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Relative Similarity Logics are Decidable:
Reduction to FO? with Equality*

Stéphane Demri and Beata Konikowska

! Laboratoire LEIBNIZ - C.N.R.S.
46 av. Félix Viallet, 38000 Grenoble, France
2 TInstitute of Computer Science, Polish Academy of Sciences
Ordona 21, 01-237 Warszawa, Poland

Abstract. We show the decidability of the satisfiability problem for rel-
ative similarity logics that allow classification of objects in presence of
incomplete information. As a side-effect, we obtain a finite model prop-
erty for such similarity logics. The proof technique consists of reductions
into the satisfiability problem for the decidable fragment FO? with equal-
ity from classical logic. Although the reductions stem from the standard
translation from modal logic into classical logic, our original approach
(for instance handling nominals for atomic properties and decomposition
in terms of components encoded in the reduction) can be generalized to
a larger class of relative logics, opening ground for further investigations.

1 Introduction

Background. Classification of objects in presence of incomplete information has
been long recognized as an issue of concern for various Al problems that deal with
commonsense knowledge as well as scientific and engineering knowledge (expert
systems, image recognition, knowledge bases and so on). Similarity -sometimes
termed ”weak equivalence”- provides a basic tool each time when we classify
objects with respect to their properties. There exist several formal systems cap-
turing the notion of similarity from the logical viewpoint [Vak91la, Vak91b]. In
the present paper we base on the formalization given in [Kon97], where, contrary
to [Vak9la, Vak91b], similarity is treated as a relative notion. More precisely, in
[Kon97] similarity is defined as a reflexive and symmetric binary relation simp,
parametrized by the set P of properties with respect to which the objects are
classified as either similar or dissimilar. Thus, instead of a single similarity re-
lation we have a whole family (SimP)ngRop, where PROP is the set of all
the properties considered in a given system. When talking about similarity or
equivalence it is natural to talk about lower and upper approzimation L(simp)A,
U(simp)A of a given set A of objects with respect to the similarity simp. The
above operations stem from rough set theory [Paw81], with L(simp)A being
the set of all objects in A which are not similar (in the sense of simp) to any

* This work has been partially supported by the Polish-French Project “Rough-set
based reasoning with incomplete information: some aspects of mechanization”, §7004.



object outside A and U(simp)A - the set of all objects of the universe which
are similar to some object in A. Thus, the above operations could be considered
as the operations of taking "interior” and ”closure” of the set A with respect
to similarity szmp. However, the analogy i1s not complete, since similarity is not
transitive, and hence the above operations are not idempotent.

Practical importance of the approximation operations is quite obvious: if
we can distinguish objects only up to similarity, then when looking for objects
belonging to some set A we should take those in L(simp)A, if we want to consider
only the objects sure to belong to A, and those in U(simp)A if our aim is not
to overlook any object which might possibly belong to A.

Our objectives. The formal system introduced in [Kon97] features the above
operations, which generate a family of interdependent relative modalities. The
resulting polymodal logic is equipped with a complete deduction system. How-
ever, from the viewpoint of any practical applications of the similarity logic
in the area of Artificial Intelligence mentioned above an issue of great impor-
tance 1s whether the logic is decidable. A positive answer to this question might
provide not only a decision procedure, but also a better understanding of the
logical analysis of similarity. These are the objectives of the present paper. Up
to now, the question of decidability has been open, which is hardly surprising
in view of the high expressive power of the logic. Indeed: its language admits
implicitly the universal modal operator, and nominals for atomic propositions
as well for atomic properties; in addition, the modal operators are interdepen-
dent. Nominals (or names) are used in numerous non-classical logics with various
motivations (see e.g. [Orto84a, PT91, Bla93, Kon97]) and they usually greatly
increase the expressive power of the logics (causing additional difficulties with
proving (un)decidability -see e.g. [PT91]). Furthermore, since finite submodels
can be captured in the language up to an isomorphism (which is yet another
evidence of the expressive power of similarity logics), there is no hope of proving
decidability by showing a finite model property for a class of models including
strictly the class of standard models with a bound on the model’s size (see e.g.
[Vak91c, Bal97]). On the other hand, the intersection operator, which is implic-
itly present in the interpretation of the modal terms, is known to behave badly
for filtration-like constructions.

Our contribution. We prove that the logic defined in [Kon97] together with some
of its variants is decidable by translating it to a decidable fragment of first-
order logic: the two-variable fragment FO? containing equality, but no function
symbols (see e.g. [Mor75]). Although there are known methods of handling the
universal modal operator, the Boolean operations for modal terms and nominals
for atomic propositions in order to translate them into FO? with equality (see for
example the survey papers [Ben98, Var97]), the extra features of the similarity
logics require some significant extra work in order to be also translated to such
a fragment. This is achieved in the present paper. Unlike the Boolean Modal
Logic BML [GP90], for which decidability can be proved via the finite model
property for a class of models, reduction of satisfiability for the similarity logics



to FO? with equality is the only known decidability proof we are aware of, and
therefore we solve an open problem here. As a side-effect, we prove the finite
model property. More importantly, the novelty of our approach allows us to
generalize the translation to a large class of relative modal logics.

Plan of the paper. The paper is structured as follows. In Section 2 the relative
similarity logics we deal with in the paper are defined, and some results about
their expressive power and complexity are stated. In Section 3, we define the
translation of the main relative similarity logic £ into FO? with equality, and
show its faithfulness. Decidability and finite model property for £ are obtained
partly by considering the analogous properties of the fragment FO? with equality.
In Section 4, we investigate some variants of £, and show their decidability and
the finite model property. Section 5 concludes the paper by providing some
generalizations of the results proved in the preceding Sections, and stating what
1s known about the computational complexity of L-satisfiability. In addition,
several examples of formula translations are given.

2 Similarity logics

2.1 Information systems and similarity

The information systems that proposed for representation of knowledge are the
foundational structures, on which the semantics of the relative similarity logic
is based. An information system S is defined as a pair (ENT, PROP) where
ENT is a non-empty set of entities (also called objects) and PROP is a non-
empty set of properties (also called attributes) -see e.g. [Paw81]. Each prop-
erty prop is a mapping ENT — P(Valyop) \ @ and Val,,op is the set of val-
ues of the property prop -see e.g. [OP84]. In that setting, two entities ey, es
are said to be similar with respect to some set P C PROP of properties (in
short e; simp ey) iff for any prop € P, prop(ei) N prop(es) # 9. The poly-
modal frames of the relative similarity logics are isomorphic to structures of the
form (ENT, PROP, (simp)pcprop)- Other relationships between entities can
be found in the literature -see e.g. [FACO84, Orlo84b]. For instance, two entities
e1, ey are said to be negatively similar (resp. indiscernible) with respect to some
set P C PROP of properties (in short e nsimp ey -resp. e1 indp es) iff for any
prop € P, —prop(e1) N —prop(es) # 0 - resp. prop(e1) = prop(ez).

The family (simp)pcprop of similarity relations stemming from some infor-
mation system S = (EjVT, PROP) induces certain approximations of subsets
of entities in S. Indeed, let L(simp)X (resp. U(simp)X) be the lower (resp.
upper) sémp-approximation of the set X of entities defined as follows:

— L(simp)X £ {e € ENT :V ¢ € ENT, (e,¢') € simp implies ¢’ € X};

U(simp)X £ {e € ENT :3 ¢ € ENT, (e,¢') € simp and ¢’ € X}.
Obviously L(simp)X C X C U(simp)X and L(simp)X = ENT\U (simp)(ENT\
X). These approximations are rather crucial in rough set theory since they al-
low to classify objects in presence of incomplete information. That 1s why, the



semantics of modal operators in the relative similarity logics shall use these ap-
proximations as modal operations. We invite the reader to consult [0e97] for
examples of rough set analysis of incomplete information.

2.2 Syntax and semantics
The set of primitive symbols of the polymodal language L is composed of

— a set VARSE = {E;,E, ...} of variables representing sets of entities,
— a set VARE = {x1,x,...} of variables representing individual entities,
— symbols for the classical connectives -, A (negation and conjunction), and
a countably infinite set {[A] : A € TERM} of unary modal operators where the
set TERM of terms is the smallest set containing
e the constant O representing the empty set of properties,
e a countably infinite set VARP = {p;,p,,...} of variables representing
individual properties,
e a countably infinite set VARSP = {P;,Pa,...} of variables representing
sets of properties,
and closed under the Boolean operators N, U, —.

The formation rules of the set FORM of formulae are those of the classical propo-
sitional calculus plus the rule: if F € FORM and A € TERM, then [A]F € FORM. We
use the connectives V, =, <, (A) as abbreviations with their standard meanings.
For any syntactic category X and any syntactic object 0, we write X(0) to denote
the set of those elements of X that occur in 0. Moreover, for any syntactic ob-
ject 0, we write |0 to denote its length (or size), that is the number of symbol
occurrences in 0. As usual, sub(F) denotes the set of subformulae of the formula
F (including F itself).

Definitionl. A TERM-interpretation v is a map v : TERM — P(PROP) such
that PROP is a non-empty set and for any A;, A; € TERM,

if A1,A> € VARP and 4; # A,, then v(4;1) # v(A2),

— if Ay € VARP, then v(A1) is a singleton, i.e. v(&1) = {prop} for some prop €
PROP,

- U(O) = @, ’U(Al N Az) = U(Al) n U(Ag), U(Al (@] Az) = U(Al) U U(Az),

- U(*Al) = PROP\U(Al)

For any 4,B € TERM, we write A = 0 (resp. A = B) when for any TERM-
interpretation v, v(4) = @ (resp. v(A) = v(B)).

Definition2. A model U is a structure Y = (ENT, PROP, (simp)pcprop,v)
where ENT and PROP are non-empty sets and (simp)pgpgop 1s a family of
binary relations over N1 such that

— for any ) # P C PROP, simp is reflexive and symmetric,
— forany P, P' C PROP, simpyp: = simpNsimp: and simyp = ENT X ENT.



Moreover, v is a mapping v : VARE U VARSE U TERM — P(ENT) U P(PROP)
such that v(E) C ENT for any E € VARSE, v(x) = {e}, where e € ENT for any
x € VARE and the restriction of v to TERM is a TERM-interpretation.

Since the set of nominals for properties is countably infinite, and any two
different nominals are interpreted by different properties, each model has an
infinite set of properties. Let ¢ = (ENT, PROP, (simp)pcprop,v) be a model.
As usual, we say that a formula F is satisfied by an entity e € ENT inU (written
U, e = F) if the following conditions are satisfied.

—U,e Exiff {e} =v(x); U,e =Eiff e € v(E);
—U,el=-Fiff notU,e =EF; U, e EFAGiITU, e =Fand U, e = G;
U, e |= [A]F iff for any ¢’ € sim,p(c), U, e’ EF.

A formulaF is true in a model U (written U = F) iff for any e € ENT, U, e |=
F - or, equivalently, iff for some e € ENT, U,e |= [0]F. A formula F is said to be
valid iff F s true in all models. A formula F 1s said to be satisfiable iff =F is not
valid. The similarity logic £ is said to have the finite model propertyiff every satis-
fiable formula is satisfied in some model & = (ENT, PROP, (simp)pcprop, V)
with a finite set ENT' such that, for any P C PROP, stmp = stmpnp,,
where Py C PROP is finite and nonempty (Py is called the relevant part of
PROP in U). Consequently, if £ has the finite model property, then every satis-
fiable formula has a model (ENT, PROP, (simp)pcprop,v) such that for any
) £ P C PROP, simp = NeepSiMmygy.

The similarity logic defined in [Kon97] is not exactly the logic £ defined
above, since in [Kon97] the set of properties was supposed to be fixed, and
constants representing properties were used instead of variables. For any set X,
we write Lx to denote the logic that differs from £ in the following points: (1)
the set of properties PROP is fixed in all the models and equals X, (2) VARP and
X have the same cardinality. In various places in the paper, we implicitly use
the facts that satisfiability is insensitive to the renaming of any sort of variables,
and that any two models isomorphic in the standard sense satisfy the same set
of formulae. Moreover, for the logics Lx, as far as satisfiability is concerned, it is
irrelevant whether we fix the interpretation of each nominal for the properties.

2.3 Expressive power and complexity lower bound

Since the language of the relative similarity logic £ contains nominals, the uni-
versal modal operator and a family of standard modal operators, its expressive
power is quite high. In Proposition 3 below, we shall state a counterpart of
Corollary 4.17 in [GG93] (see also Theorem 2.8 in [PT91]) saying that finite
submodels can be captured in the language up to isomorphism. In Proposition
3 below, we show that for any finite structure § there is a formula Fs such that
a model U satisfies Fg iff § is a substructure of ¢/ up to isomorphism. Although
this shows that the expressive power of the logic is high, it has a very unpleasant
consequence: there is no hope of characterizing L-satisfiability by a class of finite
non-standard models the way it is done in [Vak91c, Bal97]. It means for instance



that proving the finite model property of £ by a standard filtration-like tech-
nique becomes highly improbable since £ has implicitly the intersection operator
in the language.

In Proposition 3 below, the structure § encodes a finite part of some model.
The set {1,...,n} should be understood as a finite set of entities, and {1,... 1}
as a finite set of properties. Moreover, only a finite set {E;,...,Ex} of atomic
propositions is taken into account. Fori € {1,...,n}and j € {1,... k}, j € V'(4)
is to mean that E; is satisfied by i.

Proposition3. Let § = ({1,...,n},{1,... {},(R(P))pcq1.. .13, v") be a struc-
ture such that each R(P) is a reflexive and symmetric relation, R() is the
universal relation, for any P, P C {1,...,1}, R(PU P’) = R(P) N R(P') and
o' is @ mapping {1,...,n} — P{1,...,k}) for some k > 1. Then, there is
formula Fs such that for any L-model U, U = Fs iff there 1s an 1-1 mapping
Uy {1,...,n} = ENT and an injective mapping ¥o : {1,...,1} — PROP with
the following properties

— foranyi € {1,... .k}, v(E;) = {¥i(s) : i € V' (s)};
— for any P C PROP such that there is P' C {1,...,1} verifying {¥:(7) : i €
P'} = P, we have simp = R(P’).

Proof. The formula Fg is the conjunction of the following formulae.
Lo[0)(x1 V... Vxn) & [0 Ay jcn (i Axj);
2. [O](/\“E{1 H_.n}(xi = (/\ue{], k) syEy))) where s, is the empty string if v €
v(i), otherwise s, =
3. for any {i1,....4,} C{1,....{}and alli € {1,...,n},
(0] (xi = (( /\ (i, U. . .Up; )x;)A( /\ ~(p;, Y- . .Up;, )x;))
JERGy iy (1) JERy . iy (1)

Before establishing decidability of L£-satisfiability, one can provide a lower
bound for the complexity of this problem using [Hem96].

Proposition4. L-satisfiability is EXPTIME-hard.

When no nominals for properties and entities are allowed satisfiability can
be shown to be in EXPTIME [Dem98].

3 Translation from £ into FO? with equality

3.1 A known decidable fragment of classical logic

Consistently with the general convention, by FO? we mean a fragment of first-
order logic (FOL for short) without equality or function symbols using only 2
variables (denoted by y, and y, in the sequel). We shall translate the similarity
logics into a slight extension of FO? obtained by augmenting the language with
identity. Actually, we shall restrict ourselves to the following vocabulary:



— a countable set {P; : i € w}U{Q; : i € w} of unary predicate symbols,
— a countable set {R; ; : i,j € w} of binary predicate symbols,
— the symbol = (interpreted as identity).

In what follows, by a first-order formula we mean a formula belonging to just this
fragment of FOL (written FO?[=] in the sequel). As usual, a first-order structure
M (restricted to this fragment) is a pair (D, m) such that D is a non-empty
set and m is an interpretation function with m(P;) Um(Q;) C D for i € w,
m(R; ;) € D x D fori,j € w and m(=) = {{a,a) : a € D}. As usual, a valuation
vp for M is a mapping vaq : {y,, ¥, } = D. We write M, vpq |= F to denote that
F is satisfied in M under vaq, and omit vaq when F is closed. It is known that
FO?[=] has the finite model property, FO?[=]-satisfiability is decidable [Mor75]
and NEXPTIME-complete [Lew80, GKV97]. Actually, F is FO?[=]-satisfiable
iff F has a model of size 2°%IFl for some fixed ¢ > 0 [GKV97].

3.2 Normal forms

Let F € FORM be such that® VARP(F) = {p,,...,p,;} and VARSP(F) = {Py,...,P,}.
In the rest of this section, we assume that n > 1 and [ > 1. The degenerate cases
make no additional difficulties and they are treated in a separate section. For
any integer k € {0,...,2” — 1}, by By we denote the term

A N...NA4A,

where, for any s € {1,...,n}, A, = P, if bit,(k) = 0, and &4, = —P; otherwise,
with bit;(k) denoting the sth bit in the binary representation of k. For any
integer k € {0,...,2" — 1}, we denote

Bko =BpN—p,N...N—p,

Finally, for any (k, k") € {0,...,2% — 1} x {1, ...,{}, we denote Ay =By Npy.
For any TERM-interpretation v : TERM — P(PROP), the family

{o(Bpsr) : (kK'Y €{0,..., 2" =1} x {0,...,1}}

is a partition of PROP. Moreover, for any term A € TERM(F), either A = 0
or there is a unique non-empty set {Ak],k‘l) .., Ag, k. } such that A = Apy it U
..U Ak, k- The normal form of A, written N(A), is either 0 or Ay, pr U ... U
Ag, k2 according to the two cases above. Such a decomposition, introduced in
[Kon97], generalizes with nominals the canonical disjunctive normal form for the
propositional calculus. N (4) can be computed by an effective procedure.

For any k' € {1,...,1}, we write occg: to denote the set

{ke{0,...,2" =1} : JA € TERM(F), N(&) = .. . Uhpp U.. .}

? Without any loss of generality we can assume that if { (resp. n) nominals for prop-
erties (resp. for entities) occur in F they are precisely the ! (resp. n) first in the
enumeration of VARP (resp. VARE) since satisfiability is not sensitive to the renaming
of variables.



Informally, occy/ is the set of indices k such that Ay p/ occurs in the normal
form of some element of TERM(F). We write setoccyr to denote the set

{X Coceyr = card(oceyr) — 1 < card(X) < 2" — 1}

The definition of setocey is motivated by the fact that for any TERM-interpretation
v, there is only one k € {0,...,2" — 1} such that v(A x/) # @, and for this very
k, v(Ak x) = v(py/). For each X € setocey in turn, in the forthcoming construc-
tions we shall enforce v(&y 5/) = 0 for any k € X.

3.3 The translation

In this section, we define an extension to L of the translation S7' defined in
[Ben83] of modal formulae into a first-order language containing a binary pred-
icate, a countable set of unary predicate symbols and two individual variables
(due to a smart recycling of the variables). Our translation of the nominals for
entities is similar to the translation of nominalsin [GG93]. However, we take into
account the decomposition of terms into components in order to obtain a faithful
translation. The translation of nominals for atomic properties is a twofold one:
we take it into account both in defining the normal form of terms; and in the
generalized disjunction defining the translation T below.

Let F € FORM be such that VARP(F) = {p,,...,p;}, VARSP(F) = {Py,...,P,}
and VARE(F) = {x1,...,x%,}. Before defining 57" - the mapping translating £-
formulae into FO?-formulae - let us state what are the main features we intend
that mapping to have. Analogously to ST, ST” encodes the quantification in the
interpretation of [A] into the language of FO? by using the standard universal
quantifier V and by introducing a binary predicate symbol Ry for each A € TERM.
However, this is not exactly the way ST” is defined. Actually, to each component
Ap p we associate the predicate symbol Ry ;s The main idea of S7” is therefore
to treat components as constants, which means that the translation of [A]G is
uniquely determined by the components (if any) of the normal form of A. Then,
the conditions on the L-models justify why a modal operator indexed by the
union of components is translated into a formula involving a conjunction of
atomic formulae. Let ST’ be defined as follows (S7" is actually parametrized by
Fand i€ {0,1}):

(1) ST'(Bj,y;) Z'Pi(y;); ST' (x5, 3;) = Qi (y:);
(2) ST'(=G,y,) & =ST'(G,y,); ST'(GAH,y;) = ST'(G,y;) A ST'(H,y,);
(3)

Yy ST(G,y,) if N(A) =0
ST'([816, ;) = SV y1oiRe s (95 ¥12) A ARk, (35, V125)) = ST'(G y1)
if N(&) = Ag, 5 U Ubg, i,
By adopting the standard definition (4)G = —[A]-G, ST’ can be easily defined
for (A)G: the existential quantification is involved instead of universal one.



Let Go be a first-order formula (in FO?) expressing the fact that, for any
(k. k'Y€ {0,...,27 =1} x {0, ...,1}, Ry &, is interpreted as a reflexive and sym-
metric binary relation. Let Gy be a first-order formula expressing the fact that,
for any i € {1,...,q}, Q; is interpreted? as a singleton, e.g.

q
/\ 330 (Q(yo) AV ¥1 =Yo7y = ~Qi(y1))
i=1

In the case when VARE(F) = 0, G, = Vy, y, = ¥o. Let Ti(F) be the first-order
formula (in FO?[=]) defined by

def

T1(F) = Go AGi ATy, ST'(F,,)

The translation is not quite finished yet. Indeed, although at least one of the
components p; NPy or p; N—Py is interpreted by the empty set of properties, this
fact is not taken into account in S7" (considering e.g. n = 1). This is a serious
gap since at least one of the predicate symbols Rg 1 or Ry 1 should be interpreted
as the universal relation. The forthcoming developments provide an answer to
this technical problem.

Let G be a first-order formula, &' € {1,...,{} and Xy € setoccy,. We write
G[k', Xg:] to denote the first-order formula obtained from G by substituting:

— every occurrence of Ry p1(21,22) = Hwith Hif k € Xy,
— every occurrence of F/ ARy x(21,22) AF' = Hwith F AF' = Hif k € Xy
-the degenerate cases are omitted here-

(this rewriting procedure is confluent and always terminates). From a semantical
viewpoint, the substitution is equivalent® to satisfaction of the condition (k €

Xpr): Vz1, 29, R pr(21,22). For (X1,..., X)) € setocey x ... x setoce, we write
G[X1,...,X/] to denote the first-order formula G[1, X1][2, X4]...[[, X;]. Observe
that for any permutation ¢ on {1,...,1},

Glo(1), Xo)llo(2), Xo(2)] - - . [0 (1), Xoy] = G[1, X1][2, Xo] .. . [I, X1]
Let T(F) be the formula
T(F) d:”\/{Tl(F)[Xl7 cony Xi] (X1, ., X)) € setocey X ... x setocey }

Observe that T is exponential-time in |F| and the size of the formula obtained
by translation may increase exponentially. It is however, not clear whether there

* Let FO*[37'] be FO? augmented with the existential quantifier 3=' meaning ”there
exists exactly one”. FO?[3!]-satisfiability has been proved to be in NEXPTIME
(see e.g. [PST97]). By defining Gi by G =f i F=! y, Qi(y,) we are able to prove
decidability of L-satisfiability via a translation into FO?[3=!].

° Another  solution consists in  defining G[k',X;] as the formula

(/\kexk, Y0, Y15 Rk (Yo, ¥1)) AG.



exists a tighter translation that characterizes more accurately the complexity
class of L-satisfiability. Observe also that T(F) is classically equivalent to

Go A Gy A dy, \/{ST'(F,yO)[Xl7 con Xa] (X, XD) € setocey X ... x setoce }

Ezample 1. Let F be the formula (p; U py)—Eq A [P1]E;. Then F is L-satisfiable,
and the translation of F is the disjunction of the following formulae:

1. Go AG1 ATy, (Fy; R11(Yo,¥1) AR12(Y0, ¥1) A =P1(y,)) A (Yyy Roo(yo, ¥1) =
Pi(y;))

2. Go AGi Adyy (Fyy Ro,1(Yo, Y1) AR 2(Ye, ¥1) A =Pi(¥1)) A (VY1 Roo(¥e, 1) A
Ro,1(¥0, 1) = Pi(y1))

3. Go AGi Adyy (Fyy R1,1(¥o, Y1) ARo2(¥o, ¥1) A =P1(y1)) A (Y¥1 Roo(ye, 1) A
ROJ(YOle) = Pl(Y1))

4. Go NGy Ay, (Fy; Roa(¥o,¥1) ARo2(Yo, ¥1) A =Pi(y1)) A (V¥ Roo(Yo,71) A
Ro,1(¥g:¥1) ARo2(¥o, 1) = Pi(yy))

The translation takes into account that N(p, Up,) = Ao,1 UA; 1 UAg2UAq » and
N(P1) = Ag,0 U &o,1 U Ag,2.

3.4 Faithfulness of the translation

The rest of this section is devoted to proving Proposition 5 below and stating
certain corollaries (some being consequences of the proof of Proposition 5).

Proposition5. (1) F is L-satisfiable iff (2) T(F) is first-order satisfiable.
Proof. (1) implies (2). First assume U, ey = F for some model
U= (ENT, PROP, (SimP)pngOP, v)

and ey € ENT' (this is the easier part of the proof). Let us define the following
first-order structure M & (D, m):

def

— DZ ENT; for any i € w, m(Q;) = v(x;) and m(P;) = v(E;);
— for any (k, k") €40,...,2% =1} x {1,...,1}, m(Rg &) = SIMy (A, ) (for the

other values of (k, k') the interpretation of Ry j/ is not constrained).

Let {i1,...,4) € {0,...,2% — 1}¥ be such that for any & € {1,...,1},
v(Ai,, k) = v(py). Such a sequence (iy,...,4) is unique. So, for any k' €
{1,...,0}, X = ocepr \ {in}. It is easy to show that M = Gy A G, since U
is a model. We claim that M |= T, (F)[X}, ..., Xi], and therefore M = T(F). To
prove such a result, let us show that for any G € sub(F), e € ENT, i € {0,1},
Ue = Giff Mumly, < €] E 517G, y;)[X1,...,Xi]. We write vpmly; « €]
to denote a first-order valuation vaq such that va(y;) = e. It entails M |
yo ST (G, y5)[X1, . .., Xi]. We omit the base case and the cases in the induction
step when the outermost connective is Boolean. Here are the remaining cases.
Case 1: G = [A]JF; and N(A) =0



U, e = [A]F; iff for any ¢ € SimU(A)(e), U e EFy
iff for any ¢’ € ENT U, ¢’ EFy
iff for any ¢’ € D, M, vmly; < €] E ST (F1,y,)[X1, ..., Xi]
it M 'ZVYO ST’(FlaYO)[Xh’Xl]
iff M = ST'([A]F1,y,)[X4, ..., Xi]

Case 2: G = [A]F; and N(A) = A, 1 U ... Ubg, g,
First observe that for any k' € {1,...,1} and k € Xy, v(hgx/) = 0.
U,e = [A]Fy i for any ' € ey oy simyp, ,)(€), U ¢ EF

iff for any e’ € ﬂie{l,.u,u} Simv(Ak,,k;)(e)’
Ml vM[Yl—i « 6/] ': ST’(Fl’Y1—i)[X1’ .. "Xl]

iff for any ¢’ € ﬂie{l,...,u} m(Rk“k:)(e),
M, vM[Yl—z’ « 6/] ': ST’(F17Y1—Z')[X1 ) 'aXl]

f M, vamly; < €] EVy,_, (Rkl;k,l(Yi)Y1—i) A ARp g (3 5124) =
ST/(F17 Y1—i)[X1’ R Xl}

HE M, vmly; < el EVYi (Aicic, ki@X, Ri, e, (V55 ¥124)) =
ST/(Fl, Y1—i)[X1’ ey X[}

(/\1gigu, f@ X, Ry, k/(¥;,¥1-;) is T if the conjunction is empty)

iff M, vmly; <] E (Vy, (Rkl,kq (Visy1oi) A /\Rku,k;(Ykai)) =
ST/(Fla Y1—i))[X] IR Xl]

lﬂM ': ST/([A]FI,YZ»)[XI, .. .,Xl]

In the previous line the substitution operation is performed only on S7"(F1,y,_;)
whereas in the next line it 1s performed on the whole expression.
(2) implies (1). Omitted because of lack of space.

Corollary 6. (1) The L-satisfiability problem is decidable. (2) L has the finite
model property. In particular, every L-satisfiable formula F has a model such
that card(ENT) < 22P(|F|) for some fized polynomial p(n), and the cardinality
of the relevant part of U is at most 2" + |, where n = card(VARSP(F)) and
| = card(VARP(F)).

As observed by one referee, formalizing concepts from similarity theory di-
rectly in first-order logic could be another alternative.

3.5 The degenerate cases

In the previous section we have assumed that n > 1 and [ > 1. Now let us
examine the remaining cases. If [ > 1 and no variable for sets of properties
occurs in the formula (n = 0), then we consider the following components:
Ay = —p; N ...N —p; and Ay = pg, for & € {1,...,{}. Condition (3) in the
definition of ST” becomes:
Yy, ST'(G,y,) if N(A) =0
ST'([Al6,y;) =V yi_i(Roger (35, ¥1-3) A - ARor (75, 714)) = ST/ (G, y,_,)
if N(A) =Ag; U...UBy,



If » > 1 and no variable for individual properties occurs in the formula

(I =0), then Condition (3) in the definition of ST’ becomes:

Yy, S17(G,y,) if N(A) =0
def
ST'([4G,y;) = § ¥ ¥1—i R, 0(¥5, ¥13) A ARi0(¥::¥1-5)) = ST'(G, y,_;)
if N(&) = Bg, U...UBy, (see Section 3.2)

Moreover, T(F) is simply defined as T;(F). In the case when n = 0, { = 0 and
TERM(F) # 0, by substituting every occurrence of 0 in F by p; N —p; we preserve
L-satisfiability and reduce the case to the previous one. Otherwise, F is a formula
of the propositional calculus and therefore 1t poses no difficulty with respect to
decidability.

4 Decidability results for variants of £

4.1 Fixed finite set of properties

In this section we consider a finite set P RO P of properties, and show that Lprop
shares various features with £. Actually Lprop corresponds to the similarity
logic with a fixed finite set of properties defined in [Kon97]. Without any loss
of generality we can assume that PROP = {1,...,a} for some a > 1 and
VARP = {py,...,P,}

Let F be a Lprop-formulasuch that VARP(F) = {p, ,...,p; } and VARSP(F) =

{P;,,..-,P;.}. For any interpretation v possibly occurring in some £Lpgrop-model
def

and for any A € TERM(F), if v(4) = {ky,...,k,}, then Ny(4) = p,, U...Up,,
otherwise (v(A) = 0) N,(A) = 0. We write vp (resp. N,(F)) to denote the
restriction of v to TERM(F) (resp. the formula obtained from F by substituting

every occurrence of & by N, (4)). Let Xg be the finite set

{vp : v interpretation possibly occurring in some Lprop —model}

Proposition7. Let F be a Lprop-formula. (1) F is Lprop-satisfiable iff (2)
vv”EXF Ny (F) is L-satisfiable.

Proof. (1) implies (2): Assume U = (ENT,PROP, (simp)pcprrop,v), €0 EF
for some eg € ENT'. It is easy to check that U’ eq |= N, (F) where U’ is defined
from U by only replacing v by v defined as follows: for any i € {1,... a},

o' (p;) = {i}. Let U = (ENT,w, (sitm’h)pcw,v") be an L-model such that

— v and v" are identical for the common sublanguage,
. def . . def .
— for any i > a, v"(p;) = {i}, for any P C w, simp = simpnprop-

It is a routine task to check that U” ey = N, (F) and therefore U” eq =
\/v”EXF Ny (F). Indeed, for any A € TERM(F), simv(A) = SiT’L:J/“(Nv(A))'

(2) implies (1): Now assume vv”EXF Ny (F) is L-satisfiable. There exist an
L-model U’ = (ENT', PROP’, (simp)pcprop,v'), e0 € ENT" and vj € Xg



such that U’ eq = N,»(F). By the proof of Proposition 5, we can assume that
{u1,...,uqs} is a relevant part of PROP’ in U’ such that for any ¢ € {1,...,a},
v'(p;) = u;. Indeed, PROP’ is at least countable, VARSP(VU”GXF Ny (F)) =0
and card(VARP(\/,U,,EXF Non(F))) < a.LetUd = (ENT', PROP, (simp)pcprop,v)
be the £prop-model such that:

— v and v{ are identical for the common sublanguage;

for any P C PROP, simp = Sim{{ul:iEP}'

It is a routine task to check that ¢, e |=F since for any A € TERM(F), sim,, 5y =

M
TN (B))

Corollary 8. Lprop-satisfiability is decidable and Lprop has the finite model
property.

Ezample 2. (Example 1 continued) Let F be the formula (p, U p,)—E; A [P1]E;
for the logic L1 23. Then, F is not Ly o3-satisfiable, although F is L-satisfiable.
The formula vv’eXF Ny (F) is the disjunction of the following formulae:

1. (<P1 U P2>ﬁE1 A [O]El) \% (<P1 U P2>ﬁEl A [PﬂEl)
2. ({py UPps)—E1 A [po]E1) V ({P1 UP2)—E1 A [Py UPpoJEr)

4.2 Fixed infinite set of properties

In this section we consider some infinite set PROP of properties, and show
that Lprop shares various features with £. Actually, Lprop corresponds to
the similarity logic with a fixed infinite set of properties defined in [Kon97].
Without any loss of generality we can assume that w C PROP (there is an
injective map f from w into PROP) and {p;,p,, ...} C VARP.

Proposition9. Let F be a Lprop-formula. (1)} F is Lprop-satisfiable iff (2) F
s L-satisfiable.

Proof. Omitted because of lack of space.

Corollary 10. Lprop-satisfiability is decidable and Lprop has the finite model
property.

5 Concluding remarks

We have shown that the relative similarity logics £ and £x for some non-empty
set X of properties have a decidable satisfiability problems. Moreover, we have
also established that such logics have the finite model property. The decidability
proof reduces satisfiability in our logic to satisfiability in FO?[=], a decidable frag-
ment of classical logic [Mor75]. Although our reduction takes advantage of the
standard translation ST [Ben83] of modal logic into classical logic, the novelty
of our approach consists in the method of handling nominals for atomic proper-
ties and decomposition in terms of components encoded in the translation. The
reduction into FO?[=] can be generalized to any relative logics provided,



1. the conditions®

on the relations of the models can be expressed by a first-
order formula involving at most two variables (see the definition of the for-
mula Gp in Section 3.3), and

2. the class of binary relations underlying the logic is closed under intersection.

For instance, if in the definition of £ we replace reflexivity by weak reflexivity,
then decidability and finite model property still hold true”. This is particularly
interesting since weakly reflexive and symmetric modal frames represent exactly
the negative similarity relations in information systems (see e.g. [Vak91a, DO96]).
For the sake of comparison, the class of reflexive and symmetric modal frames
represent precisely the positive similarity relation in information systems.

We have also shown that L-satisfiability is EXPTIME-hard (by taking ad-
vantage of the general results from [Hem96]), and that the problem can be solved

by a deterministic Turing machine in time O(222p(n)) for some polynomial p(n),
where n is the length of the tested formula. Indeed: the translation process T is
exponential in time in the length of the formula, T may increase exponentially
the length of the formula and satisfiability for FO?[=] is in NEXPTIME. It is
therefore an open problem to characterize more accurately the complexity class
of L-satisfiability. However, the translations we have established can already be
used to mechanize the relative similarity logics by taking FO?[=] as the target
logic and by using a theorem prover dedicated to it. We conjecture that more
efficient methods might exist for the mechanization.
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