry of Ω, w ε , h ε , χ ε,τ and U ε,γ,τ , we obtain that Ψ ε,γ,τ is even in x 2 and by using the continuous differentiability of U ε,γ,τ and χ ε,τ in (γ, τ ), we obtain that Ψ ε,γ,τ is continuously differentiable in (γ, τ ). Now, we prove the second inequality in (3.14). For i ∈ {1, . . . , k}, by differentiating (3.13) in γ i , we obtain

∆ [L ε,τ (∂ γi [Ψ ε,γ,τ ])] = λ ε h ε χ ε,τ f U ε,γ,τ + Ψ ε,γ,τ ∂ γi U ε,γ,τ + λ ε h ε χ ε,τ f U ε,γ,τ + Ψ ε,γ,τ -f (w ε ) ∂ γi [Ψ ε,γ,τ ] , (5.18)
where L ε,τ is as in (5.1). By using (5.2) and (5.18) together with a standard L p -estimate and since λ ε → λ 0 and h ε → h 0 in C 0 Ω , we then obtain

∂ γi [Ψ ε,γ,τ ] W 2,p = O χ ε,τ f U ε,γ,τ + Ψ ε,γ,τ ∂ γi U ε,γ,τ L p + χ ε,τ f U ε,γ,τ + Ψ ε,γ,τ -f (w ε ) ∂ γi [Ψ ε,γ,τ ] L p . (5.19)
By using (3.11), we obtain

∂ γi U ε,γ,τ = 2 γ 2 i (ln |x -τ i | + O (1)) (5.20)
uniformly in x ∈ Ω\B (τ i , r ε ). By using (5.11) and (5.20) and proceeding as in (5.12)-(5.15), we obtain

χ ε,τ f U ε,γ,τ + Ψ ε,γ,τ ∂ γi U ε,γ,τ p L p = O Rε rε f 2 γ i ln 1 r + o (1) p rdr + 1 γ 2p i Ω Rε,τ |ln |x -τ i | + O (1)| p dx = O 1 γ 2p ε (5.21) uniformly in (γ, τ ) ∈ Γ k ε (δ ) × T k ε (δ), provided p is chosen so that p < (1 -δ )
2 /δ 0 . On the other hand, by applying the mean value theorem together with Hölder's inequality, we obtain

χ ε,τ f U ε,γ,τ + Ψ ε,γ,τ -f (w ε ) ∂ γi [Ψ ε,γ,τ ] L p ≤ ∂ γi [Ψ ε,γ,τ ] C 0 × χ ε,τ f w ε + t k i=1 B ε,γi,τi + tΨ ε,γ,τ k i=1 B ε,γi,τi + Ψ ε,γ,τ L p (5.22)
for some function t : Ω → [0, 1]. By using (5.11) and proceeding as in (5.12)-(5.15), we obtain 

χ ε,τ f w ε + t k i=1 B ε,γi,τi + tΨ ε,γ,τ k i=1 B ε,γi,τi + Ψ ε,γ,τ p L p = o (1) (5.23) as ε → 0, uniformly in (γ, τ ) ∈ Γ k ε (δ ) × T k ε (δ),
∂ γi [Ψ ε,γ,τ ] W 2,p = O 1 γ 2 ε + o ∂ γi [Ψ ε,γ,τ ] C 0 (5.24) as ε → 0, uniformly in (γ, τ ) ∈ Γ k ε (δ ) × T k ε (δ). By choosing p such that 2 < p < (1 -δ 0 ) 2 δ 0
and using the continuity of the embedding W 2,p (Ω) → C 1 Ω , the second inequality in (3.14) then follows from (5.24). Now, we prove (3.15). For every i ∈ {1, . . . , k}, by differentiating (3.13) in τ i , we obtain

∆ [L ε,τ (∂ τi [Ψ ε,γ,τ ])] = λ ε h ε f U ε,γ,τ + Ψ ε,γ,τ ∂ τi χ ε,τ + λ ε h ε χ ε,τ f U ε,γ,τ + Ψ ε,γ,τ × ∂ τi U ε,γ,τ + λ ε h ε χ ε,τ f U ε,γ,τ + Ψ ε,γ,τ -f (w ε ) ∂ τi [Ψ ε,γ,τ ] , (5.25) 
where L ε,τ is as in (5.1). By using (5.2) and (5.25) together with a standard L p -estimate and since λ ε → λ 0 and h ε → h 0 in C 0 Ω , we obtain

∂ τi [Ψ ε,γ,τ ] W 2,p = O f U ε,γ,τ + Ψ ε,γ,τ ∂ τi χ ε,τ L p + χ ε,τ f U ε,γ,τ + Ψ ε,γ,τ × ∂ τi U ε,γ,τ L p + χ ε,τ f U ε,γ,τ + Ψ ε,γ,τ -f (w ε ) ∂ τi [Ψ ε,γ,τ ] L p . (5.26)
It is easy to see that

∂ τi χ ε,τ = O 1 r 2 ε 1 A(τi,rε,rε+r 2 ε ) 
(5.27) uniformly in Ω. By using (3.10) and (3.12) and since δ < 1 -√ 2δ 0 , we obtain

∂ τi U ε,γ,τ = 2 γ i (1 + o (1)) x 1 -τ i |x -τ i | 2 + O 1 γ ε (5.28)
uniformly in x = (x 1 , x 2 ) ∈ Ω\B (τ i , r ε ). By using (5.11), (5.27), (5.28) and proceeding as in (5.12)-(5.15), we obtain

f U ε,γ,τ + Ψ ε,γ,τ ∂ τi χ ε,τ p L p = O 1 r 2p ε rε+r 2 ε rε f 2 γ i ln 1 r (1 + o (1)) + O 1 γ ε p rdr = O γ p+2 ε r 2p ε δ0γ 2 ε /γ 2 i δ0γ 2 ε /γ 2 i -(2/γ 2 i ) ln(1+rε) exp (ps -1) sγ 2 i (1 + o (1)) ds = O γ p ε r 2p ε ln (1 + r ε ) exp pδ 0 γ 2 ε γ 2 i -1 δ 0 γ 2 ε + o γ 2 ε = O γ p ε exp pδ 2 0 γ 4 ε γ 2 i + p - 3 2 δ 0 γ 2 ε + o γ 2 ε = O γ p ε exp pδ 0 (1 -δ ) 2 + p - 3 2 δ 0 γ 2 ε + o γ 2 ε = o 1 γ p ε , (5.29) χ ε,τ f U ε,γ,τ + Ψ ε,γ,τ ∂ τi U ε,γ,τ p L p = O 1 γ p i Ω Rε,τ 1 |x -τ i | + 1 p dx + 1 γ p i Rε rε f 2 γ i ln 1 r (1 + o (1)) + O 1 γ ε p r 1-p dr = O 1 γ p ε + γ p+2 i δ0/(1-δ ) 2 δ0/[γ ε (1+δ ) 2 ] exp ps + p 2 -1 sγ 2 i + o γ 2 i ds = O 1 γ p ε (5.30) as ε → 0, uniformly in (γ, τ ) ∈ Γ k ε (δ ) × T k ε (δ), provided we choose p such that pδ 0 (1 -δ ) 2 + p - 3 2 < 0 and pδ 0 (1 -δ ) 2 + p 2 -1 < 0, i.e. max 1 2 + δ 0 (1 -δ ) 2 , 2 3 1 + δ 0 (1 -δ ) 2 < 1 p < 1,
which is possible since δ < 1 -√ 2δ 0 . Note that in this case, we cannot choose p > 2 and so W 2,p (Ω) does not embed into C 1 Ω . Furthermore, by proceeding as in (5.22)-(5.23), we obtain

χ ε,τ f U ε,γ,τ + Ψ ε,γ,τ -f (w ε ) ∂ τi Ψ ε,γ,τ L p = o ∂ τi Ψ ε,γ,τ C 0 (5.31) as ε → 0, uniformly in (γ, τ ) ∈ Γ k ε (δ ) × T k ε (δ)
. By putting together (5.26), (5.29), (5.30) and (5.31), we obtain

∂ τi Ψ ε,γ,τ W 2,p = O 1 γ ε + o ∂ τi Ψ ε,γ,τ C 0 (5.32) as ε → 0, uniformly in (γ, τ ) ∈ Γ k ε (δ ) × T k ε (δ)
. By using the continuity of the embeddings of W 2,p (Ω) into C 0 Ω and H 1 (Ω), (3.15) then follows from (5.32).

Note that (5.29) corresponds to the first identity in (3.17), while the second one follows from (5.30) together with the already proven (3.15) and (3.16), which yield

f (U ε,γ,τ ) D τi Ψ ε,γ,τ 1 Ωr ε,τ L p = O γ 2 ε exp U 2 ε,γ,τ 1 Ωr ε,τ L p D τi Ψ ε,γ,τ C 0 = O (γ ε ) .
This ends the proof of Proposition 3.2.

Expansions of the bubble and its derivatives

In this section we give a precise asymptotic analysis of spherical solutions, and prove some useful consequences. Proposition 6.1. For every γ > 0, let B γ be the unique radial solution to the problem

∆B γ = f B γ in R 2 B γ (0) = γ,
where f (s) := s exp s 2 for all s ∈ R. Set µ 2 γ := 4γ -2 exp -γ 2 and t (r) := ln 1 + r 2 ∀r ≥ 0 (6.1)

and let ϕ be the unique radial solution to the problem

∆ϕ = 4e -2t t 2 -t + 2ϕ in R 2 ϕ (0) = 0. Then B γ (r) = γ - t (r/µ γ ) γ + ϕ (r/µ γ ) γ 3 + D γ (r/µ γ ) ,
where

D γ (r) = O t (r) γ 5 and D γ (r) = O 1 γ 5 r (6.2)
as γ → ∞, uniformly in r ∈ 0, µ δ-1 γ , δ ∈ (0, 1) fixed. Furthermore, ϕ (r) ∼ -t (r) and ϕ (r) ∼ -t (r) as r → ∞.

Proof. This was originally proven in [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I -quantification and location of concentration points[END_REF], see Claim 5.1 and estimates (5.8) and (5.9) in particular (note that the function B γ in [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I -quantification and location of concentration points[END_REF] corresponds to the function B γ via the relation B γ (r) = B γ (r/2)). The estimates (5.8)-(5.9) in [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I -quantification and location of concentration points[END_REF] are valid as long as 0 ≤ t(r/µ γ ) ≤ γ 2 -T γ , where T γ is chosen so that γ k e -Tγ = o (1) as γ → ∞ for every k ≥ 0. It is not difficult to see that this condition is satisfied uniformly for 0 ≤ r ≤ µ δ γ , for any fixed δ > 0.

With regard to the derivative of B γ with respect to γ, we obtain the following: Proposition 6.2. Let B γ , µ γ , t and ϕ be as in Proposition 6.1. Set Z 0 (r) := 1-r 2 1+r 2 and let ψ be the unique radial solution to the problem

∆ψ = 4e -2t Z 0 1 -4t + 2t 2 + 4ϕ + 2ψ in R 2 ψ (0) = 0. Then Z 0,γ (r) := ∂ γ B γ (r) = Z 0 (r/µ γ ) + ψ (r/µ γ ) γ 2 + E γ (r/µ γ ),
where

E γ (r) = O 1 + t (r) γ 4 and E γ (r) = O 1 γ 4 r (6.3) as γ → ∞, uniformly in r ∈ 0, µ δ-1 γ , δ ∈ (0, 1) fixed. Furthermore, ψ (r) ∼ t (r) and ψ (r) ∼ t (r) as r → ∞.
Proof. We easily see that

∆Z 0,γ = f B γ Z 0,γ in B(0, µ δ γ ) Z 0,γ (0) = 1, with f (s) = se s 2 . Set E γ (r) := Z 0,γ (µ γ r) -Z 0 (r) - ψ (r) γ 2 and observe that ∆Z 0 = 8e -2t Z 0 , so that    ∆E γ = µ 2 γ f B γ (µ γ •) Z 0,γ (µ γ •) -8e -2t Z 0 - ∆ψ γ 2 in B 0, µ δ-1 γ E γ (0) = 0. (6.4)
In order to expand the right-hand side of (6.4) we use (6.2), ϕ = O (1 + t) and recalling that µ 2 γ γ 2 e γ 2 = 4, we find

f B γ (µ γ •) = 1 + 2B 2 γ (µ γ •) exp B 2 γ (µ γ •) = 1 + 2 γ - t γ + ϕ γ 3 + O t γ 5 2 e γ-t γ + ϕ γ 3 +O t γ 5 2 = 4e -2t µ 2 γ 1 γ 2 + 2 - 4t γ 2 + O 1 + t 2 γ 4 e t 2 γ 2 e 2ϕ γ 2 +O 1+t 2 γ 4 . (6.5) 
Using that e s = 1 + s + O(s 2 )e s for s > 0, we write

e t 2 γ 2 = 1 + t 2 γ 2 + O t 4 γ 4 e t 2 γ 2 ,
and using that t = O γ 2 uniformly on 0,

µ δ-1 γ , e 2ϕ γ 2 +O 1+t 2 γ 4 = 1 + 2ϕ γ 2 + O 1 + t 2 γ 4 .
We now multiply and reorder, using that exp t 2 /γ 2 ≥ 1, to obtain

f B γ (µ γ •) = 4e -2t µ 2 γ 2 + 1 γ 2 (1 -4t + 4ϕ) + O 1 + t 4 γ 4 e t 2 γ 2 = 4e -2t µ 2 γ 2 + 1 γ 2 1 -4t + 2t 2 + 4ϕ + e -2t+ t 2 γ 2 µ 2 γ O 1 + t 4 γ 4 .
Together with (6.4) and using that ψ = O (1 + t) (as we shall prove later), we now estimate

∆E γ = µ 2 γ f B γ (µ γ •) Z 0 + f B γ (µ γ •) ψ γ 2 + f B γ (µ γ •) E γ -8e -2t Z 0 -4e -2t Z 0 γ 2 1 -4t + 2t 2 + 4ϕ + 2ψ γ 2 = µ 2 γ f B γ (µ γ •) E γ + e -2t+ t 2 γ 2 O 1 + t 4 γ 4 .
We now go back to (6.5) and, still using that t = O γ 2 on B 0, µ δ-1 γ , we bound

f B γ (µ γ •) = O 1 µ 2 γ e -2t+ t 2 γ 2 , so that ∆E γ = e -2t+ t 2 γ 2 O (|E γ |) + O 1 + t 4 γ 4 . ( 6.6) 
Multiplying by γ 4 and using ODE theory, we see that

γ 4 E γ -→ E ∞ in C 1 loc R 2 .
In particular, for any fixed T > 0 and for γ large (γ ≥ γ 0 (T )), we have

|E γ | ≤ C (T ) γ 4 and E γ ≤ C (T ) γ 4 on [0, T ] . (6.7) 
From now on, it is understood that γ ≥ γ 0 (T ), so that (6.7) holds. In order to prove (6.3), observe that the first identity in (6.3) follows from the second one and (6.7) by integration over [T, r]. Then, for T, M > 0 to be chosen later, set

R γ := sup r ∈ T, µ δ-1 γ : E γ (ρ) ≤ M γ 4 ρ , ∀ρ ∈ [T, r] .
We shall prove that for T and M suitable, we have R γ = µ δ-1 γ for every γ sufficiently large. Arguing by contradiction, assume that R γ < µ δ-1 γ , so that in particular

E γ (R γ ) = M R γ γ 4 . (6.8) 
By definition of R γ , using (6.7) and integrating, we get

|E γ (r)| ≤ |E γ (T )| + r T M γ 4 ρ dρ ≤ C (T ) γ 4 + M t (r) 2γ 4 on [T, R γ ] . (6.9) 
With the divergence theorem, (6.6) and (6.9), we now bound for t which for r = R γ is a contradiction to (6.8). Therefore R γ = µ δ-1 γ . To prove that ψ (r) ∼ t (r) and ψ (r) ∼ t (r) as r → ∞, we recall from [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF]Lemmas 15 and 16] (see also [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I -quantification and location of concentration points[END_REF]Lemma 5.1]) that if ψ is radially symmetric and solves ∆ψ = 4e -2t (g + 2ψ) , as γ → ∞, uniformly for r ≤ µ δ γ , so that (6.11) is proven. In order to prove (6.12) we use Proposition 6.2 to expand Z 0,γ and compute = O µ 3δ0-2δ 2 0 +o(1) γ as γ → ∞, uniformly for r = O µ δ0 γ , which proves (6.17).

∈ [T, R γ ], 2πrE γ (r) ≤ 2πT E γ (T ) + B(0,r)\B(0,T ) |∆E γ (x) dx| ≤ 2πT C (T ) γ 4 + B(0,r)\B(0,T ) e -2t+ t 2 γ 2 C|E γ | + C 1 + t 4 γ 4 dx ≤ 2πT C (T ) γ 4 + CM 2γ 4 

Poincaré-Sobolev inequalities

The standard Poincaré-Sobolev inequality on S 2 says that for every p ∈ [1, ∞) there exists C p > 0 such that for every φ ∈ H 1 (S for every φ ∈ D 1,2 R 2 such that R 2 φe -2t dx = 0, where t (x) := ln 1 + |x| 2 , so that 4e -2t(x) = 4 1 + |x| 2 -2 is the conformal factor of the pull-back metric.

We will need a perturbed version of (7.2), where we replace e -2t with suitable scaled versions of exp B 2 γ .

Lemma 7.1. Let (χ ε ) ε>0 be a sequence of functions in R 2 such that for every q > 1, we have χ ε → χ 0 as ε → 0 in L q R 2 , e -2t dx , i.e. Then, for every p ∈ [1, ∞), there exists a constant C > 0 (depending on p and (χ ε )) such that for ε > 0 small enough, the following holds: for every φ ∈ D 1,2 R 2 such that R 2 φχ ε e -2t dx = 0. Proof. Assume by contradiction that there exists a sequence (φ ε ) ε in D 1,2 R 2 such that Let Π : S 2 → R 2 be the stereographic projection. By the first equation in (7.5), the average of φ ε • Π on S 2 is bounded, so by the Sobolev-Poincaré inequality and weak compactness, up to a subsequence, φ ε • Π → φ 0 • Π strongly in L q (S 2 ), in L p (S 2 ), and weakly in H 1 (S 2 ), for some function φ 0 ∈ L p (R 2 , e -2t dx). By lower-semicontinuity of the Dirichlet integral we get ∇(φ 0 • Π) L 2 (S 2 ) = ∇φ 0 L 2 (R 2 ) = 0, so that φ 0 is constant, non-zero since φ 0 • Π L p (S 2 ) = 1. Then, we obtain

0 = R 2 φ ε χ ε e -2t dx → R 2 φ 0 χ 0 e -2t dx ⇒ R 2
χ 0 e -2t dx = 0, contradicting our assumption. Proposition 7.2. Let B γ , µ γ and t γ be as in Propositions 6.1 and 6.2. Let φ ∈ D 1,2 R 2 be such that -→ χ 0 ≡ 1 in L q (R 2 , e -2t dx) for 1 ≤ q < 1 1 -δ 0 . (7.8) Indeed, it is clear that χ γ → χ 0 pointwise, while we can uniformly bound χ γ by a function in L q R 2 , e -2t dx as follows. By using (6.19), we obtain

χ γ = O e t 2 γ 2
= O e t(1-δ0+o(1)) , so that χ q γ = O e tq(1-δ0+o(1)) .

On the other hand, -→ 1 + t in L q (R 2 , e -2t dx)

for q < 1/ (1 -δ 0 ), and with Hölder's inequality, we obtain | φ| pq e -2t dx

1 q = O R 2 |∇ φ| 2 p 2 = O R 2 |∇φ| 2 p 2
.

Substituting into (7.9), we then obtain (7.7).

8. Proof of Claim 3.1

From (3.2), (6.2) and the divergence theorem, we get This proves (3.10). Further, Proposition 6.2 gives

A ε,γi,τi = -2πr ε B ε,γi,τi (r ε ) = -2πr ε λ ε h ε (τ i )B γi λ ε h ε (τ i )r ε = 4π γ i + O 1 γ 3 ε . ( 8 
∂ γi [A ε,γi,τi ] = -2πr ε λ ε h ε (τ i )∂ γi B γi λ ε h ε (τ i )r ε = - 4π γ 2 i + O µ 2 γi r 3 ε + O 1 γ 4 ε = - 4π γ 2 i + O 1 γ 4 ε .
Similarly, By differentiating (8.3) in τ i , we obtain

∂ γi [B γi λ ε h ε (τ i )r ε ] = 2 ln r ε γ 2 i + 2 ln γ i γ 2 i + O 1 γ 2 ε , so that ∂ γi [C ε,γi,τi ] = ∂ γi [B γi λ ε h ε (τ i )r ε ] + 1 2π ∂ γi [A ε,
∂ τi [A ε,γi,τi ] = πλ ε ∂ x1 h ε (τ i ) r 2 ε f B γi λ ε h ε (τ i )r ε . (8.4) 
By using (8.2) together with the definition of r ε , and using that γ i ≥ (1 -δ ) γ ε , we obtain uniformly in (γ, τ ) ∈ Γ k ε (δ ) × T k ε (δ) for all a ≥ 0, provided δ < 1 -√ δ 0 . By using (8.4) and (8.5) and since λ ε → λ 0 and h ε → h 0 in C 1 Ω , we obtain the first part of (3.12). By differentiating C ε,γi,τi in τ i and using (6.2), (8.4) and (8.5), we then obtain

r 2 ε f B γi λ ε h ε (τ i )r ε = O r 2 ε γ ε exp
∂ τi [C ε,γi,τi ] = √ λ ε ∂ x1 h ε (τ i ) r ε 2 h ε (τ i ) B γi λ ε h ε (τ i )r ε - 1 2π ∂ τi [A ε,γi,τi ] ln 1 r ε = - ∂ x1 h ε (τ i ) h ε (τ i ) γ i + O |∂ x1 h ε (τ i )| γ 3 ε ,
which gives the second part of (3.12). This ends the proof of Claim 3.1.

2 L 2

 22 = β. Note that u ∈ E h,β if and only if u is a solution of the problem ∆u = λhf (u) in Ω u = 0 on ∂Ω, (E h,β ) where we use the notation ∆ := -∂ 2 x1 -∂ 2 x2 , f (u) := u exp u 2 and λ := 2β DI h (u) .u = β Ω hu 2 exp (u 2 ) dx . (1.1)

  Finally, by combining (4.43), (4.44) and (4.48), we obtain a contradiction with (4.20) and (4.21). This ends the proof of Lemma 4.3.

  and using |Z 0,i | = O (1), we simplify to (A) j = -B(τj ,rε)

  .102) It remains to show that all the remaining terms are o 1/(γ 2 ε d ε ) . Let us now estimate (A ). By (3.20), (3.21), (4.98) and (4.99), we have

  .103) absorbing powers of γ ε in the term µ o(1) ε

  and we use Proposition 7.2 to obtain an error term of order

( 4 .

 4 115) since the right-hand side contains a norm equivalent to the H 1 -norm. Now, by the Jensen and Moser-Trudinger inequalities, we have exp   1 |B (0, 1) | B(0,1)

  .116) Now, (4.102), (4.103), (4.107), (4.114) and (4.116) allow us to conclude.

4 B-2t+ t 2 γ 2 t 2 γ 2 1 γ,-2t+ t 2 γ 2 t 2 .

 42221222 (0,r)\B(0,T )e C C (T ) + 1 + t 4 dx ≤ -(1 + δ) t and e -δ 2 t t k = O (1) on B 0, µ δ-k dx = O B(0,T ) c e -(1+ δ 2 )t dx = o T (1) ,with o T (1) → 0 as T → ∞. We can therefore choose T sufficiently large (independent of M ) so that (I γ ) ≤ πM Then, choosing M sufficiently large (depending on T ), so that 2πT C (T ) + (II γ ) ≤ πM 2 and dividing by 2π in (6.10), we finally obtain r |E (r)| ≤ M 2γ 4 , ∀r ∈ [T, R γ ] ,

2 Z 2 Z 2 0so that β = 2 .Proposition 6 . 3 .γ 2 at 2 γ γ 2 - 1 = O t 2 γ γ 2 e t 2 γ γ 2 .

 22226322122 with g (r) = O (ln r) k as r → ∞ for some k ≥ 1, then ψ (r) = β ln r + O (r) , ψ (r0 e -2t gdx,as r → ∞. With g = Z 0 1 -4t + 2t 2 + 4ϕ we compute R e -2t dx =Let us see a few consequences of the above estimates. Let B γ , µ γ , t, Z 0 and Z 0,γ be as in Propositions 6.1 and 6.2. Given δ ∈ (0, 1), a, b ≥ 0 and t γ (r) = t(r/µ γ ), we havedx = 4πγ b-2 + O γ b-4 ,(6.11)as γ → ∞, uniformly for γµ γ ≤ r ≤ µ δ γ . Moreover,B(0,r) f B γ Z 0,γ dx = -4π + o (1) γ 2 (6.12)as γ → ∞, uniformly for γµ γ = o (r) and r ≤ µ δ γ as γ → ∞, uniformly for γµ γ ≤ r ≤ µ δ γ .Proof. Using Proposition 6.1 and noticing that ϕ = O (1 + t), t γ = O γ 2 in B (0, r) for r ≤ µ δ γ the inequality |e x -1| ≤ |x| e |x| to estimate e O Further, we use Proposition 6.1 together with (1 + x) a = 1 + O (x) uniformly for x = O (r/µγ )O 1 + t 2 e -t 2-t γ 2 dx =: (I) γ + (II) γ .Using that r ≥ γµ γ , one computes(I) γ = 4π γ 2-b 1 + O γ -2 ,and using that 0 ≤ t/γ 2 ≤ (1 -δ + o (1)) in B (0, r/µ γ ) as γ → ∞, uniformly for r ≤ µ δ γ , and observing that 1 + t 2 e -(1+δ )t ∈ L 1 R 2 for every δ > 0, one has (II) γ = O 1 γ 4-b B(0,r/µγ ) 1 + t 2 e -t(1+δ+o(1))

B( 0 2

 02 ,r) f B γ Z 0,γ dx = B(0,r) ∂ γ f B γ dx = B(0,r) as γ → ∞, uniformly for γµ γ = o (r). Using that ψ (s) = t (s) (1 + o (1

R 2 |χ 2 χ

 22 ε -χ 0 | q e -2t dx -→ 0 for some function χ 0 in R 2 and further assume that R 0 e -2t dx = 0.(7.3)

R 2 |φ 2 φ

 22 ε | p e -2t dx = 1, R ε χ ε e -2t dx = 0, lim ε→0 R 2 |∇φ ε | 2 dx = 0. (7.5) 

6 ) 2 γ 2 R 2 |∇φ| 2 dx p 2 . ( 7 . 7 )

 6222277 for r such that µ γ = o (r) and r = O µ δ0 γ for some δ 0 ∈ (0, 1). Then for every p ∈ [1, ∞), we haveB(0,r) exp B (1 + t γ ) |φ| p dx = O 1 γProof. With Proposition 6.1 we can rewrite condition (7.6) as 0 = γ B(0,r)

R 2 e 2 e 4 - 2 γ ( 1 + t γ ) |φ| p dx = 1 γ 2 B-2t+ t 2 γ 2 +O 1+t γ 2 ( 1 + 2 R 2 χγ 2 γ 2

 224212212222 tq(1-δ0+o(1)) e -2t dx = R -t(2-q+qδ0+o(1)) dx = 2q + 2qδ 0 > 2, i.e. 1 ≤ q < 1 1 -δ 0 , so that (7.8) follows by dominated convergence. We can then apply Lemma 7.1 to Φ, so that (7.4) holds. On the other hand, for any r ∈ [1, ∞),B(0,r) exp B (0,r/µγ ) e t) | φ| p dx = 1 γ | φ| p e -2tdx, (7.9) where, as in (7.8) we have χγ := 1 B(0,r/µγ ) (1 + t) e t +O 1+t γ 2

R 2 χγ | φ| p e -2t dx ≤ R 2 χq γ e -2t dx 1 q R 2
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= 2 ln γ i γ 2 i,

 2 γi,τi ] ln r ε which proves(3.11). To prove (3.12), we observe thatA ε,γi,τi = λ ε h ε (τ i ) B(τi,rε) f B ε,γi,τi dx = 2πλ ε h ε (τ i ) rε 0 f B γi λ ε h ε (τ i )r rdr

4 γ 2 i( 2 = O γ ε exp 2 ln r ε 1

 4221 ln r ε + ln γ i + O (1))

  .42) where o R (1) → 0 as R → ∞, uniformly in n ∈ N * . It follows from (4.22), (4.41) and (4.42) that Estimation of I n in the annuli A (τ i,n , r n , R n ), where R n := exp (-γ n ).

	f (U n ) Φ 2 n dx = o (1)	(4.43)
	B(τi,n,rn)	
	as n → ∞.	
		For every i ∈
	{1, . . . , k}, for small p > 1, by using Hölder's inequality, (3.16) and (4.19) together with the
	continuity of the embedding H 1 0 (Ω) → L 2p (Ω), we obtain	
	A(τi,n,rn,Rn)	

  2 ) with S 2 φdv S 2 = 0, we have Pulling back the spherical metric onto R 2 , we can also rewrite (7.1) as

					p	
	|φ| p dv S 2 ≤ C p	|∇φ|	2 dv S 2	2	.	(7.1)
	S 2	S 2				
					p	
	|φ|	p e -2t dx ≤ C p	|∇φ| 2 dx	2	,	(7.2)
	R 2		R 2			

  .1) Considering that ln λ ε = O (1) and ln µ γi = -1 2 γ 2 i -ln γ i + O (1) , from(6.2), we inferB γi λ ε h ε (τ i )r ε = γ i -2 ln(r ε /µ γi ) + ln(λ ε h ε (τ i ))

							γ i		+ O	1 γ i
		= -	2 ln r ε γ i	-	2 ln γ i γ i	+ O	1 γ ε	,	(8.2)
	which together with (3.3) and (8.1) gives						
	C ε,γi,τi = -	2 ln γ i γ i	+ O	1 γ ε	= -	2 ln γ ε γ i	+ O	1 γ ε	.

We shall always write fε(U ) instead of fε(x, U ), ignoring the dependence on x.

Finally, from the second part of (6.3), we infer

Summing up, (6.12) follows at once. It remains to prove (6.13). Using (6.14) and (6.15), we write

B(0,r)

To compute (I) γ , we observe that its value does not change if we replace y 1 with y 2 , so that

as γ → ∞, uniformly for r ≥ γµ γ . The term (II) γ can be estimated as in (6.16) since y 2 1 ≤ e t , so that

as γ → ∞, uniformly for r ≤ µ δ γ .

Proposition 6.4. Let B γ and µ γ be as in Proposition 6.1. Given δ 0 ∈ (0, 1/2), we have

Proof. Let t γ be as in Proposition 6.2. Using Proposition 6.1, we write exp

Then, using that