N

N

Computational Complexity of Multimodal Logics Based
on Rough Sets

Stéphane Demri, Jaroslaw Stepaniuk

» To cite this version:

Stéphane Demri, Jaroslaw Stepaniuk. Computational Complexity of Multimodal Logics Based on
Rough Sets. Fundamenta Informaticae, 2000, 44 (4), pp.373-396. hal-03195322

HAL Id: hal-03195322
https://hal.science/hal-03195322

Submitted on 11 Apr 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03195322
https://hal.archives-ouvertes.fr

Fundamenta Informaticae 34 (2001) 1-24 1
108 Press

Computational Complexity of Multimodal Logics
Based on Rough Sets

Stéphane Demri Jarostaw Stepaniuk
Lab. Spécification et Vérification Institute of Computer Science
ENS de Cachan & CNRS UMR 8643 Bialystok University of Technology
61 Av. Pdt. Wilson Wiejska 45A, 15-351 Bialystok, Poland
94235 Cachan Cedex, France email: jstepan@ii.pb.bialystok.pl

email: demri@lsv.ens-cachan.fr
On leave from Lab. LEIBNIZ

Abstract. We characterize the computational complexity of a family of approximation
multimodal logics in which interdependent modal connectives are part of the language.
Those logics have been designed to reason in presence of incomplete information in the
sense of rough set theory. More precisely, we show that all the logics have a PSPACE-
complete satisfiability problem and we define a family of tolerance approximation multimodal
logics whose satisfiability is EXPTIME-complete. This illustrates that the PSPACE
upper bound for this kind of multimodal logics is a very special feature of such logics. The
PSPACE upper bounds are established by adequately designing Ladner-style tableaux-
based procedures whereas the EXPTIME lower bound is established by reduction from
the global satisfiability problem for the standard modal logic B.

Keywords: rough sets, tolerance rough sets, multimodal logics, computational complex-
ity, Ladner-style algorithm.

1. Introduction

Rough sets and logics. Since the introduction of rough sets in [18], rough set theory has
been an ever growing field on its own right and many directions have been already explored
(see e.g. valuable surveys in [19, 15, 21, 22]). As rough sets can be viewed as manifestation of
incomplete information, many logics based on rough set theory have been designed for mech-
anizing reasoning in the presence of incomplete information, leading to interesting notions of
approximation (see e.g. [16, 5, 26, 31, 12, 28]). Many logics extend the current state of the art



in modal logic theory and many new problems arise, challenging the existing proof techniques
for modal logics. The introduction of the copying model-theoretic construction in [31] is cer-
tainly one of the best illustration of this phenomenon. In this work, we focus our attention on
the computational complexity of the satisfiability problems for multimodal logics where inter-
dependent modal connectives are part of the language. Actually, no general technique exists
and we propose Ladner-style decision procedures for the family of approximation multimodal
logics AML(7,,), m > 1 introduced and investigated in [26, 28]. Although it is known that each
logic of the family is PSPACE-hard, the PSPACE upper bound has been an open problem up
to now. Besides, those logics admit Hilbert-style proof systems using only Sahlqvist formulae
[23] as extra modal axioms but this is unfortunately of no help to completely characterize the
computational complexity of such logics.

Our contribution. The main contribution of the paper is to fully characterize the computa-
tional complexity of approximation multimodal logics. Actually, we show that all the approxima-
tion multimodal logics AML(7y,), m > 1, have a PSPACE-complete satisfiability problem (see
e.g. [17] for a thorough introduction to complexity theory). So, each logic AML(7,,) captures
the difficulty of the whole complexity class PSPACE, that is the class of (decision) problems
that can be solved by a deterministic Turing machine in polynomial space in the length of the
input string. PSPACE-hardness with respect to logarithmic space transformations is shown to
be an easy consequence of PSPACE-hardness of the well-known modal logic K [13]. The main
difficulty is to show that AML(7,,) satisfiability is in PSPACE. To do so we present an original
construction that extends various previous works in [13, 11]. Furthermore, we define tolerance
approximation multimodal logics TAML(7,,) and we show that these logics are EXPTIME-
complete leading to the conclusion that the PSPACE upper bound for AML(7,,) is a very
remarkable feature.

Related work. The procedure designed in this paper has a direct filiation with the works
of Ladner [13] and Halpern and Moses [11]. Indeed, we shall use a tableau-based procedure to
show that we do not need more than polynomial space to check satisfiability. We cannot take
advantage of [10] where complexity of join modal logics is characterized (AML(7,,) contains
interdependent modal connectives). Other proof-theoretical analysis about complexity issues
for modal logics can be found in [14, 32]. The techniques we use in this paper have been
successfully applied to another modal logic with interdependent modal connectives [3].

Organization of the paper. In the next section we recall definitions of different rough set
models. In Section 3 we discuss basic properties of Approximation Multimodal Logics. In Section
4 we investigate properties of a closure operator for sets of formulae. In Section 5 we prove that
the satisfiability problem of the Approximation Multimodal Logics is in PSPACE. In Section
6 we prove that the satisfiability problem of the Tolerance Approximation Multimodal Logics is
EXPTIME-complete.



2. Selected Rough Set Models

Rough set approach has been used in a lot of applications aimed at description of concepts. In
most cases only approximate descriptions of concepts can be constructed because of incomplete
information about them. Let us consider a typical example for classical rough set approach when
concepts are described by positive and negative examples. In such situations it is not always
possible to describe concepts exactly, since some positive and negative examples of the concepts
being described inherently cannot be distinguished one from another. Rough set theory was
proposed [19] as a new approach to vague concept description from incomplete data. The rough
set approach to processing of incomplete data is based on the lower and upper approximations.
A rough set is defined as a pair of two crisp sets corresponding to approximations. If both
approximations of a given subset of the universe are exactly the same, then one can say that
the subset mentioned above is definable with respect to available information. Otherwise, one
can consider it as roughly definable. Suppose we are given a finite non-empty set U of objects,
called the universe. Each object of U is characterized by a description constructed, for example,
from a set of attribute values. In standard rough set approach [19] introduced by Pawlak, an
equivalence relation (reflexive, symmetric and transitive relation) on the universe of objects
is defined from equivalence relations on the attribute values. In particular, this equivalence
relation is constructed assuming the existence of the equality relation on attribute values. Two
different objects are indiscernible in view of available information, if the same information can
be associated with these objects. Thus, information associated with objects from the universe
generates an indiscernibility relation in this universe. In the standard rough set model the
lower approximation of any subset X C U is defined as the union of all equivalence classes fully
included in X. On the other hand the upper approximation of X is defined as the union of all
equivalence classes with a non-empty intersection with X. In modal logic, those approximation
operators correspond to necessity and possibility, respectively.

In real data sets usually there is some noise, caused for example from imprecise measurements
or mistakes made during collecting data. In such situations the notions of ”full inclusion” and
"non-empty intersection” used in approximations definition are too restrictive. Some extensions
in this direction have been proposed in the variable precision rough set model.

The indiscernibility relation can be also employed in order to define not only approximations
of sets but also approximations of relations. Investigations on relation approximation are well
motivated both from theoretical and practical points of view. Let us bring two examples. The
equality approximation is fundamental for a generalization of the rough set approach based on
a similarity relation approximating the equality relation in the value sets of attributes. Rough
set methods in control processes require function approximation [21].

However, the classical rough set approach is based on the indiscernibility relation defined by
means of the equality relations in different sets of attribute values. In many applications instead
of these equalities some similarity (tolerance) relations are given only. This observation has
stimulated some researchers to generalize the rough set approach to deal with such cases, i.e., to
consider similarity (tolerance) classes instead of the equivalence classes as elementary definable



sets. There is one more basic notion to be considered, namely the rough inclusion of concepts.
This kind of inclusion should be considered instead of the exact set equality because of incomplete
information about the concepts. The two notions mentioned above, namely the generalization
of equivalence classes to similarity classes (or in more general cases to some neighborhoods) and
the equality to rough inclusion have lead to a generalization of classical approximation spaces
defined by the universe of objects together with the indiscernibility relation being an equivalence
relation.

One of the problems we are interested in is the following: given a subset X C U or a relation
R C U x U, define X or R in terms of the available information. Using an approach based
on generalized approximation spaces introduced and investigated in [27] we can combine in one
model not only some extension of the concept of indiscernibility relation but also some extension
of the concept of standard inclusion used in definitions of approximations in the standard rough
set model.

We recall general definition of an approximation space [27], [29] which can be used for
example for introducing the tolerance based rough set model and the variable precision rough
set model.

For every non-empty set U, let P(U) denote the set of all subsets of U.

Definition 2.1. A parameterized approximation space is a system
ASy ¢ = (U, Iy, vg), where

e U is a non-empty set of objects,
e I : U — P(U) is an uncertainty function,
e 5 : P(U)x P(U) — [0,1] is a rough inclusion function.

and #,$ are denoting vectors of parameters.

The uncertainty function defines for every object x a set of similarly described objects. A
constructive definition of uncertainty function can be based on the assumption that some metrics
(distances) are given on attribute values. For example, if for some attribute a € A, a metric
0q : Vo X Vg —> [0,00) is given, where V, is the set of all values of attribute a, then one can
define the following uncertainty function:

Yy e Iga (:L') if and only if d, (a (a:),a (y)) < fa (a (SL‘) @ (y))7

where f, : V, x V, = [0,00) is a given threshold function.
A set X C U is definable in the parametrized approximation space ASy g if and only if it is
a union of some values of the uncertainty function.
The rough inclusion function defines the degree of inclusion between two subsets of U [27],
[29].
We will consider the standard rough inclusion (we assume that U is finite):
card(XNY) if X 7& 0

ot (A1) = { Ca”i(X) if X=0



vsrr (X,Y) coincides with the conditional probability Pr(Y | X).
The lower and the upper approximations of subsets of U are defined as follows.

Definition 2.2. For an approximation space ASy ¢ = (U, I4,v5) and any subset X C U the
lower and the upper approximations of X are defined by

LOW (ASy 4, X) ={reU:vs(Iy(x),X)=1},

UPP (ASy 4, X) ={x €U :vg(Iy(x),X) > 0}, respectively.

Approximations of concepts (sets or relations) are constructed on the basis of background
knowledge. Hence it is very useful to define parameterized approximations with parameters
tuned in the searching process for approximations of concepts. This idea is crucial for construc-
tion of concept approximations using rough set methods. In our notation #,$ are denoting
vectors of parameters which can be tuned in the process of concept approximation.

In this paper we discuss multimodal logics based on standard and tolerance rough set models.
In the tolerance rough set model we consider approximation spaces AS of the form AS =
(U, I,vsgr) with two conditions for an uncertainty function I :

e For every = € U, we have x € I (x) (called reflexivity).
e For every z,y € U, if y € I (z), then x € I (y) (called symmetry).

In the standard rough set model there is one additional condition called transitivity:
e For every z,y,z € U,if y € I () and z € I (y), then z € I (x).

Example 2.1. Approximations of relations in the standard rough set model.
Let the universe U = {z; : i = 1,...,11} (see Table 1) and let R be a binary relation such that
R= {(x27 xﬁ)v (1‘2, 1‘7), (1’3, xB)v (I37 :Eg), (:E4, 1‘8), (1‘4, 1‘9)}

Assume that objects are described by two attributes a; and as. For attribute a; we consider
three intervals: < 160, [161,180], > 181. We define an uncertainty function I;,4 by

y € Ling(x) if and only if a1(x), a1(y) are from the same interval and as(z) = a2(y).

The data table and the uncertainty function I;,,4 are described in Table 1.
One can obtain an equivalence (indiscernibility) relation R;,q by

(,y) € Rijng if and only if y € I;q(x).
The lower approximation of R is equal to {(z3, xg), (z3,29), (4, 23), (x4, 29)}. The upper approx-

imation of R is equal to {(x3,xs), (v3,x9), (v4,28), (z4,29), (x1,x6), (1, 27), (x2,T6), (x2,27)}.
The approximations of R are depicted in Figure 1.

Example 2.2. Approximations of sets in the tolerance rough set model.
We consider an uncertainty function I, defined by
y € Igim(x) if and only if |a;(z) — a1(y)] < 5 (see also Table 1). We consider an approximation
space ASsim = (U, Isim, VSRI)-

Let X = {x2,x¢,x8}. The lower approximation LOW (ASsim, X) of X is equal to {2} and
the upper approximation UPP(ASsim, X) of X is equal to {x1, z2, x3, 26,25}



Figure 1.

al a9 Imd Isz'm
r1 | 155 | f {1, 2} {x1, 22,27}
ro | 158 | f {1, 22} {x1, 22,26}
w3 | 168 | £ || {x3,24) | {23,724, 28}
wg | 172 | f || {ws,za} | {w3, 74,79}
T | 184 | f {x5} {x5, 210, 711}
zg | 161 | m || {xg, 27} | {z2, 26, 28}
x7 | 152 | m || {xg, 27} {w1, 27}
xg | 164 | m || {zs, 20} | {z3,6,25}
rg9 | 176 | m {zs,z9} {w4, 29,710}
z10 | 181 | m || {z10, 211} | {25, 79,710}
r11 | 187 | m || {x10, 211} {z5, 211}
Table 1. Data Table and Uncertainty Functions
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3. Approximation Multimodal Logics

For any set X, we write X* to denote the set of finite strings built from elements of X. A
denotes the empty string. For any finite string s, we write |s| [resp. last(s)] to denote its length
[resp. the last element of s, if any]. For s € X*, for j € {1,...,]|s|}, we write s(j) [resp. s[j]] to
denote the jth element of s [resp. to denote the initial substring of s of length j]. By convention
s[0] = A. For any s € X*, we write s* to denote the string composed of k copies of s. For
instance, (ind - 7‘1)2 =ind-ry -ind - and |(ind - r1)2| =4.

Given a countably infinite set Forg = {py.p;,Ppa,...} of propositional variables, for m €
w U {w} the Ly,-formulae ¢ are inductively defined as follows:

¢ n=p, | GrAp2 | d1= ¢ | ~¢ | lindlp | [L(R:)]$ | [Ri]é

for k € w, i < m. Each modal connective [R;] refers to a relation R; in the semantical structures
whereas [L(R;)] is the modal connective associated to the lower approximation L(R;) of R;.
The operator [ind] is intended to allow us to reason about an indiscernibility relation from the
underlying semantical structures (see below). We write |¢| to denote the length of the formula
¢, that is the length of the string ¢. We write md(¢) to denote the modal degree of ¢, that
is the modal depth of ¢. md is naturally extended to finite sets of formulae, understood as
conjunctions and by convention md(f)) = 0.
For m € wU {w}, we define an Hilbert-style proof system H,, whose axioms are:

1. the tautologies of the propositional calculus;
2. for a € {ind} U {Ri, L(R) i < m}, ([a)o A [a](6 = ) = [a]o
3. [ind]¢ = ¢;
4. ¢ = [ind]-[ind]-¢;
5. [ind]¢ = [ind][ind]®;
6. for i < m, [Ril¢ = [L(R;)]¢;
7. for i <m, [L(R)]¢ = [ind][L(R;)][ind]¢;
and the inference rules are:
. from ¢ and ¢ = 1 infer 1;
2. from ¢ infer [ind]®;
3. from ¢ infer [L(R;)]¢ for i < m;
4

[y

. from ¢ infer [R;]¢ for i < m.

The axiom schema 2. allows us to perform propositional reasoning in the scope of modal
connectives, thanks also to the inference rule 1. (Modus Ponens) and to the so-called Necessita-
tion rules 2.-4. Those are standard ingredients to axiomatize normal modal logics. The axiom
schemes 3.-5. correspond to the fact that the indiscernibility relation associated to [ind] is an



equivalence relation whereas the axiom schema 6. is an inclusion axiom that corresponds to the
property that a lower approximation relation L(R;) is included in R;.

The system Hy is the Hilbert-style proof system for the standard modal logic S5 [9] whereas
for 1 < m < w, Hy, is the proof system defined in [28, Section 4.2] for the Approximation
Multimodal Logic AML(7,;,). The system H, can be viewed as a limit for the systems H,,,
m < w.

For m € wU {w}, an m-frame is defined as a structure (W, Ring, (Ri)i<m, (LRi)i<m) such
that W is a nonempty set and R;,q, the LR;s and the R;s are binary relations on W. An
AML,,-frame is an m-frame such that

1. R;,q is an equivalence relation on W;
2. for i <m, LR; C R;;
3. fori <m, Ringo LR; o Ring C LR;.

Because of the condition 1., the condition 3. above can be replaced by for ¢ < m, R;,qo LR; o
Rina = LR;. Each relation LR; is viewed as the lower approximation of the relation R; with
respect to the indiscerniblity relation Rj,q. An [resp. AML,,-model] m-model is a structure
of the form (W, Rind, (Ri)icm, (LR;)i<m, V) such that (W, Rind, (Ri)i<m, (LR;)i<m) is an [resp.
AML,,,-frame] m-frame and V : Forg — P(W) is a meaning function (valuation).

As is usual for modal logics, the Ly,-formula ¢ is satisfied by w € W in M & M, w Eé
where the satisfaction relation |= is inductively defined as follows:

e Mw=p & weV(p), for every propositional variable p:

o M,wl=[ind]¢p & for every w' € Ripa(w), M,w' = ¢;

e Mw=I[L(R)]|¢ & for every w' € LR;(w), M,w' = ¢;

e M,w = [Ril¢p E for every w' € Ri(w), M,w' = ¢.
We omit the standard conditions for the propositional connectives. An L,,-formula ¢ is said to
be AML,y,-satisfiable [resp. AML,,-valid] & there exist an AML,,-model M and w € W such

that M, w = ¢ [resp. for all the AML,,-models M, for w € W, M,w = ¢].
A standard result in modal logic allows to state that:

Theorem 3.1. [23] For m € w U {w}, for any Ly,-formula ¢, ¢ is a theorem of Hy, iff ¢ is
AML,,,-valid.

Consequently, since for m < w, the system Hy,, axiomatizes the logic AML(7,;,) in [28],
the computational complexity of AML,,-satisfiability (or AML,,-validity) is identical to the
problems for AML(7,,), respectively.

Lemma 3.1. AMLg-satisfiability is NP-complete and for 1 < m < w, AML,,-satisfiability is
PSPACE-hard.



Proof:

AMLy-satisfiability is INP-complete since AMLg-satisfiability is equivalent to the satisfiabil-
ity problem for the standard modal logic S5 that is known to be NP-complete [13]. AML,,-
satisfiability is PSPA CE-hard since one can easily show that AML,,-satisfiability restricted to
formulae containing only the modal connective [R;] is equivalent to the satisfiability problem
for the standard modal logic K that is known to be PSPACE-hard [13]. O

Lemma 3.2. If AML,,-satisfiability is in PSPACE, then for 1 < m < w, AML,,-satisfiability
is PSPACE-complete.

Proof:
For 1 < m < w, one can check in PSPACE that ¢ € L, belongs to Ly,. Moreover, for ¢ € L,,,
¢ is AML,,-satisfiable iff ¢ is AML,-satisfiable, which guarantees the desired result. O

In the sequel, we shall therefore focus on AML,-satisfiability.

4. Preliminary Results

In Definition 4.1 below, we introduce a closure operator for sets of L,-formulae as it is done for
Propositional Dynamic Logic (PDL, for short) in [7].

Definition 4.1. Let X be a set of L,-formulae. Let c1(X) be the smallest set of formulae such
that:

X C cl(X);

o if ¢ € c1(X), then ¢ € c1(X);

o if ¢1 A ¢p2 € c1(X), then ¢, po € c1(X);

o if [a]¢ € c1(X), then ¢ € c1(X) for a € {ind} U{L(R;),R; :i € w};
if [R;]¢ € c1(X), then [L(R;)]¢ € c1(X);

if [ind][L(R;)][ind]¢ € c1(X), then [L(R;)]$, [ind][L(R:)]¢ € c1(X);

o if [L(R;)]¢ € c1(X) and ¢ # [ind]¢’, then [ind][L(R;)][ind]$ € c1(X);
if [L(R;)][ind]¢ € c1(X), then [ind][L(R;)][ind]¢ € c1(X).

A set X of formulae is said to be closed & c1(X) = X. Observe that for any finite set X
of formulae, md(c1(X)) < md(X) + 2.

Lemma 4.1. Let ¢ be a formula. Then, card(cl({p})) < 6 X |@|.

Proof:
Let subg be the set of subformulae of the formula ¢. Obviously, suby, C cl({¢}). Moreover,
cl({¢}) is the union of the following sets:

o suby;



o {[L(R)]o, [ind)[L(Ri)]¢) - [ind][L(R;)][ind]) € subg};

o {[ind][L(R:)][ind]y, [L(R:)][ind]$), [ind]y, [ind][L(R:)]¢) : [L(R:)]4 € subg, ¢ # [ind]y'};
o {[ind][L(R:)|[ind]y, [L(R:)]3h, lind][L(Ri) ][4 = [L(R;)][ind]) € subg }

o {[L(R)]o, [ind)[L(R:)][ind)sp, [L(Ry)][ind]ip, [ind]s, [ind] [L(R;)]¢ :

[Rili) € subg, ¢ # lind]y)'};
o (LR lind, lind (LR lind), (LR, lind[L(R)N (R ind}) € subs).
Each set above is of the cardinality at most 5 x card(subg). So card(cl({¢})) < 6 x |4|, since
card(suby) < |@|. O

What is important to establish the PSPACE upper bound is that card(c1({¢})) is bounded
by a polynomial in |¢|.

In Definition 4.2 below, we introduce a family (c1(s, ¢))se(findyufr: iricw})- Of finite subsets
of c1(¢) with the following intention. For s € ({ind} U {ry,lr; : i € w})*, for any AML,-model
and for w € W, in order to check whether M, w = 1 for some ¢ € c1(s, ¢), one should only
need to check whether M, w' |= ¢ for all ¢ € c1(s’,¢) and w' € W where s’ extends s by one
letter and w’ is an immediate neighbor of w.

Definition 4.2. Let ¢ be a formula. For s € ({ind} U {r;,lr; : i € w})*, let cl(s,$) be the
smallest set such that:

c1(A, ¢) = c1({4});
2. cl(s, ¢) is closed;
3. if [ind]y) € cl(s, @), then [ind]y) € c1(s - ind, P);
4. if [R;]y € cl(s, ), then ¥ € c1(s- 1, ¢);
5. if [L(R;)]% € cl(s, @), then 9 € cl(s - lr;, P).

Definition 4.2 is not a typical inductive definition. Actually, the clauses 1.-5. below define
a certain operator which least fixed point allows to define a function s — c1(s, ¢) by Knaster-
Tarski fixed-point Theorem.

Example 4.1. Let ¢ be the formula [R;]p,. The set c1(\, @) = c1({¢}) is equal to

{[R1lpo, Po; [L(R1)]pg, [ind][L(Ry)][ind]py, [L(R1)][ind]py, [ind]py, [ind][L(R1)]py }
Below are some examples of sets of the form c1(s, ¢):
o cl(ind, @) = c1({¢}) \ {[Ri]py};
o CA(ind-Ir1,6) = {po, [indlpo};
e cl(ind - lry -ind, ¢) = {py, [ind]py };
e cl(ind lry -ind - lr1,¢) = 0.



One can check that for any s € ({ind} U {r;,Ir; : i € w})* such that Ir; or r1 occurs more than
twice, cl(s,¢) = 0.

Lemma 4.2 contains some basic properties about the sets c1(s, ¢).

Lemma 4.2. Let ¢ be a formula and s,s" € ({ind} U {ry,lr; : i € w})* such that s is a prefiz s
Then,

() 61(+',6) € c1(s,0);
(II) if Y € cl(s,¢), md(yp) = md(cl(s,¢)) and md() # 0, then 1 is of the form [ind]y)’;
(III) if md(cl(s,¢)) =0, then cl(s-ind, ) = cl(s-Ilri,¢) = cl(s -1, ¢) = 0;
(IV) for k> 1, c1(s-ind, ¢) = cl(s-ind*,$);
(V) md(cl(s-lr;,¢)) < max(0,md(cl(s,¢)) —1);
(VI) md(cl(s-r;,¢)) < mazx(0,md(cl(s,¢)) —1);
(VII) If the lr;s and r;s occur more than md(¢) + 3 times in s, then cl(s,¢) = 0.

Proof:

(I) This is immediate since both sets c1(s’, ¢) and c1(s, ¢) are closed.

(IT) c1(s, ¢) is closed and by a simple inspection of Definition 4.1, this is immediate.

(III) This is immediate by Definition 4.2 since only the formulae prefixed by a modal connective
can be propagated from s into s -ind, s-r; and s - [r;, respectively.

(IV) The proof is by an easy verification by induction on k.

(V) Suppose that md(cl(s,¢)) > 1, otherwise the proof is immediate by (III). Let ¢ € c1(s, ¢)
be such that md(¢)) = md(cl(s, ¢)). Let us show that ¢ ¢ c1(s-lr;, ¢). By (I) we are then done.
By (II), 4 is of the form [ind]y’. Suppose that ¢ € c1(s-Ir;, $). So, there is [L(R;)]p € cl(s, ¢)
such that ¥ € c1(yp).

Case V.1: ¢ # [ind]y'.

So, [ind][L(R;)][ind]e € c1(s, ). Since 9 € c1(p), md(y)) < md(¢) + 2. However, md(p) +2 <
md([ind][L(R;)][ind]p) which is in contradiction with md(i) = md(cl(s, ®)).

Case V.2: ¢ = [ind]¢’.
So, [ind][L(R:)]
md(cl([ind]¢”)) < md([ind]¢") + 1. Indeed, the occurrences of [ind] are not the cause for
increasing the modal degree. Since ¥ € cl(p), md(y)) < md(p) + 1. However, md(p) +1 <
md([ind][L(R;)][ind]¢") which is in contradiction with md(+) = md(cl(s, ¢)).

(VI) The proof is similar to (V).

(VII) This is a direct consequence of (V) and (VI) since md(cl(A, ¢)) < md(¢) + 2. O

ind]¢’ € cl(s, ¢). One can easily show that for any formula of the form [ind]¢”,

Definition 4.3. Let X,Y be sets of L,-formulae. The binary relation =;,4 is defined as follows:

def
X ind Y &

1. for all [ind|y € X, [ind]y € Y
2. for all [ind]y €Y, [ind]y € X.



The binary relation ~,, is defined as follows: X ~,, Y & for all [Ri]Y € X, ¢ € Y. The binary

relation =z, is defined as follows: X ., ¥ &

1. for all [R;]y € X, ¢ € Y;
2. for all [L(R;)]Y € X, €Y;
3. for all [ind][L(R;)][ind]yp € X, Y €Y.

In the definition of =~;,,, condition 2. faithfully reflects the standard semantics of modal
necessity. Condition 1. encodes syntactically the fact that LR; C R; holds true in the AML,-
models. Condition 3. is maybe the most surprising unless one observes that [ind|[L(R;)][ind]y <
[L(R;)]p is AML,-valid and therefore condition 3. is a variant of condition 1.

Let clos be the set of subsets Y of c1({¢}) such that [ind]y) € Y implies ¢ € Y. Observe
that =g is an equivalence relation on clos and ~,, C~,,.

Definition 4.4. Let X be a subset of c1(s, ) for some s € ({ind} U {r;,Ir; : i € w})* and for
some formula ¢. The set X is said to be s-consistent & for ¢ € cl(s, @):

1. if ¢p = =, then ¢ € X iff not ¢ € X

2. if P = 1 A2, then {p1,¢2} C X iff o € X;

3. if ¢ = [ind]p and ¥ € X, then ¢ € X;

4. if ¢ = [ind][L(R;)][ind]¢ and ¢ € X, then [L(R;)]p € X;

5. if ¢ = [L(R;)][ind]p and ¢ € X, then [ind][L(R;)][ind]¢ € X;

6. if ¢ = [L(R;)]p, ¢ # [ind]¢’ and ¢ € X, then [ind][L(R;)][ind]y € X;
7. if ¥ = [Ri]p, and ¢ € X, then [L(R;)]p € X.

Roughly speaking, the s-consistency entails the maximal propositional consistency with re-
spect to the set cl(s, @) of formulae. Furthermore, the modal conditions 3.-7. in Definition 4.4
are added in order to take into account the reflexivity of R;,q, the inclusion LR; C R; and the
equality LR; = R;jpq o LR; o Rjpq.

Lemma 4.3. Let M be an AML,-model, w € W, s € ({ind} U {r;,lr; : i € w})*, ¢ be a
Lo-formula. Then, {¢ € c1(s,¢) : M,w =} is s-consistent.

The proof of the above lemma is by an easy verification using the fact that c1(s, ¢) is closed.
In a sense, Lemma 4.3 states the correctness of the notion of s-consistency.

Lemma 4.4. Let X; be an s;-consistent set, i =1,...,4.
(1) If X1 Rina Xo =ir, X3 Ring X4, then X1 =, Xy
(II) Reciprocally, if X1 =y, X4, then Xi(=ing © =ip; © Ring) Xa.



Proof:

(I) This property can be shown mainly because [ind][L(R;)][ind]y € X iff either [L(R;)][ind]y €
X or [L(R)]y € X1, and if [ind][L(R;)][ind]y € X1, then [ind]y, € X4.

(IT) Assume Xy =y, X4. Since Xq Rjpg X1 and Xy Rinag X4, X1(Rind © Rip; © Rind) X4- O

Lemma 4.5. Let M be an AML,-model, w,w'" € W, s € ({ind} U {ri,lr; : i € w})*, §,s" €
{\,ind,lr;,r;} and ¢ be a Ly,-formula. Let

Xo Z{pecl(s s,¢) MuwEv} Xw Z{pecl(s s",¢): M =y}

Then,

(I) Xy is s.8'-consistent and X, is s.5"-consistent;
(II) if (s',") = (A 1r;) and {(w,w') € LR;, then X, ~pp, Xy ;
(III) if (s',s") = (A, 1) and (w,w') € R;, then Xy ~p, Xy
(IV) if (s', 8"y € {(\,ind), (ind, \), (\,\)} and (w,w") € Rinq, then Xy Xipg Xy -

The proof is by an easy verification using the previous lemmas.

5. AML,_-satisfiability is in PSPACE

In this section, we present the algorithm WORLD and prove its termination and correctness. We
also estimate the computational complexity of WORLD.

5.1. The algorithm

In Figure 2, the function WORLD(X, s, ¢) returning a Boolean is defined. ¥ is a non-empty finite
sequence of subsets of c1({¢}) and s € ({ind}U{r;,Ir; : i € w})*. The function WORLD is actually
defined on the model of the function K-WORLD in [13] (see also [25, 4, 14, 32]). The results given
in Section 4 are crucial to guarantee that WORLD is correct and terminates. By a successful call
of WORLD(3, s, ¢) we mean that it returns true.

Most of the ingenuity to guarantee that the algorithms terminate are in the definition of
cl(s, ¢), s-consistency and the syntactic relations of the form =. Indeed, c1(s-a, ¢) contains the
formulae that can be possibly propagated from c1(s, ¢). In the easiest case, c1(s-a, ¢) C cl(s, ¢)
(strict inclusion) but this is not the general case here. Then the syntactic relation of the form
~ and s-consistency further restrict the formulae that can be propagated. Still, we may be
in trouble to guarantee termination. That is why the detection of cycles is introduced (see
e.g. [13]). Tt is precisely, the appropriate combination of all these ingredients that guarantees
termination and the PSPACE upper bound. What we present is a formalization of Ladner-like
algorithms based on [25] and we believe it is the proper framework to allow further extensions
(see e.g. [2, 3]).



function WORLD(X, s, ¢)
if last(X) is not s-consistent, then return false;
% ’ind’ segment

for [ind]y) € cl(s, ) \ last(X) do

if there is no X € ¥ such that ¥ = X1 XX, s is of the form s1.s9 with |sa| = |X3]
and sy € {ind}*, ¥ ¢ X, last(X) =g X, then

for each X, C cl(s-ind, ) \ {¢} such that last(X) xj,q Xy, call WORLD(X - Xy, s -
ind, ¢). If all these calls return false, then return false;

% 'r;’ segment
for [R;]y € cl(s, ¢) \ last(X) do

for each Xy, C c1(s-7i,¢)\ {1/} such that last(¥) ~,, Xy, call WORLD(X - X, 574, ).
If all these calls return false, then return false;

% ’lr;’ segment
for [L(R;)]yY € cl(s,¢) \ last(X2) do

for each X, C c1(s-Ir, ¢)\ {9} such that last(X) ~., Xy, call WORLD(X- Xy, s-175, ¢).
If all these calls return false, then return false;

Return true.

Figure 2. Algorithm WORLD




We prove that for any set X C cl({¢}), WORLD(X, ), ¢) always terminates and requires
polynomial space in |¢|. To do so, we shall take advantage of the fact that if WORLD(X, s, ¢) calls
WORLD(Y', s’, ¢) (at any recursion depth), then |s'| > |s|.

Each subset X C c1({¢}) can be represented as a bit string of length 6 x |¢| (see Lemma
4.1). By implementing ¥ as a global stack, each level of the recursion uses space in O(|¢|). For
instance, in the parts of WORLD of the form

“for each X, C c1(s-a, ¢)\ {9} such that last(¥) ~a Xy, call WORLD(X - Xy, s-a, ¢).
If all these calls return false, then return false”

the implementation uses a bit string of length 6 x |¢| to encode each X (this value is incremented
for each new X,,) and a Boolean indicating whether there were a call returning true.

5.2. Termination and space upper bounds

Lemma 5.1. Let X C c1({¢}) and ¢ be an L, -formula.

If WORLD(X, s, @) is called in WORLD(X, A, ¢) (at any recursion depth |s|) and s is of the form
s'.s" with s" € {ind}* and |s"| > 6 x |¢| + 1, then in the “ind” segment of WORLD(X, s, ¢), no
recursive call to WORLD 4s executed.

Proof:

So ¥ is of the form X1.35 with X9 = Xg... Xy and |[s"| = k > 6 x |¢| + 1. By definition of
WORLD, for i € {0,...,k}, X; ~ijng X;+1. If X} is not s-consistent, then we are obviously done.
Otherwise, assume that [ind]y € c1(s, ) \ Xi and suppose that there is no X € ¥ such that
Y =31 X3, s is of the form s; - so with |so] = |35] and s € {ind}*, ¢ € X, X ~jna X. For
0<i<j<k Xi~maX; Thatis, for 0<i<j<Fk,

{lind]yp : [ind]p € X;} = {[ind]y : [ind]p € X;}.
Since for @ € {0,...,k — 1},
WORLD(El - X1 - Xo.o  Xo, 8[|21 - X1-Xo. .. Xa,1| — 1], (25)

calls
WURLD<21 . X1 . XQ - Xa, SHEl . X1 . X2 . Xa| — ].], ¢>

and there are formulae 91, ..., ¢ in c1({¢}) such that ¥, € X, and for o/ € {1,...,a — 1},
o € Xo. Hence 4q,. .., are k' different formulae in c1({¢}). Hence k' is in O(|¢|). More
precisely, k' < 6 x |¢]. So the maximal length of X9 is in O(|¢|). More precisely, |X2]| < 6 x |¢],
a contradiction.

So necessarily, there is X € 3 such that ¥ = X} XX4, s is of the form s1.s2 with [s2| = ||
and sy € {ind}*, ¥ € X, last(X) =g X. Hence, in the “ind” segment of WORLD(X, s, ¢), no
recursive call to WORLD is executed. O

The proof of Lemma 5.1 contains a technique used to show that S5 satisfiability is in NP
[13].



Lemma 5.2. Let X C c1({¢}) and ¢ be a L -formula.

IfWORLD(X, s, ¢) is called in WORLD(X, A, ¢) (at any recursion depth |s|) and s contains more than
k > md(¢)+3 occurrences of either the r;s or the lr;s, then in the “Ir;” segment of WORLD(X, s, ¢)
and in the “r;” segment of WORLD(X, s, @), no recursive call to WORLD is executed.

Proof:
Since c1(s,¢) = 0 (by Lemma 4.2(VII)), this is immediate. O

Theorem 5.1. Let X C c1({¢}).
(I) WORLD(X, \, ¢) terminates and requires at most space in O(|¢|);

(IT) Let WORLD(X, s,¢) be a call in the computation of WORLD(X, A, ¢). Then, |X| < a and
|s| < a with a = (6 X |¢p| + 1) x (md(¢) + 3).

Any call WORLD(Y, s, ¢) from WORLD(X, A, ¢) (at any recursion depth) satisfies:

o ind®l?It1 is not a substring of s (by Lemma 5.1);
e the number of occurrences of the r;s and Ir;s are less than md($) + 3 (by Lemma 5.2).

Consequently, the length of s is at most (6 x |¢| + 1) x (md(¢) + 3). So the recursion depth is
in O(|¢|?). Each level of the recursion requires space in O(|¢|). Hence WORLD(X, \, ¢) requires
space at most in O(|¢[3).

Theorem 5.1 is certainly an important step to prove that satisfiability is in PSPACE but
this is not sufficient. Indeed, until now we have no guarantee that WORLD is actually correct.

5.3. Correctness
Correctness shall be shown in the next two lemmas.

Lemma 5.3. Let ¢ be an Ly-formula and Y C c1({¢}) such that ¢ € Y. If WORLD(Y, A, @)
returns true, then ¢ is AML,,-satisfiable.

Proof:
Assume that WORLD(Y, A, ¢) returns true. Let us build an AML,-model
M = (W, Ring, (Ri)icw: (LR;)icw, V) for which there is w € W such that for all ¥ € c1({¢}),
MwEYiffpeY.

Let S be the set of strings s over ({ind} U {r;,lr; : i € w})* such that |s| < (6 x |¢]| +
1) x (md(¢) + 3). We define W as the set of pairs (X, s) for which there is a finite sequence
(31,81)y -+, (Zk, sk) (k> 1) such that

1. for i € {1,...,k}, WORLD(X;, s;, ¢) is called successfully in WORLD(X, s, ¢) (at any depth of
the recursion);

2. 21 =Y, 81 =)\ last(Zg) = X5 s = 85
3. fori € {1,...,k}, WORLD(X;, s;, ¢) returns true;
4. fori e {1,...,k — 1}, WORLD(X;, s;, ¢) calls directly WORLD(X; 1, Sit+1, @).



The conditions 3. and 4. state that we only record the pairs (X, s) € clos x .S that contribute
to make WORLD(Y, A, ¢) true. (Y,)\) € W by definition. Furthermore, for all (X,s) € W,
X Ccl(s,¢) and X is s-consistent.

Let us define the auxiliary binary relation R/, , on W as follows: (X, s)R}, (X' s') & there

ind

is a successful call WORLD(X, s, ¢) in WORLD(Y, X, ¢) (at any depth of the recursion) such that

1. either

(a) last(Z) = X;
(b) WORLD(X, s, ¢) calls successfully WORLD (X', s', ¢) in the “ind” segment of WORLD(3, s, ¢)
last(¥X) = X';

2. or there is a finite sequence (X1, s1), ..., (Zg, sg) such that:

(a) last(Zg) = X; last(T1) = X' S =55 s, = 8; 81 = §;

(b) for i € {1,...,k}, (last(%;), s;) € W;

(c) for i € {1,...,k — 1}, WORLD(X;, s;, ¢) calls successfully WORLD(X;41, $;+1,¢) in the
“ind” segment of WORLD;

(d) the call WORLD(X, s, ¢) enters in the “ind” segment of WORLD and for some formula
[ind]y € cl(s,¢) \ X, no recursive call to WORLD is necessary thanks to X1, ¢ € X',
X ind X'.

For i € w such that either [R;] or [L(R;)] occurs in ¢, let us define the auxiliary binary relation R;

[resp. LR.] on W as follows: (X, s)Ri(X’,s") [resp. (X,s)LRL(X',s')] & there is a successful
call WORLD(X, s, ¢) in WORLD(Y, \, ) (at any depth of the recursion) such that
L. last(X) = X;

2. WORLD(3, s,¢) calls WORLD(X', s - r;,¢) [resp. WORLD(X,s - Ir;, ¢)] in the “r;” [resp. “Ir;”]
segment of WORLD(X, s, ¢); last(X') = X'.

For i € w such that neither [R;] nor [L(R;)] occurs in ¢, R; = LR} = () (dummy values). The
definition of M can be now completed:

Rina ™ (Ripq U R

e Fori€w, LR; & Rjngo0 LR o Ring;

For i€ w, R; © R ULR;;

For p € Forg, V(p) & {(X,s) e W :p e X}.

M is an AML,-model and W is of cardinality 2°(¢). One can show:

(i) (X,s)R], (X', s") implies X ~ejq X's

(i) (X,s)Ri(X', s') implies X =, X';
(iii) (X,s)LR;(X',s") implies X =, X';



So,

(iv) (X, s)Rina(X', s") implies for all [ind]y) € X, » € X' (=;nq is an equivalence relation on
clos);
(v) (X, s)Ri(X',s") implies for all [R;]¢) € X, ¢ € X' (using ~,., C~;.,);

(vi) (X,s)LR;(X',s") implies for all [L(R;)]¢ € X, ¢ € X’ (by Lemma 4.4(I)).
By induction on the structure of ¢ we show that for all (X, s) € W, for all ¢ € c1(s,¢), p € X
iff M, (X, s) = ¢. The case when 9 is a propositional variable is by definition of V.

Induction Hypothesis: for all ¢ € c1({¢}) such that || < n, for all (X,s) € W, if ¢ € c1(s,¢),
then ¢ € X iff M, (X, s) E .

Let 4 be a formula in c1({¢}) such that |)| < n+ 1. The cases when the outermost connective
of 1 is Boolean is a consequence of the s-consistency of X and of the induction hypothesis. Let
us treat the other cases.

Case 1: + = [ind]y)’. Let (X,s) € W such that ¢ € cl(s,¢). By definition of W, there
is ¥ such that last(X) = X and WORLD(X, s, ¢) returns true. If ¢ € X, then by (iv), for all
(X',s') € Rina({X,s)), ' € X'. One can show that 1’ € c1(s’, ) (by using Lemma 4.2(IV)).
By the induction hypothesis, M, (X’ s") &= 1’ and therefore M, (X,s) = ¢. Now, if ¢ ¢ X,
two cases are distinguished.

Case 1.1: there is X' in ¥ such that X ~;,q X', ¢’ € X' and ¥ = X' X'%s, s is of the form s - s9
with |Xa| = |s2| and s2 € {ind}*.

By definition of W, WORLD(X' - X', s’, ¢) returns true (see the conditions 3. and 4. defining
W). Hence, (X, s)R], (X', s') by definition and therefore (X, s) R;,q(X’, s’). One can show that
Y’ € c1(s', ¢) since s is of the form s"-ind* for some k > 0 (see Lemma 4.2(IV)). By the induction
hypothesis, M, (X', s') b= 1’ and therefore M, (X, s) [~ 1.

Case 1.2: the condition in the Case 1.1 does not hold. So, WORLD(X, s, ) calls successfully
WORLD(Y, s - ind, ¢) in the “ind” segment of WORLD, last(X') = X' and ¢’ & last(X'), X =g X,
and X' C cl(s-ind,¢). This is so since WORLD(Y, s, ¢) returns true. By definition of R

ind’
(X,s)R], (X' s'). Furthermore, one can easily show that ¢’ € c1(s-ind,¢). By the induction
hypothesis, M, (X', s -ind) }£= ¢ and therefore M, (X, s) = 1.

Case 2: ¢ = [R;]y)'. This is analogous to the Case 1.1 using (v).

Case 3: v = [L(R;)]¢'. This is analogous to the Case 1.1 using (vi).

As a conclusion, since ¢ € Y and WORLD(Y,, A, ¢) returns true, M, (Y, \) = ¢ and therefore ¢ is

AML, -satisfiable. O

Lemma 5.4. Let ¢ be an L,,-formula. If ¢ is AML,,-satisfiable, then there is Y C c1({¢}) such
that ¢ € Y and WORLD(Y, \, ) returns true.

Proof:
Assume that ¢ is AML,,-satisfiable. Hence, we obtain that there is an AML,-model M° =
(WO RS . (RY)icw, (LRY)icw, V) and w® € WP such that M w® = ¢. Actually we show that
(i) for any s € ({ind} U {ri,lr; : i € w})*, for any sequence X = Xp... Xy such that for
Jj€{0,...,]s|},



1. X; C cl(s[j], ¢) is s[j]-consistent;
2. lfj # |8‘, then Xj zs(j) Xj+1;
3. if j # 0, then there is [s(j)]y) € c1(s[j — 1],¢) \ X;—1 such that
3.1. ’(/J ¢ Xj;
3.2. if s(j) = ind, then there is no k¥’ € {0,...,7 — 1} such that X; | =jnq Xp,
¢ & Xy and s[j — 1] = s[k'] - ind/ ¥,

if there exist an AML,-model M = (W, Rind, (Ri)icw, (LR;)icw, V) and w € W satisfying
for all ¢ € c1(s, ¢), M,w [= ¢ iff ¢ € X, then WORLD(X, 5, ¢) returns true.

Consequently, by taking s = A and Xo = {¢ € c1({#}) : M%w’ = ¥}, we obtain that
WORLD( Xy, A, ¢) returns true. The proof of (i) is by induction on the length of s.
Base case: |s| > (6 x |¢| + 1) x (md(¢) + 3). By the proof of Theorem 5.1, no sequence X of

length |s| satisfies for j € {0,...,]|s|} the conditions 1.-3. So the property trivially holds.
Induction step: assume s € ({ind} U {r;,lr; : i € w})* is of length n — 1. Let ¥ be a se-
quence of length |s| such that for j € {0,...,]|s|} the conditions 1.-3. hold true. Let M =

(W, Rind, (Ri)icw, (LR;)icw, V) be an AML,-model and w € W such that for all ¢ € c1(s, ¢),
M, w = iff i € Xy, Since X|,| is s-consistent, WORLD(X, s, ¢) returns false only if either the
segment “ind” or the segment “r;” or the segment “Ir;” returns false. Let [ind]y € c1(s, )\ Xy
By hypothesis, M, w [~ [ind]s. So there is w’ € W such that (w,w’) € Rijq and M,w’ £ .
Let Y C c1(s - ind, ¢) be such that for all ¢ € c1(s-ind,¢), p€ Y & M,w' |=¢. So, v Y
and X‘S‘ ind Y.

In the case when there is no X € ¥ such that ¥ = 31 X3s, s is of the form s1.s9 with |sa| =
|2o] and so € {ind}*, ¢ € X, last(X) =inq X, by the induction hypothesis, WORLD(X.Y, s-ind, ¢)
returns true. Therefore, WORLD(Z, s, ¢) does not return false in the “ind” segment of WORLD.
Similarly, we can show that WORLD(X, s, ¢) does not return false neither in the “r;” segment nor
in the “Ir;” segment of WORLD.

Consequently, WORLD(X, s, ¢) returns true. O

Since WORLD is correct, the proof of Lemma 5.3 provides the finite model property for AML,,
and an exponential bound for the size of the models exists. These results are obtained as a
by-product of the complexity result.

Finally,

Theorem 5.2. AML, -satisfiability is in PSPACE.

Proof:

By Lemma 5.3 and Lemma 5.4, for any formula ¢, ¢ is AML,-satisfiable iff there is X C c1({¢})
such that WORLD(X, )\, ¢) returns true. By Theorem 5.1, WORLD(X, A, ¢) requires space in O(|$|?)
and the bit string necessary to remember which sets X C c1(¢) have been already dealt with
requires space in O(|¢|). So AML,-satisfiability is in PSPACE. O



6. Tolerance Approximation Multimodal Logics

The complexity of the approximation multimodal logics is now completely characterized. The
reader familiar with complexity issues for modal logics may be a bit disappointed since after all,
PSPACE is the complexity class for modal logics. In a sense, the sophisticated developments of
the previous sections do not lead to very surprising results. However, this impression is erroneous
as the rest of this section will show.

For m € wU {w}, a tolerance AML,,-frame (or TAML,,-frame) is defined as an AML,,-
frame except that R;,q is reflexive and symmetric instead of being an equivalence relation. In
the sequel, we write Rg;,,, instead of R;y,q and [sim] instead of [ind]. Such an alternative definition
can be also justified by considering that a lower approximation of a relation is computed from
a similarity relation (see e.g. [12]). All the other definitions can be easily adapted. We shall
use the term of TAML,,-satisfiability for satisfiability with respect to the class of TAML,,-
models. Observe that in the TAML,,-models, for & > 1, for i < m, Rsm oLR;o R’;im C LR;.
Since Rgm is reflexive, it leads to the condition R;,,6 o LR; o R,

R* oLR;oRY = LR;.

stm s1m

C LR;, or equivalently

Lemma 6.1. For m € wU {w}, TAML,,-satisfiability is in EXPTIME.

Proof:

Let m € wU {w}. We define a logarithmic space transformation into satisfiability for converse-
PDL that is known to be in EXPTIME (see e.g. [8]). The map f is inductively defined as
follows ({c; : ¢ € w} is a set of distinct program constants):

p) p for p € Forg and f is homomorphic with respect to the Boolean connectives;
sim)g) = [(c1Uer ) U T?(9);

L(R:)]$) = [((crU ey ) U T cran(irnyas ((e1Uey ) UT2)f(9);

[Ri]6) = [(((crUey ) UT)* C(ax(i+1))+1; ((c1 U c;HUTY*)U Cox(i+1)]f(D)-

One can show that ¢ is TAML,,-satisfiable iff f(¢) is satisfiable in converse-PDL. O

I
A
i
I

The logarithmic space transformation defined in the proof of Lemma 6.1 is a variant of
standard mappings from modal logics into PDL (see e.g. [7, 6, 30]). The most surprising result
is the EXPTIME complexity lower bound.

Lemma 6.2. TAML; -satisfiability is EXPTIME-hard.

Proof:

Let L(O) be the standard modal language (extension of the language for the propositional
calculus by adding the standard modal connective O). Let B-GSAT be the set of standard
modal formulae ¢ such that there is a Kripke model M = (W, R, V') satisfying for all w € W,
M,w = ¢ and R is reflexive and symmetric. 'B-GSAT’ stands for the global satisfiability
problem for the standard modal logic B that is known to be EXPTIME-hard [1, Theorem 1].



Let us define a logarithmic space transformation from B-GSAT into TAML;-satisfiability. Let
¢ be a formula of L(O). Let f(¢) be the formula —[L(R1)]=T A [L(R1)]¢" where ¢' is obtained
from the formula ¢ by replacing every occurrence of O by [sim]. Let us show that (i) ¢ belongs
to B-GSAT iff (ii) =[L(R1)]=T A [L(R1)]¢" is TAML;-satisfiable.

(i) — (ii) Assume that ¢ belongs to B-GSAT. Hence, there is a Kripke model M = (W, R, V)
such that for w € W, M,w | ¢ and R is reflexive and symmetric. Let wp be an arbitrary
element of W. Let M’ = (W', Ry, LRy, R1, V') be the TAML;-model such that

« WEW;VEV;

e Rym=R; R ¥ LR, = R*

One can check that RY;  oLRyoRY;, C LR;. Obviously M, wy = =[L(R1)]=T since (wy, wp) €
LR;. Forw e W, M',w |= ¢' since ¢ is in B-GSAT. In particular, for w € R;, (wo), M, w = ¢'.
So, M, wo |= =[L(R1)]=T A [L(R1)]¢".

(ii) — (i) Assume that —=[L(R1)]=T A [L(R1)]¢’ is TAML;-satisfiable. So, there is a TAMIL;-
model M = (W, Rgiym, LR1, R1,V) and w € W such that M,w |= =[L(R1)]=T A [L(R1)]¢’. So,
there is wg € LR1(w). Since Rgim © LR1 © Rgjpy € LRy and Rg;py, is reflexive, LRy o R, C LR;.
So, for all w' € R%, (wo), M,w" | ¢ since for all w’ € (LR; o R%;,,)(w), M,w' | ¢'. Let

M' = (W' R, V') be the Kripke model such that
o W= Ry, (wo);

sim
e R is the restriction of R;,, to W';
e V' is the restriction of V to W".

So for all w' € W', M',w' = ¢. Hence, ¢ is in B-GSAT since R’ is also reflexive and symmetric.
O

Corollary 6.1. TAML; -satisfiability restricted to formulae without the modal connective [Ry]
is EXPTIME-hard.

The proof of Lemma 6.2 entails Corollary 6.1. Therefore, we have isolated another simple
bimodal logic that is EXPTIME-hard although the independent fusion of the corresponding
(mono)modal logics is in PSPACE (see e.g. [24]).

Theorem 6.1. TAMLy-satisfiability is PSPACE-complete and for 1 < m < w, TAML,,-
satisfiability is EXPTIME-complete.

7. Concluding Remarks

We have shown that all the approximation multimodal logics AML(7,), 1 < m < w, introduced
and investigated in [26], [28] have a PSPACE-complete satisfiability problem. This should not
come as a real surprise since PSPACE is known to be the complexity class for modal logics.
However, we have shown that a tolerance variant of the logics AML(7,,) leads to EXPTIME-
complete satisfiability problems. Hence, a further analysis about the PSPACE-completeness of



the approximation multimodal logics shall certainly help understanding the complexity of other
rough set theory based logics and in a more general setting the computational complexity of
numerous polymodal logics with interdependent modal connectives. This is part of our future
work.

In the literature, most of the logics derived from rough set theory do not satisfy the require-
ments proposed in [20] for the applied logics in approximation reasoning. Indeed, the features
of the logics are not driven from the data. Investigations on algorithmic methods for extract-
ing logical structures (like approximate schemes of reasoning) from data seems to be a very
important research direction.
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